18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * Copyright (C) 2017-2019 Linaro Ltd <ard.biesheuvel@linaro.org> 48c2ecf20Sopenharmony_ci */ 58c2ecf20Sopenharmony_ci 68c2ecf20Sopenharmony_ci#include <crypto/aes.h> 78c2ecf20Sopenharmony_ci#include <linux/crypto.h> 88c2ecf20Sopenharmony_ci#include <linux/module.h> 98c2ecf20Sopenharmony_ci#include <asm/unaligned.h> 108c2ecf20Sopenharmony_ci 118c2ecf20Sopenharmony_ci/* 128c2ecf20Sopenharmony_ci * Emit the sbox as volatile const to prevent the compiler from doing 138c2ecf20Sopenharmony_ci * constant folding on sbox references involving fixed indexes. 148c2ecf20Sopenharmony_ci */ 158c2ecf20Sopenharmony_cistatic volatile const u8 __cacheline_aligned aes_sbox[] = { 168c2ecf20Sopenharmony_ci 0x63, 0x7c, 0x77, 0x7b, 0xf2, 0x6b, 0x6f, 0xc5, 178c2ecf20Sopenharmony_ci 0x30, 0x01, 0x67, 0x2b, 0xfe, 0xd7, 0xab, 0x76, 188c2ecf20Sopenharmony_ci 0xca, 0x82, 0xc9, 0x7d, 0xfa, 0x59, 0x47, 0xf0, 198c2ecf20Sopenharmony_ci 0xad, 0xd4, 0xa2, 0xaf, 0x9c, 0xa4, 0x72, 0xc0, 208c2ecf20Sopenharmony_ci 0xb7, 0xfd, 0x93, 0x26, 0x36, 0x3f, 0xf7, 0xcc, 218c2ecf20Sopenharmony_ci 0x34, 0xa5, 0xe5, 0xf1, 0x71, 0xd8, 0x31, 0x15, 228c2ecf20Sopenharmony_ci 0x04, 0xc7, 0x23, 0xc3, 0x18, 0x96, 0x05, 0x9a, 238c2ecf20Sopenharmony_ci 0x07, 0x12, 0x80, 0xe2, 0xeb, 0x27, 0xb2, 0x75, 248c2ecf20Sopenharmony_ci 0x09, 0x83, 0x2c, 0x1a, 0x1b, 0x6e, 0x5a, 0xa0, 258c2ecf20Sopenharmony_ci 0x52, 0x3b, 0xd6, 0xb3, 0x29, 0xe3, 0x2f, 0x84, 268c2ecf20Sopenharmony_ci 0x53, 0xd1, 0x00, 0xed, 0x20, 0xfc, 0xb1, 0x5b, 278c2ecf20Sopenharmony_ci 0x6a, 0xcb, 0xbe, 0x39, 0x4a, 0x4c, 0x58, 0xcf, 288c2ecf20Sopenharmony_ci 0xd0, 0xef, 0xaa, 0xfb, 0x43, 0x4d, 0x33, 0x85, 298c2ecf20Sopenharmony_ci 0x45, 0xf9, 0x02, 0x7f, 0x50, 0x3c, 0x9f, 0xa8, 308c2ecf20Sopenharmony_ci 0x51, 0xa3, 0x40, 0x8f, 0x92, 0x9d, 0x38, 0xf5, 318c2ecf20Sopenharmony_ci 0xbc, 0xb6, 0xda, 0x21, 0x10, 0xff, 0xf3, 0xd2, 328c2ecf20Sopenharmony_ci 0xcd, 0x0c, 0x13, 0xec, 0x5f, 0x97, 0x44, 0x17, 338c2ecf20Sopenharmony_ci 0xc4, 0xa7, 0x7e, 0x3d, 0x64, 0x5d, 0x19, 0x73, 348c2ecf20Sopenharmony_ci 0x60, 0x81, 0x4f, 0xdc, 0x22, 0x2a, 0x90, 0x88, 358c2ecf20Sopenharmony_ci 0x46, 0xee, 0xb8, 0x14, 0xde, 0x5e, 0x0b, 0xdb, 368c2ecf20Sopenharmony_ci 0xe0, 0x32, 0x3a, 0x0a, 0x49, 0x06, 0x24, 0x5c, 378c2ecf20Sopenharmony_ci 0xc2, 0xd3, 0xac, 0x62, 0x91, 0x95, 0xe4, 0x79, 388c2ecf20Sopenharmony_ci 0xe7, 0xc8, 0x37, 0x6d, 0x8d, 0xd5, 0x4e, 0xa9, 398c2ecf20Sopenharmony_ci 0x6c, 0x56, 0xf4, 0xea, 0x65, 0x7a, 0xae, 0x08, 408c2ecf20Sopenharmony_ci 0xba, 0x78, 0x25, 0x2e, 0x1c, 0xa6, 0xb4, 0xc6, 418c2ecf20Sopenharmony_ci 0xe8, 0xdd, 0x74, 0x1f, 0x4b, 0xbd, 0x8b, 0x8a, 428c2ecf20Sopenharmony_ci 