1/* SPDX-License-Identifier: GPL-2.0 WITH Linux-syscall-note
2 *
3 * Copyright 2016-2020 HabanaLabs, Ltd.
4 * All Rights Reserved.
5 *
6 */
7
8#ifndef HABANALABS_H_
9#define HABANALABS_H_
10
11#include <linux/types.h>
12#include <linux/ioctl.h>
13
14/*
15 * Defines that are asic-specific but constitutes as ABI between kernel driver
16 * and userspace
17 */
18#define GOYA_KMD_SRAM_RESERVED_SIZE_FROM_START		0x8000	/* 32KB */
19#define GAUDI_DRIVER_SRAM_RESERVED_SIZE_FROM_START	0x80	/* 128 bytes */
20
21#define GAUDI_FIRST_AVAILABLE_W_S_SYNC_OBJECT		48
22#define GAUDI_FIRST_AVAILABLE_W_S_MONITOR		24
23/*
24 * Goya queue Numbering
25 *
26 * The external queues (PCI DMA channels) MUST be before the internal queues
27 * and each group (PCI DMA channels and internal) must be contiguous inside
28 * itself but there can be a gap between the two groups (although not
29 * recommended)
30 */
31
32enum goya_queue_id {
33	GOYA_QUEUE_ID_DMA_0 = 0,
34	GOYA_QUEUE_ID_DMA_1 = 1,
35	GOYA_QUEUE_ID_DMA_2 = 2,
36	GOYA_QUEUE_ID_DMA_3 = 3,
37	GOYA_QUEUE_ID_DMA_4 = 4,
38	GOYA_QUEUE_ID_CPU_PQ = 5,
39	GOYA_QUEUE_ID_MME = 6,	/* Internal queues start here */
40	GOYA_QUEUE_ID_TPC0 = 7,
41	GOYA_QUEUE_ID_TPC1 = 8,
42	GOYA_QUEUE_ID_TPC2 = 9,
43	GOYA_QUEUE_ID_TPC3 = 10,
44	GOYA_QUEUE_ID_TPC4 = 11,
45	GOYA_QUEUE_ID_TPC5 = 12,
46	GOYA_QUEUE_ID_TPC6 = 13,
47	GOYA_QUEUE_ID_TPC7 = 14,
48	GOYA_QUEUE_ID_SIZE
49};
50
51/*
52 * Gaudi queue Numbering
53 * External queues (PCI DMA channels) are DMA_0_*, DMA_1_* and DMA_5_*.
54 * Except one CPU queue, all the rest are internal queues.
55 */
56
57enum gaudi_queue_id {
58	GAUDI_QUEUE_ID_DMA_0_0 = 0,	/* external */
59	GAUDI_QUEUE_ID_DMA_0_1 = 1,	/* external */
60	GAUDI_QUEUE_ID_DMA_0_2 = 2,	/* external */
61	GAUDI_QUEUE_ID_DMA_0_3 = 3,	/* external */
62	GAUDI_QUEUE_ID_DMA_1_0 = 4,	/* external */
63	GAUDI_QUEUE_ID_DMA_1_1 = 5,	/* external */
64	GAUDI_QUEUE_ID_DMA_1_2 = 6,	/* external */
65	GAUDI_QUEUE_ID_DMA_1_3 = 7,	/* external */
66	GAUDI_QUEUE_ID_CPU_PQ = 8,	/* CPU */
67	GAUDI_QUEUE_ID_DMA_2_0 = 9,	/* internal */
68	GAUDI_QUEUE_ID_DMA_2_1 = 10,	/* internal */
69	GAUDI_QUEUE_ID_DMA_2_2 = 11,	/* internal */
70	GAUDI_QUEUE_ID_DMA_2_3 = 12,	/* internal */
71	GAUDI_QUEUE_ID_DMA_3_0 = 13,	/* internal */
72	GAUDI_QUEUE_ID_DMA_3_1 = 14,	/* internal */
73	GAUDI_QUEUE_ID_DMA_3_2 = 15,	/* internal */
74	GAUDI_QUEUE_ID_DMA_3_3 = 16,	/* internal */
75	GAUDI_QUEUE_ID_DMA_4_0 = 17,	/* internal */
76	GAUDI_QUEUE_ID_DMA_4_1 = 18,	/* internal */
77	GAUDI_QUEUE_ID_DMA_4_2 = 19,	/* internal */
78	GAUDI_QUEUE_ID_DMA_4_3 = 20,	/* internal */
79	GAUDI_QUEUE_ID_DMA_5_0 = 21,	/* external */
80	GAUDI_QUEUE_ID_DMA_5_1 = 22,	/* external */
81	GAUDI_QUEUE_ID_DMA_5_2 = 23,	/* external */
82	GAUDI_QUEUE_ID_DMA_5_3 = 24,	/* external */
83	GAUDI_QUEUE_ID_DMA_6_0 = 25,	/* internal */
84	GAUDI_QUEUE_ID_DMA_6_1 = 26,	/* internal */
85	GAUDI_QUEUE_ID_DMA_6_2 = 27,	/* internal */
86	GAUDI_QUEUE_ID_DMA_6_3 = 28,	/* internal */
87	GAUDI_QUEUE_ID_DMA_7_0 = 29,	/* internal */
88	GAUDI_QUEUE_ID_DMA_7_1 = 30,	/* internal */
89	GAUDI_QUEUE_ID_DMA_7_2 = 31,	/* internal */
