18c2ecf20Sopenharmony_ci/*
28c2ecf20Sopenharmony_ci * Generic binary BCH encoding/decoding library
38c2ecf20Sopenharmony_ci *
48c2ecf20Sopenharmony_ci * This program is free software; you can redistribute it and/or modify it
58c2ecf20Sopenharmony_ci * under the terms of the GNU General Public License version 2 as published by
68c2ecf20Sopenharmony_ci * the Free Software Foundation.
78c2ecf20Sopenharmony_ci *
88c2ecf20Sopenharmony_ci * This program is distributed in the hope that it will be useful, but WITHOUT
98c2ecf20Sopenharmony_ci * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
108c2ecf20Sopenharmony_ci * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
118c2ecf20Sopenharmony_ci * more details.
128c2ecf20Sopenharmony_ci *
138c2ecf20Sopenharmony_ci * You should have received a copy of the GNU General Public License along with
148c2ecf20Sopenharmony_ci * this program; if not, write to the Free Software Foundation, Inc., 51
158c2ecf20Sopenharmony_ci * Franklin St, Fifth Floor, Boston, MA 02110-1301 USA.
168c2ecf20Sopenharmony_ci *
178c2ecf20Sopenharmony_ci * Copyright © 2011 Parrot S.A.
188c2ecf20Sopenharmony_ci *
198c2ecf20Sopenharmony_ci * Author: Ivan Djelic <ivan.djelic@parrot.com>
208c2ecf20Sopenharmony_ci *
218c2ecf20Sopenharmony_ci * Description:
228c2ecf20Sopenharmony_ci *
238c2ecf20Sopenharmony_ci * This library provides runtime configurable encoding/decoding of binary
248c2ecf20Sopenharmony_ci * Bose-Chaudhuri-Hocquenghem (BCH) codes.
258c2ecf20Sopenharmony_ci *
268c2ecf20Sopenharmony_ci * Call bch_init to get a pointer to a newly allocated bch_control structure for
278c2ecf20Sopenharmony_ci * the given m (Galois field order), t (error correction capability) and
288c2ecf20Sopenharmony_ci * (optional) primitive polynomial parameters.
298c2ecf20Sopenharmony_ci *
308c2ecf20Sopenharmony_ci * Call bch_encode to compute and store ecc parity bytes to a given buffer.
318c2ecf20Sopenharmony_ci * Call bch_decode to detect and locate errors in received data.
328c2ecf20Sopenharmony_ci *
338c2ecf20Sopenharmony_ci * On systems supporting hw BCH features, intermediate results may be provided
348c2ecf20Sopenharmony_ci * to bch_decode in order to skip certain steps. See bch_decode() documentation
358c2ecf20Sopenharmony_ci * for details.
368c2ecf20Sopenharmony_ci *
378c2ecf20Sopenharmony_ci * Option CONFIG_BCH_CONST_PARAMS can be used to force fixed values of
388c2ecf20Sopenharmony_ci * parameters m and t; thus allowing extra compiler optimizations and providing
398c2ecf20Sopenharmony_ci * better (up to 2x) encoding performance. Using this option makes sense when
408c2ecf20Sopenharmony_ci * (m,t) are fixed and known in advance, e.g. when using BCH error correction
418c2ecf20Sopenharmony_ci * on a particular NAND flash device.
428c2ecf20Sopenharmony_ci *
438c2ecf20Sopenharmony_ci * Algorithmic details:
448c2ecf20Sopenharmony_ci *
458c2ecf20Sopenharmony_ci * Encoding is performed by processing 32 input bits in parallel, using 4
468c2ecf20Sopenharmony_ci * remainder lookup tables.
478c2ecf20Sopenharmony_ci *
488c2ecf20Sopenharmony_ci * The final stage of decoding involves the following internal steps:
498c2ecf20Sopenharmony_ci * a. Syndrome computation
508c2ecf20Sopenharmony_ci * b. Error locator polynomial computation using Berlekamp-Massey algorithm
518c2ecf20Sopenharmony_ci * c. Error locator root finding (by far the most expensive step)
528c2ecf20Sopenharmony_ci *
538c2ecf20Sopenharmony_ci * In this implementation, step c is not performed using the usual Chien search.
548c2ecf20Sopenharmony_ci * Instead, an alternative approach described in [1] is used. It consists in
558c2ecf20Sopenharmony_ci * factoring the error locator polynomial using the Berlekamp Trace algorithm
568c2ecf20Sopenharmony_ci * (BTA) down to a certain degree (4), after which ad hoc low-degree polynomial
578c2ecf20Sopenharmony_ci * solving techniques [2] are used. The resulting algorithm, called BTZ, yields
588c2ecf20Sopenharmony_ci * much better performance than Chien search for usual (m,t) values (typically
598c2ecf20Sopenharmony_ci * m >= 13, t < 32, see [1]).
608c2ecf20Sopenharmony_ci *
618c2ecf20Sopenharmony_ci * [1] B. Biswas, V. Herbert. Efficient root finding of polynomials over fields
628c2ecf20Sopenharmony_ci * of characteristic 2, in: Western European Workshop on Research in Cryptology
638c2ecf20Sopenharmony_ci * - WEWoRC 2009, Graz, Austria, LNCS, Springer, July 2009, to appear.
648c2ecf20Sopenharmony_ci * [2] [Zin96] V.A. Zinoviev. On the solution of equations of degree 10 over
658c2ecf20Sopenharmony_ci * finite fields GF(2^q). In Rapport de recherche INRIA no 2829, 1996.
668c2ecf20Sopenharmony_ci */
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_ci#include <linux/kernel.h>
698c2ecf20Sopenharmony_ci#include <linux/errno.h>
708c2ecf20Sopenharmony_ci#include <linux/init.h>
718c2ecf20Sopenharmony_ci#include <linux/module.h>
728c2ecf20Sopenharmony_ci#include <linux/slab.h>
738c2ecf20Sopenharmony_ci#include <linux/bitops.h>
748c2ecf20Sopenharmony_ci#include <asm/byteorder.h>
758c2ecf20Sopenharmony_ci#include <linux/bch.h>
768c2ecf20Sopenharmony_ci
778c2ecf20Sopenharmony_ci#if defined(CONFIG_BCH_CONST_PARAMS)
788c2ecf20Sopenharmony_ci#define GF_M(_p)               (CONFIG_BCH_CONST_M)
798c2ecf20Sopenharmony_ci#define GF_T(_p)               (CONFIG_BCH_CONST_T)
808c2ecf20Sopenharmony_ci#define GF_N(_p)               ((1 << (CONFIG_BCH_CONST_M))-1)
818c2ecf20Sopenharmony_ci#define BCH_MAX_M              (CONFIG_BCH_CONST_M)
828c2ecf20Sopenharmony_ci#define BCH_MAX_T	       (CONFIG_BCH_CONST_T)
838c2ecf20Sopenharmony_ci#else
848c2ecf20Sopenharmony_ci#define GF_M(_p)               ((_p)->m)
858c2ecf20Sopenharmony_ci#define GF_T(_p)               ((_p)->t)
868c2ecf20Sopenharmony_ci#define GF_N(_p)               ((_p)->n)
878c2ecf20Sopenharmony_ci#define BCH_MAX_M              15 /* 2KB */
888c2ecf20Sopenharmony_ci#define BCH_MAX_T              64 /* 64 bit correction */
898c2ecf20Sopenharmony_ci#endif
908c2ecf20Sopenharmony_ci
918c2ecf20Sopenharmony_ci#define BCH_ECC_WORDS(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 32)
928c2ecf20Sopenharmony_ci#define BCH_ECC_BYTES(_p)      DIV_ROUND_UP(GF_M(_p)*GF_T(_p), 8)
938c2ecf20Sopenharmony_ci
948c2ecf20Sopenharmony_ci#define BCH_ECC_MAX_WORDS      DIV_ROUND_UP(BCH_MAX_M * BCH_MAX_T, 32)
958c2ecf20Sopenharmony_ci
968c2ecf20Sopenharmony_ci#ifndef dbg
978c2ecf20Sopenharmony_ci#define dbg(_fmt, args...)     do {} while (0)
988c2ecf20Sopenharmony_ci#endif
998c2ecf20Sopenharmony_ci
1008c2ecf20Sopenharmony_ci/*
1018c2ecf20Sopenharmony_ci * represent a polynomial over GF(2^m)
1028c2ecf20Sopenharmony_ci */
1038c2ecf20Sopenharmony_cistruct gf_poly {
1048c2ecf20Sopenharmony_ci	unsigned int deg;    /* polynomial degree */
1058c2ecf20Sopenharmony_ci	unsigned int c[];   /* polynomial terms */
1068c2ecf20Sopenharmony_ci};
1078c2ecf20Sopenharmony_ci
1088c2ecf20Sopenharmony_ci/* given its degree, compute a polynomial size in bytes */
1098c2ecf20Sopenharmony_ci#define GF_POLY_SZ(_d) (sizeof(struct gf_poly)+((_d)+1)*sizeof(unsigned int))
1108c2ecf20Sopenharmony_ci
1118c2ecf20Sopenharmony_ci/* polynomial of degree 1 */
1128c2ecf20Sopenharmony_cistruct gf_poly_deg1 {
1138c2ecf20Sopenharmony_ci	struct gf_poly poly;
1148c2ecf20Sopenharmony_ci	unsigned int   c[2];
1158c2ecf20Sopenharmony_ci};
1168c2ecf20Sopenharmony_ci
1178c2ecf20Sopenharmony_cistatic u8 swap_bits_table[] = {
1188c2ecf20Sopenharmony_ci	0x00, 0x80, 0x40, 0xc0, 0x20, 0xa0, 0x60, 0xe0,
1198c2ecf20Sopenharmony_ci	0x10, 0x90, 0x50, 0xd0, 0x30, 0xb0, 0x70, 0xf0,
1208c2ecf20Sopenharmony_ci	0x08, 0x88, 0x48, 0xc8, 0x28, 0xa8, 0x68, 0xe8,
1218c2ecf20Sopenharmony_ci	0x18, 0x98, 0x58, 0xd8, 0x38, 0xb8, 0x78, 0xf8,
1228c2ecf20Sopenharmony_ci	0x04, 0x84, 0x44, 0xc4, 0x24, 0xa4, 0x64, 0xe4,
1238c2ecf20Sopenharmony_ci	0x14, 0x94, 0x54, 0xd4, 0x34, 0xb4, 0x74, 0xf4,
1248c2ecf20Sopenharmony_ci	0x0c, 0x8c, 0x4c, 0xcc, 0x2c, 0xac, 0x6c, 0xec,
1258c2ecf20Sopenharmony_ci	0x1c, 0x9c, 0x5c, 0xdc, 0x3c, 0xbc, 0x7c, 0xfc,
1268c2ecf20Sopenharmony_ci	0x02, 0x82, 0x42, 0xc2, 0x22, 0xa2, 0x62, 0xe2,
1278c2ecf20Sopenharmony_ci	0x12, 0x92, 0x52, 0xd2, 0x32, 0xb2, 0x72, 0xf2,
1288c2ecf20Sopenharmony_ci	0x0a, 0x8a, 0x4a, 0xca, 0x2a, 0xaa, 0x6a, 0xea,
1298c2ecf20Sopenharmony_ci	0x1a, 0x9a, 0x5a, 0xda, 0x3a, 0xba, 0x7a, 0xfa,
1308c2ecf20Sopenharmony_ci	0x06, 0x86, 0x46, 0xc6, 0x26, 0xa6, 0x66, 0xe6,
1318c2ecf20Sopenharmony_ci	0x16, 0x96, 0x56, 0xd6, 0x36, 0xb6, 0x76, 0xf6,
1328c2ecf20Sopenharmony_ci	0x0e, 0x8e, 0x4e, 0xce, 0x2e, 0xae, 0x6e, 0xee,
1338c2ecf20Sopenharmony_ci	0x1e, 0x9e, 0x5e, 0xde, 0x3e, 0xbe, 0x7e, 0xfe,
1348c2ecf20Sopenharmony_ci	0x01, 0x81, 0x41, 0xc1, 0x21, 0xa1, 0x61, 0xe1,
1358c2ecf20Sopenharmony_ci	0x11, 0x91, 0x51, 0xd1, 0x31, 0xb1, 0x71, 0xf1,
1368c2ecf20Sopenharmony_ci	0x09, 0x89, 0x49, 0xc9, 0x29, 0xa9, 0x69, 0xe9,
1378c2ecf20Sopenharmony_ci	0x19, 0x99, 0x59, 0xd9, 0x39, 0xb9, 0x79, 0xf9,
1388c2ecf20Sopenharmony_ci	0x05, 0x85, 0x45, 0xc5, 0x25, 0xa5, 0x65, 0xe5,
1398c2ecf20Sopenharmony_ci	0x15, 0x95, 0x55, 0xd5, 0x35, 0xb5, 0x75, 0xf5,
1408c2ecf20Sopenharmony_ci	0x0d, 0x8d, 0x4d, 0xcd, 0x2d, 0xad, 0x6d, 0xed,
1418c2ecf20Sopenharmony_ci	0x1d, 0x9d, 0x5d, 0xdd, 0x3d, 0xbd, 0x7d, 0xfd,
1428c2ecf20Sopenharmony_ci	0x03, 0x83, 0x43, 0xc3, 0x23, 0xa3, 0x63, 0xe3,
1438c2ecf20Sopenharmony_ci	0x13, 0x93, 0x53, 0xd3, 0x33, 0xb3, 0x73, 0xf3,
1448c2ecf20Sopenharmony_ci	0x0b, 0x8b, 0x4b, 0xcb, 0x2b, 0xab, 0x6b, 0xeb,
1458c2ecf20Sopenharmony_ci	0x1b, 0x9b, 0x5b, 0xdb, 0x3b, 0xbb, 0x7b, 0xfb,
1468c2ecf20Sopenharmony_ci	0x07, 0x87, 0x47, 0xc7, 0x27, 0xa7, 0x67, 0xe7,
1478c2ecf20Sopenharmony_ci	0x17, 0x97, 0x57, 0xd7, 0x37, 0xb7, 0x77, 0xf7,
1488c2ecf20Sopenharmony_ci	0x0f, 0x8f, 0x4f, 0xcf, 0x2f, 0xaf, 0x6f, 0xef,
1498c2ecf20Sopenharmony_ci	0x1f, 0x9f, 0x5f, 0xdf, 0x3f, 0xbf, 0x7f, 0xff,
1508c2ecf20Sopenharmony_ci};
1518c2ecf20Sopenharmony_ci