0x70, 0x3e, 0xb5, 0x66, 0x48, 0x03, 0xf6, 0x0e, 438c2ecf20Sopenharmony_ci 0x61, 0x35, 0x57, 0xb9, 0x86, 0xc1, 0x1d, 0x9e, 448c2ecf20Sopenharmony_ci 0xe1, 0xf8, 0x98, 0x11, 0x69, 0xd9, 0x8e, 0x94, 458c2ecf20Sopenharmony_ci 0x9b, 0x1e, 0x87, 0xe9, 0xce, 0x55, 0x28, 0xdf, 468c2ecf20Sopenharmony_ci 0x8c, 0xa1, 0x89, 0x0d, 0xbf, 0xe6, 0x42, 0x68, 478c2ecf20Sopenharmony_ci 0x41, 0x99, 0x2d, 0x0f, 0xb0, 0x54, 0xbb, 0x16, 488c2ecf20Sopenharmony_ci}; 498c2ecf20Sopenharmony_ci 508c2ecf20Sopenharmony_cistatic volatile const u8 __cacheline_aligned aes_inv_sbox[] = { 518c2ecf20Sopenharmony_ci 0x52, 0x09, 0x6a, 0xd5, 0x30, 0x36, 0xa5, 0x38, 528c2ecf20Sopenharmony_ci 0xbf, 0x40, 0xa3, 0x9e, 0x81, 0xf3, 0xd7, 0xfb, 538c2ecf20Sopenharmony_ci 0x7c, 0xe3, 0x39, 0x82, 0x9b, 0x2f, 0xff, 0x87, 548c2ecf20Sopenharmony_ci 0x34, 0x8e, 0x43, 0x44, 0xc4, 0xde, 0xe9, 0xcb, 558c2ecf20Sopenharmony_ci 0x54, 0x7b, 0x94, 0x32, 0xa6, 0xc2, 0x23, 0x3d, 568c2ecf20Sopenharmony_ci 0xee, 0x4c, 0x95, 0x0b, 0x42, 0xfa, 0xc3, 0x4e, 578c2ecf20Sopenharmony_ci 0x08, 0x2e, 0xa1, 0x66, 0x28, 0xd9, 0x24, 0xb2, 588c2ecf20Sopenharmony_ci 0x76, 0x5b, 0xa2, 0x49, 0x6d, 0x8b, 0xd1, 0x25, 598c2ecf20Sopenharmony_ci 0x72, 0xf8, 0xf6, 0x64, 0x86, 0x68, 0x98, 0x16, 608c2ecf20Sopenharmony_ci 0xd4, 0xa4, 0x5c, 0xcc, 0x5d, 0x65, 0xb6, 0x92, 618c2ecf20Sopenharmony_ci 0x6c, 0x70, 0x48, 0x50, 0xfd, 0xed, 0xb9, 0xda, 628c2ecf20Sopenharmony_ci 0x5e, 0x15, 0x46, 0x57, 0xa7, 0x8d, 0x9d, 0x84, 638c2ecf20Sopenharmony_ci 0x90, 0xd8, 0xab, 0x00, 0x8c, 0xbc, 0xd3, 0x0a, 648c2ecf20Sopenharmony_ci 0xf7, 0xe4, 0x58, 0x05, 0xb8, 0xb3, 0x45, 0x06, 658c2ecf20Sopenharmony_ci 0xd0, 0x2c, 0x1e, 0x8f, 0xca, 0x3f, 0x0f, 0x02, 668c2ecf20Sopenharmony_ci 0xc1, 0xaf, 0xbd, 0x03, 0x01, 0x13, 0x8a, 0x6b, 678c2ecf20Sopenharmony_ci 0x3a, 0x91, 0x11, 0x41, 0x4f, 0x67, 0xdc, 0xea, 688c2ecf20Sopenharmony_ci 0x97, 0xf2, 0xcf, 0xce, 0xf0, 0xb4, 0xe6, 0x73, 698c2ecf20Sopenharmony_ci 0x96, 0xac, 0x74, 0x22, 0xe7, 0xad, 0x35, 0x85, 708c2ecf20Sopenharmony_ci 0xe2, 0xf9, 0x37, 0xe8, 0x1c, 0x75, 0xdf, 0x6e, 718c2ecf20Sopenharmony_ci 0x47, 0xf1, 0x1a, 0x71, 0x1d, 0x29, 0xc5, 0x89, 728c2ecf20Sopenharmony_ci 0x6f, 0xb7, 0x62, 0x0e, 0xaa, 0x18, 0xbe, 0x1b, 738c2ecf20Sopenharmony_ci 0xfc, 0x56, 0x3e, 0x4b, 0xc6, 0xd2, 0x79, 0x20, 748c2ecf20Sopenharmony_ci 0x9a, 0xdb, 0xc0, 0xfe, 0x78, 0xcd, 0x5a, 0xf4, 758c2ecf20Sopenharmony_ci 0x1f, 0xdd, 0xa8, 0x33, 0x88, 0x07, 0xc7, 0x31, 768c2ecf20Sopenharmony_ci 0xb1, 0x12, 0x10, 0x59, 0x27, 0x80, 0xec, 0x5f, 778c2ecf20Sopenharmony_ci 0x60, 0x51, 0x7f, 0xa9, 0x19, 0xb5, 0x4a, 0x0d, 788c2ecf20Sopenharmony_ci 0x2d, 0xe5, 0x7a, 0x9f, 0x93, 0xc9, 0x9c, 0xef, 798c2ecf20Sopenharmony_ci 0xa0, 0xe0, 0x3b, 