xref: /kernel/linux/linux-5.10/lib/radix-tree.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/*
3 * Copyright (C) 2001 Momchil Velikov
4 * Portions Copyright (C) 2001 Christoph Hellwig
5 * Copyright (C) 2005 SGI, Christoph Lameter
6 * Copyright (C) 2006 Nick Piggin
7 * Copyright (C) 2012 Konstantin Khlebnikov
8 * Copyright (C) 2016 Intel, Matthew Wilcox
9 * Copyright (C) 2016 Intel, Ross Zwisler
10 */
11
12#include <linux/bitmap.h>
13#include <linux/bitops.h>
14#include <linux/bug.h>
15#include <linux/cpu.h>
16#include <linux/errno.h>
17#include <linux/export.h>
18#include <linux/idr.h>
19#include <linux/init.h>
20#include <linux/kernel.h>
21#include <linux/kmemleak.h>
22#include <linux/percpu.h>
23#include <linux/preempt.h>		/* in_interrupt() */
24#include <linux/radix-tree.h>
25#include <linux/rcupdate.h>
26#include <linux/slab.h>
27#include <linux/string.h>
28#include <linux/xarray.h>
29
30/*
31 * Radix tree node cache.
32 */
33struct kmem_cache *radix_tree_node_cachep;
34
35/*
36 * The radix tree is variable-height, so an insert operation not only has
37 * to build the branch to its corresponding item, it also has to build the
38 * branch to existing items if the size has to be increased (by
39 * radix_tree_extend).
40 *
41 * The worst case is a zero height tree with just a single item at index 0,
42 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
43 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
44 * Hence:
45 */
46#define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
47
48/*
49 * The IDR does not have to be as high as the radix tree since it uses
50 * signed integers, not unsigned longs.
51 */
52#define IDR_INDEX_BITS		(8 /* CHAR_BIT */ * sizeof(int) - 1)
53#define IDR_MAX_PATH		(DIV_ROUND_UP(IDR_INDEX_BITS, \
54						RADIX_TREE_MAP_SHIFT))
55#define IDR_PRELOAD_SIZE	(IDR_MAX_PATH * 2 - 1)
56
57/*
58 * Per-cpu pool of preloaded nodes
59 */
60DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = {
61	.lock = INIT_LOCAL_LOCK(lock),
62};
63EXPORT_PER_CPU_SYMBOL_GPL(radix_tree_preloads);
64
65static inline struct radix_tree_node *entry_to_node(void *ptr)
66{
67	return (void *)((unsigned long)ptr & ~RADIX_TREE_INTERNAL_NODE);
68}
69
70static inline void *node_to_entry(void *ptr)
71{
72	return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
73}
74
75#define RADIX_TREE_RETRY	XA_RETRY_ENTRY
76
77static inline unsigned long
78get_slot_offset(const struct radix_tree_node *parent, void __rcu **slot)
79{
80	return parent ? slot - parent->slots : 0;
81}
82
83static unsigned int radix_tree_descend(const struct radix_tree_node *parent,
84			struct radix_tree_node **nodep, unsigned long index)
85{
86	unsigned int offset = (index >> parent->shift) & RADIX_TREE_MAP_MASK;
87	void __rcu **entry = rcu_dereference_raw(parent->slots[offset]);
88
89	*nodep = (void *)entry;
90	return offset;
91}
92
93static inline gfp_t root_gfp_mask(const struct radix_tree_root *root)
94{
95	return root->xa_flags & (__GFP_BITS_MASK & ~GFP_ZONEMASK);
96}
97
98static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
99		int offset)
100{
101	__set_bit(offset, node->tags[tag]);
102}
103
104static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
105		int offset)
106{
107	__clear_bit(offset, node->tags[tag]);
108}
109
110static inline int tag_get(const struct radix_tree_node *node, unsigned int tag,
111		int offset)
112{
113	return test_bit(offset, node->tags[tag]);
114}
115
116static inline void root_tag_set(struct radix_tree_root *root, unsigned tag)
117{
118	root->xa_flags |= (__force gfp_t)(1 << (tag + ROOT_TAG_SHIFT));
119}
120
121static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
122{
123	root->xa_flags &= (__force gfp_t)~(1 << (tag + ROOT_TAG_SHIFT));
124}
125
126static inline void root_tag_clear_all(struct radix_tree_root *root)
127{
128	root->xa_flags &= (__force gfp_t)((1 << ROOT_TAG_SHIFT) - 1);
129}
130
131static inline int root_tag_get(const struct radix_tree_root *root, unsigned tag)
132{
133	return (__force int)root->xa_flags & (1 << (tag + ROOT_TAG_SHIFT));
134}
135
136static inline unsigned root_tags_get(const struct radix_tree_root *root)
137{
138	return (__force unsigned)root->xa_flags >> ROOT_TAG_SHIFT;
139}
140
141static inline bool is_idr(const struct radix_tree_root *root)
142{
143	return !!(root->xa_flags & ROOT_IS_IDR);
144}
145
146/*
147 * Returns 1 if any slot in the node has this tag set.
148 * Otherwise returns 0.
149 */
150static inline int any_tag_set(const struct radix_tree_node *node,
151							unsigned int tag)
152{
153	unsigned idx;
154	for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
155		if (node->tags[tag][idx])
156			return 1;
157	}
158	return 0;
159}
160
161static inline void all_tag_set(struct radix_tree_node *node, unsigned int tag)
162{
163	bitmap_fill(node->tags[tag], RADIX_TREE_MAP_SIZE);
164}
165
166/**
167 * radix_tree_find_next_bit - find the next set bit in a memory region
168 *
169 * @addr: The address to base the search on
170 * @size: The bitmap size in bits
171 * @offset: The bitnumber to start searching at
172 *
173 * Unrollable variant of find_next_bit() for constant size arrays.
174 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
175 * Returns next bit offset, or size if nothing found.
176 */
177static __always_inline unsigned long
178radix_tree_find_next_bit(struct radix_tree_node *node, unsigned int tag,
179			 unsigned long offset)
180{
181	const unsigned long *addr = node->tags[tag];
182
183	if (offset < RADIX_TREE_MAP_SIZE) {
184		unsigned long tmp;
185
186		addr += offset / BITS_PER_LONG;
187		tmp = *addr >> (offset % BITS_PER_LONG);
188		if (tmp)
189			return __ffs(tmp) + offset;
190		offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
191		while (offset < RADIX_TREE_MAP_SIZE) {
192			tmp = *++addr;
193			if (tmp)
194				return __ffs(tmp) + offset;
195			offset += BITS_PER_LONG;
196		}
197	}
198	return RADIX_TREE_MAP_SIZE;
199}
200
201static unsigned int iter_offset(const struct radix_tree_iter *iter)
202{
203	return iter->index & RADIX_TREE_MAP_MASK;
204}
205
206/*
207 * The maximum index which can be stored in a radix tree
208 */
209static inline unsigned long shift_maxindex(unsigned int shift)
210{
211	return (RADIX_TREE_MAP_SIZE << shift) - 1;
212}
213
214static inline unsigned long node_maxindex(const struct radix_tree_node *node)
215{
216	return shift_maxindex(node->shift);
217}
218
219static unsigned long next_index(unsigned long index,
220				const struct radix_tree_node *node,
221				unsigned long offset)
222{
223	return (index & ~node_maxindex(node)) + (offset << node->shift);
224}
225
226/*
227 * This assumes that the caller has performed appropriate preallocation, and
228 * that the caller has pinned this thread of control to the current CPU.
