18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0-only 28c2ecf20Sopenharmony_ci#define pr_fmt(fmt) "prime numbers: " fmt 38c2ecf20Sopenharmony_ci 48c2ecf20Sopenharmony_ci#include <linux/module.h> 58c2ecf20Sopenharmony_ci#include <linux/mutex.h> 68c2ecf20Sopenharmony_ci#include <linux/prime_numbers.h> 78c2ecf20Sopenharmony_ci#include <linux/slab.h> 88c2ecf20Sopenharmony_ci 98c2ecf20Sopenharmony_ci#define bitmap_size(nbits) (BITS_TO_LONGS(nbits) * sizeof(unsigned long)) 108c2ecf20Sopenharmony_ci 118c2ecf20Sopenharmony_cistruct primes { 128c2ecf20Sopenharmony_ci struct rcu_head rcu; 138c2ecf20Sopenharmony_ci unsigned long last, sz; 148c2ecf20Sopenharmony_ci unsigned long primes[]; 158c2ecf20Sopenharmony_ci}; 168c2ecf20Sopenharmony_ci 178c2ecf20Sopenharmony_ci#if BITS_PER_LONG == 64 188c2ecf20Sopenharmony_cistatic const struct primes small_primes = { 198c2ecf20Sopenharmony_ci .last = 61, 208c2ecf20Sopenharmony_ci .sz = 64, 218c2ecf20Sopenharmony_ci .primes = { 228c2ecf20Sopenharmony_ci BIT(2) | 238c2ecf20Sopenharmony_ci BIT(3) | 248c2ecf20Sopenharmony_ci BIT(5) | 258c2ecf20Sopenharmony_ci BIT(7) | 268c2ecf20Sopenharmony_ci BIT(11) | 278c2ecf20Sopenharmony_ci BIT(13) | 288c2ecf20Sopenharmony_ci BIT(17) | 298c2ecf20Sopenharmony_ci BIT(19) | 308c2ecf20Sopenharmony_ci BIT(23) | 318c2ecf20Sopenharmony_ci BIT(29) | 328c2ecf20Sopenharmony_ci BIT(31) | 338c2ecf20Sopenharmony_ci BIT(37) | 348c2ecf20Sopenharmony_ci BIT(41) | 358c2ecf20Sopenharmony_ci BIT(43) | 368c2ecf20Sopenharmony_ci BIT(47) | 378c2ecf20Sopenharmony_ci BIT(53) | 388c2ecf20Sopenharmony_ci BIT(59) | 398c2ecf20Sopenharmony_ci BIT(61) 408c2ecf20Sopenharmony_ci } 418c2ecf20Sopenharmony_ci}; 428c2ecf20Sopenharmony_ci#elif BITS_PER_LONG == 32 438c2ecf20Sopenharmony_cistatic const struct primes small_primes = { 448c2ecf20Sopenharmony_ci .last = 31, 458c2ecf20Sopenharmony_ci .sz = 32, 468c2ecf20Sopenharmony_ci .primes = { 478c2ecf20Sopenharmony_ci BIT(2) | 488c2ecf20Sopenharmony_ci BIT(3) | 498c2ecf20Sopenharmony_ci BIT(5) | 508c2ecf20Sopenharmony_ci BIT(7) | 518c2ecf20Sopenharmony_ci BIT(11) | 528c2ecf20Sopenharmony_ci BIT(13) | 538c2ecf20Sopenharmony_ci BIT(17) | 548c2ecf20Sopenharmony_ci BIT(19) | 558c2ecf20Sopenharmony_ci BIT(23) | 568c2ecf20Sopenharmony_ci BIT(29) | 578c2ecf20Sopenharmony_ci BIT(31) 588c2ecf20Sopenharmony_ci } 598c2ecf20Sopenharmony_ci}; 608c2ecf20Sopenharmony_ci#else 618c2ecf20Sopenharmony_ci#error "unhandled BITS_PER_LONG" 628c2ecf20Sopenharmony_ci#endif 638c2ecf20Sopenharmony_ci 648c2ecf20Sopenharmony_cistatic DEFINE_MUTEX(lock); 658c2ecf20Sopenharmony_cistatic const struct primes __rcu *primes = RCU_INITIALIZER(&small_primes); 668c2ecf20Sopenharmony_ci 678c2ecf20Sopenharmony_cistatic unsigned long selftest_max; 688c2ecf20Sopenharmony_ci 698c2ecf20Sopenharmony_cistatic bool slow_is_prime_number(unsigned long x) 708c2ecf20Sopenharmony_ci{ 718c2ecf20Sopenharmony_ci unsigned long y = int_sqrt(x); 