18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0
28c2ecf20Sopenharmony_ci/*
38c2ecf20Sopenharmony_ci * Copyright (C) 2016 Thomas Gleixner.
48c2ecf20Sopenharmony_ci * Copyright (C) 2016-2017 Christoph Hellwig.
58c2ecf20Sopenharmony_ci */
68c2ecf20Sopenharmony_ci#include <linux/interrupt.h>
78c2ecf20Sopenharmony_ci#include <linux/kernel.h>
88c2ecf20Sopenharmony_ci#include <linux/slab.h>
98c2ecf20Sopenharmony_ci#include <linux/cpu.h>
108c2ecf20Sopenharmony_ci#include <linux/sort.h>
118c2ecf20Sopenharmony_ci
128c2ecf20Sopenharmony_cistatic void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk,
138c2ecf20Sopenharmony_ci				unsigned int cpus_per_vec)
148c2ecf20Sopenharmony_ci{
158c2ecf20Sopenharmony_ci	const struct cpumask *siblmsk;
168c2ecf20Sopenharmony_ci	int cpu, sibl;
178c2ecf20Sopenharmony_ci
188c2ecf20Sopenharmony_ci	for ( ; cpus_per_vec > 0; ) {
198c2ecf20Sopenharmony_ci		cpu = cpumask_first(nmsk);
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci		/* Should not happen, but I'm too lazy to think about it */
228c2ecf20Sopenharmony_ci		if (cpu >= nr_cpu_ids)
238c2ecf20Sopenharmony_ci			return;
248c2ecf20Sopenharmony_ci
258c2ecf20Sopenharmony_ci		cpumask_clear_cpu(cpu, nmsk);
268c2ecf20Sopenharmony_ci		cpumask_set_cpu(cpu, irqmsk);
278c2ecf20Sopenharmony_ci		cpus_per_vec--;
288c2ecf20Sopenharmony_ci
298c2ecf20Sopenharmony_ci		/* If the cpu has siblings, use them first */
308c2ecf20Sopenharmony_ci		siblmsk = topology_sibling_cpumask(cpu);
318c2ecf20Sopenharmony_ci		for (sibl = -1; cpus_per_vec > 0; ) {
328c2ecf20Sopenharmony_ci			sibl = cpumask_next(sibl, siblmsk);
338c2ecf20Sopenharmony_ci			if (sibl >= nr_cpu_ids)
348c2ecf20Sopenharmony_ci				break;
358c2ecf20Sopenharmony_ci			if (!cpumask_test_and_clear_cpu(sibl, nmsk))
368c2ecf20Sopenharmony_ci				continue;
378c2ecf20Sopenharmony_ci			cpumask_set_cpu(sibl, irqmsk);
388c2ecf20Sopenharmony_ci			cpus_per_vec--;
398c2ecf20Sopenharmony_ci		}
408c2ecf20Sopenharmony_ci	}
418c2ecf20Sopenharmony_ci}
428c2ecf20Sopenharmony_ci
438c2ecf20Sopenharmony_cistatic cpumask_var_t *alloc_node_to_cpumask(void)
448c2ecf20Sopenharmony_ci{
458c2ecf20Sopenharmony_ci	cpumask_var_t *masks;
468c2ecf20Sopenharmony_ci	int node;
478c2ecf20Sopenharmony_ci
488c2ecf20Sopenharmony_ci	masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL);
498c2ecf20Sopenharmony_ci	if (!masks)
508c2ecf20Sopenharmony_ci		return NULL;
518c2ecf20Sopenharmony_ci
528c2ecf20Sopenharmony_ci	for (node = 0; node < nr_node_ids; node++) {
538c2ecf20Sopenharmony_ci		if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL))
548c2ecf20Sopenharmony_ci			goto out_unwind;
558c2ecf20Sopenharmony_ci	}
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_ci	return masks;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ciout_unwind:
608c2ecf20Sopenharmony_ci	while (--node >= 0)
618c2ecf20Sopenharmony_ci		free_cpumask_var(masks[node]);
628c2ecf20Sopenharmony_ci	kfree(masks);
