18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * This is a maximally equidistributed combined Tausworthe generator
48c2ecf20Sopenharmony_ci * based on code from GNU Scientific Library 1.5 (30 Jun 2004)
58c2ecf20Sopenharmony_ci *
68c2ecf20Sopenharmony_ci * lfsr113 version:
78c2ecf20Sopenharmony_ci *
88c2ecf20Sopenharmony_ci * x_n = (s1_n ^ s2_n ^ s3_n ^ s4_n)
98c2ecf20Sopenharmony_ci *
108c2ecf20Sopenharmony_ci * s1_{n+1} = (((s1_n & 4294967294) << 18) ^ (((s1_n <<  6) ^ s1_n) >> 13))
118c2ecf20Sopenharmony_ci * s2_{n+1} = (((s2_n & 4294967288) <<  2) ^ (((s2_n <<  2) ^ s2_n) >> 27))
128c2ecf20Sopenharmony_ci * s3_{n+1} = (((s3_n & 4294967280) <<  7) ^ (((s3_n << 13) ^ s3_n) >> 21))
138c2ecf20Sopenharmony_ci * s4_{n+1} = (((s4_n & 4294967168) << 13) ^ (((s4_n <<  3) ^ s4_n) >> 12))
148c2ecf20Sopenharmony_ci *
158c2ecf20Sopenharmony_ci * The period of this generator is about 2^113 (see erratum paper).
168c2ecf20Sopenharmony_ci *
178c2ecf20Sopenharmony_ci * From: P. L'Ecuyer, "Maximally Equidistributed Combined Tausworthe
188c2ecf20Sopenharmony_ci * Generators", Mathematics of Computation, 65, 213 (1996), 203--213:
198c2ecf20Sopenharmony_ci * http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme.ps
208c2ecf20Sopenharmony_ci * ftp://ftp.iro.umontreal.ca/pub/simulation/lecuyer/papers/tausme.ps
218c2ecf20Sopenharmony_ci *
228c2ecf20Sopenharmony_ci * There is an erratum in the paper "Tables of Maximally Equidistributed
238c2ecf20Sopenharmony_ci * Combined LFSR Generators", Mathematics of Computation, 68, 225 (1999),
248c2ecf20Sopenharmony_ci * 261--269: http://www.iro.umontreal.ca/~lecuyer/myftp/papers/tausme2.ps
258c2ecf20Sopenharmony_ci *
268c2ecf20Sopenharmony_ci *      ... the k_j most significant bits of z_j must be non-zero,
278c2ecf20Sopenharmony_ci *      for each j. (Note: this restriction also applies to the
288c2ecf20Sopenharmony_ci *      computer code given in [4], but was mistakenly not mentioned
298c2ecf20Sopenharmony_ci *      in that paper.)
308c2ecf20Sopenharmony_ci *
318c2ecf20Sopenharmony_ci * This affects the seeding procedure by imposing the requirement
328c2ecf20Sopenharmony_ci * s1 > 1, s2 > 7, s3 > 15, s4 > 127.
338c2ecf20Sopenharmony_ci */
348c2ecf20Sopenharmony_ci
358c2ecf20Sopenharmony_ci#include <linux/types.h>
368c2ecf20Sopenharmony_ci#include <linux/percpu.h>
378c2ecf20Sopenharmony_ci#include <linux/export.h>
388c2ecf20Sopenharmony_ci#include <linux/jiffies.h>
398c2ecf20Sopenharmony_ci#include <linux/random.h>
408c2ecf20Sopenharmony_ci#include <linux/sched.h>
418c2ecf20Sopenharmony_ci#include <linux/bitops.h>
428c2ecf20Sopenharmony_ci#include <linux/slab.h>
438c2ecf20Sopenharmony_ci#include <linux/notifier.h>
448c2ecf20Sopenharmony_ci#include <asm/unaligned.h>
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_ci/**
478c2ecf20Sopenharmony_ci *	prandom_u32_state - seeded pseudo-random number generator.
488c2ecf20Sopenharmony_ci *	@state: pointer to state structure holding seeded state.
498c2ecf20Sopenharmony_ci *
508c2ecf20Sopenharmony_ci *	This is used for pseudo-randomness with no outside seeding.
518c2ecf20Sopenharmony_ci *	For more random results, use prandom_u32().
528c2ecf20Sopenharmony_ci */
538c2ecf20Sopenharmony_ciu32 prandom_u32_state(struct rnd_state *state)
548c2ecf20Sopenharmony_ci{
558c2ecf20Sopenharmony_ci#define TAUSWORTHE(s, a, b, c, d) ((s & c) << d) ^ (((s << a) ^ s) >> b)
568c2ecf20Sopenharmony_ci	state->s1 = TAUSWORTHE(state->s1,  6U, 13U, 4294967294U, 18U);
578c2ecf20Sopenharmony_ci	state->s2 = TAUSWORTHE(state->s2,  2U, 27U, 4294967288U,  2U);
588c2ecf20Sopenharmony_ci	state->s3 = TAUSWORTHE(state->s3, 13U, 21U, 4294967280U,  7U);
598c2ecf20Sopenharmony_ci	state->s4 = TAUSWORTHE(state->s4,  3U, 12U, 4294967168U, 13U);
608c2ecf20Sopenharmony_ci
618c2ecf20Sopenharmony_ci	return (state->s1 ^ state->s2 ^ state->s3 ^ state->s4);
628c2ecf20Sopenharmony_ci}
638c2ecf20Sopenharmony_ciEXPORT_SYMBOL(prandom_u32_state);
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_ci/**
668c2ecf20Sopenharmony_ci *	prandom_bytes_state - get the requested number of pseudo-random bytes
678c2ecf20Sopenharmony_ci *
688c2ecf20Sopenharmony_ci *	@state: pointer to state structure holding seeded state.
698c2ecf20Sopenharmony_ci *	@buf: where to copy the pseudo-random bytes to
708c2ecf20Sopenharmony_ci *	@bytes: the requested number of bytes
718c2ecf20Sopenharmony_ci *
728c2ecf20Sopenharmony_ci *	This is used for pseudo-randomness with no outside seeding.
738c2ecf20Sopenharmony_ci *	For more random results, use prandom_bytes().