728c2ecf20Sopenharmony_ci 738c2ecf20Sopenharmony_ci while (y > 1) { 748c2ecf20Sopenharmony_ci if ((x % y) == 0) 758c2ecf20Sopenharmony_ci break; 768c2ecf20Sopenharmony_ci y--; 778c2ecf20Sopenharmony_ci } 788c2ecf20Sopenharmony_ci 798c2ecf20Sopenharmony_ci return y == 1; 808c2ecf20Sopenharmony_ci} 818c2ecf20Sopenharmony_ci 828c2ecf20Sopenharmony_cistatic unsigned long slow_next_prime_number(unsigned long x) 838c2ecf20Sopenharmony_ci{ 848c2ecf20Sopenharmony_ci while (x < ULONG_MAX && !slow_is_prime_number(++x)) 858c2ecf20Sopenharmony_ci ; 868c2ecf20Sopenharmony_ci 878c2ecf20Sopenharmony_ci return x; 888c2ecf20Sopenharmony_ci} 898c2ecf20Sopenharmony_ci 908c2ecf20Sopenharmony_cistatic unsigned long clear_multiples(unsigned long x, 918c2ecf20Sopenharmony_ci unsigned long *p, 928c2ecf20Sopenharmony_ci unsigned long start, 938c2ecf20Sopenharmony_ci unsigned long end) 948c2ecf20Sopenharmony_ci{ 958c2ecf20Sopenharmony_ci unsigned long m; 968c2ecf20Sopenharmony_ci 978c2ecf20Sopenharmony_ci m = 2 * x; 988c2ecf20Sopenharmony_ci if (m < start) 998c2ecf20Sopenharmony_ci m = roundup(start, x); 1008c2ecf20Sopenharmony_ci 1018c2ecf20Sopenharmony_ci while (m < end) { 1028c2ecf20Sopenharmony_ci __clear_bit(m, p); 1038c2ecf20Sopenharmony_ci m += x; 1048c2ecf20Sopenharmony_ci } 1058c2ecf20Sopenharmony_ci 1068c2ecf20Sopenharmony_ci return x; 1078c2ecf20Sopenharmony_ci} 1088c2ecf20Sopenharmony_ci 1098c2ecf20Sopenharmony_cistatic bool expand_to_next_prime(unsigned long x) 1108c2ecf20Sopenharmony_ci{ 1118c2ecf20Sopenharmony_ci const struct primes *p; 1128c2ecf20Sopenharmony_ci struct primes *new; 1138c2ecf20Sopenharmony_ci unsigned long sz, y; 1148c2ecf20Sopenharmony_ci 1158c2ecf20Sopenharmony_ci /* Betrand's Postulate (or Chebyshev's theorem) states that if n > 3, 1168c2ecf20Sopenharmony_ci * there is always at least one prime p between n and 2n - 2. 1178c2ecf20Sopenharmony_ci * Equivalently, if n > 1, then there is always at least one prime p 1188c2ecf20Sopenharmony_ci * such that n < p < 2n. 1198c2ecf20Sopenharmony_ci * 1208c2ecf20Sopenharmony_ci * http://mathworld.wolfram.com/BertrandsPostulate.html 1218c2ecf20Sopenharmony_ci * https://en.wikipedia.org/wiki/Bertrand's_postulate 1228c2ecf20Sopenharmony_ci */ 1238c2ecf20Sopenharmony_ci sz = 2 * x; 1248c2ecf20Sopenharmony_ci if (sz < x) 1258c2ecf20Sopenharmony_ci return false; 1268c2ecf20Sopenharmony_ci 1278c2ecf20Sopenharmony_ci sz = round_up(sz, BITS_PER_LONG); 1288c2ecf20Sopenharmony_ci new = kmalloc(sizeof(*new) + bitmap_size(sz), 1298c2ecf20Sopenharmony_ci GFP_KERNEL | __GFP_NOWARN); 1308c2ecf20Sopenharmony_ci if (!new) 1318c2ecf20Sopenharmony_ci return false; 1328c2ecf20Sopenharmony_ci 1338c2ecf20Sopenharmony_ci mutex_lock(&lock); 1348c2ecf20Sopenharmony_ci p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); 1358c2ecf20Sopenharmony_ci if (x < p->last) { 1368c2ecf20Sopenharmony_ci kfree(new); 1378c2ecf20Sopenharmony_ci goto unlock; 1388c2ecf20Sopenharmony_ci } 1398c2ecf20Sopenharmony_ci 1408c2ecf20Sopenharmony_ci /* Where memory permits, track the primes using the 1418c2ecf20Sopenharmony_ci * Sieve of Eratosthenes. The sieve is to remove all multiples of known 1428c2ecf20Sopenharmony_ci * primes from the set, what remains in the set is therefore prime. 