229 */
230static struct radix_tree_node *
231radix_tree_node_alloc(gfp_t gfp_mask, struct radix_tree_node *parent,
232			struct radix_tree_root *root,
233			unsigned int shift, unsigned int offset,
234			unsigned int count, unsigned int nr_values)
235{
236	struct radix_tree_node *ret = NULL;
237
238	/*
239	 * Preload code isn't irq safe and it doesn't make sense to use
240	 * preloading during an interrupt anyway as all the allocations have
241	 * to be atomic. So just do normal allocation when in interrupt.
242	 */
243	if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
244		struct radix_tree_preload *rtp;
245
246		/*
247		 * Even if the caller has preloaded, try to allocate from the
248		 * cache first for the new node to get accounted to the memory
249		 * cgroup.
250		 */
251		ret = kmem_cache_alloc(radix_tree_node_cachep,
252				       gfp_mask | __GFP_NOWARN);
253		if (ret)
254			goto out;
255
256		/*
257		 * Provided the caller has preloaded here, we will always
258		 * succeed in getting a node here (and never reach
259		 * kmem_cache_alloc)
260		 */
261		rtp = this_cpu_ptr(&radix_tree_preloads);
262		if (rtp->nr) {
263			ret = rtp->nodes;
264			rtp->nodes = ret->parent;
265			rtp->nr--;
266		}
267		/*
268		 * Update the allocation stack trace as this is more useful
269		 * for debugging.
270		 */
271		kmemleak_update_trace(ret);
272		goto out;
273	}
274	ret = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
275out:
276	BUG_ON(radix_tree_is_internal_node(ret));
277	if (ret) {
278		ret->shift = shift;
279		ret->offset = offset;
280		ret->count = count;
281		ret->nr_values = nr_values;
282		ret->parent = parent;
283		ret->array = root;
284	}
285	return ret;
286}
287
288void radix_tree_node_rcu_free(struct rcu_head *head)
289{
290	struct radix_tree_node *node =
291			container_of(head, struct radix_tree_node, rcu_head);
292
293	/*
294	 * Must only free zeroed nodes into the slab.  We can be left with
295	 * non-NULL entries by radix_tree_free_nodes, so clear the entries
296	 * and tags here.
297	 */
298	memset(node->slots, 0, sizeof(node->slots));
299	memset(node->tags, 0, sizeof(node->tags));
300	INIT_LIST_HEAD(&node->private_list);
301
302	kmem_cache_free(radix_tree_node_cachep, node);
303}
304
305static inline void
306radix_tree_node_free(struct radix_tree_node *node)
307{
308	call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
309}
310
311/*
312 * Load up this CPU's radix_tree_node buffer with sufficient objects to
313 * ensure that the addition of a single element in the tree cannot fail.  On
314 * success, return zero, with preemption disabled.  On error, return -ENOMEM
315 * with preemption not disabled.
316 *
317 * To make use of this facility, the radix tree must be initialised without
318 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
319 */
320static __must_check int __radix_tree_preload(gfp_t gfp_mask, unsigned nr)
321{
322	struct radix_tree_preload *rtp;
323	struct radix_tree_node *node;
324	int ret = -ENOMEM;
325
326	/*
327	 * Nodes preloaded by one cgroup can be used by another cgroup, so
328	 * they should never be accounted to any particular memory cgroup.
329	 */
330	gfp_mask &= ~__GFP_ACCOUNT;
331
332	local_lock(&radix_tree_preloads.lock);
333	rtp = this_cpu_ptr(&radix_tree_preloads);
334	while (rtp->nr < nr) {
335		local_unlock(&radix_tree_preloads.lock);
336		node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
337		if (node == NULL)
338			goto out;
339		local_lock(&radix_tree_preloads.lock);
340		rtp = this_cpu_ptr(&radix_tree_preloads);
341		if (rtp->nr < nr) {
342			node->parent = rtp->nodes;
343			rtp->nodes = node;
344			rtp->nr++;
345		} else {
346			kmem_cache_free(radix_tree_node_cachep, node);
347		}
348	}
349	ret = 0;
350out:
351	return ret;
352}
353
354/*
355 * Load up this CPU's radix_tree_node buffer with sufficient objects to
356 * ensure that the addition of a single element in the tree cannot fail.  On
357 * success, return zero, with preemption disabled.  On error, return -ENOMEM
358 * with preemption not disabled.
359 *
360 * To make use of this facility, the radix tree must be initialised without
361 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
362 */
363int radix_tree_preload(gfp_t gfp_mask)
364{
365	/* Warn on non-sensical use... */
366	WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
367	return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
368}
369EXPORT_SYMBOL(radix_tree_preload);
370
371/*
372 * The same as above function, except we don't guarantee preloading happens.
373 * We do it, if we decide it helps. On success, return zero with preemption
374 * disabled. On error, return -ENOMEM with preemption not disabled.
375 */
376int radix_tree_maybe_preload(gfp_t gfp_mask)
377{
378	if (gfpflags_allow_blocking(gfp_mask))
379		return __radix_tree_preload(gfp_mask, RADIX_TREE_PRELOAD_SIZE);
380	/* Preloading doesn't help anything with this gfp mask, skip it */
381	local_lock(&radix_tree_preloads.lock);
382	return 0;
383}
384EXPORT_SYMBOL(radix_tree_maybe_preload);
385
386static unsigned radix_tree_load_root(const struct radix_tree_root *root,
387		struct radix_tree_node **nodep, unsigned long *maxindex)
388{
389	struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
390
391	*nodep = node;
392
393	if (likely(radix_tree_is_internal_node(node))) {
394		node = entry_to_node(node);
395		*maxindex = node_maxindex(node);
396		return node->shift + RADIX_TREE_MAP_SHIFT;
397	}
398
399	*maxindex = 0;
400	return 0;
401}
402
403/*
404 *	Extend a radix tree so it can store key @index.