90	GAUDI_QUEUE_ID_DMA_7_3 = 32,	/* internal */
91	GAUDI_QUEUE_ID_MME_0_0 = 33,	/* internal */
92	GAUDI_QUEUE_ID_MME_0_1 = 34,	/* internal */
93	GAUDI_QUEUE_ID_MME_0_2 = 35,	/* internal */
94	GAUDI_QUEUE_ID_MME_0_3 = 36,	/* internal */
95	GAUDI_QUEUE_ID_MME_1_0 = 37,	/* internal */
96	GAUDI_QUEUE_ID_MME_1_1 = 38,	/* internal */
97	GAUDI_QUEUE_ID_MME_1_2 = 39,	/* internal */
98	GAUDI_QUEUE_ID_MME_1_3 = 40,	/* internal */
99	GAUDI_QUEUE_ID_TPC_0_0 = 41,	/* internal */
100	GAUDI_QUEUE_ID_TPC_0_1 = 42,	/* internal */
101	GAUDI_QUEUE_ID_TPC_0_2 = 43,	/* internal */
102	GAUDI_QUEUE_ID_TPC_0_3 = 44,	/* internal */
103	GAUDI_QUEUE_ID_TPC_1_0 = 45,	/* internal */
104	GAUDI_QUEUE_ID_TPC_1_1 = 46,	/* internal */
105	GAUDI_QUEUE_ID_TPC_1_2 = 47,	/* internal */
106	GAUDI_QUEUE_ID_TPC_1_3 = 48,	/* internal */
107	GAUDI_QUEUE_ID_TPC_2_0 = 49,	/* internal */
108	GAUDI_QUEUE_ID_TPC_2_1 = 50,	/* internal */
109	GAUDI_QUEUE_ID_TPC_2_2 = 51,	/* internal */
110	GAUDI_QUEUE_ID_TPC_2_3 = 52,	/* internal */
111	GAUDI_QUEUE_ID_TPC_3_0 = 53,	/* internal */
112	GAUDI_QUEUE_ID_TPC_3_1 = 54,	/* internal */
113	GAUDI_QUEUE_ID_TPC_3_2 = 55,	/* internal */
114	GAUDI_QUEUE_ID_TPC_3_3 = 56,	/* internal */
115	GAUDI_QUEUE_ID_TPC_4_0 = 57,	/* internal */
116	GAUDI_QUEUE_ID_TPC_4_1 = 58,	/* internal */
117	GAUDI_QUEUE_ID_TPC_4_2 = 59,	/* internal */
118	GAUDI_QUEUE_ID_TPC_4_3 = 60,	/* internal */
119	GAUDI_QUEUE_ID_TPC_5_0 = 61,	/* internal */
120	GAUDI_QUEUE_ID_TPC_5_1 = 62,	/* internal */
121	GAUDI_QUEUE_ID_TPC_5_2 = 63,	/* internal */
122	GAUDI_QUEUE_ID_TPC_5_3 = 64,	/* internal */
123	GAUDI_QUEUE_ID_TPC_6_0 = 65,	/* internal */
124	GAUDI_QUEUE_ID_TPC_6_1 = 66,	/* internal */
125	GAUDI_QUEUE_ID_TPC_6_2 = 67,	/* internal */
126	GAUDI_QUEUE_ID_TPC_6_3 = 68,	/* internal */
127	GAUDI_QUEUE_ID_TPC_7_0 = 69,	/* internal */
128	GAUDI_QUEUE_ID_TPC_7_1 = 70,	/* internal */
129	GAUDI_QUEUE_ID_TPC_7_2 = 71,	/* internal */
130	GAUDI_QUEUE_ID_TPC_7_3 = 72,	/* internal */
131	GAUDI_QUEUE_ID_NIC_0_0 = 73,	/* internal */
132	GAUDI_QUEUE_ID_NIC_0_1 = 74,	/* internal */
133	GAUDI_QUEUE_ID_NIC_0_2 = 75,	/* internal */
134	GAUDI_QUEUE_ID_NIC_0_3 = 76,	/* internal */
135	GAUDI_QUEUE_ID_NIC_1_0 = 77,	/* internal */
136	GAUDI_QUEUE_ID_NIC_1_1 = 78,	/* internal */
137	GAUDI_QUEUE_ID_NIC_1_2 = 79,	/* internal */
138	GAUDI_QUEUE_ID_NIC_1_3 = 80,	/* internal */
139	GAUDI_QUEUE_ID_NIC_2_0 = 81,	/* internal */
140	GAUDI_QUEUE_ID_NIC_2_1 = 82,	/* internal */
141	GAUDI_QUEUE_ID_NIC_2_2 = 83,	/* internal */
142	GAUDI_QUEUE_ID_NIC_2_3 = 84,	/* internal */
143	GAUDI_QUEUE_ID_NIC_3_0 = 85,	/* internal */
144	GAUDI_QUEUE_ID_NIC_3_1 = 86,	/* internal */
145	GAUDI_QUEUE_ID_NIC_3_2 = 87,	/* internal */
146	GAUDI_QUEUE_ID_NIC_3_3 = 88,	/* internal */
147	GAUDI_QUEUE_ID_NIC_4_0 = 89,	/* internal */
148	GAUDI_QUEUE_ID_NIC_4_1 = 90,	/* internal */
149	GAUDI_QUEUE_ID_NIC_4_2 = 91,	/* internal */
150	GAUDI_QUEUE_ID_NIC_4_3 = 92,	/* internal */
151	GAUDI_QUEUE_ID_NIC_5_0 = 93,	/* internal */
152	GAUDI_QUEUE_ID_NIC_5_1 = 94,	/* internal */
153	GAUDI_QUEUE_ID_NIC_5_2 = 95,	/* internal */
