18c2ecf20Sopenharmony_ci// SPDX-License-Identifier: GPL-2.0 28c2ecf20Sopenharmony_ci/* 38c2ecf20Sopenharmony_ci * Copyright (C) 2016 Thomas Gleixner. 48c2ecf20Sopenharmony_ci * Copyright (C) 2016-2017 Christoph Hellwig. 58c2ecf20Sopenharmony_ci */ 68c2ecf20Sopenharmony_ci#include <linux/interrupt.h> 78c2ecf20Sopenharmony_ci#include <linux/kernel.h> 88c2ecf20Sopenharmony_ci#include <linux/slab.h> 98c2ecf20Sopenharmony_ci#include <linux/cpu.h> 108c2ecf20Sopenharmony_ci#include <linux/sort.h> 118c2ecf20Sopenharmony_ci 128c2ecf20Sopenharmony_cistatic void irq_spread_init_one(struct cpumask *irqmsk, struct cpumask *nmsk, 138c2ecf20Sopenharmony_ci unsigned int cpus_per_vec) 148c2ecf20Sopenharmony_ci{ 158c2ecf20Sopenharmony_ci const struct cpumask *siblmsk; 168c2ecf20Sopenharmony_ci int cpu, sibl; 178c2ecf20Sopenharmony_ci 188c2ecf20Sopenharmony_ci for ( ; cpus_per_vec > 0; ) { 198c2ecf20Sopenharmony_ci cpu = cpumask_first(nmsk); 208c2ecf20Sopenharmony_ci 218c2ecf20Sopenharmony_ci /* Should not happen, but I'm too lazy to think about it */ 228c2ecf20Sopenharmony_ci if (cpu >= nr_cpu_ids) 238c2ecf20Sopenharmony_ci return; 248c2ecf20Sopenharmony_ci 258c2ecf20Sopenharmony_ci cpumask_clear_cpu(cpu, nmsk); 268c2ecf20Sopenharmony_ci cpumask_set_cpu(cpu, irqmsk); 278c2ecf20Sopenharmony_ci cpus_per_vec--; 288c2ecf20Sopenharmony_ci 298c2ecf20Sopenharmony_ci /* If the cpu has siblings, use them first */ 308c2ecf20Sopenharmony_ci siblmsk = topology_sibling_cpumask(cpu); 318c2ecf20Sopenharmony_ci for (sibl = -1; cpus_per_vec > 0; ) { 328c2ecf20Sopenharmony_ci sibl = cpumask_next(sibl, siblmsk); 338c2ecf20Sopenharmony_ci if (sibl >= nr_cpu_ids) 348c2ecf20Sopenharmony_ci break; 358c2ecf20Sopenharmony_ci if (!cpumask_test_and_clear_cpu(sibl, nmsk)) 368c2ecf20Sopenharmony_ci continue; 378c2ecf20Sopenharmony_ci cpumask_set_cpu(sibl, irqmsk); 388c2ecf20Sopenharmony_ci cpus_per_vec--; 398c2ecf20Sopenharmony_ci } 408c2ecf20Sopenharmony_ci } 418c2ecf20Sopenharmony_ci} 428c2ecf20Sopenharmony_ci 438c2ecf20Sopenharmony_cistatic cpumask_var_t *alloc_node_to_cpumask(void) 448c2ecf20Sopenharmony_ci{ 458c2ecf20Sopenharmony_ci cpumask_var_t *masks; 468c2ecf20Sopenharmony_ci int node; 478c2ecf20Sopenharmony_ci 488c2ecf20Sopenharmony_ci masks = kcalloc(nr_node_ids, sizeof(cpumask_var_t), GFP_KERNEL); 498c2ecf20Sopenharmony_ci if (!masks) 508c2ecf20Sopenharmony_ci return NULL; 518c2ecf20Sopenharmony_ci 528c2ecf20Sopenharmony_ci for (node = 0; node < nr_node_ids; node++) { 538c2ecf20Sopenharmony_ci if (!zalloc_cpumask_var(&masks[node], GFP_KERNEL)) 548c2ecf20Sopenharmony_ci goto out_unwind; 558c2ecf20Sopenharmony_ci } 568c2ecf20Sopenharmony_ci 578c2ecf20Sopenharmony_ci return masks; 588c2ecf20Sopenharmony_ci 598c2ecf20Sopenharmony_ciout_unwind: 608c2ecf20Sopenharmony_ci while (--node >= 0) 618c2ecf20Sopenharmony_ci free_cpumask_var(masks[node]); 628c2ecf20Sopenharmony_ci kfree(masks); 638c2ecf20Sopenharmony_ci return NULL; 648c2ecf20Sopenharmony_ci} 658c2ecf20Sopenharmony_ci 668c2ecf20Sopenharmony_cistatic void free_node_to_cpumask(cpumask_var_t *masks) 678c2ecf20Sopenharmony_ci{ 688c2ecf20Sopenharmony_ci int node; 698c2ecf20Sopenharmony_ci 708c2ecf20Sopenharmony_ci for (node = 0; node < nr_node_ids; node++) 718c2ecf20Sopenharmony_ci