748c2ecf20Sopenharmony_ci */
758c2ecf20Sopenharmony_civoid prandom_bytes_state(struct rnd_state *state, void *buf, size_t bytes)
768c2ecf20Sopenharmony_ci{
778c2ecf20Sopenharmony_ci	u8 *ptr = buf;
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_ci	while (bytes >= sizeof(u32)) {
808c2ecf20Sopenharmony_ci		put_unaligned(prandom_u32_state(state), (u32 *) ptr);
818c2ecf20Sopenharmony_ci		ptr += sizeof(u32);
828c2ecf20Sopenharmony_ci		bytes -= sizeof(u32);
838c2ecf20Sopenharmony_ci	}
848c2ecf20Sopenharmony_ci
858c2ecf20Sopenharmony_ci	if (bytes > 0) {
868c2ecf20Sopenharmony_ci		u32 rem = prandom_u32_state(state);
878c2ecf20Sopenharmony_ci		do {
888c2ecf20Sopenharmony_ci			*ptr++ = (u8) rem;
898c2ecf20Sopenharmony_ci			bytes--;
908c2ecf20Sopenharmony_ci			rem >>= BITS_PER_BYTE;
918c2ecf20Sopenharmony_ci		} while (bytes > 0);
928c2ecf20Sopenharmony_ci	}
938c2ecf20Sopenharmony_ci}
948c2ecf20Sopenharmony_ciEXPORT_SYMBOL(prandom_bytes_state);
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_cistatic void prandom_warmup(struct rnd_state *state)
978c2ecf20Sopenharmony_ci{
988c2ecf20Sopenharmony_ci	/* Calling RNG ten times to satisfy recurrence condition */
998c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1008c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1018c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1028c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1038c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1048c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1058c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1068c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1078c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1088c2ecf20Sopenharmony_ci	prandom_u32_state(state);
1098c2ecf20Sopenharmony_ci}
1108c2ecf20Sopenharmony_ci
1118c2ecf20Sopenharmony_civoid prandom_seed_full_state(struct rnd_state __percpu *pcpu_state)
1128c2ecf20Sopenharmony_ci{
1138c2ecf20Sopenharmony_ci	int i;
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci	for_each_possible_cpu(i) {
1168c2ecf20Sopenharmony_ci		struct rnd_state *state = per_cpu_ptr(pcpu_state, i);
1178c2ecf20Sopenharmony_ci		u32 seeds[4];
1188c2ecf20Sopenharmony_ci
1198c2ecf20Sopenharmony_ci		get_random_bytes(&seeds, sizeof(seeds));
1208c2ecf20Sopenharmony_ci		state->s1 = __seed(seeds[0],   2U);
1218c2ecf20Sopenharmony_ci		state->s2 = __seed(seeds[1],   8U);
1228c2ecf20Sopenharmony_ci		state->s3 = __seed(seeds[2],  16U);
1238c2ecf20Sopenharmony_ci		state->s4 = __seed(seeds[3], 128U);
1248c2ecf20Sopenharmony_ci
1258c2ecf20Sopenharmony_ci		prandom_warmup(state);
1268c2ecf20Sopenharmony_ci	}
1278c2ecf20Sopenharmony_ci}
1288c2ecf20Sopenharmony_ciEXPORT_SYMBOL(prandom_seed_full_state);
1298c2ecf20Sopenharmony_ci
1308c2ecf20Sopenharmony_ci#ifdef CONFIG_RANDOM32_SELFTEST
1318c2ecf20Sopenharmony_cistatic struct prandom_test1 {
1328c2ecf20Sopenharmony_ci	u32 seed;
1338c2ecf20Sopenharmony_ci	u32 result;
1348c2ecf20Sopenharmony_ci} test1[] = {
1358c2ecf20Sopenharmony_ci	{ 1U, 3484351685U },
1368c2ecf20Sopenharmony_ci	{ 2U, 2623130059U },
1378c2ecf20Sopenharmony_ci	{ 3U, 3125133893U },
1388c2ecf20Sopenharmony_ci	{ 4U,  984847254U },
1398c2ecf20Sopenharmony_ci};
1408c2ecf20Sopenharmony_ci
1418c2ecf20Sopenharmony_cistatic struct prandom_test2 {
1428c2ecf20Sopenharmony_ci	u32 seed;
1438c2ecf20Sopenharmony_ci	u32 iteration;
1448c2ecf20Sopenharmony_ci	u32 result;
1458c2ecf20Sopenharmony_ci} test2[] = {
1468c2ecf20Sopenharmony_ci	/* Test cases against taus113 from GSL library. */
1478c2ecf20Sopenharmony_ci	{  931557656U, 959U, 2975593782U },
1488c2ecf20Sopenharmony_ci	{ 1339693295U, 876U, 3887776532U },
1498c2ecf20Sopenharmony_ci	{ 1545556285U, 961U, 1615538833U },
1508c2ecf20Sopenharmony_ci	{  601730776U, 723U, 1776162651U },
1518c2ecf20Sopenharmony_ci	{ 1027516047U, 687U,  511983079U },
1528c2ecf20Sopenharmony_ci	{  416526298U, 700U,  916156552U },
1538c2ecf20Sopenharmony_ci	{ 1395522032U, 652U, 2222063676U },
1548c2ecf20Sopenharmony_ci	{  366221443U, 617U, 2992857763U },
1558c2ecf20Sopenharmony_ci	{ 1539836965U, 714U, 3783265725U },
1568c2ecf20Sopenharmony_ci	{  556206671U, 994U,  799626459U },
1578c2ecf20Sopenharmony_ci	{  684907218U, 799U,  367789491U },
1588c2ecf20Sopenharmony_ci	{ 2121230701U, 931U, 2115467001U },
1598c2ecf20Sopenharmony_ci	{ 1668516451U, 644U, 3620590685U },
1608c2ecf20Sopenharmony_ci	{  768046066U, 883U, 2034077390U },
1618c2ecf20Sopenharmony_ci	{ 1989159136U, 833U, 1195767305U },