405 */
406static int radix_tree_extend(struct radix_tree_root *root, gfp_t gfp,
407				unsigned long index, unsigned int shift)
408{
409	void *entry;
410	unsigned int maxshift;
411	int tag;
412
413	/* Figure out what the shift should be.  */
414	maxshift = shift;
415	while (index > shift_maxindex(maxshift))
416		maxshift += RADIX_TREE_MAP_SHIFT;
417
418	entry = rcu_dereference_raw(root->xa_head);
419	if (!entry && (!is_idr(root) || root_tag_get(root, IDR_FREE)))
420		goto out;
421
422	do {
423		struct radix_tree_node *node = radix_tree_node_alloc(gfp, NULL,
424							root, shift, 0, 1, 0);
425		if (!node)
426			return -ENOMEM;
427
428		if (is_idr(root)) {
429			all_tag_set(node, IDR_FREE);
430			if (!root_tag_get(root, IDR_FREE)) {
431				tag_clear(node, IDR_FREE, 0);
432				root_tag_set(root, IDR_FREE);
433			}
434		} else {
435			/* Propagate the aggregated tag info to the new child */
436			for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
437				if (root_tag_get(root, tag))
438					tag_set(node, tag, 0);
439			}
440		}
441
442		BUG_ON(shift > BITS_PER_LONG);
443		if (radix_tree_is_internal_node(entry)) {
444			entry_to_node(entry)->parent = node;
445		} else if (xa_is_value(entry)) {
446			/* Moving a value entry root->xa_head to a node */
447			node->nr_values = 1;
448		}
449		/*
450		 * entry was already in the radix tree, so we do not need
451		 * rcu_assign_pointer here
452		 */
453		node->slots[0] = (void __rcu *)entry;
454		entry = node_to_entry(node);
455		rcu_assign_pointer(root->xa_head, entry);
456		shift += RADIX_TREE_MAP_SHIFT;
457	} while (shift <= maxshift);
458out:
459	return maxshift + RADIX_TREE_MAP_SHIFT;
460}
461
462/**
463 *	radix_tree_shrink    -    shrink radix tree to minimum height
464 *	@root		radix tree root
465 */
466static inline bool radix_tree_shrink(struct radix_tree_root *root)
467{
468	bool shrunk = false;
469
470	for (;;) {
471		struct radix_tree_node *node = rcu_dereference_raw(root->xa_head);
472		struct radix_tree_node *child;
473
474		if (!radix_tree_is_internal_node(node))
475			break;
476		node = entry_to_node(node);
477
478		/*
479		 * The candidate node has more than one child, or its child
480		 * is not at the leftmost slot, we cannot shrink.
481		 */
482		if (node->count != 1)
483			break;
484		child = rcu_dereference_raw(node->slots[0]);
485		if (!child)
486			break;
487
488		/*
489		 * For an IDR, we must not shrink entry 0 into the root in
490		 * case somebody calls idr_replace() with a pointer that
491		 * appears to be an internal entry
492		 */
493		if (!node->shift && is_idr(root))
494			break;
495
496		if (radix_tree_is_internal_node(child))
497			entry_to_node(child)->parent = NULL;
498
499		/*
500		 * We don't need rcu_assign_pointer(), since we are simply
501		 * moving the node from one part of the tree to another: if it
502		 * was safe to dereference the old pointer to it
503		 * (node->slots[0]), it will be safe to dereference the new
504		 * one (root->xa_head) as far as dependent read barriers go.
505		 */
506		root->xa_head = (void __rcu *)child;
507		if (is_idr(root) && !tag_get(node, IDR_FREE, 0))
508			root_tag_clear(root, IDR_FREE);
509
510		/*
511		 * We have a dilemma here. The node's slot[0] must not be
512		 * NULLed in case there are concurrent lookups expecting to
513		 * find the item. However if this was a bottom-level node,
514		 * then it may be subject to the slot pointer being visible
515		 * to callers dereferencing it. If item corresponding to
516		 * slot[0] is subsequently deleted, these callers would expect
517		 * their slot to become empty sooner or later.
518		 *
519		 * For example, lockless pagecache will look up a slot, deref
520		 * the page pointer, and if the page has 0 refcount it means it
521		 * was concurrently deleted from pagecache so try the deref
522		 * again. Fortunately there is already a requirement for logic
523		 * to retry the entire slot lookup -- the indirect pointer
524		 * problem (replacing direct root node with an indirect pointer
525		 * also results in a stale slot). So tag the slot as indirect
526		 * to force callers to retry.
527		 */
528		node->count = 0;
529		if (!radix_tree_is_internal_node(child)) {
530			node->slots[0] = (void __rcu *)RADIX_TREE_RETRY;
531		}
532
533		WARN_ON_ONCE(!list_empty(&node->private_list));
534		radix_tree_node_free(node);
535		shrunk = true;
536	}
537
538	return shrunk;
539}
540
541static bool delete_node(struct radix_tree_root *root,
542			struct radix_tree_node *node)
543{
544	bool deleted = false;
545
546	do {
547		struct radix_tree_node *parent;
548
549		if (node->count) {
550			if (node_to_entry(node) ==
551					rcu_dereference_raw(root->xa_head))
552				deleted |= radix_tree_shrink(root);
553			return deleted;
554		}
555
556		parent = node->parent;
557		if (parent) {
558			parent->slots[node->offset] = NULL;
559			parent->count--;
560		} else {
561			/*
562			 * Shouldn't the tags already have all been cleared
563			 * by the caller?
564			 */
565			if (!is_idr(root))
566				root_tag_clear_all(root);
567			root->xa_head = NULL;
568		}
569
570		WARN_ON_ONCE(!list_empty(&node->private_list));
571		radix_tree_node_free(node);
572		deleted = true;
573
574		node = parent;
575	} while (node);
576
577	return deleted;
578}
579
580/**
581 *	__radix_tree_create	-	create a slot in a radix tree
582 *	@root:		radix tree root
583 *	@index:		index key
584 *	@nodep:		returns node
585 *	@slotp:		returns slot
586 *
587 *	Create, if necessary, and return the node and slot for an item
588 *	at position @index in the radix tree @root.
589 *
590 *	Until there is more than one item in the tree, no nodes are
591 *	allocated and @root->xa_head is used as a direct slot instead of
592 *	pointing to a node, in which case *@nodep will be NULL.
593 *
594 *	Returns -ENOMEM, or 0 for success.