free_cpumask_var(masks[node]); 728c2ecf20Sopenharmony_ci kfree(masks); 738c2ecf20Sopenharmony_ci} 748c2ecf20Sopenharmony_ci 758c2ecf20Sopenharmony_cistatic void build_node_to_cpumask(cpumask_var_t *masks) 768c2ecf20Sopenharmony_ci{ 778c2ecf20Sopenharmony_ci int cpu; 788c2ecf20Sopenharmony_ci 798c2ecf20Sopenharmony_ci for_each_possible_cpu(cpu) 808c2ecf20Sopenharmony_ci cpumask_set_cpu(cpu, masks[cpu_to_node(cpu)]); 818c2ecf20Sopenharmony_ci} 828c2ecf20Sopenharmony_ci 838c2ecf20Sopenharmony_cistatic int get_nodes_in_cpumask(cpumask_var_t *node_to_cpumask, 848c2ecf20Sopenharmony_ci const struct cpumask *mask, nodemask_t *nodemsk) 858c2ecf20Sopenharmony_ci{ 868c2ecf20Sopenharmony_ci int n, nodes = 0; 878c2ecf20Sopenharmony_ci 888c2ecf20Sopenharmony_ci /* Calculate the number of nodes in the supplied affinity mask */ 898c2ecf20Sopenharmony_ci for_each_node(n) { 908c2ecf20Sopenharmony_ci if (cpumask_intersects(mask, node_to_cpumask[n])) { 918c2ecf20Sopenharmony_ci node_set(n, *nodemsk); 928c2ecf20Sopenharmony_ci nodes++; 938c2ecf20Sopenharmony_ci } 948c2ecf20Sopenharmony_ci } 958c2ecf20Sopenharmony_ci return nodes; 968c2ecf20Sopenharmony_ci} 978c2ecf20Sopenharmony_ci 988c2ecf20Sopenharmony_cistruct node_vectors { 998c2ecf20Sopenharmony_ci unsigned id; 1008c2ecf20Sopenharmony_ci 1018c2ecf20Sopenharmony_ci union { 1028c2ecf20Sopenharmony_ci unsigned nvectors; 1038c2ecf20Sopenharmony_ci unsigned ncpus; 1048c2ecf20Sopenharmony_ci }; 1058c2ecf20Sopenharmony_ci}; 1068c2ecf20Sopenharmony_ci 1078c2ecf20Sopenharmony_cistatic int ncpus_cmp_func(const void *l, const void *r) 1088c2ecf20Sopenharmony_ci{ 1098c2ecf20Sopenharmony_ci const struct node_vectors *ln = l; 1108c2ecf20Sopenharmony_ci const struct node_vectors *rn = r; 1118c2ecf20Sopenharmony_ci 1128c2ecf20Sopenharmony_ci return ln->ncpus - rn->ncpus; 1138c2ecf20Sopenharmony_ci} 1148c2ecf20Sopenharmony_ci 1158c2ecf20Sopenharmony_ci/* 1168c2ecf20Sopenharmony_ci * Allocate vector number for each node, so that for each node: 1178c2ecf20Sopenharmony_ci * 1188c2ecf20Sopenharmony_ci * 1) the allocated number is >= 1 1198c2ecf20Sopenharmony_ci * 1208c2ecf20Sopenharmony_ci * 2) the allocated numbver is <= active CPU number of this node 1218c2ecf20Sopenharmony_ci * 1228c2ecf20Sopenharmony_ci * The actual allocated total vectors may be less than @numvecs when 1238c2ecf20Sopenharmony_ci * active total CPU number is less than @numvecs. 1248c2ecf20Sopenharmony_ci * 1258c2ecf20Sopenharmony_ci * Active CPUs means the CPUs in '@cpu_mask AND @node_to_cpumask[]' 1268c2ecf20Sopenharmony_ci * for each node. 1278c2ecf20Sopenharmony_ci */ 1288c2ecf20Sopenharmony_cistatic void alloc_nodes_vectors(unsigned int numvecs, 1298c2ecf20Sopenharmony_ci cpumask_var_t *node_to_cpumask, 1308c2ecf20Sopenharmony_ci const struct cpumask *cpu_mask, 1318c2ecf20Sopenharmony_ci const nodemask_t nodemsk, 1328c2ecf20Sopenharmony_ci struct cpumask *nmsk, 1338c2ecf20Sopenharmony_ci struct node_vectors *node_vectors) 1348c2ecf20Sopenharmony_ci{ 1358c2ecf20Sopenharmony_ci unsigned n, remaining_ncpus = 0; 1368c2ecf20Sopenharmony_ci 1378c2ecf20Sopenharmony_ci for (n = 0; n < nr_node_ids; n++) { 1388c2ecf20Sopenharmony_ci node_vectors[n].id = n; 1398c2ecf20Sopenharmony_ci node_vectors[n].ncpus = UINT_MAX; 