1528c2ecf20Sopenharmony_cistatic u8 swap_bits(struct bch_control *bch, u8 in)
1538c2ecf20Sopenharmony_ci{
1548c2ecf20Sopenharmony_ci	if (!bch->swap_bits)
1558c2ecf20Sopenharmony_ci		return in;
1568c2ecf20Sopenharmony_ci
1578c2ecf20Sopenharmony_ci	return swap_bits_table[in];
1588c2ecf20Sopenharmony_ci}
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_ci/*
1618c2ecf20Sopenharmony_ci * same as bch_encode(), but process input data one byte at a time
1628c2ecf20Sopenharmony_ci */
1638c2ecf20Sopenharmony_cistatic void bch_encode_unaligned(struct bch_control *bch,
1648c2ecf20Sopenharmony_ci				 const unsigned char *data, unsigned int len,
1658c2ecf20Sopenharmony_ci				 uint32_t *ecc)
1668c2ecf20Sopenharmony_ci{
1678c2ecf20Sopenharmony_ci	int i;
1688c2ecf20Sopenharmony_ci	const uint32_t *p;
1698c2ecf20Sopenharmony_ci	const int l = BCH_ECC_WORDS(bch)-1;
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_ci	while (len--) {
1728c2ecf20Sopenharmony_ci		u8 tmp = swap_bits(bch, *data++);
1738c2ecf20Sopenharmony_ci
1748c2ecf20Sopenharmony_ci		p = bch->mod8_tab + (l+1)*(((ecc[0] >> 24)^(tmp)) & 0xff);
1758c2ecf20Sopenharmony_ci
1768c2ecf20Sopenharmony_ci		for (i = 0; i < l; i++)
1778c2ecf20Sopenharmony_ci			ecc[i] = ((ecc[i] << 8)|(ecc[i+1] >> 24))^(*p++);
1788c2ecf20Sopenharmony_ci
1798c2ecf20Sopenharmony_ci		ecc[l] = (ecc[l] << 8)^(*p);
1808c2ecf20Sopenharmony_ci	}
1818c2ecf20Sopenharmony_ci}
1828c2ecf20Sopenharmony_ci
1838c2ecf20Sopenharmony_ci/*
1848c2ecf20Sopenharmony_ci * convert ecc bytes to aligned, zero-padded 32-bit ecc words
1858c2ecf20Sopenharmony_ci */
1868c2ecf20Sopenharmony_cistatic void load_ecc8(struct bch_control *bch, uint32_t *dst,
1878c2ecf20Sopenharmony_ci		      const uint8_t *src)
1888c2ecf20Sopenharmony_ci{
1898c2ecf20Sopenharmony_ci	uint8_t pad[4] = {0, 0, 0, 0};
1908c2ecf20Sopenharmony_ci	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_ci	for (i = 0; i < nwords; i++, src += 4)
1938c2ecf20Sopenharmony_ci		dst[i] = ((u32)swap_bits(bch, src[0]) << 24) |
1948c2ecf20Sopenharmony_ci			((u32)swap_bits(bch, src[1]) << 16) |
1958c2ecf20Sopenharmony_ci			((u32)swap_bits(bch, src[2]) << 8) |
1968c2ecf20Sopenharmony_ci			swap_bits(bch, src[3]);
1978c2ecf20Sopenharmony_ci
1988c2ecf20Sopenharmony_ci	memcpy(pad, src, BCH_ECC_BYTES(bch)-4*nwords);
1998c2ecf20Sopenharmony_ci	dst[nwords] = ((u32)swap_bits(bch, pad[0]) << 24) |
2008c2ecf20Sopenharmony_ci		((u32)swap_bits(bch, pad[1]) << 16) |
2018c2ecf20Sopenharmony_ci		((u32)swap_bits(bch, pad[2]) << 8) |
2028c2ecf20Sopenharmony_ci		swap_bits(bch, pad[3]);
2038c2ecf20Sopenharmony_ci}
2048c2ecf20Sopenharmony_ci
2058c2ecf20Sopenharmony_ci/*
2068c2ecf20Sopenharmony_ci * convert 32-bit ecc words to ecc bytes
2078c2ecf20Sopenharmony_ci */
2088c2ecf20Sopenharmony_cistatic void store_ecc8(struct bch_control *bch, uint8_t *dst,
2098c2ecf20Sopenharmony_ci		       const uint32_t *src)
2108c2ecf20Sopenharmony_ci{
2118c2ecf20Sopenharmony_ci	uint8_t pad[4];
2128c2ecf20Sopenharmony_ci	unsigned int i, nwords = BCH_ECC_WORDS(bch)-1;
2138c2ecf20Sopenharmony_ci
2148c2ecf20Sopenharmony_ci	for (i = 0; i < nwords; i++) {
2158c2ecf20Sopenharmony_ci		*dst++ = swap_bits(bch, src[i] >> 24);
2168c2ecf20Sopenharmony_ci		*dst++ = swap_bits(bch, src[i] >> 16);
2178c2ecf20Sopenharmony_ci		*dst++ = swap_bits(bch, src[i] >> 8);
2188c2ecf20Sopenharmony_ci		*dst++ = swap_bits(bch, src[i]);
2198c2ecf20Sopenharmony_ci	}
2208c2ecf20Sopenharmony_ci	pad[0] = swap_bits(bch, src[nwords] >> 24);
2218c2ecf20Sopenharmony_ci	pad[1] = swap_bits(bch, src[nwords] >> 16);
2228c2ecf20Sopenharmony_ci	pad[2] = swap_bits(bch, src[nwords] >> 8);
2238c2ecf20Sopenharmony_ci	pad[3] = swap_bits(bch, src[nwords]);
2248c2ecf20Sopenharmony_ci	memcpy(dst, pad, BCH_ECC_BYTES(bch)-4*nwords);
2258c2ecf20Sopenharmony_ci}
2268c2ecf20Sopenharmony_ci
2278c2ecf20Sopenharmony_ci/**
2288c2ecf20Sopenharmony_ci * bch_encode - calculate BCH ecc parity of data
2298c2ecf20Sopenharmony_ci * @bch:   BCH control structure
2308c2ecf20Sopenharmony_ci * @data:  data to encode
2318c2ecf20Sopenharmony_ci * @len:   data length in bytes
2328c2ecf20Sopenharmony_ci * @ecc:   ecc parity data, must be initialized by caller
2338c2ecf20Sopenharmony_ci *
2348c2ecf20Sopenharmony_ci * The @ecc parity array is used both as input and output parameter, in order to
2358c2ecf20Sopenharmony_ci * allow incremental computations. It should be of the size indicated by member
2368c2ecf20Sopenharmony_ci * @ecc_bytes of @bch, and should be initialized to 0 before the first call.
2378c2ecf20Sopenharmony_ci *
2388c2ecf20Sopenharmony_ci * The exact number of computed ecc parity bits is given by member @ecc_bits of
2398c2ecf20Sopenharmony_ci * @bch; it may be less than m*t for large values of t.
2408c2ecf20Sopenharmony_ci */
2418c2ecf20Sopenharmony_civoid bch_encode(struct bch_control *bch, const uint8_t *data,
2428c2ecf20Sopenharmony_ci		unsigned int len, uint8_t *ecc)
2438c2ecf20Sopenharmony_ci{
2448c2ecf20Sopenharmony_ci	const unsigned int l = BCH_ECC_WORDS(bch)-1;
2458c2ecf20Sopenharmony_ci	unsigned int i, mlen;
2468c2ecf20Sopenharmony_ci	unsigned long m;
2478c2ecf20Sopenharmony_ci	uint32_t w, r[BCH_ECC_MAX_WORDS];
2488c2ecf20Sopenharmony_ci	const size_t r_bytes = BCH_ECC_WORDS(bch) * sizeof(*r);
2498c2ecf20Sopenharmony_ci	const uint32_t * const tab0 = bch->mod8_tab;
2508c2ecf20Sopenharmony_ci	const uint32_t * const tab1 = tab0 + 256*(l+1);
2518c2ecf20Sopenharmony_ci	const uint32_t * const tab2 = tab1 + 256*(l+1);
2528c2ecf20Sopenharmony_ci	const uint32_t * const tab3 = tab2 + 256*(l+1);
2538c2ecf20Sopenharmony_ci	const uint32_t *pdata, *p0, *p1, *p2, *p3;
2548c2ecf20Sopenharmony_ci
2558c2ecf20Sopenharmony_ci	if (WARN_ON(r_bytes > sizeof(r)))
2568c2ecf20Sopenharmony_ci		return;
2578c2ecf20Sopenharmony_ci
2588c2ecf20Sopenharmony_ci	if (ecc) {
2598c2ecf20Sopenharmony_ci		/* load ecc parity bytes into internal 32-bit buffer */
2608c2ecf20Sopenharmony_ci		load_ecc8(bch, bch->ecc_buf, ecc);
2618c2ecf20Sopenharmony_ci	} else {
2628c2ecf20Sopenharmony_ci		memset(bch->ecc_buf, 0, r_bytes);
2638c2ecf20Sopenharmony_ci	}
2648c2ecf20Sopenharmony_ci
2658c2ecf20Sopenharmony_ci	/* process first unaligned data bytes */
2668c2ecf20Sopenharmony_ci	m = ((unsigned long)data) & 3;
2678c2ecf20Sopenharmony_ci	if (m) {
2688c2ecf20Sopenharmony_ci		mlen = (len < (4-m)) ? len : 4-m;
2698c2ecf20Sopenharmony_ci		bch_encode_unaligned(bch, data, mlen, bch->ecc_buf);
2708c2ecf20Sopenharmony_ci		data += mlen;
2718c2ecf20Sopenharmony_ci		len  -= mlen;
2728c2ecf20Sopenharmony_ci	}
2738c2ecf20Sopenharmony_ci
2748c2ecf20Sopenharmony_ci	/* process 32-bit aligned data words */
2758c2ecf20Sopenharmony_ci	pdata = (uint32_t *)data;
2768c2ecf20Sopenharmony_ci	mlen  = len/4;
2778c2ecf20Sopenharmony_ci	data += 4*mlen;
2788c2ecf20Sopenharmony_ci	len  -= 4*mlen;
2798c2ecf20Sopenharmony_ci	memcpy(r, bch->ecc_buf, r_bytes);
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ci	/*
2828c2ecf20Sopenharmony_ci	 * split each 32-bit word into 4 polynomials of weight 8 as follows:
2838c2ecf20Sopenharmony_ci	 *
2848c2ecf20Sopenharmony_ci	 * 31 ...24  23 ...16  15 ... 8  7 ... 0
2858c2ecf20Sopenharmony_ci	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt
2868c2ecf20Sopenharmony_ci	 *                               tttttttt  mod g = r0 (precomputed)
2878c2ecf20Sopenharmony_ci	 *                     zzzzzzzz  00000000  mod g = r1 (precomputed)
2888c2ecf20Sopenharmony_ci	 *           yyyyyyyy  00000000  00000000  mod g = r2 (precomputed)
2898c2ecf20Sopenharmony_ci	 * xxxxxxxx  00000000  00000000  00000000  mod g = r3 (precomputed)
2908c2ecf20Sopenharmony_ci	 * xxxxxxxx  yyyyyyyy  zzzzzzzz  tttttttt  mod g = r0^r1^r2^r3
2918c2ecf20Sopenharmony_ci	 */
2928c2ecf20Sopenharmony_ci	while (mlen--) {
2938c2ecf20Sopenharmony_ci		/* input data is read in big-endian format */
2948c2ecf20Sopenharmony_ci		w = cpu_to_be32(*pdata++);
2958c2ecf20Sopenharmony_ci		if (bch->swap_bits)
2968c2ecf20Sopenharmony_ci			w = (u32)swap_bits(bch, w) |
2978c2ecf20Sopenharmony_ci			    ((u32)swap_bits(bch, w >> 8) << 8) |
2988c2ecf20Sopenharmony_ci			    ((u32)swap_bits(bch, w >> 16) << 16) |
2998c2ecf20Sopenharmony_ci			    ((u32)swap_bits(bch, w >> 24) << 24);
3008c2ecf20Sopenharmony_ci		w ^= r[0];
3018c2ecf20Sopenharmony_ci		p0 = tab0 + (l+1)*((w >>  0) & 0xff);
3028c2ecf20Sopenharmony_ci		p1 = tab1 + (l+1)*((w >>  8) & 0xff);
3038c2ecf20Sopenharmony_ci		p2 = tab2 + (l+1)*((w >> 16) & 0xff);
3048c2ecf20Sopenharmony_ci		p3 = tab3 + (l+1)*((w >> 24) & 0xff);
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci		for (i = 0; i < l; i++)
3078c2ecf20Sopenharmony_ci			r[i] = r[i+1]^p0[i]^p1[i]^p2[i]^p3[i];
3088c2ecf20Sopenharmony_ci
3098c2ecf20Sopenharmony_ci		r[l] = p0[l]^p1[l]^p2[l]^p3[l];
3108c2ecf20Sopenharmony_ci	}
3118c2ecf20Sopenharmony_ci	memcpy(bch->ecc_buf, r, r_bytes);
3128c2ecf20Sopenharmony_ci
3138c2ecf20Sopenharmony_ci	/* process last unaligned bytes */
3148c2ecf20Sopenharmony_ci	if (len)
3158c2ecf20Sopenharmony_ci		bch_encode_unaligned(bch, data, len, bch->ecc_buf);
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci	/* store ecc parity bytes into original parity buffer */
3188c2ecf20Sopenharmony_ci	if (ecc)
3198c2ecf20Sopenharmony_ci		store_ecc8(bch, ecc, bch->ecc_buf);
3208c2ecf20Sopenharmony_ci}
3218c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_encode);
3228c2ecf20Sopenharmony_ci
3238c2ecf20Sopenharmony_cistatic inline int modulo(struct bch_control *bch, unsigned int v)
3248c2ecf20Sopenharmony_ci{
3258c2ecf20Sopenharmony_ci	const unsigned int n = GF_N(bch);
3268c2ecf20Sopenharmony_ci	while (v >= n) {
3278c2ecf20Sopenharmony_ci		v -= n;
3288c2ecf20Sopenharmony_ci		v = (v & n) + (v >> GF_M(bch));
3298c2ecf20Sopenharmony_ci	}
3308c2ecf20Sopenharmony_ci	return v;
3318c2ecf20Sopenharmony_ci}
3328c2ecf20Sopenharmony_ci
3338c2ecf20Sopenharmony_ci/*
3348c2ecf20Sopenharmony_ci * shorter and faster modulo function, only works when v < 2N.