1438c2ecf20Sopenharmony_ci */ 1448c2ecf20Sopenharmony_ci bitmap_fill(new->primes, sz); 1458c2ecf20Sopenharmony_ci bitmap_copy(new->primes, p->primes, p->sz); 1468c2ecf20Sopenharmony_ci for (y = 2UL; y < sz; y = find_next_bit(new->primes, sz, y + 1)) 1478c2ecf20Sopenharmony_ci new->last = clear_multiples(y, new->primes, p->sz, sz); 1488c2ecf20Sopenharmony_ci new->sz = sz; 1498c2ecf20Sopenharmony_ci 1508c2ecf20Sopenharmony_ci BUG_ON(new->last <= x); 1518c2ecf20Sopenharmony_ci 1528c2ecf20Sopenharmony_ci rcu_assign_pointer(primes, new); 1538c2ecf20Sopenharmony_ci if (p != &small_primes) 1548c2ecf20Sopenharmony_ci kfree_rcu((struct primes *)p, rcu); 1558c2ecf20Sopenharmony_ci 1568c2ecf20Sopenharmony_ciunlock: 1578c2ecf20Sopenharmony_ci mutex_unlock(&lock); 1588c2ecf20Sopenharmony_ci return true; 1598c2ecf20Sopenharmony_ci} 1608c2ecf20Sopenharmony_ci 1618c2ecf20Sopenharmony_cistatic void free_primes(void) 1628c2ecf20Sopenharmony_ci{ 1638c2ecf20Sopenharmony_ci const struct primes *p; 1648c2ecf20Sopenharmony_ci 1658c2ecf20Sopenharmony_ci mutex_lock(&lock); 1668c2ecf20Sopenharmony_ci p = rcu_dereference_protected(primes, lockdep_is_held(&lock)); 1678c2ecf20Sopenharmony_ci if (p != &small_primes) { 1688c2ecf20Sopenharmony_ci rcu_assign_pointer(primes, &small_primes); 1698c2ecf20Sopenharmony_ci kfree_rcu((struct primes *)p, rcu); 1708c2ecf20Sopenharmony_ci } 1718c2ecf20Sopenharmony_ci mutex_unlock(&lock); 1728c2ecf20Sopenharmony_ci} 1738c2ecf20Sopenharmony_ci 1748c2ecf20Sopenharmony_ci/** 1758c2ecf20Sopenharmony_ci * next_prime_number - return the next prime number 1768c2ecf20Sopenharmony_ci * @x: the starting point for searching to test 1778c2ecf20Sopenharmony_ci * 1788c2ecf20Sopenharmony_ci * A prime number is an integer greater than 1 that is only divisible by 1798c2ecf20Sopenharmony_ci * itself and 1. The set of prime numbers is computed using the Sieve of 1808c2ecf20Sopenharmony_ci * Eratoshenes (on finding a prime, all multiples of that prime are removed 1818c2ecf20Sopenharmony_ci * from the set) enabling a fast lookup of the next prime number larger than 1828c2ecf20Sopenharmony_ci * @x. If the sieve fails (memory limitation), the search falls back to using 1838c2ecf20Sopenharmony_ci * slow trial-divison, up to the value of ULONG_MAX (which is reported as the 1848c2ecf20Sopenharmony_ci * final prime as a sentinel). 