638c2ecf20Sopenharmony_ci	return NULL;
648c2ecf20Sopenharmony_ci}
658c2ecf20Sopenharmony_ci
668c2ecf20Sopenharmony_cistatic void free_node_to_cpumask(cpumask_var_t *masks)
678c2ecf20Sopenharmony_ci{
688c2ecf20Sopenharmony_ci	int node;
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_ci	for (node = 0; node < nr_node_ids; node++)
718c2ecf20Sopenharmony_ci		free_cpumask_var(masks[node]);
728c2ecf20Sopenharmony_ci	kfree(masks);
738c2ecf20Sopenharmony_ci}
748c2ecf20Sopenharmony_ci
758c2ecf20Sopenharmony_cistatic void build_node_to_cpumask(cpumask_var_t *masks)
768c2ecf20Sopenharmony_ci{
778c2ecf20Sopenharmony_ci	int cpu;
788c2ecf20Sopenharmony_ci
798c2ecf20Sopenharmony_ci	for_each_possible_cpu(cpu)
808c2ecf20Sopenharmony_ci		cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]);
818c2ecf20Sopenharmony_ci}
828c2ecf20Sopenharmony_ci
838c2ecf20Sopenharmony_cistatic int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask,
848c2ecf20Sopenharmony_ci				const struct cpumask *mask, nodemask_t *nodemsk)
858c2ecf20Sopenharmony_ci{
868c2ecf20Sopenharmony_ci	int n, nodes = 0;
878c2ecf20Sopenharmony_ci
888c2ecf20Sopenharmony_ci	/* Calculate the number of nodes in the supplied affinity mask */
898c2ecf20Sopenharmony_ci	for_each_node(n) {
908c2ecf20Sopenharmony_ci		if (cpumask_intersects(mask, node_to_cpumask[n])) {
918c2ecf20Sopenharmony_ci			node_set(n, *nodemsk);
928c2ecf20Sopenharmony_ci			nodes++;
938c2ecf20Sopenharmony_ci		}
948c2ecf20Sopenharmony_ci	}
958c2ecf20Sopenharmony_ci	return nodes;
968c2ecf20Sopenharmony_ci}
978c2ecf20Sopenharmony_ci
988c2ecf20Sopenharmony_cistruct node_vectors {
998c2ecf20Sopenharmony_ci	unsigned id;
1008c2ecf20Sopenharmony_ci
1018c2ecf20Sopenharmony_ci	union {
1028c2ecf20Sopenharmony_ci		unsigned nvectors;
1038c2ecf20Sopenharmony_ci		unsigned ncpus;
1048c2ecf20Sopenharmony_ci	};
1058c2ecf20Sopenharmony_ci};
1068c2ecf20Sopenharmony_ci
1078c2ecf20Sopenharmony_cistatic int ncpus_cmp_func(const void *l, const void *r)
1088c2ecf20Sopenharmony_ci{
1098c2ecf20Sopenharmony_ci	const struct node_vectors *ln = l;
1108c2ecf20Sopenharmony_ci	const struct node_vectors *rn = r;
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci	return ln->ncpus - rn->ncpus;
1138c2ecf20Sopenharmony_ci}
1148c2ecf20Sopenharmony_ci
1158c2ecf20Sopenharmony_ci/*
1168c2ecf20Sopenharmony_ci * Allocate vector number for each node, so that for each node:
1178c2ecf20Sopenharmony_ci *
1188c2ecf20Sopenharmony_ci * 1) the allocated number is >= 1
1198c2ecf20Sopenharmony_ci *
1208c2ecf20Sopenharmony_ci * 2) the allocated numbver is <= active CPU number of this node
1218c2ecf20Sopenharmony_ci *
1228c2ecf20Sopenharmony_ci * The actual allocated total vectors may be less than @numvecs when
1238c2ecf20Sopenharmony_ci * active total CPU number is less than @numvecs.
1248c2ecf20Sopenharmony_ci *
1258c2ecf20Sopenharmony_ci * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]'
1268c2ecf20Sopenharmony_ci * for each node.