1628c2ecf20Sopenharmony_ci	{  536585145U, 996U, 3577259204U },
1638c2ecf20Sopenharmony_ci	{ 1008129373U, 642U, 1478080776U },
1648c2ecf20Sopenharmony_ci	{ 1740775604U, 939U, 1264980372U },
1658c2ecf20Sopenharmony_ci	{ 1967883163U, 508U,   10734624U },
1668c2ecf20Sopenharmony_ci	{ 1923019697U, 730U, 3821419629U },
1678c2ecf20Sopenharmony_ci	{  442079932U, 560U, 3440032343U },
1688c2ecf20Sopenharmony_ci	{ 1961302714U, 845U,  841962572U },
1698c2ecf20Sopenharmony_ci	{ 2030205964U, 962U, 1325144227U },
1708c2ecf20Sopenharmony_ci	{ 1160407529U, 507U,  240940858U },
1718c2ecf20Sopenharmony_ci	{  635482502U, 779U, 4200489746U },
1728c2ecf20Sopenharmony_ci	{ 1252788931U, 699U,  867195434U },
1738c2ecf20Sopenharmony_ci	{ 1961817131U, 719U,  668237657U },
1748c2ecf20Sopenharmony_ci	{ 1071468216U, 983U,  917876630U },
1758c2ecf20Sopenharmony_ci	{ 1281848367U, 932U, 1003100039U },
1768c2ecf20Sopenharmony_ci	{  582537119U, 780U, 1127273778U },
1778c2ecf20Sopenharmony_ci	{ 1973672777U, 853U, 1071368872U },
1788c2ecf20Sopenharmony_ci	{ 1896756996U, 762U, 1127851055U },
1798c2ecf20Sopenharmony_ci	{  847917054U, 500U, 1717499075U },
1808c2ecf20Sopenharmony_ci	{ 1240520510U, 951U, 2849576657U },
1818c2ecf20Sopenharmony_ci	{ 1685071682U, 567U, 1961810396U },
1828c2ecf20Sopenharmony_ci	{ 1516232129U, 557U,    3173877U },
1838c2ecf20Sopenharmony_ci	{ 1208118903U, 612U, 1613145022U },
1848c2ecf20Sopenharmony_ci	{ 1817269927U, 693U, 4279122573U },
1858c2ecf20Sopenharmony_ci	{ 1510091701U, 717U,  638191229U },
1868c2ecf20Sopenharmony_ci	{  365916850U, 807U,  600424314U },
1878c2ecf20Sopenharmony_ci	{  399324359U, 702U, 1803598116U },
1888c2ecf20Sopenharmony_ci	{ 1318480274U, 779U, 2074237022U },
1898c2ecf20Sopenharmony_ci	{  697758115U, 840U, 1483639402U },
1908c2ecf20Sopenharmony_ci	{ 1696507773U, 840U,  577415447U },
1918c2ecf20Sopenharmony_ci	{ 2081979121U, 981U, 3041486449U },
1928c2ecf20Sopenharmony_ci	{  955646687U, 742U, 3846494357U },
1938c2ecf20Sopenharmony_ci	{ 1250683506U, 749U,  836419859U },
1948c2ecf20Sopenharmony_ci	{  595003102U, 534U,  366794109U },
1958c2ecf20Sopenharmony_ci	{   47485338U, 558U, 3521120834U },
1968c2ecf20Sopenharmony_ci	{  619433479U, 610U, 3991783875U },
1978c2ecf20Sopenharmony_ci	{  704096520U, 518U, 4139493852U },
1988c2ecf20Sopenharmony_ci	{ 1712224984U, 606U, 2393312003U },
1998c2ecf20Sopenharmony_ci	{ 1318233152U, 922U, 3880361134U },
2008c2ecf20Sopenharmony_ci	{  855572992U, 761U, 1472974787U },
2018c2ecf20Sopenharmony_ci	{   64721421U, 703U,  683860550U },
2028c2ecf20Sopenharmony_ci	{  678931758U, 840U,  380616043U },
2038c2ecf20Sopenharmony_ci	{  692711973U, 778U, 1382361947U },
2048c2ecf20Sopenharmony_ci	{  677703619U, 530U, 2826914161U },
2058c2ecf20Sopenharmony_ci	{   92393223U, 586U, 1522128471U },
2068c2ecf20Sopenharmony_ci	{ 1222592920U, 743U, 3466726667U },
2078c2ecf20Sopenharmony_ci	{  358288986U, 695U, 1091956998U },
2088c2ecf20Sopenharmony_ci	{ 1935056945U, 958U,  514864477U },
2098c2ecf20Sopenharmony_ci	{  735675993U, 990U, 1294239989U },
2108c2ecf20Sopenharmony_ci	{ 1560089402U, 897U, 2238551287U },
2118c2ecf20Sopenharmony_ci	{   70616361U, 829U,   22483098U },
2128c2ecf20Sopenharmony_ci	{  368234700U, 731U, 2913875084U },
2138c2ecf20Sopenharmony_ci	{   20221190U, 879U, 1564152970U },
2148c2ecf20Sopenharmony_ci	{  539444654U, 682U, 1835141259U },
2158c2ecf20Sopenharmony_ci	{ 1314987297U, 840U, 1801114136U },
2168c2ecf20Sopenharmony_ci	{ 2019295544U, 645U, 3286438930U },
2178c2ecf20Sopenharmony_ci	{  469023838U, 716U, 1637918202U },
2188c2ecf20Sopenharmony_ci	{ 1843754496U, 653U, 2562092152U },
2198c2ecf20Sopenharmony_ci	{  400672036U, 809U, 4264212785U },
2208c2ecf20Sopenharmony_ci	{  404722249U, 965U, 2704116999U },
2218c2ecf20Sopenharmony_ci	{  600702209U, 758U,  584979986U },
2228c2ecf20Sopenharmony_ci	{  519953954U, 667U, 2574436237U },
2238c2ecf20Sopenharmony_ci	{ 1658071126U, 694U, 2214569490U },
2248c2ecf20Sopenharmony_ci	{  420480037U, 749U, 3430010866U },
2258c2ecf20Sopenharmony_ci	{  690103647U, 969U, 3700758083U },
2268c2ecf20Sopenharmony_ci	{ 1029424799U, 937U, 3787746841U },
2278c2ecf20Sopenharmony_ci	{ 2012608669U, 506U, 3362628973U },
2288c2ecf20Sopenharmony_ci	{ 1535432887U, 998U,   42610943U },
2298c2ecf20Sopenharmony_ci	{ 1330635533U, 857U, 3040806504U },
2308c2ecf20Sopenharmony_ci	{ 1223800550U, 539U, 3954229517U },
2318c2ecf20Sopenharmony_ci	{ 1322411537U, 680U, 3223250324U },
2328c2ecf20Sopenharmony_ci	{ 1877847898U, 945U, 2915147143U },