1858c2ecf20Sopenharmony_ci * 1868c2ecf20Sopenharmony_ci * Returns: the next prime number larger than @x 1878c2ecf20Sopenharmony_ci */ 1888c2ecf20Sopenharmony_ciunsigned long next_prime_number(unsigned long x) 1898c2ecf20Sopenharmony_ci{ 1908c2ecf20Sopenharmony_ci const struct primes *p; 1918c2ecf20Sopenharmony_ci 1928c2ecf20Sopenharmony_ci rcu_read_lock(); 1938c2ecf20Sopenharmony_ci p = rcu_dereference(primes); 1948c2ecf20Sopenharmony_ci while (x >= p->last) { 1958c2ecf20Sopenharmony_ci rcu_read_unlock(); 1968c2ecf20Sopenharmony_ci 1978c2ecf20Sopenharmony_ci if (!expand_to_next_prime(x)) 1988c2ecf20Sopenharmony_ci return slow_next_prime_number(x); 1998c2ecf20Sopenharmony_ci 2008c2ecf20Sopenharmony_ci rcu_read_lock(); 2018c2ecf20Sopenharmony_ci p = rcu_dereference(primes); 2028c2ecf20Sopenharmony_ci } 2038c2ecf20Sopenharmony_ci x = find_next_bit(p->primes, p->last, x + 1); 2048c2ecf20Sopenharmony_ci rcu_read_unlock(); 2058c2ecf20Sopenharmony_ci 2068c2ecf20Sopenharmony_ci return x; 2078c2ecf20Sopenharmony_ci} 2088c2ecf20Sopenharmony_ciEXPORT_SYMBOL(next_prime_number); 2098c2ecf20Sopenharmony_ci 2108c2ecf20Sopenharmony_ci/** 2118c2ecf20Sopenharmony_ci * is_prime_number - test whether the given number is prime 2128c2ecf20Sopenharmony_ci * @x: the number to test 2138c2ecf20Sopenharmony_ci * 2148c2ecf20Sopenharmony_ci * A prime number is an integer greater than 1 that is only divisible by 2158c2ecf20Sopenharmony_ci * itself and 1. Internally a cache of prime numbers is kept (to speed up 2168c2ecf20Sopenharmony_ci * searching for sequential primes, see next_prime_number()), but if the number 2178c2ecf20Sopenharmony_ci * falls outside of that cache, its primality is tested using trial-divison. 2188c2ecf20Sopenharmony_ci * 2198c2ecf20Sopenharmony_ci * Returns: true if @x is prime, false for composite numbers. 2208c2ecf20Sopenharmony_ci */ 2218c2ecf20Sopenharmony_cibool is_prime_number(unsigned long x) 2228c2ecf20Sopenharmony_ci{ 2238c2ecf20Sopenharmony_ci const struct primes *p; 2248c2ecf20Sopenharmony_ci bool result; 2258c2ecf20Sopenharmony_ci 2268c2ecf20Sopenharmony_ci rcu_read_lock(); 2278c2ecf20Sopenharmony_ci p = rcu_dereference(primes); 2288c2ecf20Sopenharmony_ci while (x >= p->sz) { 2298c2ecf20Sopenharmony_ci rcu_read_unlock(); 2308c2ecf20Sopenharmony_ci 2318c2ecf20Sopenharmony_ci if (!expand_to_next_prime(x)) 2328c2ecf20Sopenharmony_ci return slow_is_prime_number(x); 2338c2ecf20Sopenharmony_ci 2348c2ecf20Sopenharmony_ci rcu_read_lock(); 2358c2ecf20Sopenharmony_ci p = rcu_dereference(primes); 2368c2ecf20Sopenharmony_ci } 2378c2ecf20Sopenharmony_ci result = test_bit(x, p->primes); 2388c2ecf20Sopenharmony_ci rcu_read_unlock(); 2398c2ecf20Sopenharmony_ci 2408c2ecf20Sopenharmony_ci return result; 2418c2ecf20Sopenharmony_ci} 2428c2ecf20Sopenharmony_ciEXPORT_SYMBOL(is_prime_number); 2438c2ecf20Sopenharmony_ci 2448c2ecf20Sopenharmony_cistatic void dump_primes(void) 2458c2ecf20Sopenharmony_ci{ 2468c2ecf20Sopenharmony_ci const struct primes *p; 2478c2ecf20Sopenharmony_ci char *buf; 2488c2ecf20Sopenharmony_ci 2498c2ecf20Sopenharmony_ci buf = kmalloc(PAGE_SIZE, GFP_KERNEL); 2508c2ecf20Sopenharmony_ci 2518c2ecf20Sopenharmony_ci rcu_read_lock(); 2528c2ecf20Sopenharmony_ci p = rcu_dereference(primes); 2538c2ecf20Sopenharmony_ci 2548c2ecf20Sopenharmony_ci if (buf) 2558c2ecf20Sopenharmony_ci bitmap_print_to_pagebuf(true, buf, p->primes, p->sz); 2568c2ecf20Sopenharmony_ci pr_info("primes.