1278c2ecf20Sopenharmony_ci */
1288c2ecf20Sopenharmony_cistatic void alloc_nodes_vectors(unsigned int numvecs,
1298c2ecf20Sopenharmony_ci				cpumask_var_t *node_to_cpumask,
1308c2ecf20Sopenharmony_ci				const struct cpumask *cpu_mask,
1318c2ecf20Sopenharmony_ci				const nodemask_t nodemsk,
1328c2ecf20Sopenharmony_ci				struct cpumask *nmsk,
1338c2ecf20Sopenharmony_ci				struct node_vectors *node_vectors)
1348c2ecf20Sopenharmony_ci{
1358c2ecf20Sopenharmony_ci	unsigned n, remaining_ncpus = 0;
1368c2ecf20Sopenharmony_ci
1378c2ecf20Sopenharmony_ci	for (n = 0; n < nr_node_ids; n++) {
1388c2ecf20Sopenharmony_ci		node_vectors[n].id = n;
1398c2ecf20Sopenharmony_ci		node_vectors[n].ncpus = UINT_MAX;
1408c2ecf20Sopenharmony_ci	}
1418c2ecf20Sopenharmony_ci
1428c2ecf20Sopenharmony_ci	for_each_node_mask(n, nodemsk) {
1438c2ecf20Sopenharmony_ci		unsigned ncpus;
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_ci		cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
1468c2ecf20Sopenharmony_ci		ncpus = cpumask_weight(nmsk);
1478c2ecf20Sopenharmony_ci
1488c2ecf20Sopenharmony_ci		if (!ncpus)
1498c2ecf20Sopenharmony_ci			continue;
1508c2ecf20Sopenharmony_ci		remaining_ncpus += ncpus;
1518c2ecf20Sopenharmony_ci		node_vectors[n].ncpus = ncpus;
1528c2ecf20Sopenharmony_ci	}
1538c2ecf20Sopenharmony_ci
1548c2ecf20Sopenharmony_ci	numvecs = min_t(unsigned, remaining_ncpus, numvecs);
1558c2ecf20Sopenharmony_ci
1568c2ecf20Sopenharmony_ci	sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]),
1578c2ecf20Sopenharmony_ci	     ncpus_cmp_func, NULL);
1588c2ecf20Sopenharmony_ci
1598c2ecf20Sopenharmony_ci	/*
1608c2ecf20Sopenharmony_ci	 * Allocate vectors for each node according to the ratio of this
1618c2ecf20Sopenharmony_ci	 * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is
1628c2ecf20Sopenharmony_ci	 * bigger than number of active numa nodes. Always start the
1638c2ecf20Sopenharmony_ci	 * allocation from the node with minimized nr_cpus.
1648c2ecf20Sopenharmony_ci	 *
1658c2ecf20Sopenharmony_ci	 * This way guarantees that each active node gets allocated at
1668c2ecf20Sopenharmony_ci	 * least one vector, and the theory is simple: over-allocation
1678c2ecf20Sopenharmony_ci	 * is only done when this node is assigned by one vector, so
1688c2ecf20Sopenharmony_ci	 * other nodes will be allocated >= 1 vector, since 'numvecs' is
1698c2ecf20Sopenharmony_ci	 * bigger than number of numa nodes.
1708c2ecf20Sopenharmony_ci	 *
1718c2ecf20Sopenharmony_ci	 * One perfect invariant is that number of allocated vectors for
1728c2ecf20Sopenharmony_ci	 * each node is <= CPU count of this node:
1738c2ecf20Sopenharmony_ci	 *
1748c2ecf20Sopenharmony_ci	 * 1) suppose there are two nodes: A and B
1758c2ecf20Sopenharmony_ci	 * 	ncpu(X) is CPU count of node X
1768c2ecf20Sopenharmony_ci	 * 	vecs(X) is the vector count allocated to node X via this
1778c2ecf20Sopenharmony_ci	 * 	algorithm
1788c2ecf20Sopenharmony_ci	 *
1798c2ecf20Sopenharmony_ci	 * 	ncpu(A) <= ncpu(B)
1808c2ecf20Sopenharmony_ci	 * 	ncpu(A) + ncpu(B) = N
1818c2ecf20Sopenharmony_ci	 * 	vecs(A) + vecs(B) = V
1828c2ecf20Sopenharmony_ci	 *
1838c2ecf20Sopenharmony_ci	 * 	vecs(A) = max(1, round_down(V * ncpu(A) / N))
1848c2ecf20Sopenharmony_ci	 * 	vecs(B) = V - vecs(A)
1858c2ecf20Sopenharmony_ci	 *
1868c2ecf20Sopenharmony_ci	 * 	both N and V are integer, and 2 <= V <= N, suppose
1878c2ecf20Sopenharmony_ci	 * 	V = N - delta, and 0 <= delta <= N - 2
1888c2ecf20Sopenharmony_ci	 *
1898c2ecf20Sopenharmony_ci	 * 2) obviously vecs(A) <= ncpu(A) because:
1908c2ecf20Sopenharmony_ci	 *
1918c2ecf20Sopenharmony_ci	 * 	if vecs(A) is 1, then vecs(A) <= ncpu(A) given
1928c2ecf20Sopenharmony_ci	 * 	ncpu(A) >= 1
1938c2ecf20Sopenharmony_ci	 *
1948c2ecf20Sopenharmony_ci	 * 	otherwise,
1958c2ecf20Sopenharmony_ci	 * 		vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N
1968c2ecf20Sopenharmony_ci	 *