154	GAUDI_QUEUE_ID_NIC_5_3 = 96,	/* internal */
155	GAUDI_QUEUE_ID_NIC_6_0 = 97,	/* internal */
156	GAUDI_QUEUE_ID_NIC_6_1 = 98,	/* internal */
157	GAUDI_QUEUE_ID_NIC_6_2 = 99,	/* internal */
158	GAUDI_QUEUE_ID_NIC_6_3 = 100,	/* internal */
159	GAUDI_QUEUE_ID_NIC_7_0 = 101,	/* internal */
160	GAUDI_QUEUE_ID_NIC_7_1 = 102,	/* internal */
161	GAUDI_QUEUE_ID_NIC_7_2 = 103,	/* internal */
162	GAUDI_QUEUE_ID_NIC_7_3 = 104,	/* internal */
163	GAUDI_QUEUE_ID_NIC_8_0 = 105,	/* internal */
164	GAUDI_QUEUE_ID_NIC_8_1 = 106,	/* internal */
165	GAUDI_QUEUE_ID_NIC_8_2 = 107,	/* internal */
166	GAUDI_QUEUE_ID_NIC_8_3 = 108,	/* internal */
167	GAUDI_QUEUE_ID_NIC_9_0 = 109,	/* internal */
168	GAUDI_QUEUE_ID_NIC_9_1 = 110,	/* internal */
169	GAUDI_QUEUE_ID_NIC_9_2 = 111,	/* internal */
170	GAUDI_QUEUE_ID_NIC_9_3 = 112,	/* internal */
171	GAUDI_QUEUE_ID_SIZE
172};
173
174/*
175 * Engine Numbering
176 *
177 * Used in the "busy_engines_mask" field in `struct hl_info_hw_idle'
178 */
179
180enum goya_engine_id {
181	GOYA_ENGINE_ID_DMA_0 = 0,
182	GOYA_ENGINE_ID_DMA_1,
183	GOYA_ENGINE_ID_DMA_2,
184	GOYA_ENGINE_ID_DMA_3,
185	GOYA_ENGINE_ID_DMA_4,
186	GOYA_ENGINE_ID_MME_0,
187	GOYA_ENGINE_ID_TPC_0,
188	GOYA_ENGINE_ID_TPC_1,
189	GOYA_ENGINE_ID_TPC_2,
190	GOYA_ENGINE_ID_TPC_3,
191	GOYA_ENGINE_ID_TPC_4,
192	GOYA_ENGINE_ID_TPC_5,
193	GOYA_ENGINE_ID_TPC_6,
194	GOYA_ENGINE_ID_TPC_7,
195	GOYA_ENGINE_ID_SIZE
196};
197
198enum gaudi_engine_id {
199	GAUDI_ENGINE_ID_DMA_0 = 0,
200	GAUDI_ENGINE_ID_DMA_1,
201	GAUDI_ENGINE_ID_DMA_2,
202	GAUDI_ENGINE_ID_DMA_3,
203	GAUDI_ENGINE_ID_DMA_4,
204	GAUDI_ENGINE_ID_DMA_5,
205	GAUDI_ENGINE_ID_DMA_6,
206	GAUDI_ENGINE_ID_DMA_7,
207	GAUDI_ENGINE_ID_MME_0,
208	GAUDI_ENGINE_ID_MME_1,
209	GAUDI_ENGINE_ID_MME_2,
210	GAUDI_ENGINE_ID_MME_3,
211	GAUDI_ENGINE_ID_TPC_0,
212	GAUDI_ENGINE_ID_TPC_1,
213	GAUDI_ENGINE_ID_TPC_2,
214	GAUDI_ENGINE_ID_TPC_3,
215	GAUDI_ENGINE_ID_TPC_4,
216	GAUDI_ENGINE_ID_TPC_5,
217	GAUDI_ENGINE_ID_TPC_6,
218	GAUDI_ENGINE_ID_TPC_7,
219	GAUDI_ENGINE_ID_NIC_0,
220	GAUDI_ENGINE_ID_NIC_1,
221	GAUDI_ENGINE_ID_NIC_2,
222	GAUDI_ENGINE_ID_NIC_3,
223	GAUDI_ENGINE_ID_NIC_4,
224	GAUDI_ENGINE_ID_NIC_5,
225	GAUDI_ENGINE_ID_NIC_6,
226	GAUDI_ENGINE_ID_NIC_7,
227	GAUDI_ENGINE_ID_NIC_8,
228	GAUDI_ENGINE_ID_NIC_9,
229	GAUDI_ENGINE_ID_SIZE
230};
231
232enum hl_device_status {
233	HL_DEVICE_STATUS_OPERATIONAL,
234	HL_DEVICE_STATUS_IN_RESET,
235	HL_DEVICE_STATUS_MALFUNCTION
236};
237
238/* Opcode for management ioctl
239 *
240 * HW_IP_INFO            - Receive information about different IP blocks in the
241 *                         device.
242 * HL_INFO_HW_EVENTS     - Receive an array describing how many times each event
243 *                         occurred since the last hard reset.
244 * HL_INFO_DRAM_USAGE    - Retrieve the dram usage inside the device and of the
245 *                         specific context. This is relevant only for devices
246 *                         where the dram is managed by the kernel driver
247 * HL_INFO_HW_IDLE       - Retrieve information about the idle status of each
248 *                         internal engine.