0x4d, 0xae, 0x2a, 0xf5, 0xb0, 808c2ecf20Sopenharmony_ci 0xc8, 0xeb, 0xbb, 0x3c, 0x83, 0x53, 0x99, 0x61, 818c2ecf20Sopenharmony_ci 0x17, 0x2b, 0x04, 0x7e, 0xba, 0x77, 0xd6, 0x26, 828c2ecf20Sopenharmony_ci 0xe1, 0x69, 0x14, 0x63, 0x55, 0x21, 0x0c, 0x7d, 838c2ecf20Sopenharmony_ci}; 848c2ecf20Sopenharmony_ci 858c2ecf20Sopenharmony_ciextern const u8 crypto_aes_sbox[256] __alias(aes_sbox); 868c2ecf20Sopenharmony_ciextern const u8 crypto_aes_inv_sbox[256] __alias(aes_inv_sbox); 878c2ecf20Sopenharmony_ci 888c2ecf20Sopenharmony_ciEXPORT_SYMBOL(crypto_aes_sbox); 898c2ecf20Sopenharmony_ciEXPORT_SYMBOL(crypto_aes_inv_sbox); 908c2ecf20Sopenharmony_ci 918c2ecf20Sopenharmony_cistatic u32 mul_by_x(u32 w) 928c2ecf20Sopenharmony_ci{ 938c2ecf20Sopenharmony_ci u32 x = w & 0x7f7f7f7f; 948c2ecf20Sopenharmony_ci u32 y = w & 0x80808080; 958c2ecf20Sopenharmony_ci 968c2ecf20Sopenharmony_ci /* multiply by polynomial 'x' (0b10) in GF(2^8) */ 978c2ecf20Sopenharmony_ci return (x << 1) ^ (y >> 7) * 0x1b; 988c2ecf20Sopenharmony_ci} 998c2ecf20Sopenharmony_ci 1008c2ecf20Sopenharmony_cistatic u32 mul_by_x2(u32 w) 1018c2ecf20Sopenharmony_ci{ 1028c2ecf20Sopenharmony_ci u32 x = w & 0x3f3f3f3f; 1038c2ecf20Sopenharmony_ci u32 y = w & 0x80808080; 1048c2ecf20Sopenharmony_ci u32 z = w & 0x40404040; 1058c2ecf20Sopenharmony_ci 1068c2ecf20Sopenharmony_ci /* multiply by polynomial 'x^2' (0b100) in GF(2^8) */ 1078c2ecf20Sopenharmony_ci return (x << 2) ^ (y >> 7) * 0x36 ^ (z >> 6) * 0x1b; 1088c2ecf20Sopenharmony_ci} 1098c2ecf20Sopenharmony_ci 1108c2ecf20Sopenharmony_cistatic u32 mix_columns(u32 x) 1118c2ecf20Sopenharmony_ci{ 1128c2ecf20Sopenharmony_ci /* 1138c2ecf20Sopenharmony_ci * Perform the following matrix multiplication in GF(2^8) 1148c2ecf20Sopenharmony_ci * 1158c2ecf20Sopenharmony_ci * | 0x2 0x3 0x1 0x1 | | x[0] | 1168c2ecf20Sopenharmony_ci * | 0x1 0x2 0x3 0x1 | | x[1] | 1178c2ecf20Sopenharmony_ci * | 0x1 0x1 0x2 0x3 | x | x[2] | 1188c2ecf20Sopenharmony_ci * | 0x3 0x1 0x1 0x2 | | x[3] | 1198c2ecf20Sopenharmony_ci */ 1208c2ecf20Sopenharmony_ci u32 y = mul_by_x(x) ^ ror32(x, 16); 1218c2ecf20Sopenharmony_ci 1228c2ecf20Sopenharmony_ci return y ^ ror32(x ^ y, 8); 1238c2ecf20Sopenharmony_ci} 1248c2ecf20Sopenharmony_ci 1258c2ecf20Sopenharmony_cistatic u32 inv_mix_columns(u32 x) 1268c2ecf20Sopenharmony_ci{ 1278c2ecf20Sopenharmony_ci /* 1288c2ecf20Sopenharmony_ci * Perform the following matrix multiplication in GF(2^8) 1298c2ecf20Sopenharmony_ci * 1308c2ecf20Sopenharmony_ci * | 0xe 0xb 0xd 0x9 | | x[0] | 1318c2ecf20Sopenharmony_ci * | 0x9 0xe 0xb 0xd | | x[1] | 1328c2ecf20Sopenharmony_ci * | 0xd 0x9 0xe 0xb | x | x[2] | 1338c2ecf20Sopenharmony_ci * | 0xb 0xd 0x9 0xe | | x[3] | 