1978c2ecf20Sopenharmony_ci	 * 3) prove how vecs(B) <= ncpu(B):
1988c2ecf20Sopenharmony_ci	 *
1998c2ecf20Sopenharmony_ci	 * 	if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be
2008c2ecf20Sopenharmony_ci	 * 	over-allocated, so vecs(B) <= ncpu(B),
2018c2ecf20Sopenharmony_ci	 *
2028c2ecf20Sopenharmony_ci	 * 	otherwise:
2038c2ecf20Sopenharmony_ci	 *
2048c2ecf20Sopenharmony_ci	 * 	vecs(A) =
2058c2ecf20Sopenharmony_ci	 * 		round_down(V * ncpu(A) / N) =
2068c2ecf20Sopenharmony_ci	 * 		round_down((N - delta) * ncpu(A) / N) =
2078c2ecf20Sopenharmony_ci	 * 		round_down((N * ncpu(A) - delta * ncpu(A)) / N)	 >=
2088c2ecf20Sopenharmony_ci	 * 		round_down((N * ncpu(A) - delta * N) / N)	 =
2098c2ecf20Sopenharmony_ci	 * 		cpu(A) - delta
2108c2ecf20Sopenharmony_ci	 *
2118c2ecf20Sopenharmony_ci	 * 	then:
2128c2ecf20Sopenharmony_ci	 *
2138c2ecf20Sopenharmony_ci	 * 	vecs(A) - V >= ncpu(A) - delta - V
2148c2ecf20Sopenharmony_ci	 * 	=>
2158c2ecf20Sopenharmony_ci	 * 	V - vecs(A) <= V + delta - ncpu(A)
2168c2ecf20Sopenharmony_ci	 * 	=>
2178c2ecf20Sopenharmony_ci	 * 	vecs(B) <= N - ncpu(A)
2188c2ecf20Sopenharmony_ci	 * 	=>
2198c2ecf20Sopenharmony_ci	 * 	vecs(B) <= cpu(B)
2208c2ecf20Sopenharmony_ci	 *
2218c2ecf20Sopenharmony_ci	 * For nodes >= 3, it can be thought as one node and another big
2228c2ecf20Sopenharmony_ci	 * node given that is exactly what this algorithm is implemented,
2238c2ecf20Sopenharmony_ci	 * and we always re-calculate 'remaining_ncpus' & 'numvecs', and
2248c2ecf20Sopenharmony_ci	 * finally for each node X: vecs(X) <= ncpu(X).
2258c2ecf20Sopenharmony_ci	 *
2268c2ecf20Sopenharmony_ci	 */
2278c2ecf20Sopenharmony_ci	for (n = 0; n < nr_node_ids; n++) {
2288c2ecf20Sopenharmony_ci		unsigned nvectors, ncpus;
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_ci		if (node_vectors[n].ncpus == UINT_MAX)
2318c2ecf20Sopenharmony_ci			continue;
2328c2ecf20Sopenharmony_ci
2338c2ecf20Sopenharmony_ci		WARN_ON_ONCE(numvecs == 0);
2348c2ecf20Sopenharmony_ci
2358c2ecf20Sopenharmony_ci		ncpus = node_vectors[n].ncpus;
2368c2ecf20Sopenharmony_ci		nvectors = max_t(unsigned, 1,
2378c2ecf20Sopenharmony_ci				 numvecs * ncpus / remaining_ncpus);
2388c2ecf20Sopenharmony_ci		WARN_ON_ONCE(nvectors > ncpus);
2398c2ecf20Sopenharmony_ci
2408c2ecf20Sopenharmony_ci		node_vectors[n].nvectors = nvectors;
2418c2ecf20Sopenharmony_ci
2428c2ecf20Sopenharmony_ci		remaining_ncpus -= ncpus;
2438c2ecf20Sopenharmony_ci		numvecs -= nvectors;
2448c2ecf20Sopenharmony_ci	}
2458c2ecf20Sopenharmony_ci}
2468c2ecf20Sopenharmony_ci
2478c2ecf20Sopenharmony_cistatic int __irq_build_affinity_masks(unsigned int startvec,
2488c2ecf20Sopenharmony_ci				      unsigned int numvecs,
2498c2ecf20Sopenharmony_ci				      unsigned int firstvec,
2508c2ecf20Sopenharmony_ci				      cpumask_var_t *node_to_cpumask,
2518c2ecf20Sopenharmony_ci				      const struct cpumask *cpu_mask,
2528c2ecf20Sopenharmony_ci				      struct cpumask *nmsk,
2538c2ecf20Sopenharmony_ci				      struct irq_affinity_desc *masks)
2548c2ecf20Sopenharmony_ci{
2558c2ecf20Sopenharmony_ci	unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0;
2568c2ecf20Sopenharmony_ci	unsigned int last_affv = firstvec + numvecs;
2578c2ecf20Sopenharmony_ci	unsigned int curvec = startvec;
2588c2ecf20Sopenharmony_ci	nodemask_t nodemsk = NODE_MASK_NONE;
2598c2ecf20Sopenharmony_ci	struct node_vectors *node_vectors;
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci	if (!cpumask_weight(cpu_mask))
2628c2ecf20Sopenharmony_ci		return 0;
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_ci	nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk);
2658c2ecf20Sopenharmony_ci
2668c2ecf20Sopenharmony_ci	/*
2678c2ecf20Sopenharmony_ci	 * If the number of nodes in the mask is greater than or equal the
2688c2ecf20Sopenharmony_ci	 * number of vectors we just spread the vectors across the nodes.