595 */
596static int __radix_tree_create(struct radix_tree_root *root,
597		unsigned long index, struct radix_tree_node **nodep,
598		void __rcu ***slotp)
599{
600	struct radix_tree_node *node = NULL, *child;
601	void __rcu **slot = (void __rcu **)&root->xa_head;
602	unsigned long maxindex;
603	unsigned int shift, offset = 0;
604	unsigned long max = index;
605	gfp_t gfp = root_gfp_mask(root);
606
607	shift = radix_tree_load_root(root, &child, &maxindex);
608
609	/* Make sure the tree is high enough.  */
610	if (max > maxindex) {
611		int error = radix_tree_extend(root, gfp, max, shift);
612		if (error < 0)
613			return error;
614		shift = error;
615		child = rcu_dereference_raw(root->xa_head);
616	}
617
618	while (shift > 0) {
619		shift -= RADIX_TREE_MAP_SHIFT;
620		if (child == NULL) {
621			/* Have to add a child node.  */
622			child = radix_tree_node_alloc(gfp, node, root, shift,
623							offset, 0, 0);
624			if (!child)
625				return -ENOMEM;
626			rcu_assign_pointer(*slot, node_to_entry(child));
627			if (node)
628				node->count++;
629		} else if (!radix_tree_is_internal_node(child))
630			break;
631
632		/* Go a level down */
633		node = entry_to_node(child);
634		offset = radix_tree_descend(node, &child, index);
635		slot = &node->slots[offset];
636	}
637
638	if (nodep)
639		*nodep = node;
640	if (slotp)
641		*slotp = slot;
642	return 0;
643}
644
645/*
646 * Free any nodes below this node.  The tree is presumed to not need
647 * shrinking, and any user data in the tree is presumed to not need a
648 * destructor called on it.  If we need to add a destructor, we can
649 * add that functionality later.  Note that we may not clear tags or
650 * slots from the tree as an RCU walker may still have a pointer into
651 * this subtree.  We could replace the entries with RADIX_TREE_RETRY,
652 * but we'll still have to clear those in rcu_free.
653 */
654static void radix_tree_free_nodes(struct radix_tree_node *node)
655{
656	unsigned offset = 0;
657	struct radix_tree_node *child = entry_to_node(node);
658
659	for (;;) {
660		void *entry = rcu_dereference_raw(child->slots[offset]);
661		if (xa_is_node(entry) && child->shift) {
662			child = entry_to_node(entry);
663			offset = 0;
664			continue;
665		}
666		offset++;
667		while (offset == RADIX_TREE_MAP_SIZE) {
668			struct radix_tree_node *old = child;
669			offset = child->offset + 1;
670			child = child->parent;
671			WARN_ON_ONCE(!list_empty(&old->private_list));
672			radix_tree_node_free(old);
673			if (old == entry_to_node(node))
674				return;
675		}
676	}
677}
678
679static inline int insert_entries(struct radix_tree_node *node,
680		void __rcu **slot, void *item, bool replace)
681{
682	if (*slot)
683		return -EEXIST;
684	rcu_assign_pointer(*slot, item);
685	if (node) {
686		node->count++;
687		if (xa_is_value(item))
688			node->nr_values++;
689	}
690	return 1;
691}
692
693/**
694 *	__radix_tree_insert    -    insert into a radix tree
695 *	@root:		radix tree root
696 *	@index:		index key
697 *	@item:		item to insert
698 *
699 *	Insert an item into the radix tree at position @index.
700 */
701int radix_tree_insert(struct radix_tree_root *root, unsigned long index,
702			void *item)
703{
704	struct radix_tree_node *node;
705	void __rcu **slot;
706	int error;
707
708	BUG_ON(radix_tree_is_internal_node(item));
709
710	error = __radix_tree_create(root, index, &node, &slot);
711	if (error)
712		return error;
713
714	error = insert_entries(node, slot, item, false);
715	if (error < 0)
716		return error;
717
718	if (node) {
719		unsigned offset = get_slot_offset(node, slot);
720		BUG_ON(tag_get(node, 0, offset));
721		BUG_ON(tag_get(node, 1, offset));
722		BUG_ON(tag_get(node, 2, offset));
723	} else {
724		BUG_ON(root_tags_get(root));
725	}
726
727	return 0;
728}
729EXPORT_SYMBOL(radix_tree_insert);
730
731/**
732 *	__radix_tree_lookup	-	lookup an item in a radix tree
733 *	@root:		radix tree root
734 *	@index:		index key
735 *	@nodep:		returns node
736 *	@slotp:		returns slot
737 *
738 *	Lookup and return the item at position @index in the radix
739 *	tree @root.
740 *
741 *	Until there is more than one item in the tree, no nodes are
742 *	allocated and @root->xa_head is used as a direct slot instead of
743 *	pointing to a node, in which case *@nodep will be NULL.
744 */
745void *__radix_tree_lookup(const struct radix_tree_root *root,
746			  unsigned long index, struct radix_tree_node **nodep,
747			  void __rcu ***slotp)
748{
749	struct radix_tree_node *node, *parent;
750	unsigned long maxindex;
751	void __rcu **slot;
752
753 restart:
754	parent = NULL;
755	slot = (void __rcu **)&root->xa_head;
756	radix_tree_load_root(root, &node, &maxindex);
757	if (index > maxindex)
758		return NULL;
759
760	while (radix_tree_is_internal_node(node)) {
761		unsigned offset;
762
763		parent = entry_to_node(node);
764		offset = radix_tree_descend(parent, &node, index);
765		slot = parent->slots + offset;
766		if (node == RADIX_TREE_RETRY)
767			goto restart;
768		if (parent->shift == 0)
769			break;
770	}
771
772	if (nodep)
773		*nodep = parent;
774	if (slotp)
775		*slotp = slot;
776	return node;
777}
778
779/**
780 *	radix_tree_lookup_slot    -    lookup a slot in a radix tree
781 *	@root:		radix tree root
782 *	@index:		index key
783 *
784 *	Returns:  the slot corresponding to the position @index in the
785 *	radix tree @root. This is useful for update-if-exists operations.
786 *
787 *	This function can be called under rcu_read_lock iff the slot is not
788 *	modified by radix_tree_replace_slot, otherwise it must be called
789 *	exclusive from other writers. Any dereference of the slot must be done
790 *	using radix_tree_deref_slot.
791 */
792void __rcu **radix_tree_lookup_slot(const struct radix_tree_root *root,
793				unsigned long index)
794{
795	void __rcu **slot;
796
797	if (!__radix_tree_lookup(root, index, NULL, &slot))
798		return NULL;
799	return slot;
800}
801EXPORT_SYMBOL(radix_tree_lookup_slot);
802
803/**
804 *	radix_tree_lookup    -    perform lookup operation on a radix tree
805 *	@root:		radix tree root
806 *	@index:		index key
807 *
808 *	Lookup the item at the position @index in the radix tree @root.
809 *
810 *	This function can be called under rcu_read_lock, however the caller
811 *	must manage lifetimes of leaf nodes (eg. RCU may also be used to free
812 *	them safely). No RCU barriers are required to access or modify the
813 *	returned item, however.