3358c2ecf20Sopenharmony_ci */
3368c2ecf20Sopenharmony_cistatic inline int mod_s(struct bch_control *bch, unsigned int v)
3378c2ecf20Sopenharmony_ci{
3388c2ecf20Sopenharmony_ci	const unsigned int n = GF_N(bch);
3398c2ecf20Sopenharmony_ci	return (v < n) ? v : v-n;
3408c2ecf20Sopenharmony_ci}
3418c2ecf20Sopenharmony_ci
3428c2ecf20Sopenharmony_cistatic inline int deg(unsigned int poly)
3438c2ecf20Sopenharmony_ci{
3448c2ecf20Sopenharmony_ci	/* polynomial degree is the most-significant bit index */
3458c2ecf20Sopenharmony_ci	return fls(poly)-1;
3468c2ecf20Sopenharmony_ci}
3478c2ecf20Sopenharmony_ci
3488c2ecf20Sopenharmony_cistatic inline int parity(unsigned int x)
3498c2ecf20Sopenharmony_ci{
3508c2ecf20Sopenharmony_ci	/*
3518c2ecf20Sopenharmony_ci	 * public domain code snippet, lifted from
3528c2ecf20Sopenharmony_ci	 * http://www-graphics.stanford.edu/~seander/bithacks.html
3538c2ecf20Sopenharmony_ci	 */
3548c2ecf20Sopenharmony_ci	x ^= x >> 1;
3558c2ecf20Sopenharmony_ci	x ^= x >> 2;
3568c2ecf20Sopenharmony_ci	x = (x & 0x11111111U) * 0x11111111U;
3578c2ecf20Sopenharmony_ci	return (x >> 28) & 1;
3588c2ecf20Sopenharmony_ci}
3598c2ecf20Sopenharmony_ci
3608c2ecf20Sopenharmony_ci/* Galois field basic operations: multiply, divide, inverse, etc. */
3618c2ecf20Sopenharmony_ci
3628c2ecf20Sopenharmony_cistatic inline unsigned int gf_mul(struct bch_control *bch, unsigned int a,
3638c2ecf20Sopenharmony_ci				  unsigned int b)
3648c2ecf20Sopenharmony_ci{
3658c2ecf20Sopenharmony_ci	return (a && b) ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
3668c2ecf20Sopenharmony_ci					       bch->a_log_tab[b])] : 0;
3678c2ecf20Sopenharmony_ci}
3688c2ecf20Sopenharmony_ci
3698c2ecf20Sopenharmony_cistatic inline unsigned int gf_sqr(struct bch_control *bch, unsigned int a)
3708c2ecf20Sopenharmony_ci{
3718c2ecf20Sopenharmony_ci	return a ? bch->a_pow_tab[mod_s(bch, 2*bch->a_log_tab[a])] : 0;
3728c2ecf20Sopenharmony_ci}
3738c2ecf20Sopenharmony_ci
3748c2ecf20Sopenharmony_cistatic inline unsigned int gf_div(struct bch_control *bch, unsigned int a,
3758c2ecf20Sopenharmony_ci				  unsigned int b)
3768c2ecf20Sopenharmony_ci{
3778c2ecf20Sopenharmony_ci	return a ? bch->a_pow_tab[mod_s(bch, bch->a_log_tab[a]+
3788c2ecf20Sopenharmony_ci					GF_N(bch)-bch->a_log_tab[b])] : 0;
3798c2ecf20Sopenharmony_ci}
3808c2ecf20Sopenharmony_ci
3818c2ecf20Sopenharmony_cistatic inline unsigned int gf_inv(struct bch_control *bch, unsigned int a)
3828c2ecf20Sopenharmony_ci{
3838c2ecf20Sopenharmony_ci	return bch->a_pow_tab[GF_N(bch)-bch->a_log_tab[a]];
3848c2ecf20Sopenharmony_ci}
3858c2ecf20Sopenharmony_ci
3868c2ecf20Sopenharmony_cistatic inline unsigned int a_pow(struct bch_control *bch, int i)
3878c2ecf20Sopenharmony_ci{
3888c2ecf20Sopenharmony_ci	return bch->a_pow_tab[modulo(bch, i)];
3898c2ecf20Sopenharmony_ci}
3908c2ecf20Sopenharmony_ci
3918c2ecf20Sopenharmony_cistatic inline int a_log(struct bch_control *bch, unsigned int x)
3928c2ecf20Sopenharmony_ci{
3938c2ecf20Sopenharmony_ci	return bch->a_log_tab[x];
3948c2ecf20Sopenharmony_ci}
3958c2ecf20Sopenharmony_ci
3968c2ecf20Sopenharmony_cistatic inline int a_ilog(struct bch_control *bch, unsigned int x)
3978c2ecf20Sopenharmony_ci{
3988c2ecf20Sopenharmony_ci	return mod_s(bch, GF_N(bch)-bch->a_log_tab[x]);
3998c2ecf20Sopenharmony_ci}
4008c2ecf20Sopenharmony_ci
4018c2ecf20Sopenharmony_ci/*
4028c2ecf20Sopenharmony_ci * compute 2t syndromes of ecc polynomial, i.e. ecc(a^j) for j=1..2t
4038c2ecf20Sopenharmony_ci */
4048c2ecf20Sopenharmony_cistatic void compute_syndromes(struct bch_control *bch, uint32_t *ecc,
4058c2ecf20Sopenharmony_ci			      unsigned int *syn)
4068c2ecf20Sopenharmony_ci{
4078c2ecf20Sopenharmony_ci	int i, j, s;
4088c2ecf20Sopenharmony_ci	unsigned int m;
4098c2ecf20Sopenharmony_ci	uint32_t poly;
4108c2ecf20Sopenharmony_ci	const int t = GF_T(bch);
4118c2ecf20Sopenharmony_ci
4128c2ecf20Sopenharmony_ci	s = bch->ecc_bits;
4138c2ecf20Sopenharmony_ci
4148c2ecf20Sopenharmony_ci	/* make sure extra bits in last ecc word are cleared */
4158c2ecf20Sopenharmony_ci	m = ((unsigned int)s) & 31;
4168c2ecf20Sopenharmony_ci	if (m)
4178c2ecf20Sopenharmony_ci		ecc[s/32] &= ~((1u << (32-m))-1);
4188c2ecf20Sopenharmony_ci	memset(syn, 0, 2*t*sizeof(*syn));
4198c2ecf20Sopenharmony_ci
4208c2ecf20Sopenharmony_ci	/* compute v(a^j) for j=1 .. 2t-1 */
4218c2ecf20Sopenharmony_ci	do {
4228c2ecf20Sopenharmony_ci		poly = *ecc++;
4238c2ecf20Sopenharmony_ci		s -= 32;
4248c2ecf20Sopenharmony_ci		while (poly) {
4258c2ecf20Sopenharmony_ci			i = deg(poly);
4268c2ecf20Sopenharmony_ci			for (j = 0; j < 2*t; j += 2)
4278c2ecf20Sopenharmony_ci				syn[j] ^= a_pow(bch, (j+1)*(i+s));
4288c2ecf20Sopenharmony_ci
4298c2ecf20Sopenharmony_ci			poly ^= (1 << i);
4308c2ecf20Sopenharmony_ci		}
4318c2ecf20Sopenharmony_ci	} while (s > 0);
4328c2ecf20Sopenharmony_ci
4338c2ecf20Sopenharmony_ci	/* v(a^(2j)) = v(a^j)^2 */
4348c2ecf20Sopenharmony_ci	for (j = 0; j < t; j++)
4358c2ecf20Sopenharmony_ci		syn[2*j+1] = gf_sqr(bch, syn[j]);
4368c2ecf20Sopenharmony_ci}
4378c2ecf20Sopenharmony_ci
4388c2ecf20Sopenharmony_cistatic void gf_poly_copy(struct gf_poly *dst, struct gf_poly *src)
4398c2ecf20Sopenharmony_ci{
4408c2ecf20Sopenharmony_ci	memcpy(dst, src, GF_POLY_SZ(src->deg));
4418c2ecf20Sopenharmony_ci}
4428c2ecf20Sopenharmony_ci
4438c2ecf20Sopenharmony_cistatic int compute_error_locator_polynomial(struct bch_control *bch,
4448c2ecf20Sopenharmony_ci					    const unsigned int *syn)
4458c2ecf20Sopenharmony_ci{
4468c2ecf20Sopenharmony_ci	const unsigned int t = GF_T(bch);
4478c2ecf20Sopenharmony_ci	const unsigned int n = GF_N(bch);
4488c2ecf20Sopenharmony_ci	unsigned int i, j, tmp, l, pd = 1, d = syn[0];
4498c2ecf20Sopenharmony_ci	struct gf_poly *elp = bch->elp;
4508c2ecf20Sopenharmony_ci	struct gf_poly *pelp = bch->poly_2t[0];
4518c2ecf20Sopenharmony_ci	struct gf_poly *elp_copy = bch->poly_2t[1];
4528c2ecf20Sopenharmony_ci	int k, pp = -1;
4538c2ecf20Sopenharmony_ci
4548c2ecf20Sopenharmony_ci	memset(pelp, 0, GF_POLY_SZ(2*t));
4558c2ecf20Sopenharmony_ci	memset(elp, 0, GF_POLY_SZ(2*t));
4568c2ecf20Sopenharmony_ci
4578c2ecf20Sopenharmony_ci	pelp->deg = 0;
4588c2ecf20Sopenharmony_ci	pelp->c[0] = 1;
4598c2ecf20Sopenharmony_ci	elp->deg = 0;
4608c2ecf20Sopenharmony_ci	elp->c[0] = 1;
4618c2ecf20Sopenharmony_ci
4628c2ecf20Sopenharmony_ci	/* use simplified binary Berlekamp-Massey algorithm */
4638c2ecf20Sopenharmony_ci	for (i = 0; (i < t) && (elp->deg <= t); i++) {
4648c2ecf20Sopenharmony_ci		if (d) {
4658c2ecf20Sopenharmony_ci			k = 2*i-pp;
4668c2ecf20Sopenharmony_ci			gf_poly_copy(elp_copy, elp);
4678c2ecf20Sopenharmony_ci			/* e[i+1](X) = e[i](X)+di*dp^-1*X^2(i-p)*e[p](X) */
4688c2ecf20Sopenharmony_ci			tmp = a_log(bch, d)+n-a_log(bch, pd);
4698c2ecf20Sopenharmony_ci			for (j = 0; j <= pelp->deg; j++) {
4708c2ecf20Sopenharmony_ci				if (pelp->c[j]) {
4718c2ecf20Sopenharmony_ci					l = a_log(bch, pelp->c[j]);
4728c2ecf20Sopenharmony_ci					elp->c[j+k] ^= a_pow(bch, tmp+l);
4738c2ecf20Sopenharmony_ci				}
4748c2ecf20Sopenharmony_ci			}
4758c2ecf20Sopenharmony_ci			/* compute l[i+1] = max(l[i]->c[l[p]+2*(i-p]) */
4768c2ecf20Sopenharmony_ci			tmp = pelp->deg+k;
4778c2ecf20Sopenharmony_ci			if (tmp > elp->deg) {
4788c2ecf20Sopenharmony_ci				elp->deg = tmp;
4798c2ecf20Sopenharmony_ci				gf_poly_copy(pelp, elp_copy);
4808c2ecf20Sopenharmony_ci				pd = d;
4818c2ecf20Sopenharmony_ci				pp = 2*i;
4828c2ecf20Sopenharmony_ci			}
4838c2ecf20Sopenharmony_ci		}
4848c2ecf20Sopenharmony_ci		/* di+1 = S(2i+3)+elp[i+1].1*S(2i+2)+...+elp[i+1].lS(2i+3-l) */
4858c2ecf20Sopenharmony_ci		if (i < t-1) {
4868c2ecf20Sopenharmony_ci			d = syn[2*i+2];
4878c2ecf20Sopenharmony_ci			for (j = 1; j <= elp->deg; j++)
4888c2ecf20Sopenharmony_ci				d ^= gf_mul(bch, elp->c[j], syn[2*i+2-j]);
4898c2ecf20Sopenharmony_ci		}
4908c2ecf20Sopenharmony_ci	}
4918c2ecf20Sopenharmony_ci	dbg("elp=%s\n", gf_poly_str(elp));
4928c2ecf20Sopenharmony_ci	return (elp->deg > t) ? -1 : (int)elp->deg;
4938c2ecf20Sopenharmony_ci}
4948c2ecf20Sopenharmony_ci
4958c2ecf20Sopenharmony_ci/*
4968c2ecf20Sopenharmony_ci * solve a m x m linear system in GF(2) with an expected number of solutions,
4978c2ecf20Sopenharmony_ci * and return the number of found solutions
4988c2ecf20Sopenharmony_ci */
4998c2ecf20Sopenharmony_cistatic int solve_linear_system(struct bch_control *bch, unsigned int *rows,
5008c2ecf20Sopenharmony_ci			       unsigned int *sol, int nsol)
5018c2ecf20Sopenharmony_ci{
5028c2ecf20Sopenharmony_ci	const int m = GF_M(bch);
5038c2ecf20Sopenharmony_ci	unsigned int tmp, mask;
5048c2ecf20Sopenharmony_ci	int rem, c, r, p, k, param[BCH_MAX_M];
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_ci	k = 0;
5078c2ecf20Sopenharmony_ci	mask = 1 << m;
5088c2ecf20Sopenharmony_ci
5098c2ecf20Sopenharmony_ci	/* Gaussian elimination */
5108c2ecf20Sopenharmony_ci	for (c = 0; c < m; c++) {
5118c2ecf20Sopenharmony_ci		rem = 0;
5128c2ecf20Sopenharmony_ci		p = c-k;
5138c2ecf20Sopenharmony_ci		/* find suitable row for elimination */
5148c2ecf20Sopenharmony_ci		for (r = p; r < m; r++) {
5158c2ecf20Sopenharmony_ci			if (rows[r] & mask) {
5168c2ecf20Sopenharmony_ci				if (r != p) {
5178c2ecf20Sopenharmony_ci					tmp = rows[r];
5188c2ecf20Sopenharmony_ci					rows[r] = rows[p];
5198c2ecf20Sopenharmony_ci					rows[p] = tmp;
5208c2ecf20Sopenharmony_ci				}
5218c2ecf20Sopenharmony_ci				rem = r+1;
5228c2ecf20Sopenharmony_ci				break;
5238c2ecf20Sopenharmony_ci			}
5248c2ecf20Sopenharmony_ci		}
5258c2ecf20Sopenharmony_ci		if (rem) {
5268c2ecf20Sopenharmony_ci			/* perform elimination on remaining rows */
5278c2ecf20Sopenharmony_ci			tmp = rows[p];
5288c2ecf20Sopenharmony_ci			for (r = rem; r < m; r++) {
5298c2ecf20Sopenharmony_ci				if (rows[r] & mask)
5308c2ecf20Sopenharmony_ci					rows[r] ^= tmp;
5318c2ecf20Sopenharmony_ci			}
5328c2ecf20Sopenharmony_ci		} else {
5338c2ecf20Sopenharmony_ci			/* elimination not needed, store defective row index */
5348c2ecf20Sopenharmony_ci			param[k++] = c;
5358c2ecf20Sopenharmony_ci		}
5368c2ecf20Sopenharmony_ci		mask >>= 1;
5378c2ecf20Sopenharmony_ci	}
5388c2ecf20Sopenharmony_ci	/* rewrite system, inserting fake parameter rows */
5398c2ecf20Sopenharmony_ci	if (k > 0) {
5408c2ecf20Sopenharmony_ci		p = k;
5418c2ecf20Sopenharmony_ci		for (r = m-1; r >= 0; r--) {
5428c2ecf20Sopenharmony_ci			if ((r > m-1-k) && rows[r])
5438c2ecf20Sopenharmony_ci				/* system has no solution */
5448c2ecf20Sopenharmony_ci				return 0;
5458c2ecf20Sopenharmony_ci
5468c2ecf20Sopenharmony_ci			rows[r] = (p && (r == param[p-1])) ?