2698c2ecf20Sopenharmony_ci	 */
2708c2ecf20Sopenharmony_ci	if (numvecs <= nodes) {
2718c2ecf20Sopenharmony_ci		for_each_node_mask(n, nodemsk) {
2728c2ecf20Sopenharmony_ci			/* Ensure that only CPUs which are in both masks are set */
2738c2ecf20Sopenharmony_ci			cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]);
2748c2ecf20Sopenharmony_ci			cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk);
2758c2ecf20Sopenharmony_ci			if (++curvec == last_affv)
2768c2ecf20Sopenharmony_ci				curvec = firstvec;
2778c2ecf20Sopenharmony_ci		}
2788c2ecf20Sopenharmony_ci		return numvecs;
2798c2ecf20Sopenharmony_ci	}
2808c2ecf20Sopenharmony_ci
2818c2ecf20Sopenharmony_ci	node_vectors = kcalloc(nr_node_ids,
2828c2ecf20Sopenharmony_ci			       sizeof(struct node_vectors),
2838c2ecf20Sopenharmony_ci			       GFP_KERNEL);
2848c2ecf20Sopenharmony_ci	if (!node_vectors)
2858c2ecf20Sopenharmony_ci		return -ENOMEM;
2868c2ecf20Sopenharmony_ci
2878c2ecf20Sopenharmony_ci	/* allocate vector number for each node */
2888c2ecf20Sopenharmony_ci	alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask,
2898c2ecf20Sopenharmony_ci			    nodemsk, nmsk, node_vectors);
2908c2ecf20Sopenharmony_ci
2918c2ecf20Sopenharmony_ci	for (i = 0; i < nr_node_ids; i++) {
2928c2ecf20Sopenharmony_ci		unsigned int ncpus, v;
2938c2ecf20Sopenharmony_ci		struct node_vectors *nv = &node_vectors[i];
2948c2ecf20Sopenharmony_ci
2958c2ecf20Sopenharmony_ci		if (nv->nvectors == UINT_MAX)
2968c2ecf20Sopenharmony_ci			continue;
2978c2ecf20Sopenharmony_ci
2988c2ecf20Sopenharmony_ci		/* Get the cpus on this node which are in the mask */
2998c2ecf20Sopenharmony_ci		cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]);
3008c2ecf20Sopenharmony_ci		ncpus = cpumask_weight(nmsk);
3018c2ecf20Sopenharmony_ci		if (!ncpus)
3028c2ecf20Sopenharmony_ci			continue;
3038c2ecf20Sopenharmony_ci
3048c2ecf20Sopenharmony_ci		WARN_ON_ONCE(nv->nvectors > ncpus);
3058c2ecf20Sopenharmony_ci
3068c2ecf20Sopenharmony_ci		/* Account for rounding errors */
3078c2ecf20Sopenharmony_ci		extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors);
3088c2ecf20Sopenharmony_ci
3098c2ecf20Sopenharmony_ci		/* Spread allocated vectors on CPUs of the current node */
3108c2ecf20Sopenharmony_ci		for (v = 0; v < nv->nvectors; v++, curvec++) {
3118c2ecf20Sopenharmony_ci			cpus_per_vec = ncpus / nv->nvectors;
3128c2ecf20Sopenharmony_ci
3138c2ecf20Sopenharmony_ci			/* Account for extra vectors to compensate rounding errors */
3148c2ecf20Sopenharmony_ci			if (extra_vecs) {
3158c2ecf20Sopenharmony_ci				cpus_per_vec++;
3168c2ecf20Sopenharmony_ci				--extra_vecs;
3178c2ecf20Sopenharmony_ci			}
3188c2ecf20Sopenharmony_ci
3198c2ecf20Sopenharmony_ci			/*
3208c2ecf20Sopenharmony_ci			 * wrapping has to be considered given 'startvec'
3218c2ecf20Sopenharmony_ci			 * may start anywhere