814 */
815void *radix_tree_lookup(const struct radix_tree_root *root, unsigned long index)
816{
817	return __radix_tree_lookup(root, index, NULL, NULL);
818}
819EXPORT_SYMBOL(radix_tree_lookup);
820
821static void replace_slot(void __rcu **slot, void *item,
822		struct radix_tree_node *node, int count, int values)
823{
824	if (node && (count || values)) {
825		node->count += count;
826		node->nr_values += values;
827	}
828
829	rcu_assign_pointer(*slot, item);
830}
831
832static bool node_tag_get(const struct radix_tree_root *root,
833				const struct radix_tree_node *node,
834				unsigned int tag, unsigned int offset)
835{
836	if (node)
837		return tag_get(node, tag, offset);
838	return root_tag_get(root, tag);
839}
840
841/*
842 * IDR users want to be able to store NULL in the tree, so if the slot isn't
843 * free, don't adjust the count, even if it's transitioning between NULL and
844 * non-NULL.  For the IDA, we mark slots as being IDR_FREE while they still
845 * have empty bits, but it only stores NULL in slots when they're being
846 * deleted.
847 */
848static int calculate_count(struct radix_tree_root *root,
849				struct radix_tree_node *node, void __rcu **slot,
850				void *item, void *old)
851{
852	if (is_idr(root)) {
853		unsigned offset = get_slot_offset(node, slot);
854		bool free = node_tag_get(root, node, IDR_FREE, offset);
855		if (!free)
856			return 0;
857		if (!old)
858			return 1;
859	}
860	return !!item - !!old;
861}
862
863/**
864 * __radix_tree_replace		- replace item in a slot
865 * @root:		radix tree root
866 * @node:		pointer to tree node
867 * @slot:		pointer to slot in @node
868 * @item:		new item to store in the slot.
869 *
870 * For use with __radix_tree_lookup().  Caller must hold tree write locked
871 * across slot lookup and replacement.
872 */
873void __radix_tree_replace(struct radix_tree_root *root,
874			  struct radix_tree_node *node,
875			  void __rcu **slot, void *item)
876{
877	void *old = rcu_dereference_raw(*slot);
878	int values = !!xa_is_value(item) - !!xa_is_value(old);
879	int count = calculate_count(root, node, slot, item, old);
880
881	/*
882	 * This function supports replacing value entries and
883	 * deleting entries, but that needs accounting against the
884	 * node unless the slot is root->xa_head.
885	 */
886	WARN_ON_ONCE(!node && (slot != (void __rcu **)&root->xa_head) &&
887			(count || values));
888	replace_slot(slot, item, node, count, values);
889
890	if (!node)
891		return;
892
893	delete_node(root, node);
894}
895
896/**
897 * radix_tree_replace_slot	- replace item in a slot
898 * @root:	radix tree root
899 * @slot:	pointer to slot
900 * @item:	new item to store in the slot.
901 *
902 * For use with radix_tree_lookup_slot() and
903 * radix_tree_gang_lookup_tag_slot().  Caller must hold tree write locked
904 * across slot lookup and replacement.
905 *
906 * NOTE: This cannot be used to switch between non-entries (empty slots),
907 * regular entries, and value entries, as that requires accounting
908 * inside the radix tree node. When switching from one type of entry or
909 * deleting, use __radix_tree_lookup() and __radix_tree_replace() or
910 * radix_tree_iter_replace().
911 */
912void radix_tree_replace_slot(struct radix_tree_root *root,
913			     void __rcu **slot, void *item)
914{
915	__radix_tree_replace(root, NULL, slot, item);
916}
917EXPORT_SYMBOL(radix_tree_replace_slot);
918
919/**
920 * radix_tree_iter_replace - replace item in a slot
921 * @root:	radix tree root
922 * @slot:	pointer to slot
923 * @item:	new item to store in the slot.
924 *
925 * For use with radix_tree_for_each_slot().
926 * Caller must hold tree write locked.
927 */
928void radix_tree_iter_replace(struct radix_tree_root *root,
929				const struct radix_tree_iter *iter,
930				void __rcu **slot, void *item)
931{
932	__radix_tree_replace(root, iter->node, slot, item);
933}
934
935static void node_tag_set(struct radix_tree_root *root,
936				struct radix_tree_node *node,
937				unsigned int tag, unsigned int offset)
938{
939	while (node) {
940		if (tag_get(node, tag, offset))
941			return;
942		tag_set(node, tag, offset);
943		offset = node->offset;
944		node = node->parent;
945	}
946
947	if (!root_tag_get(root, tag))
948		root_tag_set(root, tag);
949}
950
951/**
952 *	radix_tree_tag_set - set a tag on a radix tree node
953 *	@root:		radix tree root
954 *	@index:		index key
955 *	@tag:		tag index
956 *
957 *	Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
958 *	corresponding to @index in the radix tree.  From
959 *	the root all the way down to the leaf node.
960 *
961 *	Returns the address of the tagged item.  Setting a tag on a not-present
962 *	item is a bug.
963 */
964void *radix_tree_tag_set(struct radix_tree_root *root,
965			unsigned long index, unsigned int tag)
966{
967	struct radix_tree_node *node, *parent;
968	unsigned long maxindex;
969
970	radix_tree_load_root(root, &node, &maxindex);
971	BUG_ON(index > maxindex);
972
973	while (radix_tree_is_internal_node(node)) {
974		unsigned offset;
975
976		parent = entry_to_node(node);
977		offset = radix_tree_descend(parent, &node, index);
978		BUG_ON(!node);
979
980		if (!tag_get(parent, tag, offset))
981			tag_set(parent, tag, offset);
982	}
983
984	/* set the root's tag bit */
985	if (!root_tag_get(root, tag))
986		root_tag_set(root, tag);
987
988	return node;
989}
990EXPORT_SYMBOL(radix_tree_tag_set);
991
992static void node_tag_clear(struct radix_tree_root *root,
993				struct radix_tree_node *node,
994				unsigned int tag, unsigned int offset)
995{
996	while (node) {
997		if (!tag_get(node, tag, offset))
998			return;
999		tag_clear(node, tag, offset);
1000		if (any_tag_set(node, tag))
1001			return;
1002
1003		offset = node->offset;
1004		node = node->parent;
1005	}
1006
1007	/* clear the root's tag bit */
1008	if (root_tag_get(root, tag))
1009		root_tag_clear(root, tag);
1010}
1011
1012/**
1013 *	radix_tree_tag_clear - clear a tag on a radix tree node
1014 *	@root:		radix tree root
1015 *	@index:		index key
1016 *	@tag:		tag index
1017 *
1018 *	Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
1019 *	corresponding to @index in the radix tree.  If this causes
1020 *	the leaf node to have no tags set then clear the tag in the
1021 *	next-to-leaf node, etc.
1022 *
1023 *	Returns the address of the tagged item on success, else NULL.  ie:
1024 *	has the same return value and semantics as radix_tree_lookup().