5478c2ecf20Sopenharmony_ci				p--, 1u << (m-r) : rows[r-p];
5488c2ecf20Sopenharmony_ci		}
5498c2ecf20Sopenharmony_ci	}
5508c2ecf20Sopenharmony_ci
5518c2ecf20Sopenharmony_ci	if (nsol != (1 << k))
5528c2ecf20Sopenharmony_ci		/* unexpected number of solutions */
5538c2ecf20Sopenharmony_ci		return 0;
5548c2ecf20Sopenharmony_ci
5558c2ecf20Sopenharmony_ci	for (p = 0; p < nsol; p++) {
5568c2ecf20Sopenharmony_ci		/* set parameters for p-th solution */
5578c2ecf20Sopenharmony_ci		for (c = 0; c < k; c++)
5588c2ecf20Sopenharmony_ci			rows[param[c]] = (rows[param[c]] & ~1)|((p >> c) & 1);
5598c2ecf20Sopenharmony_ci
5608c2ecf20Sopenharmony_ci		/* compute unique solution */
5618c2ecf20Sopenharmony_ci		tmp = 0;
5628c2ecf20Sopenharmony_ci		for (r = m-1; r >= 0; r--) {
5638c2ecf20Sopenharmony_ci			mask = rows[r] & (tmp|1);
5648c2ecf20Sopenharmony_ci			tmp |= parity(mask) << (m-r);
5658c2ecf20Sopenharmony_ci		}
5668c2ecf20Sopenharmony_ci		sol[p] = tmp >> 1;
5678c2ecf20Sopenharmony_ci	}
5688c2ecf20Sopenharmony_ci	return nsol;
5698c2ecf20Sopenharmony_ci}
5708c2ecf20Sopenharmony_ci
5718c2ecf20Sopenharmony_ci/*
5728c2ecf20Sopenharmony_ci * this function builds and solves a linear system for finding roots of a degree
5738c2ecf20Sopenharmony_ci * 4 affine monic polynomial X^4+aX^2+bX+c over GF(2^m).
5748c2ecf20Sopenharmony_ci */
5758c2ecf20Sopenharmony_cistatic int find_affine4_roots(struct bch_control *bch, unsigned int a,
5768c2ecf20Sopenharmony_ci			      unsigned int b, unsigned int c,
5778c2ecf20Sopenharmony_ci			      unsigned int *roots)
5788c2ecf20Sopenharmony_ci{
5798c2ecf20Sopenharmony_ci	int i, j, k;
5808c2ecf20Sopenharmony_ci	const int m = GF_M(bch);
5818c2ecf20Sopenharmony_ci	unsigned int mask = 0xff, t, rows[16] = {0,};
5828c2ecf20Sopenharmony_ci
5838c2ecf20Sopenharmony_ci	j = a_log(bch, b);
5848c2ecf20Sopenharmony_ci	k = a_log(bch, a);
5858c2ecf20Sopenharmony_ci	rows[0] = c;
5868c2ecf20Sopenharmony_ci
5878c2ecf20Sopenharmony_ci	/* buid linear system to solve X^4+aX^2+bX+c = 0 */
5888c2ecf20Sopenharmony_ci	for (i = 0; i < m; i++) {
5898c2ecf20Sopenharmony_ci		rows[i+1] = bch->a_pow_tab[4*i]^
5908c2ecf20Sopenharmony_ci			(a ? bch->a_pow_tab[mod_s(bch, k)] : 0)^
5918c2ecf20Sopenharmony_ci			(b ? bch->a_pow_tab[mod_s(bch, j)] : 0);
5928c2ecf20Sopenharmony_ci		j++;
5938c2ecf20Sopenharmony_ci		k += 2;
5948c2ecf20Sopenharmony_ci	}
5958c2ecf20Sopenharmony_ci	/*
5968c2ecf20Sopenharmony_ci	 * transpose 16x16 matrix before passing it to linear solver
5978c2ecf20Sopenharmony_ci	 * warning: this code assumes m < 16
5988c2ecf20Sopenharmony_ci	 */
5998c2ecf20Sopenharmony_ci	for (j = 8; j != 0; j >>= 1, mask ^= (mask << j)) {
6008c2ecf20Sopenharmony_ci		for (k = 0; k < 16; k = (k+j+1) & ~j) {
6018c2ecf20Sopenharmony_ci			t = ((rows[k] >> j)^rows[k+j]) & mask;
6028c2ecf20Sopenharmony_ci			rows[k] ^= (t << j);
6038c2ecf20Sopenharmony_ci			rows[k+j] ^= t;
6048c2ecf20Sopenharmony_ci		}
6058c2ecf20Sopenharmony_ci	}
6068c2ecf20Sopenharmony_ci	return solve_linear_system(bch, rows, roots, 4);
6078c2ecf20Sopenharmony_ci}
6088c2ecf20Sopenharmony_ci
6098c2ecf20Sopenharmony_ci/*
6108c2ecf20Sopenharmony_ci * compute root r of a degree 1 polynomial over GF(2^m) (returned as log(1/r))
6118c2ecf20Sopenharmony_ci */
6128c2ecf20Sopenharmony_cistatic int find_poly_deg1_roots(struct bch_control *bch, struct gf_poly *poly,
6138c2ecf20Sopenharmony_ci				unsigned int *roots)
6148c2ecf20Sopenharmony_ci{
6158c2ecf20Sopenharmony_ci	int n = 0;
6168c2ecf20Sopenharmony_ci
6178c2ecf20Sopenharmony_ci	if (poly->c[0])
6188c2ecf20Sopenharmony_ci		/* poly[X] = bX+c with c!=0, root=c/b */
6198c2ecf20Sopenharmony_ci		roots[n++] = mod_s(bch, GF_N(bch)-bch->a_log_tab[poly->c[0]]+
6208c2ecf20Sopenharmony_ci				   bch->a_log_tab[poly->c[1]]);
6218c2ecf20Sopenharmony_ci	return n;
6228c2ecf20Sopenharmony_ci}
6238c2ecf20Sopenharmony_ci
6248c2ecf20Sopenharmony_ci/*
6258c2ecf20Sopenharmony_ci * compute roots of a degree 2 polynomial over GF(2^m)
6268c2ecf20Sopenharmony_ci */
6278c2ecf20Sopenharmony_cistatic int find_poly_deg2_roots(struct bch_control *bch, struct gf_poly *poly,
6288c2ecf20Sopenharmony_ci				unsigned int *roots)
6298c2ecf20Sopenharmony_ci{
6308c2ecf20Sopenharmony_ci	int n = 0, i, l0, l1, l2;
6318c2ecf20Sopenharmony_ci	unsigned int u, v, r;
6328c2ecf20Sopenharmony_ci
6338c2ecf20Sopenharmony_ci	if (poly->c[0] && poly->c[1]) {
6348c2ecf20Sopenharmony_ci
6358c2ecf20Sopenharmony_ci		l0 = bch->a_log_tab[poly->c[0]];
6368c2ecf20Sopenharmony_ci		l1 = bch->a_log_tab[poly->c[1]];
6378c2ecf20Sopenharmony_ci		l2 = bch->a_log_tab[poly->c[2]];
6388c2ecf20Sopenharmony_ci
6398c2ecf20Sopenharmony_ci		/* using z=a/bX, transform aX^2+bX+c into z^2+z+u (u=ac/b^2) */
6408c2ecf20Sopenharmony_ci		u = a_pow(bch, l0+l2+2*(GF_N(bch)-l1));
6418c2ecf20Sopenharmony_ci		/*
6428c2ecf20Sopenharmony_ci		 * let u = sum(li.a^i) i=0..m-1; then compute r = sum(li.xi):
6438c2ecf20Sopenharmony_ci		 * r^2+r = sum(li.(xi^2+xi)) = sum(li.(a^i+Tr(a^i).a^k)) =
6448c2ecf20Sopenharmony_ci		 * u + sum(li.Tr(a^i).a^k) = u+a^k.Tr(sum(li.a^i)) = u+a^k.Tr(u)
6458c2ecf20Sopenharmony_ci		 * i.e. r and r+1 are roots iff Tr(u)=0
6468c2ecf20Sopenharmony_ci		 */
6478c2ecf20Sopenharmony_ci		r = 0;
6488c2ecf20Sopenharmony_ci		v = u;
6498c2ecf20Sopenharmony_ci		while (v) {
6508c2ecf20Sopenharmony_ci			i = deg(v);
6518c2ecf20Sopenharmony_ci			r ^= bch->xi_tab[i];
6528c2ecf20Sopenharmony_ci			v ^= (1 << i);
6538c2ecf20Sopenharmony_ci		}
6548c2ecf20Sopenharmony_ci		/* verify root */
6558c2ecf20Sopenharmony_ci		if ((gf_sqr(bch, r)^r) == u) {
6568c2ecf20Sopenharmony_ci			/* reverse z=a/bX transformation and compute log(1/r) */
6578c2ecf20Sopenharmony_ci			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
6588c2ecf20Sopenharmony_ci					    bch->a_log_tab[r]+l2);
6598c2ecf20Sopenharmony_ci			roots[n++] = modulo(bch, 2*GF_N(bch)-l1-
6608c2ecf20Sopenharmony_ci					    bch->a_log_tab[r^1]+l2);
6618c2ecf20Sopenharmony_ci		}
6628c2ecf20Sopenharmony_ci	}
6638c2ecf20Sopenharmony_ci	return n;
6648c2ecf20Sopenharmony_ci}
6658c2ecf20Sopenharmony_ci
6668c2ecf20Sopenharmony_ci/*
6678c2ecf20Sopenharmony_ci * compute roots of a degree 3 polynomial over GF(2^m)
6688c2ecf20Sopenharmony_ci */
6698c2ecf20Sopenharmony_cistatic int find_poly_deg3_roots(struct bch_control *bch, struct gf_poly *poly,
6708c2ecf20Sopenharmony_ci				unsigned int *roots)
6718c2ecf20Sopenharmony_ci{
6728c2ecf20Sopenharmony_ci	int i, n = 0;
6738c2ecf20Sopenharmony_ci	unsigned int a, b, c, a2, b2, c2, e3, tmp[4];
6748c2ecf20Sopenharmony_ci
6758c2ecf20Sopenharmony_ci	if (poly->c[0]) {
6768c2ecf20Sopenharmony_ci		/* transform polynomial into monic X^3 + a2X^2 + b2X + c2 */
6778c2ecf20Sopenharmony_ci		e3 = poly->c[3];
6788c2ecf20Sopenharmony_ci		c2 = gf_div(bch, poly->c[0], e3);
6798c2ecf20Sopenharmony_ci		b2 = gf_div(bch, poly->c[1], e3);
6808c2ecf20Sopenharmony_ci		a2 = gf_div(bch, poly->c[2], e3);
6818c2ecf20Sopenharmony_ci
6828c2ecf20Sopenharmony_ci		/* (X+a2)(X^3+a2X^2+b2X+c2) = X^4+aX^2+bX+c (affine) */
6838c2ecf20Sopenharmony_ci		c = gf_mul(bch, a2, c2);           /* c = a2c2      */
6848c2ecf20Sopenharmony_ci		b = gf_mul(bch, a2, b2)^c2;        /* b = a2b2 + c2 */
6858c2ecf20Sopenharmony_ci		a = gf_sqr(bch, a2)^b2;            /* a = a2^2 + b2 */
6868c2ecf20Sopenharmony_ci
6878c2ecf20Sopenharmony_ci		/* find the 4 roots of this affine polynomial */
6888c2ecf20Sopenharmony_ci		if (find_affine4_roots(bch, a, b, c, tmp) == 4) {
6898c2ecf20Sopenharmony_ci			/* remove a2 from final list of roots */
6908c2ecf20Sopenharmony_ci			for (i = 0; i < 4; i++) {
6918c2ecf20Sopenharmony_ci				if (tmp[i] != a2)
6928c2ecf20Sopenharmony_ci					roots[n++] = a_ilog(bch, tmp[i]);
6938c2ecf20Sopenharmony_ci			}
6948c2ecf20Sopenharmony_ci		}
6958c2ecf20Sopenharmony_ci	}
6968c2ecf20Sopenharmony_ci	return n;
6978c2ecf20Sopenharmony_ci}
6988c2ecf20Sopenharmony_ci
6998c2ecf20Sopenharmony_ci/*
7008c2ecf20Sopenharmony_ci * compute roots of a degree 4 polynomial over GF(2^m)
7018c2ecf20Sopenharmony_ci */
7028c2ecf20Sopenharmony_cistatic int find_poly_deg4_roots(struct bch_control *bch, struct gf_poly *poly,
7038c2ecf20Sopenharmony_ci				unsigned int *roots)
7048c2ecf20Sopenharmony_ci{
7058c2ecf20Sopenharmony_ci	int i, l, n = 0;
7068c2ecf20Sopenharmony_ci	unsigned int a, b, c, d, e = 0, f, a2, b2, c2, e4;
7078c2ecf20Sopenharmony_ci
7088c2ecf20Sopenharmony_ci	if (poly->c[0] == 0)
7098c2ecf20Sopenharmony_ci		return 0;
7108c2ecf20Sopenharmony_ci
7118c2ecf20Sopenharmony_ci	/* transform polynomial into monic X^4 + aX^3 + bX^2 + cX + d */
7128c2ecf20Sopenharmony_ci	e4 = poly->c[4];
7138c2ecf20Sopenharmony_ci	d = gf_div(bch, poly->c[0], e4);
7148c2ecf20Sopenharmony_ci	c = gf_div(bch, poly->c[1], e4);
7158c2ecf20Sopenharmony_ci	b = gf_div(bch, poly->c[2], e4);
7168c2ecf20Sopenharmony_ci	a = gf_div(bch, poly->c[3], e4);