2338c2ecf20Sopenharmony_ci	{ 1646356099U, 874U,  965988280U },
2348c2ecf20Sopenharmony_ci	{  805687536U, 744U, 4032277920U },
2358c2ecf20Sopenharmony_ci	{ 1948093210U, 633U, 1346597684U },
2368c2ecf20Sopenharmony_ci	{  392609744U, 783U, 1636083295U },
2378c2ecf20Sopenharmony_ci	{  690241304U, 770U, 1201031298U },
2388c2ecf20Sopenharmony_ci	{ 1360302965U, 696U, 1665394461U },
2398c2ecf20Sopenharmony_ci	{ 1220090946U, 780U, 1316922812U },
2408c2ecf20Sopenharmony_ci	{  447092251U, 500U, 3438743375U },
2418c2ecf20Sopenharmony_ci	{ 1613868791U, 592U,  828546883U },
2428c2ecf20Sopenharmony_ci	{  523430951U, 548U, 2552392304U },
2438c2ecf20Sopenharmony_ci	{  726692899U, 810U, 1656872867U },
2448c2ecf20Sopenharmony_ci	{ 1364340021U, 836U, 3710513486U },
2458c2ecf20Sopenharmony_ci	{ 1986257729U, 931U,  935013962U },
2468c2ecf20Sopenharmony_ci	{  407983964U, 921U,  728767059U },
2478c2ecf20Sopenharmony_ci};
2488c2ecf20Sopenharmony_ci
2498c2ecf20Sopenharmony_cistatic u32 __extract_hwseed(void)
2508c2ecf20Sopenharmony_ci{
2518c2ecf20Sopenharmony_ci	unsigned int val = 0;
2528c2ecf20Sopenharmony_ci
2538c2ecf20Sopenharmony_ci	(void)(arch_get_random_seed_int(&val) ||
2548c2ecf20Sopenharmony_ci	       arch_get_random_int(&val));
2558c2ecf20Sopenharmony_ci
2568c2ecf20Sopenharmony_ci	return val;
2578c2ecf20Sopenharmony_ci}
2588c2ecf20Sopenharmony_ci
2598c2ecf20Sopenharmony_cistatic void prandom_seed_early(struct rnd_state *state, u32 seed,
2608c2ecf20Sopenharmony_ci			       bool mix_with_hwseed)
2618c2ecf20Sopenharmony_ci{
2628c2ecf20Sopenharmony_ci#define LCG(x)	 ((x) * 69069U)	/* super-duper LCG */
2638c2ecf20Sopenharmony_ci#define HWSEED() (mix_with_hwseed ? __extract_hwseed() : 0)
2648c2ecf20Sopenharmony_ci	state->s1 = __seed(HWSEED() ^ LCG(seed),        2U);
2658c2ecf20Sopenharmony_ci	state->s2 = __seed(HWSEED() ^ LCG(state->s1),   8U);
2668c2ecf20Sopenharmony_ci	state->s3 = __seed(HWSEED() ^ LCG(state->s2),  16U);
2678c2ecf20Sopenharmony_ci	state->s4 = __seed(HWSEED() ^ LCG(state->s3), 128U);
2688c2ecf20Sopenharmony_ci}
2698c2ecf20Sopenharmony_ci
2708c2ecf20Sopenharmony_cistatic int __init prandom_state_selftest(void)
2718c2ecf20Sopenharmony_ci{
2728c2ecf20Sopenharmony_ci	int i, j, errors = 0, runs = 0;
2738c2ecf20Sopenharmony_ci	bool error = false;
2748c2ecf20Sopenharmony_ci
2758c2ecf20Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(test1); i++) {
2768c2ecf20Sopenharmony_ci		struct rnd_state state;
2778c2ecf20Sopenharmony_ci
2788c2ecf20Sopenharmony_ci		prandom_seed_early(&state, test1[i].seed, false);
2798c2ecf20Sopenharmony_ci		prandom_warmup(&state);
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ci		if (test1[i].result != prandom_u32_state(&state))
2828c2ecf20Sopenharmony_ci			error = true;
2838c2ecf20Sopenharmony_ci	}
2848c2ecf20Sopenharmony_ci
2858c2ecf20Sopenharmony_ci	if (error)
2868c2ecf20Sopenharmony_ci		pr_warn("prandom: seed boundary self test failed\n");
2878c2ecf20Sopenharmony_ci	else
2888c2ecf20Sopenharmony_ci		pr_info("prandom: seed boundary self test passed\n");
2898c2ecf20Sopenharmony_ci
2908c2ecf20Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(test2); i++) {
2918c2ecf20Sopenharmony_ci		struct rnd_state state;
2928c2ecf20Sopenharmony_ci
2938c2ecf20Sopenharmony_ci		prandom_seed_early(&state, test2[i].seed, false);
2948c2ecf20Sopenharmony_ci		prandom_warmup(&state);
2958c2ecf20Sopenharmony_ci
2968c2ecf20Sopenharmony_ci		for (j = 0; j < test2[i].iteration - 1; j++)
2978c2ecf20Sopenharmony_ci			prandom_u32_state(&state);
2988c2ecf20Sopenharmony_ci
2998c2ecf20Sopenharmony_ci		if (test2[i].result != prandom_u32_state(&state))
3008c2ecf20Sopenharmony_ci			errors++;
3018c2ecf20Sopenharmony_ci
3028c2ecf20Sopenharmony_ci		runs++;
3038c2ecf20Sopenharmony_ci		cond_resched();
3048c2ecf20Sopenharmony_ci	}
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci	if (errors)
3078c2ecf20Sopenharmony_ci		pr_warn("prandom: %d/%d self tests failed\n", errors, runs);
3088c2ecf20Sopenharmony_ci	else
3098c2ecf20Sopenharmony_ci		pr_info("prandom: %d self tests passed\n", runs);
3108c2ecf20Sopenharmony_ci	return 0;
3118c2ecf20Sopenharmony_ci}
3128c2ecf20Sopenharmony_cicore_initcall(prandom_state_selftest);
3138c2ecf20Sopenharmony_ci#endif
3148c2ecf20Sopenharmony_ci
3158c2ecf20Sopenharmony_ci/*
3168c2ecf20Sopenharmony_ci * The prandom_u32() implementation is now completely separate from the
3178c2ecf20Sopenharmony_ci * prandom_state() functions, which are retained (for now) for compatibility.