1408c2ecf20Sopenharmony_ci } 1418c2ecf20Sopenharmony_ci 1428c2ecf20Sopenharmony_ci for_each_node_mask(n, nodemsk) { 1438c2ecf20Sopenharmony_ci unsigned ncpus; 1448c2ecf20Sopenharmony_ci 1458c2ecf20Sopenharmony_ci cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); 1468c2ecf20Sopenharmony_ci ncpus = cpumask_weight(nmsk); 1478c2ecf20Sopenharmony_ci 1488c2ecf20Sopenharmony_ci if (!ncpus) 1498c2ecf20Sopenharmony_ci continue; 1508c2ecf20Sopenharmony_ci remaining_ncpus += ncpus; 1518c2ecf20Sopenharmony_ci node_vectors[n].ncpus = ncpus; 1528c2ecf20Sopenharmony_ci } 1538c2ecf20Sopenharmony_ci 1548c2ecf20Sopenharmony_ci numvecs = min_t(unsigned, remaining_ncpus, numvecs); 1558c2ecf20Sopenharmony_ci 1568c2ecf20Sopenharmony_ci sort(node_vectors, nr_node_ids, sizeof(node_vectors[0]), 1578c2ecf20Sopenharmony_ci ncpus_cmp_func, NULL); 1588c2ecf20Sopenharmony_ci 1598c2ecf20Sopenharmony_ci /* 1608c2ecf20Sopenharmony_ci * Allocate vectors for each node according to the ratio of this 1618c2ecf20Sopenharmony_ci * node's nr_cpus to remaining un-assigned ncpus. 'numvecs' is 1628c2ecf20Sopenharmony_ci * bigger than number of active numa nodes. Always start the 1638c2ecf20Sopenharmony_ci * allocation from the node with minimized nr_cpus. 1648c2ecf20Sopenharmony_ci * 1658c2ecf20Sopenharmony_ci * This way guarantees that each active node gets allocated at 1668c2ecf20Sopenharmony_ci * least one vector, and the theory is simple: over-allocation 1678c2ecf20Sopenharmony_ci * is only done when this node is assigned by one vector, so 1688c2ecf20Sopenharmony_ci * other nodes will be allocated >= 1 vector, since 'numvecs' is 1698c2ecf20Sopenharmony_ci * bigger than number of numa nodes. 1708c2ecf20Sopenharmony_ci * 1718c2ecf20Sopenharmony_ci * One perfect invariant is that number of allocated vectors for 1728c2ecf20Sopenharmony_ci * each node is <= CPU count of this node: 1738c2ecf20Sopenharmony_ci * 1748c2ecf20Sopenharmony_ci * 1) suppose there are two nodes: A and B 1758c2ecf20Sopenharmony_ci * ncpu(X) is CPU count of node X 1768c2ecf20Sopenharmony_ci * vecs(X) is the vector count allocated to node X via this 1778c2ecf20Sopenharmony_ci * algorithm 1788c2ecf20Sopenharmony_ci * 1798c2ecf20Sopenharmony_ci * ncpu(A) <= ncpu(B) 1808c2ecf20Sopenharmony_ci * ncpu(A) + ncpu(B) = N 1818c2ecf20Sopenharmony_ci * vecs(A) + vecs(B) = V 1828c2ecf20Sopenharmony_ci * 1838c2ecf20Sopenharmony_ci * vecs(A) = max(1, round_down(V * ncpu(A) / N)) 1848c2ecf20Sopenharmony_ci * vecs(B) = V - vecs(A) 1858c2ecf20Sopenharmony_ci * 1868c2ecf20Sopenharmony_ci * both N and V are integer, and 2 <= V <= N, suppose 1878c2ecf20Sopenharmony_ci * V = N - delta, and 0 <= delta <= N - 2 1888c2ecf20Sopenharmony_ci * 1898c2ecf20Sopenharmony_ci * 2) obviously vecs(A) <= ncpu(A) because: 1908c2ecf20Sopenharmony_ci * 1918c2ecf20Sopenharmony_ci * if vecs(A) is 1, then vecs(A) <= ncpu(A) given 1928c2ecf20Sopenharmony_ci * ncpu(A) >= 1 1938c2ecf20Sopenharmony_ci * 1948c2ecf20Sopenharmony_ci * otherwise, 1958c2ecf20Sopenharmony_ci * vecs(A) <= V * ncpu(A) / N <= ncpu(A), given V <= N 1968c2ecf20Sopenharmony_ci * 1978c2ecf20Sopenharmony_ci * 3) prove how vecs(B) <= ncpu(B): 1988c2ecf20Sopenharmony_ci * 1998c2ecf20Sopenharmony_ci * if round_down(V * ncpu(A) / N) == 0, vecs(B) won't be 