7178c2ecf20Sopenharmony_ci
7188c2ecf20Sopenharmony_ci	/* use Y=1/X transformation to get an affine polynomial */
7198c2ecf20Sopenharmony_ci	if (a) {
7208c2ecf20Sopenharmony_ci		/* first, eliminate cX by using z=X+e with ae^2+c=0 */
7218c2ecf20Sopenharmony_ci		if (c) {
7228c2ecf20Sopenharmony_ci			/* compute e such that e^2 = c/a */
7238c2ecf20Sopenharmony_ci			f = gf_div(bch, c, a);
7248c2ecf20Sopenharmony_ci			l = a_log(bch, f);
7258c2ecf20Sopenharmony_ci			l += (l & 1) ? GF_N(bch) : 0;
7268c2ecf20Sopenharmony_ci			e = a_pow(bch, l/2);
7278c2ecf20Sopenharmony_ci			/*
7288c2ecf20Sopenharmony_ci			 * use transformation z=X+e:
7298c2ecf20Sopenharmony_ci			 * z^4+e^4 + a(z^3+ez^2+e^2z+e^3) + b(z^2+e^2) +cz+ce+d
7308c2ecf20Sopenharmony_ci			 * z^4 + az^3 + (ae+b)z^2 + (ae^2+c)z+e^4+be^2+ae^3+ce+d
7318c2ecf20Sopenharmony_ci			 * z^4 + az^3 + (ae+b)z^2 + e^4+be^2+d
7328c2ecf20Sopenharmony_ci			 * z^4 + az^3 +     b'z^2 + d'
7338c2ecf20Sopenharmony_ci			 */
7348c2ecf20Sopenharmony_ci			d = a_pow(bch, 2*l)^gf_mul(bch, b, f)^d;
7358c2ecf20Sopenharmony_ci			b = gf_mul(bch, a, e)^b;
7368c2ecf20Sopenharmony_ci		}
7378c2ecf20Sopenharmony_ci		/* now, use Y=1/X to get Y^4 + b/dY^2 + a/dY + 1/d */
7388c2ecf20Sopenharmony_ci		if (d == 0)
7398c2ecf20Sopenharmony_ci			/* assume all roots have multiplicity 1 */
7408c2ecf20Sopenharmony_ci			return 0;
7418c2ecf20Sopenharmony_ci
7428c2ecf20Sopenharmony_ci		c2 = gf_inv(bch, d);
7438c2ecf20Sopenharmony_ci		b2 = gf_div(bch, a, d);
7448c2ecf20Sopenharmony_ci		a2 = gf_div(bch, b, d);
7458c2ecf20Sopenharmony_ci	} else {
7468c2ecf20Sopenharmony_ci		/* polynomial is already affine */
7478c2ecf20Sopenharmony_ci		c2 = d;
7488c2ecf20Sopenharmony_ci		b2 = c;
7498c2ecf20Sopenharmony_ci		a2 = b;
7508c2ecf20Sopenharmony_ci	}
7518c2ecf20Sopenharmony_ci	/* find the 4 roots of this affine polynomial */
7528c2ecf20Sopenharmony_ci	if (find_affine4_roots(bch, a2, b2, c2, roots) == 4) {
7538c2ecf20Sopenharmony_ci		for (i = 0; i < 4; i++) {
7548c2ecf20Sopenharmony_ci			/* post-process roots (reverse transformations) */
7558c2ecf20Sopenharmony_ci			f = a ? gf_inv(bch, roots[i]) : roots[i];
7568c2ecf20Sopenharmony_ci			roots[i] = a_ilog(bch, f^e);
7578c2ecf20Sopenharmony_ci		}
7588c2ecf20Sopenharmony_ci		n = 4;
7598c2ecf20Sopenharmony_ci	}
7608c2ecf20Sopenharmony_ci	return n;
7618c2ecf20Sopenharmony_ci}
7628c2ecf20Sopenharmony_ci
7638c2ecf20Sopenharmony_ci/*
7648c2ecf20Sopenharmony_ci * build monic, log-based representation of a polynomial
7658c2ecf20Sopenharmony_ci */
7668c2ecf20Sopenharmony_cistatic void gf_poly_logrep(struct bch_control *bch,
7678c2ecf20Sopenharmony_ci			   const struct gf_poly *a, int *rep)
7688c2ecf20Sopenharmony_ci{
7698c2ecf20Sopenharmony_ci	int i, d = a->deg, l = GF_N(bch)-a_log(bch, a->c[a->deg]);
7708c2ecf20Sopenharmony_ci
7718c2ecf20Sopenharmony_ci	/* represent 0 values with -1; warning, rep[d] is not set to 1 */
7728c2ecf20Sopenharmony_ci	for (i = 0; i < d; i++)
7738c2ecf20Sopenharmony_ci		rep[i] = a->c[i] ? mod_s(bch, a_log(bch, a->c[i])+l) : -1;
7748c2ecf20Sopenharmony_ci}
7758c2ecf20Sopenharmony_ci
7768c2ecf20Sopenharmony_ci/*
7778c2ecf20Sopenharmony_ci * compute polynomial Euclidean division remainder in GF(2^m)[X]
7788c2ecf20Sopenharmony_ci */
7798c2ecf20Sopenharmony_cistatic void gf_poly_mod(struct bch_control *bch, struct gf_poly *a,
7808c2ecf20Sopenharmony_ci			const struct gf_poly *b, int *rep)
7818c2ecf20Sopenharmony_ci{
7828c2ecf20Sopenharmony_ci	int la, p, m;
7838c2ecf20Sopenharmony_ci	unsigned int i, j, *c = a->c;
7848c2ecf20Sopenharmony_ci	const unsigned int d = b->deg;
7858c2ecf20Sopenharmony_ci
7868c2ecf20Sopenharmony_ci	if (a->deg < d)
7878c2ecf20Sopenharmony_ci		return;
7888c2ecf20Sopenharmony_ci
7898c2ecf20Sopenharmony_ci	/* reuse or compute log representation of denominator */
7908c2ecf20Sopenharmony_ci	if (!rep) {
7918c2ecf20Sopenharmony_ci		rep = bch->cache;
7928c2ecf20Sopenharmony_ci		gf_poly_logrep(bch, b, rep);
7938c2ecf20Sopenharmony_ci	}
7948c2ecf20Sopenharmony_ci
7958c2ecf20Sopenharmony_ci	for (j = a->deg; j >= d; j--) {
7968c2ecf20Sopenharmony_ci		if (c[j]) {
7978c2ecf20Sopenharmony_ci			la = a_log(bch, c[j]);
7988c2ecf20Sopenharmony_ci			p = j-d;
7998c2ecf20Sopenharmony_ci			for (i = 0; i < d; i++, p++) {
8008c2ecf20Sopenharmony_ci				m = rep[i];
8018c2ecf20Sopenharmony_ci				if (m >= 0)
8028c2ecf20Sopenharmony_ci					c[p] ^= bch->a_pow_tab[mod_s(bch,
8038c2ecf20Sopenharmony_ci								     m+la)];
8048c2ecf20Sopenharmony_ci			}
8058c2ecf20Sopenharmony_ci		}
8068c2ecf20Sopenharmony_ci	}
8078c2ecf20Sopenharmony_ci	a->deg = d-1;
8088c2ecf20Sopenharmony_ci	while (!c[a->deg] && a->deg)
8098c2ecf20Sopenharmony_ci		a->deg--;
8108c2ecf20Sopenharmony_ci}
8118c2ecf20Sopenharmony_ci
8128c2ecf20Sopenharmony_ci/*
8138c2ecf20Sopenharmony_ci * compute polynomial Euclidean division quotient in GF(2^m)[X]
8148c2ecf20Sopenharmony_ci */
8158c2ecf20Sopenharmony_cistatic void gf_poly_div(struct bch_control *bch, struct gf_poly *a,
8168c2ecf20Sopenharmony_ci			const struct gf_poly *b, struct gf_poly *q)
8178c2ecf20Sopenharmony_ci{
8188c2ecf20Sopenharmony_ci	if (a->deg >= b->deg) {
8198c2ecf20Sopenharmony_ci		q->deg = a->deg-b->deg;
8208c2ecf20Sopenharmony_ci		/* compute a mod b (modifies a) */
8218c2ecf20Sopenharmony_ci		gf_poly_mod(bch, a, b, NULL);
8228c2ecf20Sopenharmony_ci		/* quotient is stored in upper part of polynomial a */
8238c2ecf20Sopenharmony_ci		memcpy(q->c, &a->c[b->deg], (1+q->deg)*sizeof(unsigned int));
8248c2ecf20Sopenharmony_ci	} else {
8258c2ecf20Sopenharmony_ci		q->deg = 0;
8268c2ecf20Sopenharmony_ci		q->c[0] = 0;
8278c2ecf20Sopenharmony_ci	}
8288c2ecf20Sopenharmony_ci}
8298c2ecf20Sopenharmony_ci
8308c2ecf20Sopenharmony_ci/*
8318c2ecf20Sopenharmony_ci * compute polynomial GCD (Greatest Common Divisor) in GF(2^m)[X]
8328c2ecf20Sopenharmony_ci */
8338c2ecf20Sopenharmony_cistatic struct gf_poly *gf_poly_gcd(struct bch_control *bch, struct gf_poly *a,
8348c2ecf20Sopenharmony_ci				   struct gf_poly *b)
8358c2ecf20Sopenharmony_ci{
8368c2ecf20Sopenharmony_ci	struct gf_poly *tmp;
8378c2ecf20Sopenharmony_ci
8388c2ecf20Sopenharmony_ci	dbg("gcd(%s,%s)=", gf_poly_str(a), gf_poly_str(b));
8398c2ecf20Sopenharmony_ci
8408c2ecf20Sopenharmony_ci	if (a->deg < b->deg) {
8418c2ecf20Sopenharmony_ci		tmp = b;
8428c2ecf20Sopenharmony_ci		b = a;
8438c2ecf20Sopenharmony_ci		a = tmp;
8448c2ecf20Sopenharmony_ci	}
8458c2ecf20Sopenharmony_ci
8468c2ecf20Sopenharmony_ci	while (b->deg > 0) {
8478c2ecf20Sopenharmony_ci		gf_poly_mod(bch, a, b, NULL);
8488c2ecf20Sopenharmony_ci		tmp = b;
8498c2ecf20Sopenharmony_ci		b = a;
8508c2ecf20Sopenharmony_ci		a = tmp;
8518c2ecf20Sopenharmony_ci	}
8528c2ecf20Sopenharmony_ci
8538c2ecf20Sopenharmony_ci	dbg("%s\n", gf_poly_str(a));
8548c2ecf20Sopenharmony_ci
8558c2ecf20Sopenharmony_ci	return a;
8568c2ecf20Sopenharmony_ci}
8578c2ecf20Sopenharmony_ci
8588c2ecf20Sopenharmony_ci/*
8598c2ecf20Sopenharmony_ci * Given a polynomial f and an integer k, compute Tr(a^kX) mod f
8608c2ecf20Sopenharmony_ci * This is used in Berlekamp Trace algorithm for splitting polynomials
8618c2ecf20Sopenharmony_ci */
8628c2ecf20Sopenharmony_cistatic void compute_trace_bk_mod(struct bch_control *bch, int k,
8638c2ecf20Sopenharmony_ci				 const struct gf_poly *f, struct gf_poly *z,
8648c2ecf20Sopenharmony_ci				 struct gf_poly *out)
8658c2ecf20Sopenharmony_ci{
8668c2ecf20Sopenharmony_ci	const int m = GF_M(bch);
8678c2ecf20Sopenharmony_ci	int i, j;
8688c2ecf20Sopenharmony_ci
8698c2ecf20Sopenharmony_ci	/* z contains z^2j mod f */
8708c2ecf20Sopenharmony_ci	z->deg = 1;
8718c2ecf20Sopenharmony_ci	z->c[0] = 0;
8728c2ecf20Sopenharmony_ci	z->c[1] = bch->a_pow_tab[k];
8738c2ecf20Sopenharmony_ci
8748c2ecf20Sopenharmony_ci	out->deg = 0;
8758c2ecf20Sopenharmony_ci	memset(out, 0, GF_POLY_SZ(f->deg));
8768c2ecf20Sopenharmony_ci
8778c2ecf20Sopenharmony_ci	/* compute f log representation only once */
8788c2ecf20Sopenharmony_ci	gf_poly_logrep(bch, f, bch->cache);
8798c2ecf20Sopenharmony_ci
8808c2ecf20Sopenharmony_ci	for (i = 0; i < m; i++) {
8818c2ecf20Sopenharmony_ci		/* add a^(k*2^i)(z^(2^i) mod f) and compute (z^(2^i) mod f)^2 */
8828c2ecf20Sopenharmony_ci		for (j = z->deg; j >= 0; j--) {
8838c2ecf20Sopenharmony_ci			out->c[j] ^= z->c[j];
8848c2ecf20Sopenharmony_ci			z->c[2*j] = gf_sqr(bch, z->c[j]);
8858c2ecf20Sopenharmony_ci			z->c[2*j+1] = 0;
8868c2ecf20Sopenharmony_ci		}
8878c2ecf20Sopenharmony_ci		if (z->deg > out->deg)
8888c2ecf20Sopenharmony_ci			out->deg = z->deg;
8898c2ecf20Sopenharmony_ci
8908c2ecf20Sopenharmony_ci		if (i < m-1) {
8918c2ecf20Sopenharmony_ci			z->deg *= 2;
8928c2ecf20Sopenharmony_ci			/* z^(2(i+1)) mod f = (z^(2^i) mod f)^2 mod f */
8938c2ecf20Sopenharmony_ci			gf_poly_mod(bch, z, f, bch->cache);
8948c2ecf20Sopenharmony_ci		}
8958c2ecf20Sopenharmony_ci	}