3188c2ecf20Sopenharmony_ci *
3198c2ecf20Sopenharmony_ci * Because of (ab)use in the networking code for choosing random TCP/UDP port
3208c2ecf20Sopenharmony_ci * numbers, which open DoS possibilities if guessable, we want something
3218c2ecf20Sopenharmony_ci * stronger than a standard PRNG.  But the performance requirements of
3228c2ecf20Sopenharmony_ci * the network code do not allow robust crypto for this application.
3238c2ecf20Sopenharmony_ci *
3248c2ecf20Sopenharmony_ci * So this is a homebrew Junior Spaceman implementation, based on the
3258c2ecf20Sopenharmony_ci * lowest-latency trustworthy crypto primitive available, SipHash.
3268c2ecf20Sopenharmony_ci * (The authors of SipHash have not been consulted about this abuse of
3278c2ecf20Sopenharmony_ci * their work.)
3288c2ecf20Sopenharmony_ci *
3298c2ecf20Sopenharmony_ci * Standard SipHash-2-4 uses 2n+4 rounds to hash n words of input to
3308c2ecf20Sopenharmony_ci * one word of output.  This abbreviated version uses 2 rounds per word
3318c2ecf20Sopenharmony_ci * of output.
3328c2ecf20Sopenharmony_ci */
3338c2ecf20Sopenharmony_ci
3348c2ecf20Sopenharmony_cistruct siprand_state {
3358c2ecf20Sopenharmony_ci	unsigned long v0;
3368c2ecf20Sopenharmony_ci	unsigned long v1;
3378c2ecf20Sopenharmony_ci	unsigned long v2;
3388c2ecf20Sopenharmony_ci	unsigned long v3;
3398c2ecf20Sopenharmony_ci};
3408c2ecf20Sopenharmony_ci
3418c2ecf20Sopenharmony_cistatic DEFINE_PER_CPU(struct siprand_state, net_rand_state) __latent_entropy;
3428c2ecf20Sopenharmony_ciDEFINE_PER_CPU(unsigned long, net_rand_noise);
3438c2ecf20Sopenharmony_ciEXPORT_PER_CPU_SYMBOL(net_rand_noise);
3448c2ecf20Sopenharmony_ci
3458c2ecf20Sopenharmony_ci/*
3468c2ecf20Sopenharmony_ci * This is the core CPRNG function.  As "pseudorandom", this is not used
3478c2ecf20Sopenharmony_ci * for truly valuable things, just intended to be a PITA to guess.
3488c2ecf20Sopenharmony_ci * For maximum speed, we do just two SipHash rounds per word.  This is
3498c2ecf20Sopenharmony_ci * the same rate as 4 rounds per 64 bits that SipHash normally uses,
3508c2ecf20Sopenharmony_ci * so hopefully it's reasonably secure.
3518c2ecf20Sopenharmony_ci *
3528c2ecf20Sopenharmony_ci * There are two changes from the official SipHash finalization:
3538c2ecf20Sopenharmony_ci * - We omit some constants XORed with v2 in the SipHash spec as irrelevant;
3548c2ecf20Sopenharmony_ci *   they are there only to make the output rounds distinct from the input
3558c2ecf20Sopenharmony_ci *   rounds, and this application has no input rounds.
3568c2ecf20Sopenharmony_ci * - Rather than returning v0^v1^v2^v3, return v1+v3.
3578c2ecf20Sopenharmony_ci *   If you look at the SipHash round, the last operation on v3 is
3588c2ecf20Sopenharmony_ci *   "v3 ^= v0", so "v0 ^ v3" just undoes that, a waste of time.
3598c2ecf20Sopenharmony_ci *   Likewise "v1 ^= v2".  (The rotate of v2 makes a difference, but
3608c2ecf20Sopenharmony_ci *   it still cancels out half of the bits in v2 for no benefit.)
3618c2ecf20Sopenharmony_ci *   Second, since the last combining operation was xor, continue the
3628c2ecf20Sopenharmony_ci *   pattern of alternating xor/add for a tiny bit of extra non-linearity.
3638c2ecf20Sopenharmony_ci */
3648c2ecf20Sopenharmony_cistatic inline u32 siprand_u32(struct siprand_state *s)
3658c2ecf20Sopenharmony_ci{
3668c2ecf20Sopenharmony_ci	unsigned long v0 = s->v0, v1 = s->v1, v2 = s->v2, v3 = s->v3;
3678c2ecf20Sopenharmony_ci	unsigned long n = raw_cpu_read(net_rand_noise);
3688c2ecf20Sopenharmony_ci
3698c2ecf20Sopenharmony_ci	v3 ^= n;
3708c2ecf20Sopenharmony_ci	PRND_SIPROUND(v0, v1, v2, v3);
3718c2ecf20Sopenharmony_ci	PRND_SIPROUND(v0, v1, v2, v3);
3728c2ecf20Sopenharmony_ci	v0 ^= n;
3738c2ecf20Sopenharmony_ci	s->v0 = v0;  s->v1 = v1;  s->v2 = v2;  s->v3 = v3;
3748c2ecf20Sopenharmony_ci	return v1 + v3;
3758c2ecf20Sopenharmony_ci}
3768c2ecf20Sopenharmony_ci
3778c2ecf20Sopenharmony_ci
3788c2ecf20Sopenharmony_ci/**
3798c2ecf20Sopenharmony_ci *	prandom_u32 - pseudo random number generator
3808c2ecf20Sopenharmony_ci *
3818c2ecf20Sopenharmony_ci *	A 32 bit pseudo-random number is generated using a fast
3828c2ecf20Sopenharmony_ci *	algorithm suitable for simulation. This algorithm is NOT
3838c2ecf20Sopenharmony_ci *	considered safe for cryptographic use.