3228c2ecf20Sopenharmony_ci			 */
3238c2ecf20Sopenharmony_ci			if (curvec >= last_affv)
3248c2ecf20Sopenharmony_ci				curvec = firstvec;
3258c2ecf20Sopenharmony_ci			irq_spread_init_one(&masks[curvec].mask, nmsk,
3268c2ecf20Sopenharmony_ci						cpus_per_vec);
3278c2ecf20Sopenharmony_ci		}
3288c2ecf20Sopenharmony_ci		done += nv->nvectors;
3298c2ecf20Sopenharmony_ci	}
3308c2ecf20Sopenharmony_ci	kfree(node_vectors);
3318c2ecf20Sopenharmony_ci	return done;
3328c2ecf20Sopenharmony_ci}
3338c2ecf20Sopenharmony_ci
3348c2ecf20Sopenharmony_ci/*
3358c2ecf20Sopenharmony_ci * build affinity in two stages:
3368c2ecf20Sopenharmony_ci *	1) spread present CPU on these vectors
3378c2ecf20Sopenharmony_ci *	2) spread other possible CPUs on these vectors
3388c2ecf20Sopenharmony_ci */
3398c2ecf20Sopenharmony_cistatic int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs,
3408c2ecf20Sopenharmony_ci				    unsigned int firstvec,
3418c2ecf20Sopenharmony_ci				    struct irq_affinity_desc *masks)
3428c2ecf20Sopenharmony_ci{
3438c2ecf20Sopenharmony_ci	unsigned int curvec = startvec, nr_present = 0, nr_others = 0;
3448c2ecf20Sopenharmony_ci	cpumask_var_t *node_to_cpumask;
3458c2ecf20Sopenharmony_ci	cpumask_var_t nmsk, npresmsk;
3468c2ecf20Sopenharmony_ci	int ret = -ENOMEM;
3478c2ecf20Sopenharmony_ci
3488c2ecf20Sopenharmony_ci	if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL))
3498c2ecf20Sopenharmony_ci		return ret;
3508c2ecf20Sopenharmony_ci
3518c2ecf20Sopenharmony_ci	if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL))
3528c2ecf20Sopenharmony_ci		goto fail_nmsk;
3538c2ecf20Sopenharmony_ci
3548c2ecf20Sopenharmony_ci	node_to_cpumask = alloc_node_to_cpumask();
3558c2ecf20Sopenharmony_ci	if (!node_to_cpumask)
3568c2ecf20Sopenharmony_ci		goto fail_npresmsk;
3578c2ecf20Sopenharmony_ci
3588c2ecf20Sopenharmony_ci	/* Stabilize the cpumasks */
3598c2ecf20Sopenharmony_ci	get_online_cpus();
3608c2ecf20Sopenharmony_ci	build_node_to_cpumask(node_to_cpumask);
3618c2ecf20Sopenharmony_ci
3628c2ecf20Sopenharmony_ci	/* Spread on present CPUs starting from affd->pre_vectors */
3638c2ecf20Sopenharmony_ci	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
3648c2ecf20Sopenharmony_ci					 node_to_cpumask, cpu_present_mask,
3658c2ecf20Sopenharmony_ci					 nmsk, masks);
3668c2ecf20Sopenharmony_ci	if (ret < 0)
3678c2ecf20Sopenharmony_ci		goto fail_build_affinity;
3688c2ecf20Sopenharmony_ci	nr_present = ret;
3698c2ecf20Sopenharmony_ci
3708c2ecf20Sopenharmony_ci	/*
3718c2ecf20Sopenharmony_ci	 * Spread on non present CPUs starting from the next vector to be
3728c2ecf20Sopenharmony_ci	 * handled. If the spreading of present CPUs already exhausted the
3738c2ecf20Sopenharmony_ci	 * vector space, assign the non present CPUs to the already spread
3748c2ecf20Sopenharmony_ci	 * out vectors.