1348c2ecf20Sopenharmony_ci * 1358c2ecf20Sopenharmony_ci * which can conveniently be reduced to 1368c2ecf20Sopenharmony_ci * 1378c2ecf20Sopenharmony_ci * | 0x2 0x3 0x1 0x1 | | 0x5 0x0 0x4 0x0 | | x[0] | 1388c2ecf20Sopenharmony_ci * | 0x1 0x2 0x3 0x1 | | 0x0 0x5 0x0 0x4 | | x[1] | 1398c2ecf20Sopenharmony_ci * | 0x1 0x1 0x2 0x3 | x | 0x4 0x0 0x5 0x0 | x | x[2] | 1408c2ecf20Sopenharmony_ci * | 0x3 0x1 0x1 0x2 | | 0x0 0x4 0x0 0x5 | | x[3] | 1418c2ecf20Sopenharmony_ci */ 1428c2ecf20Sopenharmony_ci u32 y = mul_by_x2(x); 1438c2ecf20Sopenharmony_ci 1448c2ecf20Sopenharmony_ci return mix_columns(x ^ y ^ ror32(y, 16)); 1458c2ecf20Sopenharmony_ci} 1468c2ecf20Sopenharmony_ci 1478c2ecf20Sopenharmony_cistatic __always_inline u32 subshift(u32 in[], int pos) 1488c2ecf20Sopenharmony_ci{ 1498c2ecf20Sopenharmony_ci return (aes_sbox[in[pos] & 0xff]) ^ 1508c2ecf20Sopenharmony_ci (aes_sbox[(in[(pos + 1) % 4] >> 8) & 0xff] << 8) ^ 1518c2ecf20Sopenharmony_ci (aes_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ 1528c2ecf20Sopenharmony_ci (aes_sbox[(in[(pos + 3) % 4] >> 24) & 0xff] << 24); 1538c2ecf20Sopenharmony_ci} 1548c2ecf20Sopenharmony_ci 1558c2ecf20Sopenharmony_cistatic __always_inline u32 inv_subshift(u32 in[], int pos) 1568c2ecf20Sopenharmony_ci{ 1578c2ecf20Sopenharmony_ci return (aes_inv_sbox[in[pos] & 0xff]) ^ 1588c2ecf20Sopenharmony_ci (aes_inv_sbox[(in[(pos + 3) % 4] >> 8) & 0xff] << 8) ^ 1598c2ecf20Sopenharmony_ci (aes_inv_sbox[(in[(pos + 2) % 4] >> 16) & 0xff] << 16) ^ 1608c2ecf20Sopenharmony_ci (aes_inv_sbox[(in[(pos + 1) % 4] >> 24) & 0xff] << 24); 1618c2ecf20Sopenharmony_ci} 1628c2ecf20Sopenharmony_ci 1638c2ecf20Sopenharmony_cistatic u32 subw(u32 in) 1648c2ecf20Sopenharmony_ci{ 1658c2ecf20Sopenharmony_ci return (aes_sbox[in & 0xff]) ^ 1668c2ecf20Sopenharmony_ci (aes_sbox[(in >> 8) & 0xff] << 8) ^ 1678c2ecf20Sopenharmony_ci (aes_sbox[(in >> 16) & 0xff] << 16) ^ 1688c2ecf20Sopenharmony_ci (aes_sbox[(in >> 24) & 0xff] << 24); 1698c2ecf20Sopenharmony_ci} 1708c2ecf20Sopenharmony_ci 1718c2ecf20Sopenharmony_ci/** 1728c2ecf20Sopenharmony_ci * aes_expandkey - Expands the AES key as described in FIPS-197 1738c2ecf20Sopenharmony_ci * @ctx: The location where the computed key will be stored. 1748c2ecf20Sopenharmony_ci * @in_key: The supplied key. 1758c2ecf20Sopenharmony_ci * @key_len: The length of the supplied key. 1768c2ecf20Sopenharmony_ci * 1778c2ecf20Sopenharmony_ci * Returns 0 on success. The function fails only if an invalid key size (or 1788c2ecf20Sopenharmony_ci * pointer) is supplied. 1798c2ecf20Sopenharmony_ci * The expanded key size is 240 bytes (max of 14 rounds with a unique 16 bytes 1808c2ecf20Sopenharmony_ci * key schedule plus a 16 bytes key which is used before the first round). 