1025 */
1026void *radix_tree_tag_clear(struct radix_tree_root *root,
1027			unsigned long index, unsigned int tag)
1028{
1029	struct radix_tree_node *node, *parent;
1030	unsigned long maxindex;
1031	int offset;
1032
1033	radix_tree_load_root(root, &node, &maxindex);
1034	if (index > maxindex)
1035		return NULL;
1036
1037	parent = NULL;
1038
1039	while (radix_tree_is_internal_node(node)) {
1040		parent = entry_to_node(node);
1041		offset = radix_tree_descend(parent, &node, index);
1042	}
1043
1044	if (node)
1045		node_tag_clear(root, parent, tag, offset);
1046
1047	return node;
1048}
1049EXPORT_SYMBOL(radix_tree_tag_clear);
1050
1051/**
1052  * radix_tree_iter_tag_clear - clear a tag on the current iterator entry
1053  * @root: radix tree root
1054  * @iter: iterator state
1055  * @tag: tag to clear
1056  */
1057void radix_tree_iter_tag_clear(struct radix_tree_root *root,
1058			const struct radix_tree_iter *iter, unsigned int tag)
1059{
1060	node_tag_clear(root, iter->node, tag, iter_offset(iter));
1061}
1062
1063/**
1064 * radix_tree_tag_get - get a tag on a radix tree node
1065 * @root:		radix tree root
1066 * @index:		index key
1067 * @tag:		tag index (< RADIX_TREE_MAX_TAGS)
1068 *
1069 * Return values:
1070 *
1071 *  0: tag not present or not set
1072 *  1: tag set
1073 *
1074 * Note that the return value of this function may not be relied on, even if
1075 * the RCU lock is held, unless tag modification and node deletion are excluded
1076 * from concurrency.
1077 */
1078int radix_tree_tag_get(const struct radix_tree_root *root,
1079			unsigned long index, unsigned int tag)
1080{
1081	struct radix_tree_node *node, *parent;
1082	unsigned long maxindex;
1083
1084	if (!root_tag_get(root, tag))
1085		return 0;
1086
1087	radix_tree_load_root(root, &node, &maxindex);
1088	if (index > maxindex)
1089		return 0;
1090
1091	while (radix_tree_is_internal_node(node)) {
1092		unsigned offset;
1093
1094		parent = entry_to_node(node);
1095		offset = radix_tree_descend(parent, &node, index);
1096
1097		if (!tag_get(parent, tag, offset))
1098			return 0;
1099		if (node == RADIX_TREE_RETRY)
1100			break;
1101	}
1102
1103	return 1;
1104}
1105EXPORT_SYMBOL(radix_tree_tag_get);
1106
1107/* Construct iter->tags bit-mask from node->tags[tag] array */
1108static void set_iter_tags(struct radix_tree_iter *iter,
1109				struct radix_tree_node *node, unsigned offset,
1110				unsigned tag)
1111{
1112	unsigned tag_long = offset / BITS_PER_LONG;
1113	unsigned tag_bit  = offset % BITS_PER_LONG;
1114
1115	if (!node) {
1116		iter->tags = 1;
1117		return;
1118	}
1119
1120	iter->tags = node->tags[tag][tag_long] >> tag_bit;
1121
1122	/* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1123	if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1124		/* Pick tags from next element */
1125		if (tag_bit)
1126			iter->tags |= node->tags[tag][tag_long + 1] <<
1127						(BITS_PER_LONG - tag_bit);
1128		/* Clip chunk size, here only BITS_PER_LONG tags */
1129		iter->next_index = __radix_tree_iter_add(iter, BITS_PER_LONG);
1130	}
1131}
1132
1133void __rcu **radix_tree_iter_resume(void __rcu **slot,
1134					struct radix_tree_iter *iter)
1135{
1136	iter->index = __radix_tree_iter_add(iter, 1);
1137	iter->next_index = iter->index;
1138	iter->tags = 0;
1139	return NULL;
1140}
1141EXPORT_SYMBOL(radix_tree_iter_resume);
1142
1143/**
1144 * radix_tree_next_chunk - find next chunk of slots for iteration
1145 *
1146 * @root:	radix tree root
1147 * @iter:	iterator state
1148 * @flags:	RADIX_TREE_ITER_* flags and tag index
1149 * Returns:	pointer to chunk first slot, or NULL if iteration is over
1150 */
1151void __rcu **radix_tree_next_chunk(const struct radix_tree_root *root,
1152			     struct radix_tree_iter *iter, unsigned flags)
1153{
1154	unsigned tag = flags & RADIX_TREE_ITER_TAG_MASK;
1155	struct radix_tree_node *node, *child;
1156	unsigned long index, offset, maxindex;
1157
1158	if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
1159		return NULL;
1160
1161	/*
1162	 * Catch next_index overflow after ~0UL. iter->index never overflows
1163	 * during iterating; it can be zero only at the beginning.
1164	 * And we cannot overflow iter->next_index in a single step,
1165	 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
1166	 *
1167	 * This condition also used by radix_tree_next_slot() to stop
1168	 * contiguous iterating, and forbid switching to the next chunk.
1169	 */
1170	index = iter->next_index;
1171	if (!index && iter->index)
1172		return NULL;
1173
1174 restart:
1175	radix_tree_load_root(root, &child, &maxindex);
1176	if (index > maxindex)
1177		return NULL;
1178	if (!child)
1179		return NULL;
1180
1181	if (!radix_tree_is_internal_node(child)) {
1182		/* Single-slot tree */
1183		iter->index = index;
1184		iter->next_index = maxindex + 1;
1185		iter->tags = 1;
1186		iter->node = NULL;
1187		return (void __rcu **)&root->xa_head;
1188	}
1189
1190	do {
1191		node = entry_to_node(child);
1192		offset = radix_tree_descend(node, &child, index);
1193
1194		if ((flags & RADIX_TREE_ITER_TAGGED) ?
1195				!tag_get(node, tag, offset) : !child) {
1196			/* Hole detected */
1197			if (flags & RADIX_TREE_ITER_CONTIG)
1198				return NULL;
1199
1200			if (flags & RADIX_TREE_ITER_TAGGED)
1201				offset = radix_tree_find_next_bit(node, tag,
1202						offset + 1);
1203			else
1204				while (++offset	< RADIX_TREE_MAP_SIZE) {
1205					void *slot = rcu_dereference_raw(
1206							node->slots[offset]);
1207					if (slot)
1208						break;
1209				}
1210			index &= ~node_maxindex(node);
1211			index += offset << node->shift;
1212			/* Overflow after ~0UL */
1213			if (!index)
1214				return NULL;
1215			if (offset == RADIX_TREE_MAP_SIZE)
1216				goto restart;
1217			child = rcu_dereference_raw(node->slots[offset]);
1218		}
1219
1220		if (!child)
1221			goto restart;
1222		if (child == RADIX_TREE_RETRY)
1223			break;
1224	} while (node->shift && radix_tree_is_internal_node(child));
1225
1226	/* Update the iterator state */
1227	iter->index = (index &~ node_maxindex(node)) | offset;
1228	iter->next_index = (index | node_maxindex(node)) + 1;
1229	iter->node = node;
1230
1231	if (flags & RADIX_TREE_ITER_TAGGED)
1232		set_iter_tags(iter, node, offset, tag);
1233
1234	return node->slots + offset;
1235}
1236EXPORT_SYMBOL(radix_tree_next_chunk);
1237
1238/**
1239 *	radix_tree_gang_lookup - perform multiple lookup on a radix tree
1240 *	@root:		radix tree root
1241 *	@results:	where the results of the lookup are placed
1242 *	@first_index:	start the lookup from this key
1243 *	@max_items:	place up to this many items at *results
1244 *
1245 *	Performs an index-ascending scan of the tree for present items.  Places
1246 *	them at *@results and returns the number of items which were placed at
1247 *	*@results.