2008c2ecf20Sopenharmony_ci * over-allocated, so vecs(B) <= ncpu(B), 2018c2ecf20Sopenharmony_ci * 2028c2ecf20Sopenharmony_ci * otherwise: 2038c2ecf20Sopenharmony_ci * 2048c2ecf20Sopenharmony_ci * vecs(A) = 2058c2ecf20Sopenharmony_ci * round_down(V * ncpu(A) / N) = 2068c2ecf20Sopenharmony_ci * round_down((N - delta) * ncpu(A) / N) = 2078c2ecf20Sopenharmony_ci * round_down((N * ncpu(A) - delta * ncpu(A)) / N) >= 2088c2ecf20Sopenharmony_ci * round_down((N * ncpu(A) - delta * N) / N) = 2098c2ecf20Sopenharmony_ci * cpu(A) - delta 2108c2ecf20Sopenharmony_ci * 2118c2ecf20Sopenharmony_ci * then: 2128c2ecf20Sopenharmony_ci * 2138c2ecf20Sopenharmony_ci * vecs(A) - V >= ncpu(A) - delta - V 2148c2ecf20Sopenharmony_ci * => 2158c2ecf20Sopenharmony_ci * V - vecs(A) <= V + delta - ncpu(A) 2168c2ecf20Sopenharmony_ci * => 2178c2ecf20Sopenharmony_ci * vecs(B) <= N - ncpu(A) 2188c2ecf20Sopenharmony_ci * => 2198c2ecf20Sopenharmony_ci * vecs(B) <= cpu(B) 2208c2ecf20Sopenharmony_ci * 2218c2ecf20Sopenharmony_ci * For nodes >= 3, it can be thought as one node and another big 2228c2ecf20Sopenharmony_ci * node given that is exactly what this algorithm is implemented, 2238c2ecf20Sopenharmony_ci * and we always re-calculate 'remaining_ncpus' & 'numvecs', and 2248c2ecf20Sopenharmony_ci * finally for each node X: vecs(X) <= ncpu(X). 2258c2ecf20Sopenharmony_ci * 2268c2ecf20Sopenharmony_ci */ 2278c2ecf20Sopenharmony_ci for (n = 0; n < nr_node_ids; n++) { 2288c2ecf20Sopenharmony_ci unsigned nvectors, ncpus; 2298c2ecf20Sopenharmony_ci 2308c2ecf20Sopenharmony_ci if (node_vectors[n].ncpus == UINT_MAX) 2318c2ecf20Sopenharmony_ci continue; 2328c2ecf20Sopenharmony_ci 2338c2ecf20Sopenharmony_ci WARN_ON_ONCE(numvecs == 0); 2348c2ecf20Sopenharmony_ci 2358c2ecf20Sopenharmony_ci ncpus = node_vectors[n].ncpus; 2368c2ecf20Sopenharmony_ci nvectors = max_t(unsigned, 1, 2378c2ecf20Sopenharmony_ci numvecs * ncpus / remaining_ncpus); 2388c2ecf20Sopenharmony_ci WARN_ON_ONCE(nvectors > ncpus); 2398c2ecf20Sopenharmony_ci 2408c2ecf20Sopenharmony_ci node_vectors[n].nvectors = nvectors; 2418c2ecf20Sopenharmony_ci 2428c2ecf20Sopenharmony_ci remaining_ncpus -= ncpus; 2438c2ecf20Sopenharmony_ci numvecs -= nvectors; 2448c2ecf20Sopenharmony_ci } 2458c2ecf20Sopenharmony_ci} 2468c2ecf20Sopenharmony_ci 2478c2ecf20Sopenharmony_cistatic int __irq_build_affinity_masks(unsigned int startvec, 2488c2ecf20Sopenharmony_ci unsigned int numvecs, 2498c2ecf20Sopenharmony_ci unsigned int firstvec, 2508c2ecf20Sopenharmony_ci cpumask_var_t *node_to_cpumask, 2518c2ecf20Sopenharmony_ci const struct cpumask *cpu_mask, 2528c2ecf20Sopenharmony_ci struct cpumask *nmsk, 2538c2ecf20Sopenharmony_ci struct irq_affinity_desc *masks) 2548c2ecf20Sopenharmony_ci{ 2558c2ecf20Sopenharmony_ci unsigned int i, n, nodes, cpus_per_vec, extra_vecs, done = 0; 2568c2ecf20Sopenharmony_ci unsigned int last_affv = firstvec + numvecs; 2578c2ecf20Sopenharmony_ci unsigned int curvec = startvec; 2588c2ecf20Sopenharmony_ci nodemask_t nodemsk = NODE_MASK_NONE; 2598c2ecf20Sopenharmony_ci struct node_vectors *node_vectors; 2608c2ecf20Sopenharmony_ci 2618c2ecf20Sopenharmony_ci if (!cpumask_weight(cpu_mask)) 2628c2ecf20Sopenharmony_ci return 0; 2638c2ecf20Sopenharmony_ci 2648c2ecf20Sopenharmony_ci nodes = get_nodes_in_cpumask(node_to_cpumask, cpu_mask, &nodemsk); 2658c2ecf20Sopenharmony_ci 2668c2ecf20Sopenharmony_ci /* 2678c2ecf20Sopenharmony_ci * If the number of nodes in the mask is greater than or equal the 2688c2ecf20Sopenharmony_ci * number of vectors we just spread the vectors across the nodes. 