1818c2ecf20Sopenharmony_ci * The decryption key is prepared for the "Equivalent Inverse Cipher" as 1828c2ecf20Sopenharmony_ci * described in FIPS-197. The first slot (16 bytes) of each key (enc or dec) is 1838c2ecf20Sopenharmony_ci * for the initial combination, the second slot for the first round and so on. 1848c2ecf20Sopenharmony_ci */ 1858c2ecf20Sopenharmony_ciint aes_expandkey(struct crypto_aes_ctx *ctx, const u8 *in_key, 1868c2ecf20Sopenharmony_ci unsigned int key_len) 1878c2ecf20Sopenharmony_ci{ 1888c2ecf20Sopenharmony_ci u32 kwords = key_len / sizeof(u32); 1898c2ecf20Sopenharmony_ci u32 rc, i, j; 1908c2ecf20Sopenharmony_ci int err; 1918c2ecf20Sopenharmony_ci 1928c2ecf20Sopenharmony_ci err = aes_check_keylen(key_len); 1938c2ecf20Sopenharmony_ci if (err) 1948c2ecf20Sopenharmony_ci return err; 1958c2ecf20Sopenharmony_ci 1968c2ecf20Sopenharmony_ci ctx->key_length = key_len; 1978c2ecf20Sopenharmony_ci 1988c2ecf20Sopenharmony_ci for (i = 0; i < kwords; i++) 1998c2ecf20Sopenharmony_ci ctx->key_enc[i] = get_unaligned_le32(in_key + i * sizeof(u32)); 2008c2ecf20Sopenharmony_ci 2018c2ecf20Sopenharmony_ci for (i = 0, rc = 1; i < 10; i++, rc = mul_by_x(rc)) { 2028c2ecf20Sopenharmony_ci u32 *rki = ctx->key_enc + (i * kwords); 2038c2ecf20Sopenharmony_ci u32 *rko = rki + kwords; 2048c2ecf20Sopenharmony_ci 2058c2ecf20Sopenharmony_ci rko[0] = ror32(subw(rki[kwords - 1]), 8) ^ rc ^ rki[0]; 2068c2ecf20Sopenharmony_ci rko[1] = rko[0] ^ rki[1]; 2078c2ecf20Sopenharmony_ci rko[2] = rko[1] ^ rki[2]; 2088c2ecf20Sopenharmony_ci rko[3] = rko[2] ^ rki[3]; 2098c2ecf20Sopenharmony_ci 2108c2ecf20Sopenharmony_ci if (key_len == AES_KEYSIZE_192) { 2118c2ecf20Sopenharmony_ci if (i >= 7) 2128c2ecf20Sopenharmony_ci break; 2138c2ecf20Sopenharmony_ci rko[4] = rko[3] ^ rki[4]; 2148c2ecf20Sopenharmony_ci rko[5] = rko[4] ^ rki[5]; 2158c2ecf20Sopenharmony_ci } else if (key_len == AES_KEYSIZE_256) { 2168c2ecf20Sopenharmony_ci if (i >= 6) 2178c2ecf20Sopenharmony_ci break; 2188c2ecf20Sopenharmony_ci rko[4] = subw(rko[3]) ^ rki[4]; 2198c2ecf20Sopenharmony_ci rko[5] = rko[4] ^ rki[5]; 2208c2ecf20Sopenharmony_ci rko[6] = rko[5] ^ rki[6]; 2218c2ecf20Sopenharmony_ci rko[7] = rko[6] ^ rki[7]; 2228c2ecf20Sopenharmony_ci } 2238c2ecf20Sopenharmony_ci } 2248c2ecf20Sopenharmony_ci 2258c2ecf20Sopenharmony_ci /* 2268c2ecf20Sopenharmony_ci * Generate the decryption keys for the Equivalent Inverse Cipher. 