1248 *
1249 *	The implementation is naive.
1250 *
1251 *	Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1252 *	rcu_read_lock. In this case, rather than the returned results being
1253 *	an atomic snapshot of the tree at a single point in time, the
1254 *	semantics of an RCU protected gang lookup are as though multiple
1255 *	radix_tree_lookups have been issued in individual locks, and results
1256 *	stored in 'results'.
1257 */
1258unsigned int
1259radix_tree_gang_lookup(const struct radix_tree_root *root, void **results,
1260			unsigned long first_index, unsigned int max_items)
1261{
1262	struct radix_tree_iter iter;
1263	void __rcu **slot;
1264	unsigned int ret = 0;
1265
1266	if (unlikely(!max_items))
1267		return 0;
1268
1269	radix_tree_for_each_slot(slot, root, &iter, first_index) {
1270		results[ret] = rcu_dereference_raw(*slot);
1271		if (!results[ret])
1272			continue;
1273		if (radix_tree_is_internal_node(results[ret])) {
1274			slot = radix_tree_iter_retry(&iter);
1275			continue;
1276		}
1277		if (++ret == max_items)
1278			break;
1279	}
1280
1281	return ret;
1282}
1283EXPORT_SYMBOL(radix_tree_gang_lookup);
1284
1285/**
1286 *	radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1287 *	                             based on a tag
1288 *	@root:		radix tree root
1289 *	@results:	where the results of the lookup are placed
1290 *	@first_index:	start the lookup from this key
1291 *	@max_items:	place up to this many items at *results
1292 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1293 *
1294 *	Performs an index-ascending scan of the tree for present items which
1295 *	have the tag indexed by @tag set.  Places the items at *@results and
1296 *	returns the number of items which were placed at *@results.
1297 */
1298unsigned int
1299radix_tree_gang_lookup_tag(const struct radix_tree_root *root, void **results,
1300		unsigned long first_index, unsigned int max_items,
1301		unsigned int tag)
1302{
1303	struct radix_tree_iter iter;
1304	void __rcu **slot;
1305	unsigned int ret = 0;
1306
1307	if (unlikely(!max_items))
1308		return 0;
1309
1310	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1311		results[ret] = rcu_dereference_raw(*slot);
1312		if (!results[ret])
1313			continue;
1314		if (radix_tree_is_internal_node(results[ret])) {
1315			slot = radix_tree_iter_retry(&iter);
1316			continue;
1317		}
1318		if (++ret == max_items)
1319			break;
1320	}
1321
1322	return ret;
1323}
1324EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1325
1326/**
1327 *	radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1328 *					  radix tree based on a tag
1329 *	@root:		radix tree root
1330 *	@results:	where the results of the lookup are placed
1331 *	@first_index:	start the lookup from this key
1332 *	@max_items:	place up to this many items at *results
1333 *	@tag:		the tag index (< RADIX_TREE_MAX_TAGS)
1334 *
1335 *	Performs an index-ascending scan of the tree for present items which
1336 *	have the tag indexed by @tag set.  Places the slots at *@results and
1337 *	returns the number of slots which were placed at *@results.
1338 */
1339unsigned int
1340radix_tree_gang_lookup_tag_slot(const struct radix_tree_root *root,
1341		void __rcu ***results, unsigned long first_index,
1342		unsigned int max_items, unsigned int tag)
1343{
1344	struct radix_tree_iter iter;
1345	void __rcu **slot;
1346	unsigned int ret = 0;
1347
1348	if (unlikely(!max_items))
1349		return 0;
1350
1351	radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1352		results[ret] = slot;
1353		if (++ret == max_items)
1354			break;
1355	}
1356
1357	return ret;
1358}
1359EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1360
1361static bool __radix_tree_delete(struct radix_tree_root *root,
1362				struct radix_tree_node *node, void __rcu **slot)
1363{
1364	void *old = rcu_dereference_raw(*slot);
1365	int values = xa_is_value(old) ? -1 : 0;
1366	unsigned offset = get_slot_offset(node, slot);
1367	int tag;
1368
1369	if (is_idr(root))
1370		node_tag_set(root, node, IDR_FREE, offset);
1371	else
1372		for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++)
1373			node_tag_clear(root, node, tag, offset);
1374
1375	replace_slot(slot, NULL, node, -1, values);
1376	return node && delete_node(root, node);
1377}
1378
1379/**
1380 * radix_tree_iter_delete - delete the entry at this iterator position
1381 * @root: radix tree root
1382 * @iter: iterator state
1383 * @slot: pointer to slot
1384 *
1385 * Delete the entry at the position currently pointed to by the iterator.
1386 * This may result in the current node being freed; if it is, the iterator
1387 * is advanced so that it will not reference the freed memory.  This
1388 * function may be called without any locking if there are no other threads
1389 * which can access this tree.
1390 */
1391void radix_tree_iter_delete(struct radix_tree_root *root,
1392				struct radix_tree_iter *iter, void __rcu **slot)
1393{
1394	if (__radix_tree_delete(root, iter->node, slot))
1395		iter->index = iter->next_index;
1396}
1397EXPORT_SYMBOL(radix_tree_iter_delete);
1398
1399/**
1400 * radix_tree_delete_item - delete an item from a radix tree
1401 * @root: radix tree root
1402 * @index: index key
1403 * @item: expected item
1404 *
1405 * Remove @item at @index from the radix tree rooted at @root.
1406 *
1407 * Return: the deleted entry, or %NULL if it was not present
1408 * or the entry at the given @index was not @item.
1409 */
1410void *radix_tree_delete_item(struct radix_tree_root *root,
1411			     unsigned long index, void *item)
1412{
1413	struct radix_tree_node *node = NULL;
1414	void __rcu **slot = NULL;
1415	void *entry;
1416
1417	entry = __radix_tree_lookup(root, index, &node, &slot);
1418	if (!slot)
1419		return NULL;
1420	if (!entry && (!is_idr(root) || node_tag_get(root, node, IDR_FREE,
1421						get_slot_offset(node, slot))))
1422		return NULL;
1423
1424	if (item && entry != item)
1425		return NULL;
1426
1427	__radix_tree_delete(root, node, slot);
1428
1429	return entry;
1430}
1431EXPORT_SYMBOL(radix_tree_delete_item);
1432
1433/**
1434 * radix_tree_delete - delete an entry from a radix tree
1435 * @root: radix tree root
1436 * @index: index key
1437 *
1438 * Remove the entry at @index from the radix tree rooted at @root.
