1/*
2 * Copyright 2003 Tungsten Graphics, Inc., Cedar Park, Texas.
3 * All Rights Reserved.
4 *
5 * Permission is hereby granted, free of charge, to any person obtaining a
6 * copy of this software and associated documentation files (the
7 * "Software"), to deal in the Software without restriction, including
8 * without limitation the rights to use, copy, modify, merge, publish,
9 * distribute, sub license, and/or sell copies of the Software, and to
10 * permit persons to whom the Software is furnished to do so, subject to
11 * the following conditions:
12 *
13 * The above copyright notice and this permission notice (including the
14 * next paragraph) shall be included in all copies or substantial portions
15 * of the Software.
16 *
17 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS
18 * OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
19 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NON-INFRINGEMENT.
20 * IN NO EVENT SHALL TUNGSTEN GRAPHICS AND/OR ITS SUPPLIERS BE LIABLE FOR
21 * ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT,
22 * TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE
23 * SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
24 *
25 */
26
27#ifndef _UAPI_I915_DRM_H_
28#define _UAPI_I915_DRM_H_
29
30#include "drm.h"
31
32#if defined(__cplusplus)
33extern "C" {
34#endif
35
36/* Please note that modifications to all structs defined here are
37 * subject to backwards-compatibility constraints.
38 */
39
40/**
41 * DOC: uevents generated by i915 on it's device node
42 *
43 * I915_L3_PARITY_UEVENT - Generated when the driver receives a parity mismatch
44 *	event from the gpu l3 cache. Additional information supplied is ROW,
45 *	BANK, SUBBANK, SLICE of the affected cacheline. Userspace should keep
46 *	track of these events and if a specific cache-line seems to have a
47 *	persistent error remap it with the l3 remapping tool supplied in
48 *	intel-gpu-tools.  The value supplied with the event is always 1.
49 *
50 * I915_ERROR_UEVENT - Generated upon error detection, currently only via
51 *	hangcheck. The error detection event is a good indicator of when things
52 *	began to go badly. The value supplied with the event is a 1 upon error
53 *	detection, and a 0 upon reset completion, signifying no more error
54 *	exists. NOTE: Disabling hangcheck or reset via module parameter will
55 *	cause the related events to not be seen.
56 *
57 * I915_RESET_UEVENT - Event is generated just before an attempt to reset the
58 *	GPU. The value supplied with the event is always 1. NOTE: Disable
59 *	reset via module parameter will cause this event to not be seen.
60 */
61#define I915_L3_PARITY_UEVENT		"L3_PARITY_ERROR"
62#define I915_ERROR_UEVENT		"ERROR"
63#define I915_RESET_UEVENT		"RESET"
64
65/*
66 * i915_user_extension: Base class for defining a chain of extensions
67 *
68 * Many interfaces need to grow over time. In most cases we can simply
69 * extend the struct and have userspace pass in more data. Another option,
70 * as demonstrated by Vulkan's approach to providing extensions for forward
71 * and backward compatibility, is to use a list of optional structs to
72 * provide those extra details.
73 *
74 * The key advantage to using an extension chain is that it allows us to
75 * redefine the interface more easily than an ever growing struct of
76 * increasing complexity, and for large parts of that interface to be
77 * entirely optional. The downside is more pointer chasing; chasing across
78 * the __user boundary with pointers encapsulated inside u64.
79 */
80struct i915_user_extension {
81	__u64 next_extension;
82	__u32 name;
83	__u32 flags; /* All undefined bits must be zero. */
84	__u32 rsvd[4]; /* Reserved for future use; must be zero. */
85};
86
87/*
88 * MOCS indexes used for GPU surfaces, defining the cacheability of the
89 * surface data and the coherency for this data wrt. CPU vs. GPU accesses.
90 */
91enum i915_mocs_table_index {
92	/*
93	 * Not cached anywhere, coherency between CPU and GPU accesses is
94	 * guaranteed.
95	 */
96	I915_MOCS_UNCACHED,
97	/*
98	 * Cacheability and coherency controlled by the kernel automatically
99	 * based on the DRM_I915_GEM_SET_CACHING IOCTL setting and the current
100	 * usage of the surface (used for display scanout or not).
101	 */
102	I915_MOCS_PTE,
103	/*
104	 * Cached in all GPU caches available on the platform.
105	 * Coherency between CPU and GPU accesses to the surface is not
106	 * guaranteed without extra synchronization.
107	 */
108	I915_MOCS_CACHED,
109};
110
111/*
112 * Different engines serve different roles, and there may be more than one
113 * engine serving each role. enum drm_i915_gem_engine_class provides a
114 * classification of the role of the engine, which may be used when requesting
115 * operations to be performed on a certain subset of engines, or for providing
116 * information about that group.