2698c2ecf20Sopenharmony_ci */ 2708c2ecf20Sopenharmony_ci if (numvecs <= nodes) { 2718c2ecf20Sopenharmony_ci for_each_node_mask(n, nodemsk) { 2728c2ecf20Sopenharmony_ci /* Ensure that only CPUs which are in both masks are set */ 2738c2ecf20Sopenharmony_ci cpumask_and(nmsk, cpu_mask, node_to_cpumask[n]); 2748c2ecf20Sopenharmony_ci cpumask_or(&masks[curvec].mask, &masks[curvec].mask, nmsk); 2758c2ecf20Sopenharmony_ci if (++curvec == last_affv) 2768c2ecf20Sopenharmony_ci curvec = firstvec; 2778c2ecf20Sopenharmony_ci } 2788c2ecf20Sopenharmony_ci return numvecs; 2798c2ecf20Sopenharmony_ci } 2808c2ecf20Sopenharmony_ci 2818c2ecf20Sopenharmony_ci node_vectors = kcalloc(nr_node_ids, 2828c2ecf20Sopenharmony_ci sizeof(struct node_vectors), 2838c2ecf20Sopenharmony_ci GFP_KERNEL); 2848c2ecf20Sopenharmony_ci if (!node_vectors) 2858c2ecf20Sopenharmony_ci return -ENOMEM; 2868c2ecf20Sopenharmony_ci 2878c2ecf20Sopenharmony_ci /* allocate vector number for each node */ 2888c2ecf20Sopenharmony_ci alloc_nodes_vectors(numvecs, node_to_cpumask, cpu_mask, 2898c2ecf20Sopenharmony_ci nodemsk, nmsk, node_vectors); 2908c2ecf20Sopenharmony_ci 2918c2ecf20Sopenharmony_ci for (i = 0; i < nr_node_ids; i++) { 2928c2ecf20Sopenharmony_ci unsigned int ncpus, v; 2938c2ecf20Sopenharmony_ci struct node_vectors *nv = &node_vectors[i]; 2948c2ecf20Sopenharmony_ci 2958c2ecf20Sopenharmony_ci if (nv->nvectors == UINT_MAX) 2968c2ecf20Sopenharmony_ci continue; 2978c2ecf20Sopenharmony_ci 2988c2ecf20Sopenharmony_ci /* Get the cpus on this node which are in the mask */ 2998c2ecf20Sopenharmony_ci cpumask_and(nmsk, cpu_mask, node_to_cpumask[nv->id]); 3008c2ecf20Sopenharmony_ci ncpus = cpumask_weight(nmsk); 3018c2ecf20Sopenharmony_ci if (!ncpus) 3028c2ecf20Sopenharmony_ci continue; 3038c2ecf20Sopenharmony_ci 3048c2ecf20Sopenharmony_ci WARN_ON_ONCE(nv->nvectors > ncpus); 3058c2ecf20Sopenharmony_ci 3068c2ecf20Sopenharmony_ci /* Account for rounding errors */ 3078c2ecf20Sopenharmony_ci extra_vecs = ncpus - nv->nvectors * (ncpus / nv->nvectors); 3088c2ecf20Sopenharmony_ci 3098c2ecf20Sopenharmony_ci /* Spread allocated vectors on CPUs of the current node */ 3108c2ecf20Sopenharmony_ci for (v = 0; v < nv->nvectors; v++, curvec++) { 3118c2ecf20Sopenharmony_ci cpus_per_vec = ncpus / nv->nvectors; 3128c2ecf20Sopenharmony_ci 3138c2ecf20Sopenharmony_ci /* Account for extra vectors to compensate rounding errors */ 3148c2ecf20Sopenharmony_ci if (extra_vecs) { 3158c2ecf20Sopenharmony_ci cpus_per_vec++; 3168c2ecf20Sopenharmony_ci --extra_vecs; 3178c2ecf20Sopenharmony_ci } 3188c2ecf20Sopenharmony_ci 3198c2ecf20Sopenharmony_ci /* 3208c2ecf20Sopenharmony_ci * wrapping has to be considered given 'startvec' 3218c2ecf20Sopenharmony_ci * may start anywhere 3228c2ecf20Sopenharmony_ci */ 3238c2ecf20Sopenharmony_ci if (curvec >= last_affv) 3248c2ecf20Sopenharmony_ci curvec = firstvec; 3258c2ecf20Sopenharmony_ci irq_spread_init_one(&masks[curvec].mask, nmsk, 3268c2ecf20Sopenharmony_ci cpus_per_vec); 