8968c2ecf20Sopenharmony_ci	while (!out->c[out->deg] && out->deg)
8978c2ecf20Sopenharmony_ci		out->deg--;
8988c2ecf20Sopenharmony_ci
8998c2ecf20Sopenharmony_ci	dbg("Tr(a^%d.X) mod f = %s\n", k, gf_poly_str(out));
9008c2ecf20Sopenharmony_ci}
9018c2ecf20Sopenharmony_ci
9028c2ecf20Sopenharmony_ci/*
9038c2ecf20Sopenharmony_ci * factor a polynomial using Berlekamp Trace algorithm (BTA)
9048c2ecf20Sopenharmony_ci */
9058c2ecf20Sopenharmony_cistatic void factor_polynomial(struct bch_control *bch, int k, struct gf_poly *f,
9068c2ecf20Sopenharmony_ci			      struct gf_poly **g, struct gf_poly **h)
9078c2ecf20Sopenharmony_ci{
9088c2ecf20Sopenharmony_ci	struct gf_poly *f2 = bch->poly_2t[0];
9098c2ecf20Sopenharmony_ci	struct gf_poly *q  = bch->poly_2t[1];
9108c2ecf20Sopenharmony_ci	struct gf_poly *tk = bch->poly_2t[2];
9118c2ecf20Sopenharmony_ci	struct gf_poly *z  = bch->poly_2t[3];
9128c2ecf20Sopenharmony_ci	struct gf_poly *gcd;
9138c2ecf20Sopenharmony_ci
9148c2ecf20Sopenharmony_ci	dbg("factoring %s...\n", gf_poly_str(f));
9158c2ecf20Sopenharmony_ci
9168c2ecf20Sopenharmony_ci	*g = f;
9178c2ecf20Sopenharmony_ci	*h = NULL;
9188c2ecf20Sopenharmony_ci
9198c2ecf20Sopenharmony_ci	/* tk = Tr(a^k.X) mod f */
9208c2ecf20Sopenharmony_ci	compute_trace_bk_mod(bch, k, f, z, tk);
9218c2ecf20Sopenharmony_ci
9228c2ecf20Sopenharmony_ci	if (tk->deg > 0) {
9238c2ecf20Sopenharmony_ci		/* compute g = gcd(f, tk) (destructive operation) */
9248c2ecf20Sopenharmony_ci		gf_poly_copy(f2, f);
9258c2ecf20Sopenharmony_ci		gcd = gf_poly_gcd(bch, f2, tk);
9268c2ecf20Sopenharmony_ci		if (gcd->deg < f->deg) {
9278c2ecf20Sopenharmony_ci			/* compute h=f/gcd(f,tk); this will modify f and q */
9288c2ecf20Sopenharmony_ci			gf_poly_div(bch, f, gcd, q);
9298c2ecf20Sopenharmony_ci			/* store g and h in-place (clobbering f) */
9308c2ecf20Sopenharmony_ci			*h = &((struct gf_poly_deg1 *)f)[gcd->deg].poly;
9318c2ecf20Sopenharmony_ci			gf_poly_copy(*g, gcd);
9328c2ecf20Sopenharmony_ci			gf_poly_copy(*h, q);
9338c2ecf20Sopenharmony_ci		}
9348c2ecf20Sopenharmony_ci	}
9358c2ecf20Sopenharmony_ci}
9368c2ecf20Sopenharmony_ci
9378c2ecf20Sopenharmony_ci/*
9388c2ecf20Sopenharmony_ci * find roots of a polynomial, using BTZ algorithm; see the beginning of this
9398c2ecf20Sopenharmony_ci * file for details
9408c2ecf20Sopenharmony_ci */
9418c2ecf20Sopenharmony_cistatic int find_poly_roots(struct bch_control *bch, unsigned int k,
9428c2ecf20Sopenharmony_ci			   struct gf_poly *poly, unsigned int *roots)
9438c2ecf20Sopenharmony_ci{
9448c2ecf20Sopenharmony_ci	int cnt;
9458c2ecf20Sopenharmony_ci	struct gf_poly *f1, *f2;
9468c2ecf20Sopenharmony_ci
9478c2ecf20Sopenharmony_ci	switch (poly->deg) {
9488c2ecf20Sopenharmony_ci		/* handle low degree polynomials with ad hoc techniques */
9498c2ecf20Sopenharmony_ci	case 1:
9508c2ecf20Sopenharmony_ci		cnt = find_poly_deg1_roots(bch, poly, roots);
9518c2ecf20Sopenharmony_ci		break;
9528c2ecf20Sopenharmony_ci	case 2:
9538c2ecf20Sopenharmony_ci		cnt = find_poly_deg2_roots(bch, poly, roots);
9548c2ecf20Sopenharmony_ci		break;
9558c2ecf20Sopenharmony_ci	case 3:
9568c2ecf20Sopenharmony_ci		cnt = find_poly_deg3_roots(bch, poly, roots);
9578c2ecf20Sopenharmony_ci		break;
9588c2ecf20Sopenharmony_ci	case 4:
9598c2ecf20Sopenharmony_ci		cnt = find_poly_deg4_roots(bch, poly, roots);
9608c2ecf20Sopenharmony_ci		break;
9618c2ecf20Sopenharmony_ci	default:
9628c2ecf20Sopenharmony_ci		/* factor polynomial using Berlekamp Trace Algorithm (BTA) */
9638c2ecf20Sopenharmony_ci		cnt = 0;
9648c2ecf20Sopenharmony_ci		if (poly->deg && (k <= GF_M(bch))) {
9658c2ecf20Sopenharmony_ci			factor_polynomial(bch, k, poly, &f1, &f2);
9668c2ecf20Sopenharmony_ci			if (f1)
9678c2ecf20Sopenharmony_ci				cnt += find_poly_roots(bch, k+1, f1, roots);
9688c2ecf20Sopenharmony_ci			if (f2)
9698c2ecf20Sopenharmony_ci				cnt += find_poly_roots(bch, k+1, f2, roots+cnt);
9708c2ecf20Sopenharmony_ci		}
9718c2ecf20Sopenharmony_ci		break;
9728c2ecf20Sopenharmony_ci	}
9738c2ecf20Sopenharmony_ci	return cnt;
9748c2ecf20Sopenharmony_ci}
9758c2ecf20Sopenharmony_ci
9768c2ecf20Sopenharmony_ci#if defined(USE_CHIEN_SEARCH)
9778c2ecf20Sopenharmony_ci/*
9788c2ecf20Sopenharmony_ci * exhaustive root search (Chien) implementation - not used, included only for
9798c2ecf20Sopenharmony_ci * reference/comparison tests
9808c2ecf20Sopenharmony_ci */
9818c2ecf20Sopenharmony_cistatic int chien_search(struct bch_control *bch, unsigned int len,
9828c2ecf20Sopenharmony_ci			struct gf_poly *p, unsigned int *roots)
9838c2ecf20Sopenharmony_ci{
9848c2ecf20Sopenharmony_ci	int m;
9858c2ecf20Sopenharmony_ci	unsigned int i, j, syn, syn0, count = 0;
9868c2ecf20Sopenharmony_ci	const unsigned int k = 8*len+bch->ecc_bits;
9878c2ecf20Sopenharmony_ci
9888c2ecf20Sopenharmony_ci	/* use a log-based representation of polynomial */
9898c2ecf20Sopenharmony_ci	gf_poly_logrep(bch, p, bch->cache);
9908c2ecf20Sopenharmony_ci	bch->cache[p->deg] = 0;
9918c2ecf20Sopenharmony_ci	syn0 = gf_div(bch, p->c[0], p->c[p->deg]);
9928c2ecf20Sopenharmony_ci
9938c2ecf20Sopenharmony_ci	for (i = GF_N(bch)-k+1; i <= GF_N(bch); i++) {
9948c2ecf20Sopenharmony_ci		/* compute elp(a^i) */
9958c2ecf20Sopenharmony_ci		for (j = 1, syn = syn0; j <= p->deg; j++) {
9968c2ecf20Sopenharmony_ci			m = bch->cache[j];
9978c2ecf20Sopenharmony_ci			if (m >= 0)
9988c2ecf20Sopenharmony_ci				syn ^= a_pow(bch, m+j*i);
9998c2ecf20Sopenharmony_ci		}
10008c2ecf20Sopenharmony_ci		if (syn == 0) {
10018c2ecf20Sopenharmony_ci			roots[count++] = GF_N(bch)-i;
10028c2ecf20Sopenharmony_ci			if (count == p->deg)
10038c2ecf20Sopenharmony_ci				break;
10048c2ecf20Sopenharmony_ci		}
10058c2ecf20Sopenharmony_ci	}
10068c2ecf20Sopenharmony_ci	return (count == p->deg) ? count : 0;
10078c2ecf20Sopenharmony_ci}
10088c2ecf20Sopenharmony_ci#define find_poly_roots(_p, _k, _elp, _loc) chien_search(_p, len, _elp, _loc)
10098c2ecf20Sopenharmony_ci#endif /* USE_CHIEN_SEARCH */
10108c2ecf20Sopenharmony_ci
10118c2ecf20Sopenharmony_ci/**
10128c2ecf20Sopenharmony_ci * bch_decode - decode received codeword and find bit error locations
10138c2ecf20Sopenharmony_ci * @bch:      BCH control structure
10148c2ecf20Sopenharmony_ci * @data:     received data, ignored if @calc_ecc is provided
10158c2ecf20Sopenharmony_ci * @len:      data length in bytes, must always be provided
10168c2ecf20Sopenharmony_ci * @recv_ecc: received ecc, if NULL then assume it was XORed in @calc_ecc
10178c2ecf20Sopenharmony_ci * @calc_ecc: calculated ecc, if NULL then calc_ecc is computed from @data
10188c2ecf20Sopenharmony_ci * @syn:      hw computed syndrome data (if NULL, syndrome is calculated)
10198c2ecf20Sopenharmony_ci * @errloc:   output array of error locations
10208c2ecf20Sopenharmony_ci *
10218c2ecf20Sopenharmony_ci * Returns:
10228c2ecf20Sopenharmony_ci *  The number of errors found, or -EBADMSG if decoding failed, or -EINVAL if
10238c2ecf20Sopenharmony_ci *  invalid parameters were provided
10248c2ecf20Sopenharmony_ci *
10258c2ecf20Sopenharmony_ci * Depending on the available hw BCH support and the need to compute @calc_ecc
10268c2ecf20Sopenharmony_ci * separately (using bch_encode()), this function should be called with one of
10278c2ecf20Sopenharmony_ci * the following parameter configurations -
10288c2ecf20Sopenharmony_ci *
10298c2ecf20Sopenharmony_ci * by providing @data and @recv_ecc only:
10308c2ecf20Sopenharmony_ci *   bch_decode(@bch, @data, @len, @recv_ecc, NULL, NULL, @errloc)
10318c2ecf20Sopenharmony_ci *
10328c2ecf20Sopenharmony_ci * by providing @recv_ecc and @calc_ecc:
10338c2ecf20Sopenharmony_ci *   bch_decode(@bch, NULL, @len, @recv_ecc, @calc_ecc, NULL, @errloc)
10348c2ecf20Sopenharmony_ci *
10358c2ecf20Sopenharmony_ci * by providing ecc = recv_ecc XOR calc_ecc:
10368c2ecf20Sopenharmony_ci *   bch_decode(@bch, NULL, @len, NULL, ecc, NULL, @errloc)
10378c2ecf20Sopenharmony_ci *
10388c2ecf20Sopenharmony_ci * by providing syndrome results @syn:
10398c2ecf20Sopenharmony_ci *   bch_decode(@bch, NULL, @len, NULL, NULL, @syn, @errloc)
10408c2ecf20Sopenharmony_ci *
10418c2ecf20Sopenharmony_ci * Once bch_decode() has successfully returned with a positive value, error
10428c2ecf20Sopenharmony_ci * locations returned in array @errloc should be interpreted as follows -
10438c2ecf20Sopenharmony_ci *
10448c2ecf20Sopenharmony_ci * if (errloc[n] >= 8*len), then n-th error is located in ecc (no need for
10458c2ecf20Sopenharmony_ci * data correction)
10468c2ecf20Sopenharmony_ci *
10478c2ecf20Sopenharmony_ci * if (errloc[n] < 8*len), then n-th error is located in data and can be
10488c2ecf20Sopenharmony_ci * corrected with statement data[errloc[n]/8] ^= 1 << (errloc[n] % 8);
10498c2ecf20Sopenharmony_ci *
10508c2ecf20Sopenharmony_ci * Note that this function does not perform any data correction by itself, it
10518c2ecf20Sopenharmony_ci * merely indicates error locations.