117 */
118enum drm_i915_gem_engine_class {
119	I915_ENGINE_CLASS_RENDER	= 0,
120	I915_ENGINE_CLASS_COPY		= 1,
121	I915_ENGINE_CLASS_VIDEO		= 2,
122	I915_ENGINE_CLASS_VIDEO_ENHANCE	= 3,
123
124	/* should be kept compact */
125
126	I915_ENGINE_CLASS_INVALID	= -1
127};
128
129/*
130 * There may be more than one engine fulfilling any role within the system.
131 * Each engine of a class is given a unique instance number and therefore
132 * any engine can be specified by its class:instance tuplet. APIs that allow
133 * access to any engine in the system will use struct i915_engine_class_instance
134 * for this identification.
135 */
136struct i915_engine_class_instance {
137	__u16 engine_class; /* see enum drm_i915_gem_engine_class */
138	__u16 engine_instance;
139#define I915_ENGINE_CLASS_INVALID_NONE -1
140#define I915_ENGINE_CLASS_INVALID_VIRTUAL -2
141};
142
143/**
144 * DOC: perf_events exposed by i915 through /sys/bus/event_sources/drivers/i915
145 *
146 */
147
148enum drm_i915_pmu_engine_sample {
149	I915_SAMPLE_BUSY = 0,
150	I915_SAMPLE_WAIT = 1,
151	I915_SAMPLE_SEMA = 2
152};
153
154#define I915_PMU_SAMPLE_BITS (4)
155#define I915_PMU_SAMPLE_MASK (0xf)
156#define I915_PMU_SAMPLE_INSTANCE_BITS (8)
157#define I915_PMU_CLASS_SHIFT \
158	(I915_PMU_SAMPLE_BITS + I915_PMU_SAMPLE_INSTANCE_BITS)
159
160#define __I915_PMU_ENGINE(class, instance, sample) \
161	((class) << I915_PMU_CLASS_SHIFT | \
162	(instance) << I915_PMU_SAMPLE_BITS | \
163	(sample))
164
165#define I915_PMU_ENGINE_BUSY(class, instance) \
166	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_BUSY)
167
168#define I915_PMU_ENGINE_WAIT(class, instance) \
169	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_WAIT)
170
171#define I915_PMU_ENGINE_SEMA(class, instance) \
172	__I915_PMU_ENGINE(class, instance, I915_SAMPLE_SEMA)
173
174#define __I915_PMU_OTHER(x) (__I915_PMU_ENGINE(0xff, 0xff, 0xf) + 1 + (x))
175
176#define I915_PMU_ACTUAL_FREQUENCY	__I915_PMU_OTHER(0)
177#define I915_PMU_REQUESTED_FREQUENCY	__I915_PMU_OTHER(1)
178#define I915_PMU_INTERRUPTS		__I915_PMU_OTHER(2)
179#define I915_PMU_RC6_RESIDENCY		__I915_PMU_OTHER(3)
180
181#define I915_PMU_LAST I915_PMU_RC6_RESIDENCY
182
183/* Each region is a minimum of 16k, and there are at most 255 of them.
184 */
185#define I915_NR_TEX_REGIONS 255	/* table size 2k - maximum due to use
186				 * of chars for next/prev indices */
187#define I915_LOG_MIN_TEX_REGION_SIZE 14
188
189typedef struct _drm_i915_init {
190	enum {
191		I915_INIT_DMA = 0x01,
192		I915_CLEANUP_DMA = 0x02,
193		I915_RESUME_DMA = 0x03
194	} func;
195	unsigned int mmio_offset;
196	int sarea_priv_offset;
197	unsigned int ring_start;
198	unsigned int ring_end;
199	unsigned int ring_size;
200	unsigned int front_offset;
201	unsigned int back_offset;
202	unsigned int depth_offset;
203	unsigned int w;
204	unsigned int h;
205	unsigned int pitch;
206	unsigned int pitch_bits;
207	unsigned int back_pitch;
208	unsigned int depth_pitch;
209	unsigned int cpp;
210	unsigned int chipset;
211} drm_i915_init_t;
212
213typedef struct _drm_i915_sarea {
214	struct drm_tex_region texList[I915_NR_TEX_REGIONS + 1];
215	int last_upload;	/* last time texture was uploaded */
216	int last_enqueue;	/* last time a buffer was enqueued */
217	int last_dispatch;	/* age of the most recently dispatched buffer */
218	int ctxOwner;		/* last context to upload state */
219	int texAge;
220	int pf_enabled;		/* is pageflipping allowed? */
221	int pf_active;
222	int pf_current_page;	/* which buffer is being displayed? */
223	int perf_boxes;		/* performance boxes to be displayed */
224	int width, height;      /* screen size in pixels */
225
226	drm_handle_t front_handle;
227	int front_offset;
228	int front_size;
229
230	drm_handle_t back_handle;
231	int back_offset;
232	int back_size;
233
234	drm_handle_t depth_handle;
235	int depth_offset;
236	int depth_size;
237
238	drm_handle_t tex_handle;
239	int tex_offset;
240	int tex_size;
241	int log_tex_granularity;
242	int pitch;
243	int rotation;           /* 0, 90, 180 or 270 */
244	int rotated_offset;
245	int rotated_size;
246	int rotated_pitch;
247	int virtualX, virtualY;
248
249	unsigned int front_tiled;
250	unsigned int back_tiled;
251	unsigned int depth_tiled;
252	unsigned int rotated_tiled;
253	unsigned int rotated2_tiled;
254
255	int pipeA_x;
256	int pipeA_y;
257	int pipeA_w;
258	int pipeA_h;
259	int pipeB_x;
260	int pipeB_y;
261	int pipeB_w;
262	int pipeB_h;
263
264	/* fill out some space for old userspace triple buffer */
265	drm_handle_t unused_handle;
266	__u32 unused1, unused2, unused3;
267
268	/* buffer object handles for static buffers. May change
269	 * over the lifetime of the client.