1439 *
1440 * Return: The deleted entry, or %NULL if it was not present.
1441 */
1442void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1443{
1444	return radix_tree_delete_item(root, index, NULL);
1445}
1446EXPORT_SYMBOL(radix_tree_delete);
1447
1448/**
1449 *	radix_tree_tagged - test whether any items in the tree are tagged
1450 *	@root:		radix tree root
1451 *	@tag:		tag to test
1452 */
1453int radix_tree_tagged(const struct radix_tree_root *root, unsigned int tag)
1454{
1455	return root_tag_get(root, tag);
1456}
1457EXPORT_SYMBOL(radix_tree_tagged);
1458
1459/**
1460 * idr_preload - preload for idr_alloc()
1461 * @gfp_mask: allocation mask to use for preloading
1462 *
1463 * Preallocate memory to use for the next call to idr_alloc().  This function
1464 * returns with preemption disabled.  It will be enabled by idr_preload_end().
1465 */
1466void idr_preload(gfp_t gfp_mask)
1467{
1468	if (__radix_tree_preload(gfp_mask, IDR_PRELOAD_SIZE))
1469		local_lock(&radix_tree_preloads.lock);
1470}
1471EXPORT_SYMBOL(idr_preload);
1472
1473void __rcu **idr_get_free(struct radix_tree_root *root,
1474			      struct radix_tree_iter *iter, gfp_t gfp,
1475			      unsigned long max)
1476{
1477	struct radix_tree_node *node = NULL, *child;
1478	void __rcu **slot = (void __rcu **)&root->xa_head;
1479	unsigned long maxindex, start = iter->next_index;
1480	unsigned int shift, offset = 0;
1481
1482 grow:
1483	shift = radix_tree_load_root(root, &child, &maxindex);
1484	if (!radix_tree_tagged(root, IDR_FREE))
1485		start = max(start, maxindex + 1);
1486	if (start > max)
1487		return ERR_PTR(-ENOSPC);
1488
1489	if (start > maxindex) {
1490		int error = radix_tree_extend(root, gfp, start, shift);
1491		if (error < 0)
1492			return ERR_PTR(error);
1493		shift = error;
1494		child = rcu_dereference_raw(root->xa_head);
1495	}
1496	if (start == 0 && shift == 0)
1497		shift = RADIX_TREE_MAP_SHIFT;
1498
1499	while (shift) {
1500		shift -= RADIX_TREE_MAP_SHIFT;
1501		if (child == NULL) {
1502			/* Have to add a child node.  */
1503			child = radix_tree_node_alloc(gfp, node, root, shift,
1504							offset, 0, 0);
1505			if (!child)
1506				return ERR_PTR(-ENOMEM);
1507			all_tag_set(child, IDR_FREE);
1508			rcu_assign_pointer(*slot, node_to_entry(child));
1509			if (node)
1510				node->count++;
1511		} else if (!radix_tree_is_internal_node(child))
1512			break;
1513
1514		node = entry_to_node(child);
1515		offset = radix_tree_descend(node, &child, start);
1516		if (!tag_get(node, IDR_FREE, offset)) {
1517			offset = radix_tree_find_next_bit(node, IDR_FREE,
1518							offset + 1);
1519			start = next_index(start, node, offset);
1520			if (start > max || start == 0)
1521				return ERR_PTR(-ENOSPC);
1522			while (offset == RADIX_TREE_MAP_SIZE) {
1523				offset = node->offset + 1;
1524				node = node->parent;
1525				if (!node)
1526					goto grow;
1527				shift = node->shift;
1528			}
1529			child = rcu_dereference_raw(node->slots[offset]);
1530		}
1531		slot = &node->slots[offset];
1532	}
1533
1534	iter->index = start;
1535	if (node)
1536		iter->next_index = 1 + min(max, (start | node_maxindex(node)));
1537	else
1538		iter->next_index = 1;
1539	iter->node = node;
1540	set_iter_tags(iter, node, offset, IDR_FREE);
1541
1542	return slot;
1543}
1544
1545/**
1546 * idr_destroy - release all internal memory from an IDR
1547 * @idr: idr handle
1548 *
1549 * After this function is called, the IDR is empty, and may be reused or
1550 * the data structure containing it may be freed.
1551 *
1552 * A typical clean-up sequence for objects stored in an idr tree will use
1553 * idr_for_each() to free all objects, if necessary, then idr_destroy() to
1554 * free the memory used to keep track of those objects.
1555 */
1556void idr_destroy(struct idr *idr)
1557{
1558	struct radix_tree_node *node = rcu_dereference_raw(idr->idr_rt.xa_head);
1559	if (radix_tree_is_internal_node(node))
1560		radix_tree_free_nodes(node);
1561	idr->idr_rt.xa_head = NULL;
1562	root_tag_set(&idr->idr_rt, IDR_FREE);
1563}
1564EXPORT_SYMBOL(idr_destroy);
1565
1566static void
1567radix_tree_node_ctor(void *arg)
1568{
1569	struct radix_tree_node *node = arg;
1570
1571	memset(node, 0, sizeof(*node));
1572	INIT_LIST_HEAD(&node->private_list);
1573}
1574
1575static int radix_tree_cpu_dead(unsigned int cpu)
1576{
1577	struct radix_tree_preload *rtp;
1578	struct radix_tree_node *node;
1579
1580	/* Free per-cpu pool of preloaded nodes */
1581	rtp = &per_cpu(radix_tree_preloads, cpu);
1582	while (rtp->nr) {
1583		node = rtp->nodes;
1584		rtp->nodes = node->parent;
1585		kmem_cache_free(radix_tree_node_cachep, node);
1586		rtp->nr--;
1587	}
1588	return 0;
1589}
1590
1591void __init radix_tree_init(void)
1592{
1593	int ret;
1594
1595	BUILD_BUG_ON(RADIX_TREE_MAX_TAGS + __GFP_BITS_SHIFT > 32);
1596	BUILD_BUG_ON(ROOT_IS_IDR & ~GFP_ZONEMASK);
1597	BUILD_BUG_ON(XA_CHUNK_SIZE > 255);
1598	radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1599			sizeof(struct radix_tree_node), 0,
1600			SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1601			radix_tree_node_ctor);
1602	ret = cpuhp_setup_state_nocalls(CPUHP_RADIX_DEAD, "lib/radix:dead",
1603					NULL, radix_tree_cpu_dead);
1604	WARN_ON(ret < 0);
1605}
1606