10528c2ecf20Sopenharmony_ci */
10538c2ecf20Sopenharmony_ciint bch_decode(struct bch_control *bch, const uint8_t *data, unsigned int len,
10548c2ecf20Sopenharmony_ci	       const uint8_t *recv_ecc, const uint8_t *calc_ecc,
10558c2ecf20Sopenharmony_ci	       const unsigned int *syn, unsigned int *errloc)
10568c2ecf20Sopenharmony_ci{
10578c2ecf20Sopenharmony_ci	const unsigned int ecc_words = BCH_ECC_WORDS(bch);
10588c2ecf20Sopenharmony_ci	unsigned int nbits;
10598c2ecf20Sopenharmony_ci	int i, err, nroots;
10608c2ecf20Sopenharmony_ci	uint32_t sum;
10618c2ecf20Sopenharmony_ci
10628c2ecf20Sopenharmony_ci	/* sanity check: make sure data length can be handled */
10638c2ecf20Sopenharmony_ci	if (8*len > (bch->n-bch->ecc_bits))
10648c2ecf20Sopenharmony_ci		return -EINVAL;
10658c2ecf20Sopenharmony_ci
10668c2ecf20Sopenharmony_ci	/* if caller does not provide syndromes, compute them */
10678c2ecf20Sopenharmony_ci	if (!syn) {
10688c2ecf20Sopenharmony_ci		if (!calc_ecc) {
10698c2ecf20Sopenharmony_ci			/* compute received data ecc into an internal buffer */
10708c2ecf20Sopenharmony_ci			if (!data || !recv_ecc)
10718c2ecf20Sopenharmony_ci				return -EINVAL;
10728c2ecf20Sopenharmony_ci			bch_encode(bch, data, len, NULL);
10738c2ecf20Sopenharmony_ci		} else {
10748c2ecf20Sopenharmony_ci			/* load provided calculated ecc */
10758c2ecf20Sopenharmony_ci			load_ecc8(bch, bch->ecc_buf, calc_ecc);
10768c2ecf20Sopenharmony_ci		}
10778c2ecf20Sopenharmony_ci		/* load received ecc or assume it was XORed in calc_ecc */
10788c2ecf20Sopenharmony_ci		if (recv_ecc) {
10798c2ecf20Sopenharmony_ci			load_ecc8(bch, bch->ecc_buf2, recv_ecc);
10808c2ecf20Sopenharmony_ci			/* XOR received and calculated ecc */
10818c2ecf20Sopenharmony_ci			for (i = 0, sum = 0; i < (int)ecc_words; i++) {
10828c2ecf20Sopenharmony_ci				bch->ecc_buf[i] ^= bch->ecc_buf2[i];
10838c2ecf20Sopenharmony_ci				sum |= bch->ecc_buf[i];
10848c2ecf20Sopenharmony_ci			}
10858c2ecf20Sopenharmony_ci			if (!sum)
10868c2ecf20Sopenharmony_ci				/* no error found */
10878c2ecf20Sopenharmony_ci				return 0;
10888c2ecf20Sopenharmony_ci		}
10898c2ecf20Sopenharmony_ci		compute_syndromes(bch, bch->ecc_buf, bch->syn);
10908c2ecf20Sopenharmony_ci		syn = bch->syn;
10918c2ecf20Sopenharmony_ci	}
10928c2ecf20Sopenharmony_ci
10938c2ecf20Sopenharmony_ci	err = compute_error_locator_polynomial(bch, syn);
10948c2ecf20Sopenharmony_ci	if (err > 0) {
10958c2ecf20Sopenharmony_ci		nroots = find_poly_roots(bch, 1, bch->elp, errloc);
10968c2ecf20Sopenharmony_ci		if (err != nroots)
10978c2ecf20Sopenharmony_ci			err = -1;
10988c2ecf20Sopenharmony_ci	}
10998c2ecf20Sopenharmony_ci	if (err > 0) {
11008c2ecf20Sopenharmony_ci		/* post-process raw error locations for easier correction */
11018c2ecf20Sopenharmony_ci		nbits = (len*8)+bch->ecc_bits;
11028c2ecf20Sopenharmony_ci		for (i = 0; i < err; i++) {
11038c2ecf20Sopenharmony_ci			if (errloc[i] >= nbits) {
11048c2ecf20Sopenharmony_ci				err = -1;
11058c2ecf20Sopenharmony_ci				break;
11068c2ecf20Sopenharmony_ci			}
11078c2ecf20Sopenharmony_ci			errloc[i] = nbits-1-errloc[i];
11088c2ecf20Sopenharmony_ci			if (!bch->swap_bits)
11098c2ecf20Sopenharmony_ci				errloc[i] = (errloc[i] & ~7) |
11108c2ecf20Sopenharmony_ci					    (7-(errloc[i] & 7));
11118c2ecf20Sopenharmony_ci		}
11128c2ecf20Sopenharmony_ci	}
11138c2ecf20Sopenharmony_ci	return (err >= 0) ? err : -EBADMSG;
11148c2ecf20Sopenharmony_ci}
11158c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_decode);
11168c2ecf20Sopenharmony_ci
11178c2ecf20Sopenharmony_ci/*
11188c2ecf20Sopenharmony_ci * generate Galois field lookup tables
11198c2ecf20Sopenharmony_ci */
11208c2ecf20Sopenharmony_cistatic int build_gf_tables(struct bch_control *bch, unsigned int poly)
11218c2ecf20Sopenharmony_ci{
11228c2ecf20Sopenharmony_ci	unsigned int i, x = 1;
11238c2ecf20Sopenharmony_ci	const unsigned int k = 1 << deg(poly);
11248c2ecf20Sopenharmony_ci
11258c2ecf20Sopenharmony_ci	/* primitive polynomial must be of degree m */
11268c2ecf20Sopenharmony_ci	if (k != (1u << GF_M(bch)))
11278c2ecf20Sopenharmony_ci		return -1;
11288c2ecf20Sopenharmony_ci
11298c2ecf20Sopenharmony_ci	for (i = 0; i < GF_N(bch); i++) {
11308c2ecf20Sopenharmony_ci		bch->a_pow_tab[i] = x;
11318c2ecf20Sopenharmony_ci		bch->a_log_tab[x] = i;
11328c2ecf20Sopenharmony_ci		if (i && (x == 1))
11338c2ecf20Sopenharmony_ci			/* polynomial is not primitive (a^i=1 with 0<i<2^m-1) */
11348c2ecf20Sopenharmony_ci			return -1;
11358c2ecf20Sopenharmony_ci		x <<= 1;
11368c2ecf20Sopenharmony_ci		if (x & k)
11378c2ecf20Sopenharmony_ci			x ^= poly;
11388c2ecf20Sopenharmony_ci	}
11398c2ecf20Sopenharmony_ci	bch->a_pow_tab[GF_N(bch)] = 1;
11408c2ecf20Sopenharmony_ci	bch->a_log_tab[0] = 0;
11418c2ecf20Sopenharmony_ci
11428c2ecf20Sopenharmony_ci	return 0;
11438c2ecf20Sopenharmony_ci}
11448c2ecf20Sopenharmony_ci
11458c2ecf20Sopenharmony_ci/*
11468c2ecf20Sopenharmony_ci * compute generator polynomial remainder tables for fast encoding
11478c2ecf20Sopenharmony_ci */
11488c2ecf20Sopenharmony_cistatic void build_mod8_tables(struct bch_control *bch, const uint32_t *g)
11498c2ecf20Sopenharmony_ci{
11508c2ecf20Sopenharmony_ci	int i, j, b, d;
11518c2ecf20Sopenharmony_ci	uint32_t data, hi, lo, *tab;
11528c2ecf20Sopenharmony_ci	const int l = BCH_ECC_WORDS(bch);
11538c2ecf20Sopenharmony_ci	const int plen = DIV_ROUND_UP(bch->ecc_bits+1, 32);
11548c2ecf20Sopenharmony_ci	const int ecclen = DIV_ROUND_UP(bch->ecc_bits, 32);
11558c2ecf20Sopenharmony_ci
11568c2ecf20Sopenharmony_ci	memset(bch->mod8_tab, 0, 4*256*l*sizeof(*bch->mod8_tab));
11578c2ecf20Sopenharmony_ci
11588c2ecf20Sopenharmony_ci	for (i = 0; i < 256; i++) {
11598c2ecf20Sopenharmony_ci		/* p(X)=i is a small polynomial of weight <= 8 */
11608c2ecf20Sopenharmony_ci		for (b = 0; b < 4; b++) {
11618c2ecf20Sopenharmony_ci			/* we want to compute (p(X).X^(8*b+deg(g))) mod g(X) */
11628c2ecf20Sopenharmony_ci			tab = bch->mod8_tab + (b*256+i)*l;
11638c2ecf20Sopenharmony_ci			data = i << (8*b);
11648c2ecf20Sopenharmony_ci			while (data) {
11658c2ecf20Sopenharmony_ci				d = deg(data);
11668c2ecf20Sopenharmony_ci				/* subtract X^d.g(X) from p(X).X^(8*b+deg(g)) */
11678c2ecf20Sopenharmony_ci				data ^= g[0] >> (31-d);
11688c2ecf20Sopenharmony_ci				for (j = 0; j < ecclen; j++) {
11698c2ecf20Sopenharmony_ci					hi = (d < 31) ? g[j] << (d+1) : 0;
11708c2ecf20Sopenharmony_ci					lo = (j+1 < plen) ?
11718c2ecf20Sopenharmony_ci						g[j+1] >> (31-d) : 0;
11728c2ecf20Sopenharmony_ci					tab[j] ^= hi|lo;
11738c2ecf20Sopenharmony_ci				}
11748c2ecf20Sopenharmony_ci			}
11758c2ecf20Sopenharmony_ci		}
11768c2ecf20Sopenharmony_ci	}
11778c2ecf20Sopenharmony_ci}
11788c2ecf20Sopenharmony_ci
11798c2ecf20Sopenharmony_ci/*
11808c2ecf20Sopenharmony_ci * build a base for factoring degree 2 polynomials
11818c2ecf20Sopenharmony_ci */
11828c2ecf20Sopenharmony_cistatic int build_deg2_base(struct bch_control *bch)
11838c2ecf20Sopenharmony_ci{
11848c2ecf20Sopenharmony_ci	const int m = GF_M(bch);
11858c2ecf20Sopenharmony_ci	int i, j, r;
11868c2ecf20Sopenharmony_ci	unsigned int sum, x, y, remaining, ak = 0, xi[BCH_MAX_M];
11878c2ecf20Sopenharmony_ci
11888c2ecf20Sopenharmony_ci	/* find k s.t. Tr(a^k) = 1 and 0 <= k < m */
11898c2ecf20Sopenharmony_ci	for (i = 0; i < m; i++) {
11908c2ecf20Sopenharmony_ci		for (j = 0, sum = 0; j < m; j++)
11918c2ecf20Sopenharmony_ci			sum ^= a_pow(bch, i*(1 << j));
11928c2ecf20Sopenharmony_ci
11938c2ecf20Sopenharmony_ci		if (sum) {
11948c2ecf20Sopenharmony_ci			ak = bch->a_pow_tab[i];
11958c2ecf20Sopenharmony_ci			break;
11968c2ecf20Sopenharmony_ci		}
11978c2ecf20Sopenharmony_ci	}
11988c2ecf20Sopenharmony_ci	/* find xi, i=0..m-1 such that xi^2+xi = a^i+Tr(a^i).a^k */
11998c2ecf20Sopenharmony_ci	remaining = m;
12008c2ecf20Sopenharmony_ci	memset(xi, 0, sizeof(xi));
12018c2ecf20Sopenharmony_ci
12028c2ecf20Sopenharmony_ci	for (x = 0; (x <= GF_N(bch)) && remaining; x++) {
12038c2ecf20Sopenharmony_ci		y = gf_sqr(bch, x)^x;
12048c2ecf20Sopenharmony_ci		for (i = 0; i < 2; i++) {
12058c2ecf20Sopenharmony_ci			r = a_log(bch, y);
12068c2ecf20Sopenharmony_ci			if (y && (r < m) && !xi[r]) {
12078c2ecf20Sopenharmony_ci				bch->xi_tab[r] = x;
12088c2ecf20Sopenharmony_ci				xi[r] = 1;
12098c2ecf20Sopenharmony_ci				remaining--;
12108c2ecf20Sopenharmony_ci				dbg("x%d = %x\n", r, x);
12118c2ecf20Sopenharmony_ci				break;
12128c2ecf20Sopenharmony_ci			}
12138c2ecf20Sopenharmony_ci			y ^= ak;
12148c2ecf20Sopenharmony_ci		}
12158c2ecf20Sopenharmony_ci	}
12168c2ecf20Sopenharmony_ci	/* should not happen but check anyway */
12178c2ecf20Sopenharmony_ci	return remaining ? -1 : 0;
12188c2ecf20Sopenharmony_ci}
12198c2ecf20Sopenharmony_ci
12208c2ecf20Sopenharmony_cistatic void *bch_alloc(size_t size, int *err)
12218c2ecf20Sopenharmony_ci{
12228c2ecf20Sopenharmony_ci	void *ptr;
12238c2ecf20Sopenharmony_ci
12248c2ecf20Sopenharmony_ci	ptr = kmalloc(size, GFP_KERNEL);
12258c2ecf20Sopenharmony_ci	if (ptr == NULL)
12268c2ecf20Sopenharmony_ci		*err = 1;
12278c2ecf20Sopenharmony_ci	return ptr;
12288c2ecf20Sopenharmony_ci}
12298c2ecf20Sopenharmony_ci
12308c2ecf20Sopenharmony_ci/*
12318c2ecf20Sopenharmony_ci * compute generator polynomial for given (m,t) parameters.