249 * HL_INFO_DEVICE_STATUS - Retrieve the device's status. This opcode doesn't
250 *                         require an open context.
251 * HL_INFO_DEVICE_UTILIZATION  - Retrieve the total utilization of the device
252 *                               over the last period specified by the user.
253 *                               The period can be between 100ms to 1s, in
254 *                               resolution of 100ms. The return value is a
255 *                               percentage of the utilization rate.
256 * HL_INFO_HW_EVENTS_AGGREGATE - Receive an array describing how many times each
257 *                               event occurred since the driver was loaded.
258 * HL_INFO_CLK_RATE            - Retrieve the current and maximum clock rate
259 *                               of the device in MHz. The maximum clock rate is
260 *                               configurable via sysfs parameter
261 * HL_INFO_RESET_COUNT   - Retrieve the counts of the soft and hard reset
262 *                         operations performed on the device since the last
263 *                         time the driver was loaded.
264 * HL_INFO_TIME_SYNC     - Retrieve the device's time alongside the host's time
265 *                         for synchronization.
266 * HL_INFO_CS_COUNTERS   - Retrieve command submission counters
267 * HL_INFO_PCI_COUNTERS  - Retrieve PCI counters
268 * HL_INFO_CLK_THROTTLE_REASON - Retrieve clock throttling reason
269 * HL_INFO_SYNC_MANAGER  - Retrieve sync manager info per dcore
270 * HL_INFO_TOTAL_ENERGY  - Retrieve total energy consumption
271 */
272#define HL_INFO_HW_IP_INFO		0
273#define HL_INFO_HW_EVENTS		1
274#define HL_INFO_DRAM_USAGE		2
275#define HL_INFO_HW_IDLE			3
276#define HL_INFO_DEVICE_STATUS		4
277#define HL_INFO_DEVICE_UTILIZATION	6
278#define HL_INFO_HW_EVENTS_AGGREGATE	7
279#define HL_INFO_CLK_RATE		8
280#define HL_INFO_RESET_COUNT		9
281#define HL_INFO_TIME_SYNC		10
282#define HL_INFO_CS_COUNTERS		11
283#define HL_INFO_PCI_COUNTERS		12
284#define HL_INFO_CLK_THROTTLE_REASON	13
285#define HL_INFO_SYNC_MANAGER		14
286#define HL_INFO_TOTAL_ENERGY		15
287
288#define HL_INFO_VERSION_MAX_LEN	128
289#define HL_INFO_CARD_NAME_MAX_LEN	16
290
291struct hl_info_hw_ip_info {
292	__u64 sram_base_address;
293	__u64 dram_base_address;
294	__u64 dram_size;
295	__u32 sram_size;
296	__u32 num_of_events;
297	__u32 device_id; /* PCI Device ID */
298	__u32 module_id; /* For mezzanine cards in servers (From OCP spec.) */
299	__u32 reserved[2];
300	__u32 cpld_version;
301	__u32 psoc_pci_pll_nr;
302	__u32 psoc_pci_pll_nf;
303	__u32 psoc_pci_pll_od;
304	__u32 psoc_pci_pll_div_factor;
305	__u8 tpc_enabled_mask;
306	__u8 dram_enabled;
307	__u8 pad[2];
308	__u8 cpucp_version[HL_INFO_VERSION_MAX_LEN];
309	__u8 card_name[HL_INFO_CARD_NAME_MAX_LEN];
310};
311
312struct hl_info_dram_usage {
313	__u64 dram_free_mem;
314	__u64 ctx_dram_mem;
315};
316
317struct hl_info_hw_idle {
318	__u32 is_idle;
319	/*
320	 * Bitmask of busy engines.
321	 * Bits definition is according to `enum <chip>_enging_id'.
322	 */
323	__u32 busy_engines_mask;
324
325	/*
326	 * Extended Bitmask of busy engines.
327	 * Bits definition is according to `enum <chip>_enging_id'.