2278c2ecf20Sopenharmony_ci * This involves reversing the order of the round keys, and applying 2288c2ecf20Sopenharmony_ci * the Inverse Mix Columns transformation to all but the first and 2298c2ecf20Sopenharmony_ci * the last one. 2308c2ecf20Sopenharmony_ci */ 2318c2ecf20Sopenharmony_ci ctx->key_dec[0] = ctx->key_enc[key_len + 24]; 2328c2ecf20Sopenharmony_ci ctx->key_dec[1] = ctx->key_enc[key_len + 25]; 2338c2ecf20Sopenharmony_ci ctx->key_dec[2] = ctx->key_enc[key_len + 26]; 2348c2ecf20Sopenharmony_ci ctx->key_dec[3] = ctx->key_enc[key_len + 27]; 2358c2ecf20Sopenharmony_ci 2368c2ecf20Sopenharmony_ci for (i = 4, j = key_len + 20; j > 0; i += 4, j -= 4) { 2378c2ecf20Sopenharmony_ci ctx->key_dec[i] = inv_mix_columns(ctx->key_enc[j]); 2388c2ecf20Sopenharmony_ci ctx->key_dec[i + 1] = inv_mix_columns(ctx->key_enc[j + 1]); 2398c2ecf20Sopenharmony_ci ctx->key_dec[i + 2] = inv_mix_columns(ctx->key_enc[j + 2]); 2408c2ecf20Sopenharmony_ci ctx->key_dec[i + 3] = inv_mix_columns(ctx->key_enc[j + 3]); 2418c2ecf20Sopenharmony_ci } 2428c2ecf20Sopenharmony_ci 2438c2ecf20Sopenharmony_ci ctx->key_dec[i] = ctx->key_enc[0]; 2448c2ecf20Sopenharmony_ci ctx->key_dec[i + 1] = ctx->key_enc[1]; 2458c2ecf20Sopenharmony_ci ctx->key_dec[i + 2] = ctx->key_enc[2]; 2468c2ecf20Sopenharmony_ci ctx->key_dec[i + 3] = ctx->key_enc[3]; 2478c2ecf20Sopenharmony_ci 2488c2ecf20Sopenharmony_ci return 0; 2498c2ecf20Sopenharmony_ci} 2508c2ecf20Sopenharmony_ciEXPORT_SYMBOL(aes_expandkey); 2518c2ecf20Sopenharmony_ci 2528c2ecf20Sopenharmony_ci/** 2538c2ecf20Sopenharmony_ci * aes_encrypt - Encrypt a single AES block 2548c2ecf20Sopenharmony_ci * @ctx: Context struct containing the key schedule 2558c2ecf20Sopenharmony_ci * @out: Buffer to store the ciphertext 2568c2ecf20Sopenharmony_ci * @in: Buffer containing the plaintext 2578c2ecf20Sopenharmony_ci */ 2588c2ecf20Sopenharmony_civoid aes_encrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) 2598c2ecf20Sopenharmony_ci{ 2608c2ecf20Sopenharmony_ci const u32 *rkp = ctx->key_enc + 4; 2618c2ecf20Sopenharmony_ci int rounds = 6 + ctx->key_length / 4; 2628c2ecf20Sopenharmony_ci u32 st0[4], st1[4]; 2638c2ecf20Sopenharmony_ci int round; 2648c2ecf20Sopenharmony_ci 2658c2ecf20Sopenharmony_ci st0[0] = ctx->key_enc[0] ^ get_unaligned_le32(in); 2668c2ecf20Sopenharmony_ci st0[1] = ctx->key_enc[1] ^ get_unaligned_le32(in + 4); 2678c2ecf20Sopenharmony_ci st0[2] = ctx->key_enc[2] ^ get_unaligned_le32(in + 8); 2688c2ecf20Sopenharmony_ci st0[3] = ctx->key_enc[3] ^ get_unaligned_le32(in + 12); 2698c2ecf20Sopenharmony_ci 2708c2ecf20Sopenharmony_ci /* 2718c2ecf20Sopenharmony_ci * Force the compiler to emit data independent Sbox references, 2728c2ecf20Sopenharmony_ci * by xoring the input with Sbox values that are known to add up 2738c2ecf20Sopenharmony_ci * to zero. This pulls the entire Sbox into the D-cache before any 2748c2ecf20Sopenharmony_ci * data dependent