12328c2ecf20Sopenharmony_ci */
12338c2ecf20Sopenharmony_cistatic uint32_t *compute_generator_polynomial(struct bch_control *bch)
12348c2ecf20Sopenharmony_ci{
12358c2ecf20Sopenharmony_ci	const unsigned int m = GF_M(bch);
12368c2ecf20Sopenharmony_ci	const unsigned int t = GF_T(bch);
12378c2ecf20Sopenharmony_ci	int n, err = 0;
12388c2ecf20Sopenharmony_ci	unsigned int i, j, nbits, r, word, *roots;
12398c2ecf20Sopenharmony_ci	struct gf_poly *g;
12408c2ecf20Sopenharmony_ci	uint32_t *genpoly;
12418c2ecf20Sopenharmony_ci
12428c2ecf20Sopenharmony_ci	g = bch_alloc(GF_POLY_SZ(m*t), &err);
12438c2ecf20Sopenharmony_ci	roots = bch_alloc((bch->n+1)*sizeof(*roots), &err);
12448c2ecf20Sopenharmony_ci	genpoly = bch_alloc(DIV_ROUND_UP(m*t+1, 32)*sizeof(*genpoly), &err);
12458c2ecf20Sopenharmony_ci
12468c2ecf20Sopenharmony_ci	if (err) {
12478c2ecf20Sopenharmony_ci		kfree(genpoly);
12488c2ecf20Sopenharmony_ci		genpoly = NULL;
12498c2ecf20Sopenharmony_ci		goto finish;
12508c2ecf20Sopenharmony_ci	}
12518c2ecf20Sopenharmony_ci
12528c2ecf20Sopenharmony_ci	/* enumerate all roots of g(X) */
12538c2ecf20Sopenharmony_ci	memset(roots , 0, (bch->n+1)*sizeof(*roots));
12548c2ecf20Sopenharmony_ci	for (i = 0; i < t; i++) {
12558c2ecf20Sopenharmony_ci		for (j = 0, r = 2*i+1; j < m; j++) {
12568c2ecf20Sopenharmony_ci			roots[r] = 1;
12578c2ecf20Sopenharmony_ci			r = mod_s(bch, 2*r);
12588c2ecf20Sopenharmony_ci		}
12598c2ecf20Sopenharmony_ci	}
12608c2ecf20Sopenharmony_ci	/* build generator polynomial g(X) */
12618c2ecf20Sopenharmony_ci	g->deg = 0;
12628c2ecf20Sopenharmony_ci	g->c[0] = 1;
12638c2ecf20Sopenharmony_ci	for (i = 0; i < GF_N(bch); i++) {
12648c2ecf20Sopenharmony_ci		if (roots[i]) {
12658c2ecf20Sopenharmony_ci			/* multiply g(X) by (X+root) */
12668c2ecf20Sopenharmony_ci			r = bch->a_pow_tab[i];
12678c2ecf20Sopenharmony_ci			g->c[g->deg+1] = 1;
12688c2ecf20Sopenharmony_ci			for (j = g->deg; j > 0; j--)
12698c2ecf20Sopenharmony_ci				g->c[j] = gf_mul(bch, g->c[j], r)^g->c[j-1];
12708c2ecf20Sopenharmony_ci
12718c2ecf20Sopenharmony_ci			g->c[0] = gf_mul(bch, g->c[0], r);
12728c2ecf20Sopenharmony_ci			g->deg++;
12738c2ecf20Sopenharmony_ci		}
12748c2ecf20Sopenharmony_ci	}
12758c2ecf20Sopenharmony_ci	/* store left-justified binary representation of g(X) */
12768c2ecf20Sopenharmony_ci	n = g->deg+1;
12778c2ecf20Sopenharmony_ci	i = 0;
12788c2ecf20Sopenharmony_ci
12798c2ecf20Sopenharmony_ci	while (n > 0) {
12808c2ecf20Sopenharmony_ci		nbits = (n > 32) ? 32 : n;
12818c2ecf20Sopenharmony_ci		for (j = 0, word = 0; j < nbits; j++) {
12828c2ecf20Sopenharmony_ci			if (g->c[n-1-j])
12838c2ecf20Sopenharmony_ci				word |= 1u << (31-j);
12848c2ecf20Sopenharmony_ci		}
12858c2ecf20Sopenharmony_ci		genpoly[i++] = word;
12868c2ecf20Sopenharmony_ci		n -= nbits;
12878c2ecf20Sopenharmony_ci	}
12888c2ecf20Sopenharmony_ci	bch->ecc_bits = g->deg;
12898c2ecf20Sopenharmony_ci
12908c2ecf20Sopenharmony_cifinish:
12918c2ecf20Sopenharmony_ci	kfree(g);
12928c2ecf20Sopenharmony_ci	kfree(roots);
12938c2ecf20Sopenharmony_ci
12948c2ecf20Sopenharmony_ci	return genpoly;
12958c2ecf20Sopenharmony_ci}
12968c2ecf20Sopenharmony_ci
12978c2ecf20Sopenharmony_ci/**
12988c2ecf20Sopenharmony_ci * bch_init - initialize a BCH encoder/decoder
12998c2ecf20Sopenharmony_ci * @m:          Galois field order, should be in the range 5-15
13008c2ecf20Sopenharmony_ci * @t:          maximum error correction capability, in bits
13018c2ecf20Sopenharmony_ci * @prim_poly:  user-provided primitive polynomial (or 0 to use default)
13028c2ecf20Sopenharmony_ci * @swap_bits:  swap bits within data and syndrome bytes
13038c2ecf20Sopenharmony_ci *
13048c2ecf20Sopenharmony_ci * Returns:
13058c2ecf20Sopenharmony_ci *  a newly allocated BCH control structure if successful, NULL otherwise
13068c2ecf20Sopenharmony_ci *
13078c2ecf20Sopenharmony_ci * This initialization can take some time, as lookup tables are built for fast
13088c2ecf20Sopenharmony_ci * encoding/decoding; make sure not to call this function from a time critical
13098c2ecf20Sopenharmony_ci * path. Usually, bch_init() should be called on module/driver init and
13108c2ecf20Sopenharmony_ci * bch_free() should be called to release memory on exit.
13118c2ecf20Sopenharmony_ci *
13128c2ecf20Sopenharmony_ci * You may provide your own primitive polynomial of degree @m in argument
13138c2ecf20Sopenharmony_ci * @prim_poly, or let bch_init() use its default polynomial.
13148c2ecf20Sopenharmony_ci *
13158c2ecf20Sopenharmony_ci * Once bch_init() has successfully returned a pointer to a newly allocated
13168c2ecf20Sopenharmony_ci * BCH control structure, ecc length in bytes is given by member @ecc_bytes of
13178c2ecf20Sopenharmony_ci * the structure.
13188c2ecf20Sopenharmony_ci */
13198c2ecf20Sopenharmony_cistruct bch_control *bch_init(int m, int t, unsigned int prim_poly,
13208c2ecf20Sopenharmony_ci			     bool swap_bits)
13218c2ecf20Sopenharmony_ci{
13228c2ecf20Sopenharmony_ci	int err = 0;
13238c2ecf20Sopenharmony_ci	unsigned int i, words;
13248c2ecf20Sopenharmony_ci	uint32_t *genpoly;
13258c2ecf20Sopenharmony_ci	struct bch_control *bch = NULL;
13268c2ecf20Sopenharmony_ci
13278c2ecf20Sopenharmony_ci	const int min_m = 5;
13288c2ecf20Sopenharmony_ci
13298c2ecf20Sopenharmony_ci	/* default primitive polynomials */
13308c2ecf20Sopenharmony_ci	static const unsigned int prim_poly_tab[] = {
13318c2ecf20Sopenharmony_ci		0x25, 0x43, 0x83, 0x11d, 0x211, 0x409, 0x805, 0x1053, 0x201b,
13328c2ecf20Sopenharmony_ci		0x402b, 0x8003,
13338c2ecf20Sopenharmony_ci	};
13348c2ecf20Sopenharmony_ci
13358c2ecf20Sopenharmony_ci#if defined(CONFIG_BCH_CONST_PARAMS)
13368c2ecf20Sopenharmony_ci	if ((m != (CONFIG_BCH_CONST_M)) || (t != (CONFIG_BCH_CONST_T))) {
13378c2ecf20Sopenharmony_ci		printk(KERN_ERR "bch encoder/decoder was configured to support "
13388c2ecf20Sopenharmony_ci		       "parameters m=%d, t=%d only!\n",
13398c2ecf20Sopenharmony_ci		       CONFIG_BCH_CONST_M, CONFIG_BCH_CONST_T);
13408c2ecf20Sopenharmony_ci		goto fail;
13418c2ecf20Sopenharmony_ci	}
13428c2ecf20Sopenharmony_ci#endif
13438c2ecf20Sopenharmony_ci	if ((m < min_m) || (m > BCH_MAX_M))
13448c2ecf20Sopenharmony_ci		/*
13458c2ecf20Sopenharmony_ci		 * values of m greater than 15 are not currently supported;
13468c2ecf20Sopenharmony_ci		 * supporting m > 15 would require changing table base type
13478c2ecf20Sopenharmony_ci		 * (uint16_t) and a small patch in matrix transposition
13488c2ecf20Sopenharmony_ci		 */
13498c2ecf20Sopenharmony_ci		goto fail;
13508c2ecf20Sopenharmony_ci
13518c2ecf20Sopenharmony_ci	if (t > BCH_MAX_T)
13528c2ecf20Sopenharmony_ci		/*
13538c2ecf20Sopenharmony_ci		 * we can support larger than 64 bits if necessary, at the
13548c2ecf20Sopenharmony_ci		 * cost of higher stack usage.
13558c2ecf20Sopenharmony_ci		 */
13568c2ecf20Sopenharmony_ci		goto fail;
13578c2ecf20Sopenharmony_ci
13588c2ecf20Sopenharmony_ci	/* sanity checks */
13598c2ecf20Sopenharmony_ci	if ((t < 1) || (m*t >= ((1 << m)-1)))
13608c2ecf20Sopenharmony_ci		/* invalid t value */
13618c2ecf20Sopenharmony_ci		goto fail;
13628c2ecf20Sopenharmony_ci
13638c2ecf20Sopenharmony_ci	/* select a primitive polynomial for generating GF(2^m) */
13648c2ecf20Sopenharmony_ci	if (prim_poly == 0)
13658c2ecf20Sopenharmony_ci		prim_poly = prim_poly_tab[m-min_m];
13668c2ecf20Sopenharmony_ci
13678c2ecf20Sopenharmony_ci	bch = kzalloc(sizeof(*bch), GFP_KERNEL);
13688c2ecf20Sopenharmony_ci	if (bch == NULL)
13698c2ecf20Sopenharmony_ci		goto fail;
13708c2ecf20Sopenharmony_ci
13718c2ecf20Sopenharmony_ci	bch->m = m;
13728c2ecf20Sopenharmony_ci	bch->t = t;
13738c2ecf20Sopenharmony_ci	bch->n = (1 << m)-1;
13748c2ecf20Sopenharmony_ci	words  = DIV_ROUND_UP(m*t, 32);
13758c2ecf20Sopenharmony_ci	bch->ecc_bytes = DIV_ROUND_UP(m*t, 8);
13768c2ecf20Sopenharmony_ci	bch->a_pow_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_pow_tab), &err);
13778c2ecf20Sopenharmony_ci	bch->a_log_tab = bch_alloc((1+bch->n)*sizeof(*bch->a_log_tab), &err);
13788c2ecf20Sopenharmony_ci	bch->mod8_tab  = bch_alloc(words*1024*sizeof(*bch->mod8_tab), &err);
13798c2ecf20Sopenharmony_ci	bch->ecc_buf   = bch_alloc(words*sizeof(*bch->ecc_buf), &err);
13808c2ecf20Sopenharmony_ci	bch->ecc_buf2  = bch_alloc(words*sizeof(*bch->ecc_buf2), &err);
13818c2ecf20Sopenharmony_ci	bch->xi_tab    = bch_alloc(m*sizeof(*bch->xi_tab), &err);
13828c2ecf20Sopenharmony_ci	bch->syn       = bch_alloc(2*t*sizeof(*bch->syn), &err);
13838c2ecf20Sopenharmony_ci	bch->cache     = bch_alloc(2*t*sizeof(*bch->cache), &err);
13848c2ecf20Sopenharmony_ci	bch->elp       = bch_alloc((t+1)*sizeof(struct gf_poly_deg1), &err);
13858c2ecf20Sopenharmony_ci	bch->swap_bits = swap_bits;
13868c2ecf20Sopenharmony_ci
13878c2ecf20Sopenharmony_ci	for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
13888c2ecf20Sopenharmony_ci		bch->poly_2t[i] = bch_alloc(GF_POLY_SZ(2*t), &err);
13898c2ecf20Sopenharmony_ci
13908c2ecf20Sopenharmony_ci	if (err)
13918c2ecf20Sopenharmony_ci		goto fail;
13928c2ecf20Sopenharmony_ci
13938c2ecf20Sopenharmony_ci	err = build_gf_tables(bch, prim_poly);
13948c2ecf20Sopenharmony_ci	if (err)
13958c2ecf20Sopenharmony_ci		goto fail;
13968c2ecf20Sopenharmony_ci
13978c2ecf20Sopenharmony_ci	/* use generator polynomial for computing encoding tables */
13988c2ecf20Sopenharmony_ci	genpoly = compute_generator_polynomial(bch);
13998c2ecf20Sopenharmony_ci	if (genpoly == NULL)
14008c2ecf20Sopenharmony_ci		goto fail;
14018c2ecf20Sopenharmony_ci
14028c2ecf20Sopenharmony_ci	build_mod8_tables(bch, genpoly);
14038c2ecf20Sopenharmony_ci	kfree(genpoly);
14048c2ecf20Sopenharmony_ci
14058c2ecf20Sopenharmony_ci	err = build_deg2_base(bch);
14068c2ecf20Sopenharmony_ci	if (err)
14078c2ecf20Sopenharmony_ci		goto fail;
14088c2ecf20Sopenharmony_ci
14098c2ecf20Sopenharmony_ci	return bch;
14108c2ecf20Sopenharmony_ci
14118c2ecf20Sopenharmony_cifail:
14128c2ecf20Sopenharmony_ci	bch_free(bch);
14138c2ecf20Sopenharmony_ci	return NULL;
14148c2ecf20Sopenharmony_ci}
14158c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_init);
14168c2ecf20Sopenharmony_ci
14178c2ecf20Sopenharmony_ci/**
14188c2ecf20Sopenharmony_ci *  bch_free - free the BCH control structure
14198c2ecf20Sopenharmony_ci *  @bch:    BCH control structure to release
14208c2ecf20Sopenharmony_ci */
14218c2ecf20Sopenharmony_civoid bch_free(struct bch_control *bch)
14228c2ecf20Sopenharmony_ci{
14238c2ecf20Sopenharmony_ci	unsigned int i;
14248c2ecf20Sopenharmony_ci
14258c2ecf20Sopenharmony_ci	if (bch) {
14268c2ecf20Sopenharmony_ci		kfree(bch->a_pow_tab);
14278c2ecf20Sopenharmony_ci		kfree(bch->a_log_tab);
14288c2ecf20Sopenharmony_ci		kfree(bch->mod8_tab);
14298c2ecf20Sopenharmony_ci		kfree(bch->ecc_buf);
14308c2ecf20Sopenharmony_ci		kfree(bch->ecc_buf2);
14318c2ecf20Sopenharmony_ci		kfree(bch->xi_tab);
14328c2ecf20Sopenharmony_ci		kfree(bch->syn);
14338c2ecf20Sopenharmony_ci		kfree(bch->cache);
14348c2ecf20Sopenharmony_ci		kfree(bch->elp);
14358c2ecf20Sopenharmony_ci
14368c2ecf20Sopenharmony_ci		for (i = 0; i < ARRAY_SIZE(bch->poly_2t); i++)
14378c2ecf20Sopenharmony_ci			kfree(bch->poly_2t[i]);
14388c2ecf20Sopenharmony_ci
14398c2ecf20Sopenharmony_ci		kfree(bch);
14408c2ecf20Sopenharmony_ci	}
14418c2ecf20Sopenharmony_ci}
14428c2ecf20Sopenharmony_ciEXPORT_SYMBOL_GPL(bch_free);
14438c2ecf20Sopenharmony_ci
14448c2ecf20Sopenharmony_ciMODULE_LICENSE("GPL");
14458c2ecf20Sopenharmony_ciMODULE_AUTHOR("Ivan Djelic <ivan.djelic@parrot.com>");
14468c2ecf20Sopenharmony_ciMODULE_DESCRIPTION("Binary BCH encoder/decoder");
1447