328	 */
329	__u64 busy_engines_mask_ext;
330};
331
332struct hl_info_device_status {
333	__u32 status;
334	__u32 pad;
335};
336
337struct hl_info_device_utilization {
338	__u32 utilization;
339	__u32 pad;
340};
341
342struct hl_info_clk_rate {
343	__u32 cur_clk_rate_mhz;
344	__u32 max_clk_rate_mhz;
345};
346
347struct hl_info_reset_count {
348	__u32 hard_reset_cnt;
349	__u32 soft_reset_cnt;
350};
351
352struct hl_info_time_sync {
353	__u64 device_time;
354	__u64 host_time;
355};
356
357/**
358 * struct hl_info_pci_counters - pci counters
359 * @rx_throughput: PCI rx throughput KBps
360 * @tx_throughput: PCI tx throughput KBps
361 * @replay_cnt: PCI replay counter
362 */
363struct hl_info_pci_counters {
364	__u64 rx_throughput;
365	__u64 tx_throughput;
366	__u64 replay_cnt;
367};
368
369#define HL_CLK_THROTTLE_POWER	0x1
370#define HL_CLK_THROTTLE_THERMAL	0x2
371
372/**
373 * struct hl_info_clk_throttle - clock throttling reason
374 * @clk_throttling_reason: each bit represents a clk throttling reason
375 */
376struct hl_info_clk_throttle {
377	__u32 clk_throttling_reason;
378};
379
380/**
381 * struct hl_info_energy - device energy information
382 * @total_energy_consumption: total device energy consumption
383 */
384struct hl_info_energy {
385	__u64 total_energy_consumption;
386};
387
388/**
389 * struct hl_info_sync_manager - sync manager information
390 * @first_available_sync_object: first available sob
391 * @first_available_monitor: first available monitor
392 */
393struct hl_info_sync_manager {
394	__u32 first_available_sync_object;
395	__u32 first_available_monitor;
396};
397
398/**
399 * struct hl_info_cs_counters - command submission counters
400 * @out_of_mem_drop_cnt: dropped due to memory allocation issue
401 * @parsing_drop_cnt: dropped due to error in packet parsing
402 * @queue_full_drop_cnt: dropped due to queue full
403 * @device_in_reset_drop_cnt: dropped due to device in reset
404 * @max_cs_in_flight_drop_cnt: dropped due to maximum CS in-flight
405 */
406struct hl_cs_counters {
407	__u64 out_of_mem_drop_cnt;
408	__u64 parsing_drop_cnt;
409	__u64 queue_full_drop_cnt;
410	__u64 device_in_reset_drop_cnt;
411	__u64 max_cs_in_flight_drop_cnt;
412};
413
414struct hl_info_cs_counters {
415	struct hl_cs_counters cs_counters;
416	struct hl_cs_counters ctx_cs_counters;
417};
418
419enum gaudi_dcores {
420	HL_GAUDI_WS_DCORE,
421	HL_GAUDI_WN_DCORE,
422	HL_GAUDI_EN_DCORE,
423	HL_GAUDI_ES_DCORE
424};
425
426struct hl_info_args {
427	/* Location of relevant struct in userspace */
428	__u64 return_pointer;
429	/*
430	 * The size of the return value. Just like "size" in "snprintf",
431	 * it limits how many bytes the kernel can write
432	 *
433	 * For hw_events array, the size should be
434	 * hl_info_hw_ip_info.num_of_events * sizeof(__u32)
435	 */
436	__u32 return_size;
437
438	/* HL_INFO_* */
439	__u32 op;
440
441	union {
442		/* Dcore id for which the information is relevant.
443		 * For Gaudi refer to 'enum gaudi_dcores'
444		 */
445		__u32 dcore_id;
446		/* Context ID - Currently not in use */
447		__u32 ctx_id;
448		/* Period value for utilization rate (100ms - 1000ms, in 100ms
449		 * resolution.
450		 */
451		__u32 period_ms;
452	};
453
454	__u32 pad;
455};
456
457/* Opcode to create a new command buffer */
458#define HL_CB_OP_CREATE		0
459/* Opcode to destroy previously created command buffer */
460#define HL_CB_OP_DESTROY	1
461
462/* 2MB minus 32 bytes for 2xMSG_PROT */
463#define HL_MAX_CB_SIZE		(0x200000 - 32)
464
465/* Indicates whether the command buffer should be mapped to the device's MMU */
466#define HL_CB_FLAGS_MAP		0x1
467
468struct hl_cb_in {
469	/* Handle of CB or 0 if we want to create one */
470	__u64 cb_handle;
471	/* HL_CB_OP_* */
472	__u32 op;
473	/* Size of CB. Maximum size is HL_MAX_CB_SIZE. The minimum size that
474	 * will be allocated, regardless of this parameter's value, is PAGE_SIZE
475	 */
476	__u32 cb_size;
477	/* Context ID - Currently not in use */
478	__u32 ctx_id;
479	/* HL_CB_FLAGS_* */
480	__u32 flags;
481};
482
483struct hl_cb_out {
484	/* Handle of CB */
485	__u64 cb_handle;
486};
487
488union hl_cb_args {
489	struct hl_cb_in in;
490	struct hl_cb_out out;
491};
492
493/*
494 * This structure size must always be fixed to 64-bytes for backward
495 * compatibility
496 */
497struct hl_cs_chunk {
498	union {
499		/* For external queue, this represents a Handle of CB on the
500		 * Host.
501		 * For internal queue in Goya, this represents an SRAM or
502		 * a DRAM address of the internal CB. In Gaudi, this might also
503		 * represent a mapped host address of the CB.
504		 *
505		 * A mapped host address is in the device address space, after
506		 * a host address was mapped by the device MMU.
507		 */
508		__u64 cb_handle;
509
510		/* Relevant only when HL_CS_FLAGS_WAIT is set.
511		 * This holds address of array of u64 values that contain
512		 * signal CS sequence numbers. The wait described by this job
513		 * will listen on all those signals (wait event per signal)
514		 */
515		__u64 signal_seq_arr;
516	};
517
518	/* Index of queue to put the CB on */
519	__u32 queue_index;
520
521	union {
522		/*
523		 * Size of command buffer with valid packets
524		 * Can be smaller then actual CB size
525		 */
526		__u32 cb_size;
527
528		/* Relevant only when HL_CS_FLAGS_WAIT is set.