3848c2ecf20Sopenharmony_ci */
3858c2ecf20Sopenharmony_ciu32 prandom_u32(void)
3868c2ecf20Sopenharmony_ci{
3878c2ecf20Sopenharmony_ci	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
3888c2ecf20Sopenharmony_ci	u32 res = siprand_u32(state);
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_ci	put_cpu_ptr(&net_rand_state);
3918c2ecf20Sopenharmony_ci	return res;
3928c2ecf20Sopenharmony_ci}
3938c2ecf20Sopenharmony_ciEXPORT_SYMBOL(prandom_u32);
3948c2ecf20Sopenharmony_ci
3958c2ecf20Sopenharmony_ci/**
3968c2ecf20Sopenharmony_ci *	prandom_bytes - get the requested number of pseudo-random bytes
3978c2ecf20Sopenharmony_ci *	@buf: where to copy the pseudo-random bytes to
3988c2ecf20Sopenharmony_ci *	@bytes: the requested number of bytes
3998c2ecf20Sopenharmony_ci */
4008c2ecf20Sopenharmony_civoid prandom_bytes(void *buf, size_t bytes)
4018c2ecf20Sopenharmony_ci{
4028c2ecf20Sopenharmony_ci	struct siprand_state *state = get_cpu_ptr(&net_rand_state);
4038c2ecf20Sopenharmony_ci	u8 *ptr = buf;
4048c2ecf20Sopenharmony_ci
4058c2ecf20Sopenharmony_ci	while (bytes >= sizeof(u32)) {
4068c2ecf20Sopenharmony_ci		put_unaligned(siprand_u32(state), (u32 *)ptr);
4078c2ecf20Sopenharmony_ci		ptr += sizeof(u32);
4088c2ecf20Sopenharmony_ci		bytes -= sizeof(u32);
4098c2ecf20Sopenharmony_ci	}
4108c2ecf20Sopenharmony_ci
4118c2ecf20Sopenharmony_ci	if (bytes > 0) {
4128c2ecf20Sopenharmony_ci		u32 rem = siprand_u32(state);
4138c2ecf20Sopenharmony_ci
4148c2ecf20Sopenharmony_ci		do {
4158c2ecf20Sopenharmony_ci			*ptr++ = (u8)rem;
4168c2ecf20Sopenharmony_ci			rem >>= BITS_PER_BYTE;
4178c2ecf20Sopenharmony_ci		} while (--bytes > 0);
4188c2ecf20Sopenharmony_ci	}
4198c2ecf20Sopenharmony_ci	put_cpu_ptr(&net_rand_state);
4208c2ecf20Sopenharmony_ci}
4218c2ecf20Sopenharmony_ciEXPORT_SYMBOL(prandom_bytes);
4228c2ecf20Sopenharmony_ci
4238c2ecf20Sopenharmony_ci/**
4248c2ecf20Sopenharmony_ci *	prandom_seed - add entropy to pseudo random number generator
4258c2ecf20Sopenharmony_ci *	@entropy: entropy value
4268c2ecf20Sopenharmony_ci *
4278c2ecf20Sopenharmony_ci *	Add some additional seed material to the prandom pool.
4288c2ecf20Sopenharmony_ci *	The "entropy" is actually our IP address (the only caller is
4298c2ecf20Sopenharmony_ci *	the network code), not for unpredictability, but to ensure that
4308c2ecf20Sopenharmony_ci *	different machines are initialized differently.
4318c2ecf20Sopenharmony_ci */
4328c2ecf20Sopenharmony_civoid prandom_seed(u32 entropy)
4338c2ecf20Sopenharmony_ci{
4348c2ecf20Sopenharmony_ci	int i;
4358c2ecf20Sopenharmony_ci
4368c2ecf20Sopenharmony_ci	add_device_randomness(&entropy, sizeof(entropy));
4378c2ecf20Sopenharmony_ci
4388c2ecf20Sopenharmony_ci	for_each_possible_cpu(i) {
4398c2ecf20Sopenharmony_ci		struct siprand_state *state = per_cpu_ptr(&net_rand_state, i);
4408c2ecf20Sopenharmony_ci		unsigned long v0 = state->v0, v1 = state->v1;
4418c2ecf20Sopenharmony_ci		unsigned long v2 = state->v2, v3 = state->v3;
4428c2ecf20Sopenharmony_ci
4438c2ecf20Sopenharmony_ci		do {
4448c2ecf20Sopenharmony_ci			v3 ^= entropy;
4458c2ecf20Sopenharmony_ci			PRND_SIPROUND(v0, v1, v2, v3);
4468c2ecf20Sopenharmony_ci			PRND_SIPROUND(v0, v1, v2, v3);
4478c2ecf20Sopenharmony_ci			v0 ^= entropy;
4488c2ecf20Sopenharmony_ci		} while (unlikely(!v0 || !v1 || !v2 || !v3));
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v0, v0);
4518c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v1, v1);
4528c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v2, v2);
4538c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v3, v3);
4548c2ecf20Sopenharmony_ci	}
4558c2ecf20Sopenharmony_ci}
4568c2ecf20Sopenharmony_ciEXPORT_SYMBOL(prandom_seed);
4578c2ecf20Sopenharmony_ci
4588c2ecf20Sopenharmony_ci/*
4598c2ecf20Sopenharmony_ci *	Generate some initially weak seeding values to allow
4608c2ecf20Sopenharmony_ci *	the prandom_u32() engine to be started.