270	 */
271	__u32 front_bo_handle;
272	__u32 back_bo_handle;
273	__u32 unused_bo_handle;
274	__u32 depth_bo_handle;
275
276} drm_i915_sarea_t;
277
278/* due to userspace building against these headers we need some compat here */
279#define planeA_x pipeA_x
280#define planeA_y pipeA_y
281#define planeA_w pipeA_w
282#define planeA_h pipeA_h
283#define planeB_x pipeB_x
284#define planeB_y pipeB_y
285#define planeB_w pipeB_w
286#define planeB_h pipeB_h
287
288/* Flags for perf_boxes
289 */
290#define I915_BOX_RING_EMPTY    0x1
291#define I915_BOX_FLIP          0x2
292#define I915_BOX_WAIT          0x4
293#define I915_BOX_TEXTURE_LOAD  0x8
294#define I915_BOX_LOST_CONTEXT  0x10
295
296/*
297 * i915 specific ioctls.
298 *
299 * The device specific ioctl range is [DRM_COMMAND_BASE, DRM_COMMAND_END) ie
300 * [0x40, 0xa0) (a0 is excluded). The numbers below are defined as offset
301 * against DRM_COMMAND_BASE and should be between [0x0, 0x60).
302 */
303#define DRM_I915_INIT		0x00
304#define DRM_I915_FLUSH		0x01
305#define DRM_I915_FLIP		0x02
306#define DRM_I915_BATCHBUFFER	0x03
307#define DRM_I915_IRQ_EMIT	0x04
308#define DRM_I915_IRQ_WAIT	0x05
309#define DRM_I915_GETPARAM	0x06
310#define DRM_I915_SETPARAM	0x07
311#define DRM_I915_ALLOC		0x08
312#define DRM_I915_FREE		0x09
313#define DRM_I915_INIT_HEAP	0x0a
314#define DRM_I915_CMDBUFFER	0x0b
315#define DRM_I915_DESTROY_HEAP	0x0c
316#define DRM_I915_SET_VBLANK_PIPE	0x0d
317#define DRM_I915_GET_VBLANK_PIPE	0x0e
318#define DRM_I915_VBLANK_SWAP	0x0f
319#define DRM_I915_HWS_ADDR	0x11
320#define DRM_I915_GEM_INIT	0x13
321#define DRM_I915_GEM_EXECBUFFER	0x14
322#define DRM_I915_GEM_PIN	0x15
323#define DRM_I915_GEM_UNPIN	0x16
324#define DRM_I915_GEM_BUSY	0x17
325#define DRM_I915_GEM_THROTTLE	0x18
326#define DRM_I915_GEM_ENTERVT	0x19
327#define DRM_I915_GEM_LEAVEVT	0x1a
328#define DRM_I915_GEM_CREATE	0x1b
329#define DRM_I915_GEM_PREAD	0x1c
330#define DRM_I915_GEM_PWRITE	0x1d
331#define DRM_I915_GEM_MMAP	0x1e
332#define DRM_I915_GEM_SET_DOMAIN	0x1f
333#define DRM_I915_GEM_SW_FINISH	0x20
334#define DRM_I915_GEM_SET_TILING	0x21
335#define DRM_I915_GEM_GET_TILING	0x22
336#define DRM_I915_GEM_GET_APERTURE 0x23
337#define DRM_I915_GEM_MMAP_GTT	0x24
338#define DRM_I915_GET_PIPE_FROM_CRTC_ID	0x25
339#define DRM_I915_GEM_MADVISE	0x26
340#define DRM_I915_OVERLAY_PUT_IMAGE	0x27
341#define DRM_I915_OVERLAY_ATTRS	0x28
342#define DRM_I915_GEM_EXECBUFFER2	0x29
343#define DRM_I915_GEM_EXECBUFFER2_WR	DRM_I915_GEM_EXECBUFFER2
344#define DRM_I915_GET_SPRITE_COLORKEY	0x2a
345#define DRM_I915_SET_SPRITE_COLORKEY	0x2b
346#define DRM_I915_GEM_WAIT	0x2c
347#define DRM_I915_GEM_CONTEXT_CREATE	0x2d
348#define DRM_I915_GEM_CONTEXT_DESTROY	0x2e
349#define DRM_I915_GEM_SET_CACHING	0x2f
350#define DRM_I915_GEM_GET_CACHING	0x30
351#define DRM_I915_REG_READ		0x31
352#define DRM_I915_GET_RESET_STATS	0x32
353#define DRM_I915_GEM_USERPTR		0x33
354#define DRM_I915_GEM_CONTEXT_GETPARAM	0x34
355#define DRM_I915_GEM_CONTEXT_SETPARAM	0x35
356#define DRM_I915_PERF_OPEN		0x36
357#define DRM_I915_PERF_ADD_CONFIG	0x37
358#define DRM_I915_PERF_REMOVE_CONFIG	0x38
359#define DRM_I915_QUERY			0x39
360#define DRM_I915_GEM_VM_CREATE		0x3a
361#define DRM_I915_GEM_VM_DESTROY		0x3b
362/* Must be kept compact -- no holes */
363
364#define DRM_IOCTL_I915_INIT		DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT, drm_i915_init_t)
365#define DRM_IOCTL_I915_FLUSH		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLUSH)
366#define DRM_IOCTL_I915_FLIP		DRM_IO ( DRM_COMMAND_BASE + DRM_I915_FLIP)
367#define DRM_IOCTL_I915_BATCHBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_BATCHBUFFER, drm_i915_batchbuffer_t)
