xref: /kernel/linux/linux-5.10/lib/mpi/mpi-inv.c (revision 8c2ecf20)
1/* mpi-inv.c  -  MPI functions
2 *	Copyright (C) 1998, 2001, 2002, 2003 Free Software Foundation, Inc.
3 *
4 * This file is part of Libgcrypt.
5 *
6 * Libgcrypt is free software; you can redistribute it and/or modify
7 * it under the terms of the GNU Lesser General Public License as
8 * published by the Free Software Foundation; either version 2.1 of
9 * the License, or (at your option) any later version.
10 *
11 * Libgcrypt is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14 * GNU Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with this program; if not, see <http://www.gnu.org/licenses/>.
18 */
19
20#include "mpi-internal.h"
21
22/****************
23 * Calculate the multiplicative inverse X of A mod N
24 * That is: Find the solution x for
25 *		1 = (a*x) mod n
26 */
27int mpi_invm(MPI x, MPI a, MPI n)
28{
29	/* Extended Euclid's algorithm (See TAOCP Vol II, 4.5.2, Alg X)
30	 * modified according to Michael Penk's solution for Exercise 35
31	 * with further enhancement
32	 */
33	MPI u, v, u1, u2 = NULL, u3, v1, v2 = NULL, v3, t1, t2 = NULL, t3;
34	unsigned int k;
35	int sign;
36	int odd;
37
38	if (!mpi_cmp_ui(a, 0))
39		return 0; /* Inverse does not exists.  */
40	if (!mpi_cmp_ui(n, 1))
41		return 0; /* Inverse does not exists.  */
42
43	u = mpi_copy(a);
44	v = mpi_copy(n);
45
46	for (k = 0; !mpi_test_bit(u, 0) && !mpi_test_bit(v, 0); k++) {
47		mpi_rshift(u, u, 1);
48		mpi_rshift(v, v, 1);
49	}
50	odd = mpi_test_bit(v, 0);
51
52	u1 = mpi_alloc_set_ui(1);
53	if (!odd)
54		u2 = mpi_alloc_set_ui(0);
55	u3 = mpi_copy(u);
56	v1 = mpi_copy(v);
57	if (!odd) {
58		v2 = mpi_alloc(mpi_get_nlimbs(u));
59		mpi_sub(v2, u1, u); /* U is used as const 1 */
60	}
61	v3 = mpi_copy(v);
62	if (mpi_test_bit(u, 0)) { /* u is odd */
63		t1 = mpi_alloc_set_ui(0);
64		if (!odd) {
65			t2 = mpi_alloc_set_ui(1);
66			t2->sign = 1;
67		}
68		t3 = mpi_copy(v);
69		t3->sign = !t3->sign;
70		goto Y4;
71	} else {
72		t1 = mpi_alloc_set_ui(1);
73		if (!odd)
74			t2 = mpi_alloc_set_ui(0);
75		t3 = mpi_copy(u);
76	}
77
78	do {
79		do {
80			if (!odd) {
81				if (mpi_test_bit(t1, 0) || mpi_test_bit(t2, 0)) {
82					/* one is odd */
83					mpi_add(t1, t1, v);
84					mpi_sub(t2, t2, u);
85				}
86				mpi_rshift(t1, t1, 1);
87				mpi_rshift(t2, t2, 1);
88				mpi_rshift(t3, t3, 1);
89			} else {
90				if (mpi_test_bit(t1, 0))
91					mpi_add(t1, t1, v);
92				mpi_rshift(t1, t1, 1);
93				mpi_rshift(t3, t3, 1);
94			}
95Y4:
96			;
97		} while (!mpi_test_bit(t3, 0)); /* while t3 is even */
98
99		if (!t3->sign) {
100			mpi_set(u1, t1);
101			if (!odd)
102				mpi_set(u2, t2);
103			mpi_set(u3, t3);
104		} else {
105			mpi_sub(v1, v, t1);
106			sign = u->sign; u->sign = !u->sign;
107			if (!odd)
108				mpi_sub(v2, u, t2);
109			u->sign = sign;
110			sign = t3->sign; t3->sign = !t3->sign;
111			mpi_set(v3, t3);
112			t3->sign = sign;
113		}
114		mpi_sub(t1, u1, v1);
115		if (!odd)
116			mpi_sub(t2, u2, v2);
117		mpi_sub(t3, u3, v3);
118		if (t1->sign) {
119			mpi_add(t1, t1, v);
120			if (!odd)
121				mpi_sub(t2, t2, u);
122		}
123	} while (mpi_cmp_ui(t3, 0)); /* while t3 != 0 */
124	/* mpi_lshift( u3, k ); */
125	mpi_set(x, u1);
126
127	mpi_free(u1);
128	mpi_free(v1);
129	mpi_free(t1);
130	if (!odd) {
131		mpi_free(u2);
132		mpi_free(v2);
133		mpi_free(t2);
134	}
135	mpi_free(u3);
136	mpi_free(v3);
137	mpi_free(t3);
138
139	mpi_free(u);
140	mpi_free(v);
141	return 1;
142}
143EXPORT_SYMBOL_GPL(mpi_invm);
144