3278c2ecf20Sopenharmony_ci } 3288c2ecf20Sopenharmony_ci done += nv->nvectors; 3298c2ecf20Sopenharmony_ci } 3308c2ecf20Sopenharmony_ci kfree(node_vectors); 3318c2ecf20Sopenharmony_ci return done; 3328c2ecf20Sopenharmony_ci} 3338c2ecf20Sopenharmony_ci 3348c2ecf20Sopenharmony_ci/* 3358c2ecf20Sopenharmony_ci * build affinity in two stages: 3368c2ecf20Sopenharmony_ci * 1) spread present CPU on these vectors 3378c2ecf20Sopenharmony_ci * 2) spread other possible CPUs on these vectors 3388c2ecf20Sopenharmony_ci */ 3398c2ecf20Sopenharmony_cistatic int irq_build_affinity_masks(unsigned int startvec, unsigned int numvecs, 3408c2ecf20Sopenharmony_ci unsigned int firstvec, 3418c2ecf20Sopenharmony_ci struct irq_affinity_desc *masks) 3428c2ecf20Sopenharmony_ci{ 3438c2ecf20Sopenharmony_ci unsigned int curvec = startvec, nr_present = 0, nr_others = 0; 3448c2ecf20Sopenharmony_ci cpumask_var_t *node_to_cpumask; 3458c2ecf20Sopenharmony_ci cpumask_var_t nmsk, npresmsk; 3468c2ecf20Sopenharmony_ci int ret = -ENOMEM; 3478c2ecf20Sopenharmony_ci 3488c2ecf20Sopenharmony_ci if (!zalloc_cpumask_var(&nmsk, GFP_KERNEL)) 3498c2ecf20Sopenharmony_ci return ret; 3508c2ecf20Sopenharmony_ci 3518c2ecf20Sopenharmony_ci if (!zalloc_cpumask_var(&npresmsk, GFP_KERNEL)) 3528c2ecf20Sopenharmony_ci goto fail_nmsk; 3538c2ecf20Sopenharmony_ci 3548c2ecf20Sopenharmony_ci node_to_cpumask = alloc_node_to_cpumask(); 3558c2ecf20Sopenharmony_ci if (!node_to_cpumask) 3568c2ecf20Sopenharmony_ci goto fail_npresmsk; 3578c2ecf20Sopenharmony_ci 3588c2ecf20Sopenharmony_ci /* Stabilize the cpumasks */ 3598c2ecf20Sopenharmony_ci get_online_cpus(); 3608c2ecf20Sopenharmony_ci build_node_to_cpumask(node_to_cpumask); 3618c2ecf20Sopenharmony_ci 3628c2ecf20Sopenharmony_ci /* Spread on present CPUs starting from affd->pre_vectors */ 3638c2ecf20Sopenharmony_ci ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, 3648c2ecf20Sopenharmony_ci node_to_cpumask, cpu_present_mask, 3658c2ecf20Sopenharmony_ci nmsk, masks); 3668c2ecf20Sopenharmony_ci if (ret < 0) 3678c2ecf20Sopenharmony_ci goto fail_build_affinity; 3688c2ecf20Sopenharmony_ci nr_present = ret; 3698c2ecf20Sopenharmony_ci 3708c2ecf20Sopenharmony_ci /* 3718c2ecf20Sopenharmony_ci * Spread on non present CPUs starting from the next vector to be 3728c2ecf20Sopenharmony_ci * handled. If the spreading of present CPUs already exhausted the 3738c2ecf20Sopenharmony_ci * vector space, assign the non present CPUs to the already spread 3748c2ecf20Sopenharmony_ci * out vectors. 3758c2ecf20Sopenharmony_ci */ 3768c2ecf20Sopenharmony_ci if (nr_present >= numvecs) 3778c2ecf20Sopenharmony_ci curvec = firstvec; 3788c2ecf20Sopenharmony_ci else 3798c2ecf20Sopenharmony_ci curvec = firstvec + nr_present; 3808c2ecf20Sopenharmony_ci cpumask_andnot(npresmsk, cpu_possible_mask, cpu_present_mask); 3818c2ecf20Sopenharmony_ci ret = __irq_build_affinity_masks(curvec, numvecs, firstvec, 3828c2ecf20Sopenharmony_ci node_to_cpumask, npresmsk, nmsk, 3838c2ecf20Sopenharmony_ci masks); 3848c2ecf20Sopenharmony_ci if (ret >= 0) 3858c2ecf20Sopenharmony_ci nr_others = ret; 3868c2ecf20Sopenharmony_ci 3878c2ecf20Sopenharmony_ci fail_build_affinity: 3888c2ecf20Sopenharmony_ci put_online_cpus(); 3898c2ecf20Sopenharmony_ci 3908c2ecf20Sopenharmony_ci if (ret >= 0) 