368#define DRM_IOCTL_I915_IRQ_EMIT         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_IRQ_EMIT, drm_i915_irq_emit_t)
369#define DRM_IOCTL_I915_IRQ_WAIT         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_IRQ_WAIT, drm_i915_irq_wait_t)
370#define DRM_IOCTL_I915_GETPARAM         DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GETPARAM, drm_i915_getparam_t)
371#define DRM_IOCTL_I915_SETPARAM         DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SETPARAM, drm_i915_setparam_t)
372#define DRM_IOCTL_I915_ALLOC            DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_ALLOC, drm_i915_mem_alloc_t)
373#define DRM_IOCTL_I915_FREE             DRM_IOW( DRM_COMMAND_BASE + DRM_I915_FREE, drm_i915_mem_free_t)
374#define DRM_IOCTL_I915_INIT_HEAP        DRM_IOW( DRM_COMMAND_BASE + DRM_I915_INIT_HEAP, drm_i915_mem_init_heap_t)
375#define DRM_IOCTL_I915_CMDBUFFER	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_CMDBUFFER, drm_i915_cmdbuffer_t)
376#define DRM_IOCTL_I915_DESTROY_HEAP	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_DESTROY_HEAP, drm_i915_mem_destroy_heap_t)
377#define DRM_IOCTL_I915_SET_VBLANK_PIPE	DRM_IOW( DRM_COMMAND_BASE + DRM_I915_SET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
378#define DRM_IOCTL_I915_GET_VBLANK_PIPE	DRM_IOR( DRM_COMMAND_BASE + DRM_I915_GET_VBLANK_PIPE, drm_i915_vblank_pipe_t)
379#define DRM_IOCTL_I915_VBLANK_SWAP	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_VBLANK_SWAP, drm_i915_vblank_swap_t)
380#define DRM_IOCTL_I915_HWS_ADDR		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_HWS_ADDR, struct drm_i915_gem_init)
381#define DRM_IOCTL_I915_GEM_INIT		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_INIT, struct drm_i915_gem_init)
382#define DRM_IOCTL_I915_GEM_EXECBUFFER	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER, struct drm_i915_gem_execbuffer)
383#define DRM_IOCTL_I915_GEM_EXECBUFFER2	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2, struct drm_i915_gem_execbuffer2)
384#define DRM_IOCTL_I915_GEM_EXECBUFFER2_WR	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_EXECBUFFER2_WR, struct drm_i915_gem_execbuffer2)
385#define DRM_IOCTL_I915_GEM_PIN		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_PIN, struct drm_i915_gem_pin)
386#define DRM_IOCTL_I915_GEM_UNPIN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_UNPIN, struct drm_i915_gem_unpin)
387#define DRM_IOCTL_I915_GEM_BUSY		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_BUSY, struct drm_i915_gem_busy)
388#define DRM_IOCTL_I915_GEM_SET_CACHING		DRM_IOW(DRM_COMMAND_BASE + DRM_I915_GEM_SET_CACHING, struct drm_i915_gem_caching)
389#define DRM_IOCTL_I915_GEM_GET_CACHING		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_GET_CACHING, struct drm_i915_gem_caching)
390#define DRM_IOCTL_I915_GEM_THROTTLE	DRM_IO ( DRM_COMMAND_BASE + DRM_I915_GEM_THROTTLE)
391#define DRM_IOCTL_I915_GEM_ENTERVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_ENTERVT)
392#define DRM_IOCTL_I915_GEM_LEAVEVT	DRM_IO(DRM_COMMAND_BASE + DRM_I915_GEM_LEAVEVT)
393#define DRM_IOCTL_I915_GEM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_CREATE, struct drm_i915_gem_create)
394#define DRM_IOCTL_I915_GEM_PREAD	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PREAD, struct drm_i915_gem_pread)
395#define DRM_IOCTL_I915_GEM_PWRITE	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_PWRITE, struct drm_i915_gem_pwrite)
396#define DRM_IOCTL_I915_GEM_MMAP		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP, struct drm_i915_gem_mmap)
397#define DRM_IOCTL_I915_GEM_MMAP_GTT	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_gtt)