{last=%lu, .sz=%lu, .primes[]=...x%lx} = %s\n", 2578c2ecf20Sopenharmony_ci p->last, p->sz, p->primes[BITS_TO_LONGS(p->sz) - 1], buf); 2588c2ecf20Sopenharmony_ci 2598c2ecf20Sopenharmony_ci rcu_read_unlock(); 2608c2ecf20Sopenharmony_ci 2618c2ecf20Sopenharmony_ci kfree(buf); 2628c2ecf20Sopenharmony_ci} 2638c2ecf20Sopenharmony_ci 2648c2ecf20Sopenharmony_cistatic int selftest(unsigned long max) 2658c2ecf20Sopenharmony_ci{ 2668c2ecf20Sopenharmony_ci unsigned long x, last; 2678c2ecf20Sopenharmony_ci 2688c2ecf20Sopenharmony_ci if (!max) 2698c2ecf20Sopenharmony_ci return 0; 2708c2ecf20Sopenharmony_ci 2718c2ecf20Sopenharmony_ci for (last = 0, x = 2; x < max; x++) { 2728c2ecf20Sopenharmony_ci bool slow = slow_is_prime_number(x); 2738c2ecf20Sopenharmony_ci bool fast = is_prime_number(x); 2748c2ecf20Sopenharmony_ci 2758c2ecf20Sopenharmony_ci if (slow != fast) { 2768c2ecf20Sopenharmony_ci pr_err("inconsistent result for is-prime(%lu): slow=%s, fast=%s!\n", 2778c2ecf20Sopenharmony_ci x, slow ? "yes" : "no", fast ? "yes" : "no"); 2788c2ecf20Sopenharmony_ci goto err; 2798c2ecf20Sopenharmony_ci } 2808c2ecf20Sopenharmony_ci 2818c2ecf20Sopenharmony_ci if (!slow) 2828c2ecf20Sopenharmony_ci continue; 2838c2ecf20Sopenharmony_ci 2848c2ecf20Sopenharmony_ci if (next_prime_number(last) != x) { 2858c2ecf20Sopenharmony_ci pr_err("incorrect result for next-prime(%lu): expected %lu, got %lu\n", 2868c2ecf20Sopenharmony_ci last, x, next_prime_number(last)); 2878c2ecf20Sopenharmony_ci goto err; 2888c2ecf20Sopenharmony_ci } 2898c2ecf20Sopenharmony_ci last = x; 2908c2ecf20Sopenharmony_ci } 2918c2ecf20Sopenharmony_ci 2928c2ecf20Sopenharmony_ci pr_info("%s(%lu) passed, last prime was %lu\n", __func__, x, last); 2938c2ecf20Sopenharmony_ci return 0; 2948c2ecf20Sopenharmony_ci 2958c2ecf20Sopenharmony_cierr: 2968c2ecf20Sopenharmony_ci dump_primes(); 2978c2ecf20Sopenharmony_ci return -EINVAL; 2988c2ecf20Sopenharmony_ci} 2998c2ecf20Sopenharmony_ci 3008c2ecf20Sopenharmony_cistatic int __init primes_init(void) 3018c2ecf20Sopenharmony_ci{ 3028c2ecf20Sopenharmony_ci return selftest(selftest_max); 3038c2ecf20Sopenharmony_ci} 3048c2ecf20Sopenharmony_ci 3058c2ecf20Sopenharmony_cistatic void __exit primes_exit(void) 3068c2ecf20Sopenharmony_ci{ 3078c2ecf20Sopenharmony_ci free_primes(); 3088c2ecf20Sopenharmony_ci} 3098c2ecf20Sopenharmony_ci 3108c2ecf20Sopenharmony_cimodule_init(primes_init); 3118c2ecf20Sopenharmony_cimodule_exit(primes_exit); 3128c2ecf20Sopenharmony_ci 3138c2ecf20Sopenharmony_cimodule_param_named(selftest, selftest_max, ulong, 0400); 3148c2ecf20Sopenharmony_ci 3158c2ecf20Sopenharmony_ciMODULE_AUTHOR("Intel Corporation"); 3168c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL"); 317