lookups are done. 2758c2ecf20Sopenharmony_ci */ 2768c2ecf20Sopenharmony_ci st0[0] ^= aes_sbox[ 0] ^ aes_sbox[ 64] ^ aes_sbox[134] ^ aes_sbox[195]; 2778c2ecf20Sopenharmony_ci st0[1] ^= aes_sbox[16] ^ aes_sbox[ 82] ^ aes_sbox[158] ^ aes_sbox[221]; 2788c2ecf20Sopenharmony_ci st0[2] ^= aes_sbox[32] ^ aes_sbox[ 96] ^ aes_sbox[160] ^ aes_sbox[234]; 2798c2ecf20Sopenharmony_ci st0[3] ^= aes_sbox[48] ^ aes_sbox[112] ^ aes_sbox[186] ^ aes_sbox[241]; 2808c2ecf20Sopenharmony_ci 2818c2ecf20Sopenharmony_ci for (round = 0;; round += 2, rkp += 8) { 2828c2ecf20Sopenharmony_ci st1[0] = mix_columns(subshift(st0, 0)) ^ rkp[0]; 2838c2ecf20Sopenharmony_ci st1[1] = mix_columns(subshift(st0, 1)) ^ rkp[1]; 2848c2ecf20Sopenharmony_ci st1[2] = mix_columns(subshift(st0, 2)) ^ rkp[2]; 2858c2ecf20Sopenharmony_ci st1[3] = mix_columns(subshift(st0, 3)) ^ rkp[3]; 2868c2ecf20Sopenharmony_ci 2878c2ecf20Sopenharmony_ci if (round == rounds - 2) 2888c2ecf20Sopenharmony_ci break; 2898c2ecf20Sopenharmony_ci 2908c2ecf20Sopenharmony_ci st0[0] = mix_columns(subshift(st1, 0)) ^ rkp[4]; 2918c2ecf20Sopenharmony_ci st0[1] = mix_columns(subshift(st1, 1)) ^ rkp[5]; 2928c2ecf20Sopenharmony_ci st0[2] = mix_columns(subshift(st1, 2)) ^ rkp[6]; 2938c2ecf20Sopenharmony_ci st0[3] = mix_columns(subshift(st1, 3)) ^ rkp[7]; 2948c2ecf20Sopenharmony_ci } 2958c2ecf20Sopenharmony_ci 2968c2ecf20Sopenharmony_ci put_unaligned_le32(subshift(st1, 0) ^ rkp[4], out); 2978c2ecf20Sopenharmony_ci put_unaligned_le32(subshift(st1, 1) ^ rkp[5], out + 4); 2988c2ecf20Sopenharmony_ci put_unaligned_le32(subshift(st1, 2) ^ rkp[6], out + 8); 2998c2ecf20Sopenharmony_ci put_unaligned_le32(subshift(st1, 3) ^ rkp[7], out + 12); 3008c2ecf20Sopenharmony_ci} 3018c2ecf20Sopenharmony_ciEXPORT_SYMBOL(aes_encrypt); 3028c2ecf20Sopenharmony_ci 3038c2ecf20Sopenharmony_ci/** 3048c2ecf20Sopenharmony_ci * aes_decrypt - Decrypt a single AES block 3058c2ecf20Sopenharmony_ci * @ctx: Context struct containing the key schedule 3068c2ecf20Sopenharmony_ci * @out: Buffer to store the plaintext 3078c2ecf20Sopenharmony_ci * @in: Buffer containing the ciphertext 3088c2ecf20Sopenharmony_ci */ 3098c2ecf20Sopenharmony_civoid aes_decrypt(const struct crypto_aes_ctx *ctx, u8 *out, const u8 *in) 3108c2ecf20Sopenharmony_ci{ 3118c2ecf20Sopenharmony_ci const u32 *rkp = ctx->key_dec + 4; 3128c2ecf20Sopenharmony_ci int rounds = 6 + ctx->key_length / 4; 3138c2ecf20Sopenharmony_ci u32 st0[4], st1[4]; 3148c2ecf20Sopenharmony_ci int round; 3158c2ecf20Sopenharmony_ci 3168c2ecf20Sopenharmony_ci st0[0] = ctx->key_dec[0] ^ get_unaligned_le32(in); 3178c2ecf20Sopenharmony_ci st0[1] = ctx->key_dec[1] ^ get_unaligned_le32(in + 4); 3188c2ecf20Sopenharmony_ci