398#define DRM_IOCTL_I915_GEM_MMAP_OFFSET	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MMAP_GTT, struct drm_i915_gem_mmap_offset)
399#define DRM_IOCTL_I915_GEM_SET_DOMAIN	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SET_DOMAIN, struct drm_i915_gem_set_domain)
400#define DRM_IOCTL_I915_GEM_SW_FINISH	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_SW_FINISH, struct drm_i915_gem_sw_finish)
401#define DRM_IOCTL_I915_GEM_SET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_SET_TILING, struct drm_i915_gem_set_tiling)
402#define DRM_IOCTL_I915_GEM_GET_TILING	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_GET_TILING, struct drm_i915_gem_get_tiling)
403#define DRM_IOCTL_I915_GEM_GET_APERTURE	DRM_IOR  (DRM_COMMAND_BASE + DRM_I915_GEM_GET_APERTURE, struct drm_i915_gem_get_aperture)
404#define DRM_IOCTL_I915_GET_PIPE_FROM_CRTC_ID DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_PIPE_FROM_CRTC_ID, struct drm_i915_get_pipe_from_crtc_id)
405#define DRM_IOCTL_I915_GEM_MADVISE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_MADVISE, struct drm_i915_gem_madvise)
406#define DRM_IOCTL_I915_OVERLAY_PUT_IMAGE	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_OVERLAY_PUT_IMAGE, struct drm_intel_overlay_put_image)
407#define DRM_IOCTL_I915_OVERLAY_ATTRS	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_OVERLAY_ATTRS, struct drm_intel_overlay_attrs)
408#define DRM_IOCTL_I915_SET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_SET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
409#define DRM_IOCTL_I915_GET_SPRITE_COLORKEY DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GET_SPRITE_COLORKEY, struct drm_intel_sprite_colorkey)
410#define DRM_IOCTL_I915_GEM_WAIT		DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_WAIT, struct drm_i915_gem_wait)
411#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create)
412#define DRM_IOCTL_I915_GEM_CONTEXT_CREATE_EXT	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_CREATE, struct drm_i915_gem_context_create_ext)
413#define DRM_IOCTL_I915_GEM_CONTEXT_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_DESTROY, struct drm_i915_gem_context_destroy)
414#define DRM_IOCTL_I915_REG_READ			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_REG_READ, struct drm_i915_reg_read)
415#define DRM_IOCTL_I915_GET_RESET_STATS		DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GET_RESET_STATS, struct drm_i915_reset_stats)
416#define DRM_IOCTL_I915_GEM_USERPTR			DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_USERPTR, struct drm_i915_gem_userptr)
417#define DRM_IOCTL_I915_GEM_CONTEXT_GETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_GETPARAM, struct drm_i915_gem_context_param)
418#define DRM_IOCTL_I915_GEM_CONTEXT_SETPARAM	DRM_IOWR (DRM_COMMAND_BASE + DRM_I915_GEM_CONTEXT_SETPARAM, struct drm_i915_gem_context_param)
419#define DRM_IOCTL_I915_PERF_OPEN	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_OPEN, struct drm_i915_perf_open_param)
420#define DRM_IOCTL_I915_PERF_ADD_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_ADD_CONFIG, struct drm_i915_perf_oa_config)
421#define DRM_IOCTL_I915_PERF_REMOVE_CONFIG	DRM_IOW(DRM_COMMAND_BASE + DRM_I915_PERF_REMOVE_CONFIG, __u64)
422#define DRM_IOCTL_I915_QUERY			DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_QUERY, struct drm_i915_query)
423#define DRM_IOCTL_I915_GEM_VM_CREATE	DRM_IOWR(DRM_COMMAND_BASE + DRM_I915_GEM_VM_CREATE, struct drm_i915_gem_vm_control)
424#define DRM_IOCTL_I915_GEM_VM_DESTROY	DRM_IOW (DRM_COMMAND_BASE + DRM_I915_GEM_VM_DESTROY, struct drm_i915_gem_vm_control)
425
426/* Allow drivers to submit batchbuffers directly to hardware, relying
427 * on the security mechanisms provided by hardware.