3918c2ecf20Sopenharmony_ci WARN_ON(nr_present + nr_others < numvecs); 3928c2ecf20Sopenharmony_ci 3938c2ecf20Sopenharmony_ci free_node_to_cpumask(node_to_cpumask); 3948c2ecf20Sopenharmony_ci 3958c2ecf20Sopenharmony_ci fail_npresmsk: 3968c2ecf20Sopenharmony_ci free_cpumask_var(npresmsk); 3978c2ecf20Sopenharmony_ci 3988c2ecf20Sopenharmony_ci fail_nmsk: 3998c2ecf20Sopenharmony_ci free_cpumask_var(nmsk); 4008c2ecf20Sopenharmony_ci return ret < 0 ? ret : 0; 4018c2ecf20Sopenharmony_ci} 4028c2ecf20Sopenharmony_ci 4038c2ecf20Sopenharmony_cistatic void default_calc_sets(struct irq_affinity *affd, unsigned int affvecs) 4048c2ecf20Sopenharmony_ci{ 4058c2ecf20Sopenharmony_ci affd->nr_sets = 1; 4068c2ecf20Sopenharmony_ci affd->set_size[0] = affvecs; 4078c2ecf20Sopenharmony_ci} 4088c2ecf20Sopenharmony_ci 4098c2ecf20Sopenharmony_ci/** 4108c2ecf20Sopenharmony_ci * irq_create_affinity_masks - Create affinity masks for multiqueue spreading 4118c2ecf20Sopenharmony_ci * @nvecs: The total number of vectors 4128c2ecf20Sopenharmony_ci * @affd: Description of the affinity requirements 4138c2ecf20Sopenharmony_ci * 4148c2ecf20Sopenharmony_ci * Returns the irq_affinity_desc pointer or NULL if allocation failed. 4158c2ecf20Sopenharmony_ci */ 4168c2ecf20Sopenharmony_cistruct irq_affinity_desc * 4178c2ecf20Sopenharmony_ciirq_create_affinity_masks(unsigned int nvecs, struct irq_affinity *affd) 4188c2ecf20Sopenharmony_ci{ 4198c2ecf20Sopenharmony_ci unsigned int affvecs, curvec, usedvecs, i; 4208c2ecf20Sopenharmony_ci struct irq_affinity_desc *masks = NULL; 4218c2ecf20Sopenharmony_ci 4228c2ecf20Sopenharmony_ci /* 4238c2ecf20Sopenharmony_ci * Determine the number of vectors which need interrupt affinities 4248c2ecf20Sopenharmony_ci * assigned. If the pre/post request exhausts the available vectors 4258c2ecf20Sopenharmony_ci * then nothing to do here except for invoking the calc_sets() 4268c2ecf20Sopenharmony_ci * callback so the device driver can adjust to the situation. 4278c2ecf20Sopenharmony_ci */ 4288c2ecf20Sopenharmony_ci if (nvecs > affd->pre_vectors + affd->post_vectors) 4298c2ecf20Sopenharmony_ci affvecs = nvecs - affd->pre_vectors - affd->post_vectors; 4308c2ecf20Sopenharmony_ci else 4318c2ecf20Sopenharmony_ci affvecs = 0; 4328c2ecf20Sopenharmony_ci 4338c2ecf20Sopenharmony_ci /* 4348c2ecf20Sopenharmony_ci * Simple invocations do not provide a calc_sets() callback. Install 4358c2ecf20Sopenharmony_ci * the generic one. 4368c2ecf20Sopenharmony_ci */ 4378c2ecf20Sopenharmony_ci if (!affd->calc_sets) 4388c2ecf20Sopenharmony_ci affd->calc_sets = default_calc_sets; 4398c2ecf20Sopenharmony_ci 4408c2ecf20Sopenharmony_ci /* Recalculate the sets */ 4418c2ecf20Sopenharmony_ci affd->calc_sets(affd, affvecs); 4428c2ecf20Sopenharmony_ci 4438c2ecf20Sopenharmony_ci if (WARN_ON_ONCE(affd->nr_sets > IRQ_AFFINITY_MAX_SETS)) 4448c2ecf20Sopenharmony_ci return NULL; 4458c2ecf20Sopenharmony_ci 4468c2ecf20Sopenharmony_ci /* Nothing to assign? */ 4478c2ecf20Sopenharmony_ci if (!affvecs) 4488c2ecf20Sopenharmony_ci return NULL; 4498c2ecf20Sopenharmony_ci 4508c2ecf20Sopenharmony_ci masks = kcalloc(nvecs, sizeof(*masks), GFP_KERNEL); 4518c2ecf20Sopenharmony_ci if (!masks) 4528c2ecf20Sopenharmony_ci return NULL; 4538c2ecf20Sopenharmony_ci 4548c2ecf20Sopenharmony_ci /* Fill out vectors at the beginning that don't need affinity */ 4558c2ecf20Sopenharmony_ci for (curvec = 0; curvec < affd->pre_vectors; curvec++) 4568c2ecf20Sopenharmony_ci cpumask_copy(&masks[curvec].mask, irq_default_affinity); 4578c2ecf20Sopenharmony_ci 4588c2ecf20Sopenharmony_ci /* 4598c2ecf20Sopenharmony_ci * Spread on present CPUs starting from affd->pre_vectors. If we 4608c2ecf20Sopenharmony_ci * have multiple sets, build each sets affinity mask separately. 