3758c2ecf20Sopenharmony_ci	 */
3768c2ecf20Sopenharmony_ci	if (nr_present >= numvecs)
3778c2ecf20Sopenharmony_ci		curvec = firstvec;
3788c2ecf20Sopenharmony_ci	else
3798c2ecf20Sopenharmony_ci		curvec = firstvec + nr_present;
3808c2ecf20Sopenharmony_ci	cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask);
3818c2ecf20Sopenharmony_ci	ret = __irq_build_affinity_masks(curvec, numvecs, firstvec,
3828c2ecf20Sopenharmony_ci					 node_to_cpumask, npresmsk, nmsk,
3838c2ecf20Sopenharmony_ci					 masks);
3848c2ecf20Sopenharmony_ci	if (ret >= 0)
3858c2ecf20Sopenharmony_ci		nr_others = ret;
3868c2ecf20Sopenharmony_ci
3878c2ecf20Sopenharmony_ci fail_build_affinity:
3888c2ecf20Sopenharmony_ci	put_online_cpus();
3898c2ecf20Sopenharmony_ci
3908c2ecf20Sopenharmony_ci	if (ret >= 0)
3918c2ecf20Sopenharmony_ci		WARN_ON(nr_present + nr_others < numvecs);
3928c2ecf20Sopenharmony_ci
3938c2ecf20Sopenharmony_ci	free_node_to_cpumask(node_to_cpumask);
3948c2ecf20Sopenharmony_ci
3958c2ecf20Sopenharmony_ci fail_npresmsk:
3968c2ecf20Sopenharmony_ci	free_cpumask_var(npresmsk);
3978c2ecf20Sopenharmony_ci
3988c2ecf20Sopenharmony_ci fail_nmsk:
3998c2ecf20Sopenharmony_ci	free_cpumask_var(nmsk);
4008c2ecf20Sopenharmony_ci	return ret < 0 ? ret : 0;
4018c2ecf20Sopenharmony_ci}
4028c2ecf20Sopenharmony_ci
4038c2ecf20Sopenharmony_cistatic void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs)
4048c2ecf20Sopenharmony_ci{
4058c2ecf20Sopenharmony_ci	affd->nr_sets = 1;
4068c2ecf20Sopenharmony_ci	affd->set_size[0] = affvecs;
4078c2ecf20Sopenharmony_ci}
4088c2ecf20Sopenharmony_ci
4098c2ecf20Sopenharmony_ci/**
4108c2ecf20Sopenharmony_ci * irq_create_affinity_masks - Create affinity masks for multiqueue spreading
4118c2ecf20Sopenharmony_ci * @nvecs:	The total number of vectors
4128c2ecf20Sopenharmony_ci * @affd:	Description of the affinity requirements
4138c2ecf20Sopenharmony_ci *
4148c2ecf20Sopenharmony_ci * Returns the irq_affinity_desc pointer or NULL if allocation failed.
4158c2ecf20Sopenharmony_ci */
4168c2ecf20Sopenharmony_cistruct irq_affinity_desc *
4178c2ecf20Sopenharmony_ciirq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd)
4188c2ecf20Sopenharmony_ci{
4198c2ecf20Sopenharmony_ci	unsigned int affvecs, curvec, usedvecs, i;
4208c2ecf20Sopenharmony_ci	struct irq_affinity_desc *masks = NULL;
4218c2ecf20Sopenharmony_ci
4228c2ecf20Sopenharmony_ci	/*
4238c2ecf20Sopenharmony_ci	 * Determine the number of vectors which need interrupt affinities
4248c2ecf20Sopenharmony_ci	 * assigned. If the pre/post request exhausts the available vectors
4258c2ecf20Sopenharmony_ci	 * then nothing to do here except for invoking the calc_sets()
4268c2ecf20Sopenharmony_ci	 * callback so the device driver can adjust to the situation.
4278c2ecf20Sopenharmony_ci	 */
4288c2ecf20Sopenharmony_ci	if (nvecs > affd->pre_vectors + affd->post_vectors)
4298c2ecf20Sopenharmony_ci		affvecs = nvecs - affd->pre_vectors - affd->post_vectors;
4308c2ecf20Sopenharmony_ci	else
4318c2ecf20Sopenharmony_ci		affvecs = 0;
4328c2ecf20Sopenharmony_ci
4338c2ecf20Sopenharmony_ci	/*
4348c2ecf20Sopenharmony_ci	 * Simple invocations do not provide a calc_sets() callback. Install
4358c2ecf20Sopenharmony_ci	 * the generic one.
4368c2ecf20Sopenharmony_ci	 */
4378c2ecf20Sopenharmony_ci	if (!affd->calc_sets)
4388c2ecf20Sopenharmony_ci		affd->calc_sets = default_calc_sets;
4398c2ecf20Sopenharmony_ci
4408c2ecf20Sopenharmony_ci	/* Recalculate the sets */
4418c2ecf20Sopenharmony_ci	affd->calc_sets(affd, affvecs);
4428c2ecf20Sopenharmony_ci
4438c2ecf20Sopenharmony_ci	if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS))
4448c2ecf20Sopenharmony_ci		return NULL;
4458c2ecf20Sopenharmony_ci
4468c2ecf20Sopenharmony_ci	/* Nothing to assign? */
4478c2ecf20Sopenharmony_ci	if (!affvecs)
4488c2ecf20Sopenharmony_ci		return NULL;
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci	masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL);
4518c2ecf20Sopenharmony_ci	if (!masks)
4528c2ecf20Sopenharmony_ci		return NULL;
4538c2ecf20Sopenharmony_ci
4548c2ecf20Sopenharmony_ci	/* Fill out vectors at the beginning that don't need affinity */
4558c2ecf20Sopenharmony_ci	for (curvec = 0; curvec < affd->pre_vectors; curvec++)
4568c2ecf20Sopenharmony_ci		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
4578c2ecf20Sopenharmony_ci
4588c2ecf20Sopenharmony_ci	/*
4598c2ecf20Sopenharmony_ci	 * Spread on present CPUs starting from affd->pre_vectors. If we
4608c2ecf20Sopenharmony_ci	 * have multiple sets, build each sets affinity mask separately.