428 */
429typedef struct drm_i915_batchbuffer {
430	int start;		/* agp offset */
431	int used;		/* nr bytes in use */
432	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
433	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
434	int num_cliprects;	/* mulitpass with multiple cliprects? */
435	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
436} drm_i915_batchbuffer_t;
437
438/* As above, but pass a pointer to userspace buffer which can be
439 * validated by the kernel prior to sending to hardware.
440 */
441typedef struct _drm_i915_cmdbuffer {
442	char __user *buf;	/* pointer to userspace command buffer */
443	int sz;			/* nr bytes in buf */
444	int DR1;		/* hw flags for GFX_OP_DRAWRECT_INFO */
445	int DR4;		/* window origin for GFX_OP_DRAWRECT_INFO */
446	int num_cliprects;	/* mulitpass with multiple cliprects? */
447	struct drm_clip_rect __user *cliprects;	/* pointer to userspace cliprects */
448} drm_i915_cmdbuffer_t;
449
450/* Userspace can request & wait on irq's:
451 */
452typedef struct drm_i915_irq_emit {
453	int __user *irq_seq;
454} drm_i915_irq_emit_t;
455
456typedef struct drm_i915_irq_wait {
457	int irq_seq;
458} drm_i915_irq_wait_t;
459
460/*
461 * Different modes of per-process Graphics Translation Table,
462 * see I915_PARAM_HAS_ALIASING_PPGTT
463 */
464#define I915_GEM_PPGTT_NONE	0
465#define I915_GEM_PPGTT_ALIASING	1
466#define I915_GEM_PPGTT_FULL	2
467
468/* Ioctl to query kernel params:
469 */
470#define I915_PARAM_IRQ_ACTIVE            1
471#define I915_PARAM_ALLOW_BATCHBUFFER     2
472#define I915_PARAM_LAST_DISPATCH         3
473#define I915_PARAM_CHIPSET_ID            4
474#define I915_PARAM_HAS_GEM               5
475#define I915_PARAM_NUM_FENCES_AVAIL      6
476#define I915_PARAM_HAS_OVERLAY           7
477#define I915_PARAM_HAS_PAGEFLIPPING	 8
478#define I915_PARAM_HAS_EXECBUF2          9
479#define I915_PARAM_HAS_BSD		 10
480#define I915_PARAM_HAS_BLT		 11
481#define I915_PARAM_HAS_RELAXED_FENCING	 12
482#define I915_PARAM_HAS_COHERENT_RINGS	 13
483#define I915_PARAM_HAS_EXEC_CONSTANTS	 14
484#define I915_PARAM_HAS_RELAXED_DELTA	 15
485#define I915_PARAM_HAS_GEN7_SOL_RESET	 16
486#define I915_PARAM_HAS_LLC     	 	 17
487#define I915_PARAM_HAS_ALIASING_PPGTT	 18
488#define I915_PARAM_HAS_WAIT_TIMEOUT	 19
489#define I915_PARAM_HAS_SEMAPHORES	 20
490#define I915_PARAM_HAS_PRIME_VMAP_FLUSH	 21
491#define I915_PARAM_HAS_VEBOX		 22
492#define I915_PARAM_HAS_SECURE_BATCHES	 23
493#define I915_PARAM_HAS_PINNED_BATCHES	 24
494#define I915_PARAM_HAS_EXEC_NO_RELOC	 25
495#define I915_PARAM_HAS_EXEC_HANDLE_LUT   26
496#define I915_PARAM_HAS_WT     	 	 27
497#define I915_PARAM_CMD_PARSER_VERSION	 28
498#define I915_PARAM_HAS_COHERENT_PHYS_GTT 29
499#define I915_PARAM_MMAP_VERSION          30
500#define I915_PARAM_HAS_BSD2		 31
501#define I915_PARAM_REVISION              32
502#define I915_PARAM_SUBSLICE_TOTAL	 33
503#define I915_PARAM_EU_TOTAL		 34
504#define I915_PARAM_HAS_GPU_RESET	 35
505#define I915_PARAM_HAS_RESOURCE_STREAMER 36
506#define I915_PARAM_HAS_EXEC_SOFTPIN	 37
507#define I915_PARAM_HAS_POOLED_EU	 38
508#define I915_PARAM_MIN_EU_IN_POOL	 39
509#define I915_PARAM_MMAP_GTT_VERSION	 40
510
511/*
512 * Query whether DRM_I915_GEM_EXECBUFFER2 supports user defined execution
513 * priorities and the driver will attempt to execute batches in priority order.