4618c2ecf20Sopenharmony_ci */ 4628c2ecf20Sopenharmony_ci for (i = 0, usedvecs = 0; i < affd->nr_sets; i++) { 4638c2ecf20Sopenharmony_ci unsigned int this_vecs = affd->set_size[i]; 4648c2ecf20Sopenharmony_ci int ret; 4658c2ecf20Sopenharmony_ci 4668c2ecf20Sopenharmony_ci ret = irq_build_affinity_masks(curvec, this_vecs, 4678c2ecf20Sopenharmony_ci curvec, masks); 4688c2ecf20Sopenharmony_ci if (ret) { 4698c2ecf20Sopenharmony_ci kfree(masks); 4708c2ecf20Sopenharmony_ci return NULL; 4718c2ecf20Sopenharmony_ci } 4728c2ecf20Sopenharmony_ci curvec += this_vecs; 4738c2ecf20Sopenharmony_ci usedvecs += this_vecs; 4748c2ecf20Sopenharmony_ci } 4758c2ecf20Sopenharmony_ci 4768c2ecf20Sopenharmony_ci /* Fill out vectors at the end that don't need affinity */ 4778c2ecf20Sopenharmony_ci if (usedvecs >= affvecs) 4788c2ecf20Sopenharmony_ci curvec = affd->pre_vectors + affvecs; 4798c2ecf20Sopenharmony_ci else 4808c2ecf20Sopenharmony_ci curvec = affd->pre_vectors + usedvecs; 4818c2ecf20Sopenharmony_ci for (; curvec < nvecs; curvec++) 4828c2ecf20Sopenharmony_ci cpumask_copy(&masks[curvec].mask, irq_default_affinity); 4838c2ecf20Sopenharmony_ci 4848c2ecf20Sopenharmony_ci /* Mark the managed interrupts */ 4858c2ecf20Sopenharmony_ci for (i = affd->pre_vectors; i < nvecs - affd->post_vectors; i++) 4868c2ecf20Sopenharmony_ci masks[i].is_managed = 1; 4878c2ecf20Sopenharmony_ci 4888c2ecf20Sopenharmony_ci return masks; 4898c2ecf20Sopenharmony_ci} 4908c2ecf20Sopenharmony_ci 4918c2ecf20Sopenharmony_ci/** 4928c2ecf20Sopenharmony_ci * irq_calc_affinity_vectors - Calculate the optimal number of vectors 4938c2ecf20Sopenharmony_ci * @minvec: The minimum number of vectors available 4948c2ecf20Sopenharmony_ci * @maxvec: The maximum number of vectors available 4958c2ecf20Sopenharmony_ci * @affd: Description of the affinity requirements 4968c2ecf20Sopenharmony_ci */ 4978c2ecf20Sopenharmony_ciunsigned int irq_calc_affinity_vectors(unsigned int minvec, unsigned int maxvec, 4988c2ecf20Sopenharmony_ci const struct irq_affinity *affd) 4998c2ecf20Sopenharmony_ci{ 5008c2ecf20Sopenharmony_ci unsigned int resv = affd->pre_vectors + affd->post_vectors; 5018c2ecf20Sopenharmony_ci unsigned int set_vecs; 5028c2ecf20Sopenharmony_ci 5038c2ecf20Sopenharmony_ci if (resv > minvec) 5048c2ecf20Sopenharmony_ci return 0; 5058c2ecf20Sopenharmony_ci 5068c2ecf20Sopenharmony_ci if (affd->calc_sets) { 5078c2ecf20Sopenharmony_ci set_vecs = maxvec - resv; 5088c2ecf20Sopenharmony_ci } else { 5098c2ecf20Sopenharmony_ci get_online_cpus(); 5108c2ecf20Sopenharmony_ci set_vecs = cpumask_weight(cpu_possible_mask); 5118c2ecf20Sopenharmony_ci put_online_cpus(); 5128c2ecf20Sopenharmony_ci } 5138c2ecf20Sopenharmony_ci 5148c2ecf20Sopenharmony_ci return resv + min(set_vecs, maxvec - resv); 5158c2ecf20Sopenharmony_ci} 516