529		 * Number of entries in signal_seq_arr
530		 */
531		__u32 num_signal_seq_arr;
532	};
533
534	/* HL_CS_CHUNK_FLAGS_* */
535	__u32 cs_chunk_flags;
536
537	/* Align structure to 64 bytes */
538	__u32 pad[11];
539};
540
541/* SIGNAL and WAIT flags are mutually exclusive */
542#define HL_CS_FLAGS_FORCE_RESTORE	0x1
543#define HL_CS_FLAGS_SIGNAL		0x2
544#define HL_CS_FLAGS_WAIT		0x4
545
546#define HL_CS_STATUS_SUCCESS		0
547
548#define HL_MAX_JOBS_PER_CS		512
549
550struct hl_cs_in {
551
552	/* this holds address of array of hl_cs_chunk for restore phase */
553	__u64 chunks_restore;
554
555	/* holds address of array of hl_cs_chunk for execution phase */
556	__u64 chunks_execute;
557
558	/* this holds address of array of hl_cs_chunk for store phase -
559	 * Currently not in use
560	 */
561	__u64 chunks_store;
562
563	/* Number of chunks in restore phase array. Maximum number is
564	 * HL_MAX_JOBS_PER_CS
565	 */
566	__u32 num_chunks_restore;
567
568	/* Number of chunks in execution array. Maximum number is
569	 * HL_MAX_JOBS_PER_CS
570	 */
571	__u32 num_chunks_execute;
572
573	/* Number of chunks in restore phase array - Currently not in use */
574	__u32 num_chunks_store;
575
576	/* HL_CS_FLAGS_* */
577	__u32 cs_flags;
578
579	/* Context ID - Currently not in use */
580	__u32 ctx_id;
581};
582
583struct hl_cs_out {
584	/*
585	 * seq holds the sequence number of the CS to pass to wait ioctl. All
586	 * values are valid except for 0 and ULLONG_MAX
587	 */
588	__u64 seq;
589	/* HL_CS_STATUS_* */
590	__u32 status;
591	__u32 pad;
592};
593
594union hl_cs_args {
595	struct hl_cs_in in;
596	struct hl_cs_out out;
597};
598
599struct hl_wait_cs_in {
600	/* Command submission sequence number */
601	__u64 seq;
602	/* Absolute timeout to wait in microseconds */
603	__u64 timeout_us;
604	/* Context ID - Currently not in use */
605	__u32 ctx_id;
606	__u32 pad;
607};
608
609#define HL_WAIT_CS_STATUS_COMPLETED	0
610#define HL_WAIT_CS_STATUS_BUSY		1
611#define HL_WAIT_CS_STATUS_TIMEDOUT	2
612#define HL_WAIT_CS_STATUS_ABORTED	3
613#define HL_WAIT_CS_STATUS_INTERRUPTED	4
614
615struct hl_wait_cs_out {
616	/* HL_WAIT_CS_STATUS_* */
617	__u32 status;
618	__u32 pad;
619};
620
621union hl_wait_cs_args {
622	struct hl_wait_cs_in in;
623	struct hl_wait_cs_out out;
624};
625
626/* Opcode to allocate device memory */
627#define HL_MEM_OP_ALLOC			0
628/* Opcode to free previously allocated device memory */
629#define HL_MEM_OP_FREE			1
630/* Opcode to map host and device memory */
631#define HL_MEM_OP_MAP			2
632/* Opcode to unmap previously mapped host and device memory */
633#define HL_MEM_OP_UNMAP			3
634
635/* Memory flags */
636#define HL_MEM_CONTIGUOUS	0x1
637#define HL_MEM_SHARED		0x2
638#define HL_MEM_USERPTR		0x4
639
640struct hl_mem_in {
641	union {
642		/* HL_MEM_OP_ALLOC- allocate device memory */
643		struct {
644			/* Size to alloc */
645			__u64 mem_size;
646		} alloc;
647
648		/* HL_MEM_OP_FREE - free device memory */
649		struct {
650			/* Handle returned from HL_MEM_OP_ALLOC */
651			__u64 handle;
652		} free;
653
654		/* HL_MEM_OP_MAP - map device memory */
655		struct {
656			/*
657			 * Requested virtual address of mapped memory.
658			 * The driver will try to map the requested region to
659			 * this hint address, as long as the address is valid
660			 * and not already mapped. The user should check the
661			 * returned address of the IOCTL to make sure he got
662			 * the hint address. Passing 0 here means that the
663			 * driver will choose the address itself.
664			 */
665			__u64 hint_addr;
666			/* Handle returned from HL_MEM_OP_ALLOC */
667			__u64 handle;
668		} map_device;
669
670		/* HL_MEM_OP_MAP - map host memory */
671		struct {
672			/* Address of allocated host memory */
673			__u64 host_virt_addr;
674			/*
675			 * Requested virtual address of mapped memory.
676			 * The driver will try to map the requested region to
677			 * this hint address, as long as the address is valid
678			 * and not already mapped. The user should check the
679			 * returned address of the IOCTL to make sure he got
680			 * the hint address. Passing 0 here means that the
681			 * driver will choose the address itself.
682			 */
683			__u64 hint_addr;
684			/* Size of allocated host memory */
685			__u64 mem_size;
686		} map_host;
687
688		/* HL_MEM_OP_UNMAP - unmap host memory */
689		struct {
690			/* Virtual address returned from HL_MEM_OP_MAP */
691			__u64 device_virt_addr;
692		} unmap;
693	};
694
695	/* HL_MEM_OP_* */
696	__u32 op;
697	/* HL_MEM_* flags */
698	__u32 flags;
699	/* Context ID - Currently not in use */
700	__u32 ctx_id;
701	__u32 pad;
702};
703
704struct hl_mem_out {
705	union {
706		/*
707		 * Used for HL_MEM_OP_MAP as the virtual address that was
708		 * assigned in the device VA space.
709		 * A value of 0 means the requested operation failed.