514 * The param returns a capability bitmask, nonzero implies that the scheduler
515 * is enabled, with different features present according to the mask.
516 *
517 * The initial priority for each batch is supplied by the context and is
518 * controlled via I915_CONTEXT_PARAM_PRIORITY.
519 */
520#define I915_PARAM_HAS_SCHEDULER	 41
521#define   I915_SCHEDULER_CAP_ENABLED	(1ul << 0)
522#define   I915_SCHEDULER_CAP_PRIORITY	(1ul << 1)
523#define   I915_SCHEDULER_CAP_PREEMPTION	(1ul << 2)
524#define   I915_SCHEDULER_CAP_SEMAPHORES	(1ul << 3)
525#define   I915_SCHEDULER_CAP_ENGINE_BUSY_STATS	(1ul << 4)
526
527#define I915_PARAM_HUC_STATUS		 42
528
529/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to opt-out of
530 * synchronisation with implicit fencing on individual objects.
531 * See EXEC_OBJECT_ASYNC.
532 */
533#define I915_PARAM_HAS_EXEC_ASYNC	 43
534
535/* Query whether DRM_I915_GEM_EXECBUFFER2 supports explicit fence support -
536 * both being able to pass in a sync_file fd to wait upon before executing,
537 * and being able to return a new sync_file fd that is signaled when the
538 * current request is complete. See I915_EXEC_FENCE_IN and I915_EXEC_FENCE_OUT.
539 */
540#define I915_PARAM_HAS_EXEC_FENCE	 44
541
542/* Query whether DRM_I915_GEM_EXECBUFFER2 supports the ability to capture
543 * user specified bufffers for post-mortem debugging of GPU hangs. See
544 * EXEC_OBJECT_CAPTURE.
545 */
546#define I915_PARAM_HAS_EXEC_CAPTURE	 45
547
548#define I915_PARAM_SLICE_MASK		 46
549
550/* Assuming it's uniform for each slice, this queries the mask of subslices
551 * per-slice for this system.
552 */
553#define I915_PARAM_SUBSLICE_MASK	 47
554
555/*
556 * Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying the batch buffer
557 * as the first execobject as opposed to the last. See I915_EXEC_BATCH_FIRST.
558 */
559#define I915_PARAM_HAS_EXEC_BATCH_FIRST	 48
560
561/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
562 * drm_i915_gem_exec_fence structures.  See I915_EXEC_FENCE_ARRAY.
563 */
564#define I915_PARAM_HAS_EXEC_FENCE_ARRAY  49
565
566/*
567 * Query whether every context (both per-file default and user created) is
568 * isolated (insofar as HW supports). If this parameter is not true, then
569 * freshly created contexts may inherit values from an existing context,
570 * rather than default HW values. If true, it also ensures (insofar as HW
571 * supports) that all state set by this context will not leak to any other
572 * context.
573 *
574 * As not every engine across every gen support contexts, the returned
575 * value reports the support of context isolation for individual engines by
576 * returning a bitmask of each engine class set to true if that class supports
577 * isolation.
578 */
579#define I915_PARAM_HAS_CONTEXT_ISOLATION 50
580
581/* Frequency of the command streamer timestamps given by the *_TIMESTAMP
582 * registers. This used to be fixed per platform but from CNL onwards, this
583 * might vary depending on the parts.
584 */
585#define I915_PARAM_CS_TIMESTAMP_FREQUENCY 51
586
587/*
588 * Once upon a time we supposed that writes through the GGTT would be
589 * immediately in physical memory (once flushed out of the CPU path). However,
590 * on a few different processors and chipsets, this is not necessarily the case
591 * as the writes appear to be buffered internally. Thus a read of the backing
592 * storage (physical memory) via a different path (with different physical tags
593 * to the indirect write via the GGTT) will see stale values from before
594 * the GGTT write. Inside the kernel, we can for the most part keep track of
595 * the different read/write domains in use (e.g. set-domain), but the assumption
596 * of coherency is baked into the ABI, hence reporting its true state in this
597 * parameter.