st0[2] = ctx->key_dec[2] ^ get_unaligned_le32(in + 8); 3198c2ecf20Sopenharmony_ci st0[3] = ctx->key_dec[3] ^ get_unaligned_le32(in + 12); 3208c2ecf20Sopenharmony_ci 3218c2ecf20Sopenharmony_ci /* 3228c2ecf20Sopenharmony_ci * Force the compiler to emit data independent Sbox references, 3238c2ecf20Sopenharmony_ci * by xoring the input with Sbox values that are known to add up 3248c2ecf20Sopenharmony_ci * to zero. This pulls the entire Sbox into the D-cache before any 3258c2ecf20Sopenharmony_ci * data dependent lookups are done. 3268c2ecf20Sopenharmony_ci */ 3278c2ecf20Sopenharmony_ci st0[0] ^= aes_inv_sbox[ 0] ^ aes_inv_sbox[ 64] ^ aes_inv_sbox[129] ^ aes_inv_sbox[200]; 3288c2ecf20Sopenharmony_ci st0[1] ^= aes_inv_sbox[16] ^ aes_inv_sbox[ 83] ^ aes_inv_sbox[150] ^ aes_inv_sbox[212]; 3298c2ecf20Sopenharmony_ci st0[2] ^= aes_inv_sbox[32] ^ aes_inv_sbox[ 96] ^ aes_inv_sbox[160] ^ aes_inv_sbox[236]; 3308c2ecf20Sopenharmony_ci st0[3] ^= aes_inv_sbox[48] ^ aes_inv_sbox[112] ^ aes_inv_sbox[187] ^ aes_inv_sbox[247]; 3318c2ecf20Sopenharmony_ci 3328c2ecf20Sopenharmony_ci for (round = 0;; round += 2, rkp += 8) { 3338c2ecf20Sopenharmony_ci st1[0] = inv_mix_columns(inv_subshift(st0, 0)) ^ rkp[0]; 3348c2ecf20Sopenharmony_ci st1[1] = inv_mix_columns(inv_subshift(st0, 1)) ^ rkp[1]; 3358c2ecf20Sopenharmony_ci st1[2] = inv_mix_columns(inv_subshift(st0, 2)) ^ rkp[2]; 3368c2ecf20Sopenharmony_ci st1[3] = inv_mix_columns(inv_subshift(st0, 3)) ^ rkp[3]; 3378c2ecf20Sopenharmony_ci 3388c2ecf20Sopenharmony_ci if (round == rounds - 2) 3398c2ecf20Sopenharmony_ci break; 3408c2ecf20Sopenharmony_ci 3418c2ecf20Sopenharmony_ci st0[0] = inv_mix_columns(inv_subshift(st1, 0)) ^ rkp[4]; 3428c2ecf20Sopenharmony_ci st0[1] = inv_mix_columns(inv_subshift(st1, 1)) ^ rkp[5]; 3438c2ecf20Sopenharmony_ci st0[2] = inv_mix_columns(inv_subshift(st1, 2)) ^ rkp[6]; 3448c2ecf20Sopenharmony_ci st0[3] = inv_mix_columns(inv_subshift(st1, 3)) ^ rkp[7]; 3458c2ecf20Sopenharmony_ci } 3468c2ecf20Sopenharmony_ci 3478c2ecf20Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 0) ^ rkp[4], out); 3488c2ecf20Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 1) ^ rkp[5], out + 4); 3498c2ecf20Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 2) ^ rkp[6], out + 8); 3508c2ecf20Sopenharmony_ci put_unaligned_le32(inv_subshift(st1, 3) ^ rkp[7], out + 12); 3518c2ecf20Sopenharmony_ci} 3528c2ecf20Sopenharmony_ciEXPORT_SYMBOL(aes_decrypt); 3538c2ecf20Sopenharmony_ci 3548c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Generic AES library"); 3558c2ecf20Sopenharmony_ciMODULE_AUTHOR("Ard Biesheuvel <ard.biesheuvel@linaro.org>"); 3568c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL v2"); 357