710		 */
711		__u64 device_virt_addr;
712
713		/*
714		 * Used for HL_MEM_OP_ALLOC. This is the assigned
715		 * handle for the allocated memory
716		 */
717		__u64 handle;
718	};
719};
720
721union hl_mem_args {
722	struct hl_mem_in in;
723	struct hl_mem_out out;
724};
725
726#define HL_DEBUG_MAX_AUX_VALUES		10
727
728struct hl_debug_params_etr {
729	/* Address in memory to allocate buffer */
730	__u64 buffer_address;
731
732	/* Size of buffer to allocate */
733	__u64 buffer_size;
734
735	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
736	__u32 sink_mode;
737	__u32 pad;
738};
739
740struct hl_debug_params_etf {
741	/* Address in memory to allocate buffer */
742	__u64 buffer_address;
743
744	/* Size of buffer to allocate */
745	__u64 buffer_size;
746
747	/* Sink operation mode: SW fifo, HW fifo, Circular buffer */
748	__u32 sink_mode;
749	__u32 pad;
750};
751
752struct hl_debug_params_stm {
753	/* Two bit masks for HW event and Stimulus Port */
754	__u64 he_mask;
755	__u64 sp_mask;
756
757	/* Trace source ID */
758	__u32 id;
759
760	/* Frequency for the timestamp register */
761	__u32 frequency;
762};
763
764struct hl_debug_params_bmon {
765	/* Two address ranges that the user can request to filter */
766	__u64 start_addr0;
767	__u64 addr_mask0;
768
769	__u64 start_addr1;
770	__u64 addr_mask1;
771
772	/* Capture window configuration */
773	__u32 bw_win;
774	__u32 win_capture;
775
776	/* Trace source ID */
777	__u32 id;
778	__u32 pad;
779};
780
781struct hl_debug_params_spmu {
782	/* Event types selection */
783	__u64 event_types[HL_DEBUG_MAX_AUX_VALUES];
784
785	/* Number of event types selection */
786	__u32 event_types_num;
787	__u32 pad;
788};
789
790/* Opcode for ETR component */
791#define HL_DEBUG_OP_ETR		0
792/* Opcode for ETF component */
793#define HL_DEBUG_OP_ETF		1
794/* Opcode for STM component */
795#define HL_DEBUG_OP_STM		2
796/* Opcode for FUNNEL component */
797#define HL_DEBUG_OP_FUNNEL	3
798/* Opcode for BMON component */
799#define HL_DEBUG_OP_BMON	4
800/* Opcode for SPMU component */
801#define HL_DEBUG_OP_SPMU	5
802/* Opcode for timestamp (deprecated) */
803#define HL_DEBUG_OP_TIMESTAMP	6
804/* Opcode for setting the device into or out of debug mode. The enable
805 * variable should be 1 for enabling debug mode and 0 for disabling it
806 */
807#define HL_DEBUG_OP_SET_MODE	7
808
809struct hl_debug_args {
810	/*
811	 * Pointer to user input structure.
812	 * This field is relevant to specific opcodes.
813	 */
814	__u64 input_ptr;
815	/* Pointer to user output structure */
816	__u64 output_ptr;
817	/* Size of user input structure */
818	__u32 input_size;
819	/* Size of user output structure */
820	__u32 output_size;
821	/* HL_DEBUG_OP_* */
822	__u32 op;
823	/*
824	 * Register index in the component, taken from the debug_regs_index enum
825	 * in the various ASIC header files
826	 */
827	__u32 reg_idx;
828	/* Enable/disable */
829	__u32 enable;
830	/* Context ID - Currently not in use */
831	__u32 ctx_id;
832};
833
834/*
835 * Various information operations such as:
836 * - H/W IP information
837 * - Current dram usage
838 *
839 * The user calls this IOCTL with an opcode that describes the required
840 * information. The user should supply a pointer to a user-allocated memory
841 * chunk, which will be filled by the driver with the requested information.
842 *
843 * The user supplies the maximum amount of size to copy into the user's memory,
844 * in order to prevent data corruption in case of differences between the
845 * definitions of structures in kernel and userspace, e.g. in case of old
846 * userspace and new kernel driver
847 */
848#define HL_IOCTL_INFO	\
849		_IOWR('H', 0x01, struct hl_info_args)
850
851/*
852 * Command Buffer
853 * - Request a Command Buffer
854 * - Destroy a Command Buffer
855 *
856 * The command buffers are memory blocks that reside in DMA-able address
857 * space and are physically contiguous so they can be accessed by the device
858 * directly. They are allocated using the coherent DMA API.
859 *
860 * When creating a new CB, the IOCTL returns a handle of it, and the user-space
861 * process needs to use that handle to mmap the buffer so it can access them.
862 *
863 * In some instances, the device must access the command buffer through the
864 * device's MMU, and thus its memory should be mapped. In these cases, user can
865 * indicate the driver that such a mapping is required.
866 * The resulting device virtual address will be used internally by the driver,
867 * and won't be returned to user.
868 *
869 */
870#define HL_IOCTL_CB		\
871		_IOWR('H', 0x02, union hl_cb_args)
872
873/*
874 * Command Submission
875 *
876 * To submit work to the device, the user need to call this IOCTL with a set
877 * of JOBS. That set of JOBS constitutes a CS object.
878 * Each JOB will be enqueued on a specific queue, according to the user's input.
879 * There can be more then one JOB per queue.
880 *
881 * The CS IOCTL will receive three sets of JOBS. One set is for "restore" phase,
882 * a second set is for "execution" phase and a third set is for "store" phase.