4618c2ecf20Sopenharmony_ci */
4628c2ecf20Sopenharmony_cistatic int __init prandom_init_early(void)
4638c2ecf20Sopenharmony_ci{
4648c2ecf20Sopenharmony_ci	int i;
4658c2ecf20Sopenharmony_ci	unsigned long v0, v1, v2, v3;
4668c2ecf20Sopenharmony_ci
4678c2ecf20Sopenharmony_ci	if (!arch_get_random_long(&v0))
4688c2ecf20Sopenharmony_ci		v0 = jiffies;
4698c2ecf20Sopenharmony_ci	if (!arch_get_random_long(&v1))
4708c2ecf20Sopenharmony_ci		v1 = random_get_entropy();
4718c2ecf20Sopenharmony_ci	v2 = v0 ^ PRND_K0;
4728c2ecf20Sopenharmony_ci	v3 = v1 ^ PRND_K1;
4738c2ecf20Sopenharmony_ci
4748c2ecf20Sopenharmony_ci	for_each_possible_cpu(i) {
4758c2ecf20Sopenharmony_ci		struct siprand_state *state;
4768c2ecf20Sopenharmony_ci
4778c2ecf20Sopenharmony_ci		v3 ^= i;
4788c2ecf20Sopenharmony_ci		PRND_SIPROUND(v0, v1, v2, v3);
4798c2ecf20Sopenharmony_ci		PRND_SIPROUND(v0, v1, v2, v3);
4808c2ecf20Sopenharmony_ci		v0 ^= i;
4818c2ecf20Sopenharmony_ci
4828c2ecf20Sopenharmony_ci		state = per_cpu_ptr(&net_rand_state, i);
4838c2ecf20Sopenharmony_ci		state->v0 = v0;  state->v1 = v1;
4848c2ecf20Sopenharmony_ci		state->v2 = v2;  state->v3 = v3;
4858c2ecf20Sopenharmony_ci	}
4868c2ecf20Sopenharmony_ci
4878c2ecf20Sopenharmony_ci	return 0;
4888c2ecf20Sopenharmony_ci}
4898c2ecf20Sopenharmony_cicore_initcall(prandom_init_early);
4908c2ecf20Sopenharmony_ci
4918c2ecf20Sopenharmony_ci
4928c2ecf20Sopenharmony_ci/* Stronger reseeding when available, and periodically thereafter. */
4938c2ecf20Sopenharmony_cistatic void prandom_reseed(struct timer_list *unused);
4948c2ecf20Sopenharmony_ci
4958c2ecf20Sopenharmony_cistatic DEFINE_TIMER(seed_timer, prandom_reseed);
4968c2ecf20Sopenharmony_ci
4978c2ecf20Sopenharmony_cistatic void prandom_reseed(struct timer_list *unused)
4988c2ecf20Sopenharmony_ci{
4998c2ecf20Sopenharmony_ci	unsigned long expires;
5008c2ecf20Sopenharmony_ci	int i;
5018c2ecf20Sopenharmony_ci
5028c2ecf20Sopenharmony_ci	/*
5038c2ecf20Sopenharmony_ci	 * Reinitialize each CPU's PRNG with 128 bits of key.
5048c2ecf20Sopenharmony_ci	 * No locking on the CPUs, but then somewhat random results are,
5058c2ecf20Sopenharmony_ci	 * well, expected.
5068c2ecf20Sopenharmony_ci	 */
5078c2ecf20Sopenharmony_ci	for_each_possible_cpu(i) {
5088c2ecf20Sopenharmony_ci		struct siprand_state *state;
5098c2ecf20Sopenharmony_ci		unsigned long v0 = get_random_long(), v2 = v0 ^ PRND_K0;
5108c2ecf20Sopenharmony_ci		unsigned long v1 = get_random_long(), v3 = v1 ^ PRND_K1;
5118c2ecf20Sopenharmony_ci#if BITS_PER_LONG == 32
5128c2ecf20Sopenharmony_ci		int j;
5138c2ecf20Sopenharmony_ci
5148c2ecf20Sopenharmony_ci		/*
5158c2ecf20Sopenharmony_ci		 * On 32-bit machines, hash in two extra words to
5168c2ecf20Sopenharmony_ci		 * approximate 128-bit key length.  Not that the hash
5178c2ecf20Sopenharmony_ci		 * has that much security, but this prevents a trivial
5188c2ecf20Sopenharmony_ci		 * 64-bit brute force.
5198c2ecf20Sopenharmony_ci		 */
5208c2ecf20Sopenharmony_ci		for (j = 0; j < 2; j++) {
5218c2ecf20Sopenharmony_ci			unsigned long m = get_random_long();
5228c2ecf20Sopenharmony_ci
5238c2ecf20Sopenharmony_ci			v3 ^= m;
5248c2ecf20Sopenharmony_ci			PRND_SIPROUND(v0, v1, v2, v3);
5258c2ecf20Sopenharmony_ci			PRND_SIPROUND(v0, v1, v2, v3);
5268c2ecf20Sopenharmony_ci			v0 ^= m;
5278c2ecf20Sopenharmony_ci		}
5288c2ecf20Sopenharmony_ci#endif
5298c2ecf20Sopenharmony_ci		/*
5308c2ecf20Sopenharmony_ci		 * Probably impossible in practice, but there is a
5318c2ecf20Sopenharmony_ci		 * theoretical risk that a race between this reseeding
5328c2ecf20Sopenharmony_ci		 * and the target CPU writing its state back could
5338c2ecf20Sopenharmony_ci		 * create the all-zero SipHash fixed point.
5348c2ecf20Sopenharmony_ci		 *
5358c2ecf20Sopenharmony_ci		 * To ensure that never happens, ensure the state
5368c2ecf20Sopenharmony_ci		 * we write contains no zero words.
5378c2ecf20Sopenharmony_ci		 */
5388c2ecf20Sopenharmony_ci		state = per_cpu_ptr(&net_rand_state, i);
5398c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v0, v0 ? v0 : -1ul);
5408c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v1, v1 ? v1 : -1ul);
5418c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v2, v2 ? v2 : -1ul);
5428c2ecf20Sopenharmony_ci		WRITE_ONCE(state->v3, v3 ? v3 : -1ul);
5438c2ecf20Sopenharmony_ci	}
5448c2ecf20Sopenharmony_ci
5458c2ecf20Sopenharmony_ci	/* reseed every ~60 seconds, in [40 .. 80) interval with slack */
5468c2ecf20Sopenharmony_ci	expires = round_jiffies(jiffies + 40 * HZ + prandom_u32_max(40 * HZ));
5478c2ecf20Sopenharmony_ci	mod_timer(&seed_timer, expires);
5488c2ecf20Sopenharmony_ci}
5498c2ecf20Sopenharmony_ci
5508c2ecf20Sopenharmony_ci/*
5518c2ecf20Sopenharmony_ci * The random ready callback can be called from almost any interrupt.
5528c2ecf20Sopenharmony_ci * To avoid worrying about whether it's safe to delay that interrupt
5538c2ecf20Sopenharmony_ci * long enough to seed all CPUs, just schedule an immediate timer event.