4618c2ecf20Sopenharmony_ci	 */
4628c2ecf20Sopenharmony_ci	for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) {
4638c2ecf20Sopenharmony_ci		unsigned int this_vecs = affd->set_size[i];
4648c2ecf20Sopenharmony_ci		int ret;
4658c2ecf20Sopenharmony_ci
4668c2ecf20Sopenharmony_ci		ret = irq_build_affinity_masks(curvec, this_vecs,
4678c2ecf20Sopenharmony_ci					       curvec, masks);
4688c2ecf20Sopenharmony_ci		if (ret) {
4698c2ecf20Sopenharmony_ci			kfree(masks);
4708c2ecf20Sopenharmony_ci			return NULL;
4718c2ecf20Sopenharmony_ci		}
4728c2ecf20Sopenharmony_ci		curvec += this_vecs;
4738c2ecf20Sopenharmony_ci		usedvecs += this_vecs;
4748c2ecf20Sopenharmony_ci	}
4758c2ecf20Sopenharmony_ci
4768c2ecf20Sopenharmony_ci	/* Fill out vectors at the end that don't need affinity */
4778c2ecf20Sopenharmony_ci	if (usedvecs >= affvecs)
4788c2ecf20Sopenharmony_ci		curvec = affd->pre_vectors + affvecs;
4798c2ecf20Sopenharmony_ci	else
4808c2ecf20Sopenharmony_ci		curvec = affd->pre_vectors + usedvecs;
4818c2ecf20Sopenharmony_ci	for (; curvec < nvecs; curvec++)
4828c2ecf20Sopenharmony_ci		cpumask_copy(&masks[curvec].mask, irq_default_affinity);
4838c2ecf20Sopenharmony_ci
4848c2ecf20Sopenharmony_ci	/* Mark the managed interrupts */
4858c2ecf20Sopenharmony_ci	for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++)
4868c2ecf20Sopenharmony_ci		masks[i].is_managed = 1;
4878c2ecf20Sopenharmony_ci
4888c2ecf20Sopenharmony_ci	return masks;
4898c2ecf20Sopenharmony_ci}
4908c2ecf20Sopenharmony_ci
4918c2ecf20Sopenharmony_ci/**
4928c2ecf20Sopenharmony_ci * irq_calc_affinity_vectors - Calculate the optimal number of vectors
4938c2ecf20Sopenharmony_ci * @minvec:	The minimum number of vectors available
4948c2ecf20Sopenharmony_ci * @maxvec:	The maximum number of vectors available
4958c2ecf20Sopenharmony_ci * @affd:	Description of the affinity requirements
4968c2ecf20Sopenharmony_ci */
4978c2ecf20Sopenharmony_ciunsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec,
4988c2ecf20Sopenharmony_ci				       const struct irq_affinity *affd)
4998c2ecf20Sopenharmony_ci{
5008c2ecf20Sopenharmony_ci	unsigned int resv = affd->pre_vectors + affd->post_vectors;
5018c2ecf20Sopenharmony_ci	unsigned int set_vecs;
5028c2ecf20Sopenharmony_ci
5038c2ecf20Sopenharmony_ci	if (resv > minvec)
5048c2ecf20Sopenharmony_ci		return 0;
5058c2ecf20Sopenharmony_ci
5068c2ecf20Sopenharmony_ci	if (affd->calc_sets) {
5078c2ecf20Sopenharmony_ci		set_vecs = maxvec - resv;
5088c2ecf20Sopenharmony_ci	} else {
5098c2ecf20Sopenharmony_ci		get_online_cpus();
5108c2ecf20Sopenharmony_ci		set_vecs = cpumask_weight(cpu_possible_mask);
5118c2ecf20Sopenharmony_ci		put_online_cpus();
5128c2ecf20Sopenharmony_ci	}
5138c2ecf20Sopenharmony_ci
5148c2ecf20Sopenharmony_ci	return resv + min(set_vecs, maxvec - resv);
5158c2ecf20Sopenharmony_ci}
516