883 * The JOBS on the "restore" phase are enqueued only after context-switch
884 * (or if its the first CS for this context). The user can also order the
885 * driver to run the "restore" phase explicitly
886 *
887 * There are two types of queues - external and internal. External queues
888 * are DMA queues which transfer data from/to the Host. All other queues are
889 * internal. The driver will get completion notifications from the device only
890 * on JOBS which are enqueued in the external queues.
891 *
892 * For jobs on external queues, the user needs to create command buffers
893 * through the CB ioctl and give the CB's handle to the CS ioctl. For jobs on
894 * internal queues, the user needs to prepare a "command buffer" with packets
895 * on either the device SRAM/DRAM or the host, and give the device address of
896 * that buffer to the CS ioctl.
897 *
898 * This IOCTL is asynchronous in regard to the actual execution of the CS. This
899 * means it returns immediately after ALL the JOBS were enqueued on their
900 * relevant queues. Therefore, the user mustn't assume the CS has been completed
901 * or has even started to execute.
902 *
903 * Upon successful enqueue, the IOCTL returns a sequence number which the user
904 * can use with the "Wait for CS" IOCTL to check whether the handle's CS
905 * external JOBS have been completed. Note that if the CS has internal JOBS
906 * which can execute AFTER the external JOBS have finished, the driver might
907 * report that the CS has finished executing BEFORE the internal JOBS have
908 * actually finished executing.
909 *
910 * Even though the sequence number increments per CS, the user can NOT
911 * automatically assume that if CS with sequence number N finished, then CS
912 * with sequence number N-1 also finished. The user can make this assumption if
913 * and only if CS N and CS N-1 are exactly the same (same CBs for the same
914 * queues).
915 */
916#define HL_IOCTL_CS			\
917		_IOWR('H', 0x03, union hl_cs_args)
918
919/*
920 * Wait for Command Submission
921 *
922 * The user can call this IOCTL with a handle it received from the CS IOCTL
923 * to wait until the handle's CS has finished executing. The user will wait
924 * inside the kernel until the CS has finished or until the user-requested
925 * timeout has expired.
926 *
927 * If the timeout value is 0, the driver won't sleep at all. It will check
928 * the status of the CS and return immediately
929 *
930 * The return value of the IOCTL is a standard Linux error code. The possible
931 * values are:
932 *
933 * EINTR     - Kernel waiting has been interrupted, e.g. due to OS signal
934 *             that the user process received
935 * ETIMEDOUT - The CS has caused a timeout on the device
936 * EIO       - The CS was aborted (usually because the device was reset)
937 * ENODEV    - The device wants to do hard-reset (so user need to close FD)
938 *
939 * The driver also returns a custom define inside the IOCTL which can be:
940 *
941 * HL_WAIT_CS_STATUS_COMPLETED   - The CS has been completed successfully (0)
942 * HL_WAIT_CS_STATUS_BUSY        - The CS is still executing (0)
943 * HL_WAIT_CS_STATUS_TIMEDOUT    - The CS has caused a timeout on the device
944 *                                 (ETIMEDOUT)
945 * HL_WAIT_CS_STATUS_ABORTED     - The CS was aborted, usually because the
946 *                                 device was reset (EIO)
947 * HL_WAIT_CS_STATUS_INTERRUPTED - Waiting for the CS was interrupted (EINTR)
948 *
949 */
950
951#define HL_IOCTL_WAIT_CS			\
952		_IOWR('H', 0x04, union hl_wait_cs_args)
953
954/*
955 * Memory
956 * - Map host memory to device MMU
957 * - Unmap host memory from device MMU
958 *
959 * This IOCTL allows the user to map host memory to the device MMU
960 *
961 * For host memory, the IOCTL doesn't allocate memory. The user is supposed
962 * to allocate the memory in user-space (malloc/new). The driver pins the
963 * physical pages (up to the allowed limit by the OS), assigns a virtual
964 * address in the device VA space and initializes the device MMU.
965 *
966 * There is an option for the user to specify the requested virtual address.
967 *
968 */
969#define HL_IOCTL_MEMORY		\
970		_IOWR('H', 0x05, union hl_mem_args)
971
972/*
973 * Debug
974 * - Enable/disable the ETR/ETF/FUNNEL/STM/BMON/SPMU debug traces
975 *
976 * This IOCTL allows the user to get debug traces from the chip.
977 *
978 * Before the user can send configuration requests of the various
979 * debug/profile engines, it needs to set the device into debug mode.
980 * This is because the debug/profile infrastructure is shared component in the
981 * device and we can't allow multiple users to access it at the same time.
982 *
983 * Once a user set the device into debug mode, the driver won't allow other
984 * users to "work" with the device, i.e. open a FD. If there are multiple users
985 * opened on the device, the driver won't allow any user to debug the device.
986 *
987 * For each configuration request, the user needs to provide the register index
988 * and essential data such as buffer address and size.
989 *
990 * Once the user has finished using the debug/profile engines, he should
991 * set the device into non-debug mode, i.e. disable debug mode.
992 *
993 * The driver can decide to "kick out" the user if he abuses this interface.
994 *
995 */
996#define HL_IOCTL_DEBUG		\
997		_IOWR('H', 0x06, struct hl_debug_args)
998
999#define HL_COMMAND_START	0x01
1000#define HL_COMMAND_END		0x07
1001
1002#endif /* HABANALABS_H_ */
1003