5548c2ecf20Sopenharmony_ci */
5558c2ecf20Sopenharmony_cistatic int prandom_timer_start(struct notifier_block *nb,
5568c2ecf20Sopenharmony_ci			       unsigned long action, void *data)
5578c2ecf20Sopenharmony_ci{
5588c2ecf20Sopenharmony_ci	mod_timer(&seed_timer, jiffies);
5598c2ecf20Sopenharmony_ci	return 0;
5608c2ecf20Sopenharmony_ci}
5618c2ecf20Sopenharmony_ci
5628c2ecf20Sopenharmony_ci#ifdef CONFIG_RANDOM32_SELFTEST
5638c2ecf20Sopenharmony_ci/* Principle: True 32-bit random numbers will all have 16 differing bits on
5648c2ecf20Sopenharmony_ci * average. For each 32-bit number, there are 601M numbers differing by 16
5658c2ecf20Sopenharmony_ci * bits, and 89% of the numbers differ by at least 12 bits. Note that more
5668c2ecf20Sopenharmony_ci * than 16 differing bits also implies a correlation with inverted bits. Thus
5678c2ecf20Sopenharmony_ci * we take 1024 random numbers and compare each of them to the other ones,
5688c2ecf20Sopenharmony_ci * counting the deviation of correlated bits to 16. Constants report 32,
5698c2ecf20Sopenharmony_ci * counters 32-log2(TEST_SIZE), and pure randoms, around 6 or lower. With the
5708c2ecf20Sopenharmony_ci * u32 total, TEST_SIZE may be as large as 4096 samples.
5718c2ecf20Sopenharmony_ci */
5728c2ecf20Sopenharmony_ci#define TEST_SIZE 1024
5738c2ecf20Sopenharmony_cistatic int __init prandom32_state_selftest(void)
5748c2ecf20Sopenharmony_ci{
5758c2ecf20Sopenharmony_ci	unsigned int x, y, bits, samples;
5768c2ecf20Sopenharmony_ci	u32 xor, flip;
5778c2ecf20Sopenharmony_ci	u32 total;
5788c2ecf20Sopenharmony_ci	u32 *data;
5798c2ecf20Sopenharmony_ci
5808c2ecf20Sopenharmony_ci	data = kmalloc(sizeof(*data) * TEST_SIZE, GFP_KERNEL);
5818c2ecf20Sopenharmony_ci	if (!data)
5828c2ecf20Sopenharmony_ci		return 0;
5838c2ecf20Sopenharmony_ci
5848c2ecf20Sopenharmony_ci	for (samples = 0; samples < TEST_SIZE; samples++)
5858c2ecf20Sopenharmony_ci		data[samples] = prandom_u32();
5868c2ecf20Sopenharmony_ci
5878c2ecf20Sopenharmony_ci	flip = total = 0;
5888c2ecf20Sopenharmony_ci	for (x = 0; x < samples; x++) {
5898c2ecf20Sopenharmony_ci		for (y = 0; y < samples; y++) {
5908c2ecf20Sopenharmony_ci			if (x == y)
5918c2ecf20Sopenharmony_ci				continue;
5928c2ecf20Sopenharmony_ci			xor = data[x] ^ data[y];
5938c2ecf20Sopenharmony_ci			flip |= xor;
5948c2ecf20Sopenharmony_ci			bits = hweight32(xor);
5958c2ecf20Sopenharmony_ci			total += (bits - 16) * (bits - 16);
5968c2ecf20Sopenharmony_ci		}
5978c2ecf20Sopenharmony_ci	}
5988c2ecf20Sopenharmony_ci
5998c2ecf20Sopenharmony_ci	/* We'll return the average deviation as 2*sqrt(corr/samples), which
6008c2ecf20Sopenharmony_ci	 * is also sqrt(4*corr/samples) which provides a better resolution.
6018c2ecf20Sopenharmony_ci	 */
6028c2ecf20Sopenharmony_ci	bits = int_sqrt(total / (samples * (samples - 1)) * 4);
6038c2ecf20Sopenharmony_ci	if (bits > 6)
6048c2ecf20Sopenharmony_ci		pr_warn("prandom32: self test failed (at least %u bits"
6058c2ecf20Sopenharmony_ci			" correlated, fixed_mask=%#x fixed_value=%#x\n",
6068c2ecf20Sopenharmony_ci			bits, ~flip, data[0] & ~flip);
6078c2ecf20Sopenharmony_ci	else
6088c2ecf20Sopenharmony_ci		pr_info("prandom32: self test passed (less than %u bits"
6098c2ecf20Sopenharmony_ci			" correlated)\n",
6108c2ecf20Sopenharmony_ci			bits+1);
6118c2ecf20Sopenharmony_ci	kfree(data);
6128c2ecf20Sopenharmony_ci	return 0;
6138c2ecf20Sopenharmony_ci}
6148c2ecf20Sopenharmony_cicore_initcall(prandom32_state_selftest);
6158c2ecf20Sopenharmony_ci#endif /*  CONFIG_RANDOM32_SELFTEST */
6168c2ecf20Sopenharmony_ci
6178c2ecf20Sopenharmony_ci/*
6188c2ecf20Sopenharmony_ci * Start periodic full reseeding as soon as strong
6198c2ecf20Sopenharmony_ci * random numbers are available.
6208c2ecf20Sopenharmony_ci */
6218c2ecf20Sopenharmony_cistatic int __init prandom_init_late(void)
6228c2ecf20Sopenharmony_ci{
6238c2ecf20Sopenharmony_ci	static struct notifier_block random_ready = {
6248c2ecf20Sopenharmony_ci		.notifier_call = prandom_timer_start
6258c2ecf20Sopenharmony_ci	};
6268c2ecf20Sopenharmony_ci	int ret = register_random_ready_notifier(&random_ready);
6278c2ecf20Sopenharmony_ci
6288c2ecf20Sopenharmony_ci	if (ret == -EALREADY) {
6298c2ecf20Sopenharmony_ci		prandom_timer_start(&random_ready, 0, NULL);
6308c2ecf20Sopenharmony_ci		ret = 0;
6318c2ecf20Sopenharmony_ci	}
6328c2ecf20Sopenharmony_ci	return ret;
6338c2ecf20Sopenharmony_ci}
6348c2ecf20Sopenharmony_cilate_initcall(prandom_init_late);
635