xref: /kernel/linux/linux-5.10/lib/math/div64.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com>
4 *
5 * Based on former do_div() implementation from asm-parisc/div64.h:
6 *	Copyright (C) 1999 Hewlett-Packard Co
7 *	Copyright (C) 1999 David Mosberger-Tang <davidm@hpl.hp.com>
8 *
9 *
10 * Generic C version of 64bit/32bit division and modulo, with
11 * 64bit result and 32bit remainder.
12 *
13 * The fast case for (n>>32 == 0) is handled inline by do_div().
14 *
15 * Code generated for this function might be very inefficient
16 * for some CPUs. __div64_32() can be overridden by linking arch-specific
17 * assembly versions such as arch/ppc/lib/div64.S and arch/sh/lib/div64.S
18 * or by defining a preprocessor macro in arch/include/asm/div64.h.
19 */
20
21#include <linux/export.h>
22#include <linux/kernel.h>
23#include <linux/math64.h>
24
25/* Not needed on 64bit architectures */
26#if BITS_PER_LONG == 32
27
28#ifndef __div64_32
29uint32_t __attribute__((weak)) __div64_32(uint64_t *n, uint32_t base)
30{
31	uint64_t rem = *n;
32	uint64_t b = base;
33	uint64_t res, d = 1;
34	uint32_t high = rem >> 32;
35
36	/* Reduce the thing a bit first */
37	res = 0;
38	if (high >= base) {
39		high /= base;
40		res = (uint64_t) high << 32;
41		rem -= (uint64_t) (high*base) << 32;
42	}
43
44	while ((int64_t)b > 0 && b < rem) {
45		b = b+b;
46		d = d+d;
47	}
48
49	do {
50		if (rem >= b) {
51			rem -= b;
52			res += d;
53		}
54		b >>= 1;
55		d >>= 1;
56	} while (d);
57
58	*n = res;
59	return rem;
60}
61EXPORT_SYMBOL(__div64_32);
62#endif
63
64/**
65 * div_s64_rem - signed 64bit divide with 64bit divisor and remainder
66 * @dividend:	64bit dividend
67 * @divisor:	64bit divisor
68 * @remainder:  64bit remainder
69 */
70#ifndef div_s64_rem
71s64 div_s64_rem(s64 dividend, s32 divisor, s32 *remainder)
72{
73	u64 quotient;
74
75	if (dividend < 0) {
76		quotient = div_u64_rem(-dividend, abs(divisor), (u32 *)remainder);
77		*remainder = -*remainder;
78		if (divisor > 0)
79			quotient = -quotient;
80	} else {
81		quotient = div_u64_rem(dividend, abs(divisor), (u32 *)remainder);
82		if (divisor < 0)
83			quotient = -quotient;
84	}
85	return quotient;
86}
87EXPORT_SYMBOL(div_s64_rem);
88#endif
89
90/**
91 * div64_u64_rem - unsigned 64bit divide with 64bit divisor and remainder
92 * @dividend:	64bit dividend
93 * @divisor:	64bit divisor
94 * @remainder:  64bit remainder
95 *
96 * This implementation is a comparable to algorithm used by div64_u64.
97 * But this operation, which includes math for calculating the remainder,
98 * is kept distinct to avoid slowing down the div64_u64 operation on 32bit
99 * systems.
100 */
101#ifndef div64_u64_rem
102u64 div64_u64_rem(u64 dividend, u64 divisor, u64 *remainder)
103{
104	u32 high = divisor >> 32;
105	u64 quot;
106
107	if (high == 0) {
108		u32 rem32;
109		quot = div_u64_rem(dividend, divisor, &rem32);
110		*remainder = rem32;
111	} else {
112		int n = fls(high);
113		quot = div_u64(dividend >> n, divisor >> n);
114
115		if (quot != 0)
116			quot--;
117
118		*remainder = dividend - quot * divisor;
119		if (*remainder >= divisor) {
120			quot++;
121			*remainder -= divisor;
122		}
123	}
124
125	return quot;
126}
127EXPORT_SYMBOL(div64_u64_rem);
128#endif
129
130/**
131 * div64_u64 - unsigned 64bit divide with 64bit divisor
132 * @dividend:	64bit dividend
133 * @divisor:	64bit divisor
134 *
135 * This implementation is a modified version of the algorithm proposed
136 * by the book 'Hacker's Delight'.  The original source and full proof
137 * can be found here and is available for use without restriction.
138 *
139 * 'http://www.hackersdelight.org/hdcodetxt/divDouble.c.txt'
140 */
141#ifndef div64_u64
142u64 div64_u64(u64 dividend, u64 divisor)
143{
144	u32 high = divisor >> 32;
145	u64 quot;
146
147	if (high == 0) {
148		quot = div_u64(dividend, divisor);
149	} else {
150		int n = fls(high);
151		quot = div_u64(dividend >> n, divisor >> n);
152
153		if (quot != 0)
154			quot--;
155		if ((dividend - quot * divisor) >= divisor)
156			quot++;
157	}
158
159	return quot;
160}
161EXPORT_SYMBOL(div64_u64);
162#endif
163
164/**
165 * div64_s64 - signed 64bit divide with 64bit divisor
166 * @dividend:	64bit dividend
167 * @divisor:	64bit divisor
168 */
169#ifndef div64_s64
170s64 div64_s64(s64 dividend, s64 divisor)
171{
172	s64 quot, t;
173
174	quot = div64_u64(abs(dividend), abs(divisor));
175	t = (dividend ^ divisor) >> 63;
176
177	return (quot ^ t) - t;
178}
179EXPORT_SYMBOL(div64_s64);
180#endif
181
182#endif /* BITS_PER_LONG == 32 */
183
184/*
185 * Iterative div/mod for use when dividend is not expected to be much
186 * bigger than divisor.
187 */
188u32 iter_div_u64_rem(u64 dividend, u32 divisor, u64 *remainder)
189{
190	return __iter_div_u64_rem(dividend, divisor, remainder);
191}
192EXPORT_SYMBOL(iter_div_u64_rem);
193
194#ifndef mul_u64_u64_div_u64
195u64 mul_u64_u64_div_u64(u64 a, u64 b, u64 c)
196{
197	u64 res = 0, div, rem;
198	int shift;
199
200	/* can a * b overflow ? */
201	if (ilog2(a) + ilog2(b) > 62) {
202		/*
203		 * (b * a) / c is equal to
204		 *
205		 *      (b / c) * a +
206		 *      (b % c) * a / c
207		 *
208		 * if nothing overflows. Can the 1st multiplication
209		 * overflow? Yes, but we do not care: this can only
210		 * happen if the end result can't fit in u64 anyway.
211		 *
212		 * So the code below does
213		 *
214		 *      res = (b / c) * a;
215		 *      b = b % c;
216		 */
217		div = div64_u64_rem(b, c, &rem);
218		res = div * a;
219		b = rem;
220
221		shift = ilog2(a) + ilog2(b) - 62;
222		if (shift > 0) {
223			/* drop precision */
224			b >>= shift;
225			c >>= shift;
226			if (!c)
227				return res;
228		}
229	}
230
231	return res + div64_u64(a * b, c);
232}
233EXPORT_SYMBOL(mul_u64_u64_div_u64);
234#endif
235