598 *
599 * Reports true when writes via mmap_gtt are immediately visible following an
600 * lfence to flush the WCB.
601 *
602 * Reports false when writes via mmap_gtt are indeterminately delayed in an in
603 * internal buffer and are _not_ immediately visible to third parties accessing
604 * directly via mmap_cpu/mmap_wc. Use of mmap_gtt as part of an IPC
605 * communications channel when reporting false is strongly disadvised.
606 */
607#define I915_PARAM_MMAP_GTT_COHERENT	52
608
609/*
610 * Query whether DRM_I915_GEM_EXECBUFFER2 supports coordination of parallel
611 * execution through use of explicit fence support.
612 * See I915_EXEC_FENCE_OUT and I915_EXEC_FENCE_SUBMIT.
613 */
614#define I915_PARAM_HAS_EXEC_SUBMIT_FENCE 53
615
616/*
617 * Revision of the i915-perf uAPI. The value returned helps determine what
618 * i915-perf features are available. See drm_i915_perf_property_id.
619 */
620#define I915_PARAM_PERF_REVISION	54
621
622/* Query whether DRM_I915_GEM_EXECBUFFER2 supports supplying an array of
623 * timeline syncobj through drm_i915_gem_execbuffer_ext_timeline_fences. See
624 * I915_EXEC_USE_EXTENSIONS.
625 */
626#define I915_PARAM_HAS_EXEC_TIMELINE_FENCES 55
627
628/* Must be kept compact -- no holes and well documented */
629
630typedef struct drm_i915_getparam {
631	__s32 param;
632	/*
633	 * WARNING: Using pointers instead of fixed-size u64 means we need to write
634	 * compat32 code. Don't repeat this mistake.
635	 */
636	int __user *value;
637} drm_i915_getparam_t;
638
639/* Ioctl to set kernel params:
640 */
641#define I915_SETPARAM_USE_MI_BATCHBUFFER_START            1
642#define I915_SETPARAM_TEX_LRU_LOG_GRANULARITY             2
643#define I915_SETPARAM_ALLOW_BATCHBUFFER                   3
644#define I915_SETPARAM_NUM_USED_FENCES                     4
645/* Must be kept compact -- no holes */
646
647typedef struct drm_i915_setparam {
648	int param;
649	int value;
650} drm_i915_setparam_t;
651
652/* A memory manager for regions of shared memory:
653 */
654#define I915_MEM_REGION_AGP 1
655
656typedef struct drm_i915_mem_alloc {
657	int region;
658	int alignment;
659	int size;
660	int __user *region_offset;	/* offset from start of fb or agp */
661} drm_i915_mem_alloc_t;
662
663typedef struct drm_i915_mem_free {
664	int region;
665	int region_offset;
666} drm_i915_mem_free_t;
667
668typedef struct drm_i915_mem_init_heap {
669	int region;
670	int size;
671	int start;
672} drm_i915_mem_init_heap_t;
673
674/* Allow memory manager to be torn down and re-initialized (eg on
675 * rotate):
676 */
677typedef struct drm_i915_mem_destroy_heap {
678	int region;
679} drm_i915_mem_destroy_heap_t;
680
681/* Allow X server to configure which pipes to monitor for vblank signals
682 */
683#define	DRM_I915_VBLANK_PIPE_A	1
684#define	DRM_I915_VBLANK_PIPE_B	2
685
686typedef struct drm_i915_vblank_pipe {
687	int pipe;
688} drm_i915_vblank_pipe_t;
689
690/* Schedule buffer swap at given vertical blank:
691 */
692typedef struct drm_i915_vblank_swap {
693	drm_drawable_t drawable;
694	enum drm_vblank_seq_type seqtype;
695	unsigned int sequence;
696} drm_i915_vblank_swap_t;
697
698typedef struct drm_i915_hws_addr {
699	__u64 addr;
700} drm_i915_hws_addr_t;
701
702struct drm_i915_gem_init {
703	/**
704	 * Beginning offset in the GTT to be managed by the DRM memory
705	 * manager.
706	 */
707	__u64 gtt_start;
708	/**
709	 * Ending offset in the GTT to be managed by the DRM memory
710	 * manager.
711	 */
712	__u64 gtt_end;
713};
714
715struct drm_i915_gem_create {
716	/**
717	 * Requested size for the object.
718	 *
719	 * The (page-aligned) allocated size for the object will be returned.
720	 */
721	__u64 size;
722	/**
723	 * Returned handle for the object.
724	 *
725	 * Object handles are nonzero.
726	 */
727	__u32 handle;
728	__u32 pad;
729};
730
731struct drm_i915_gem_pread {
732	/** Handle for the object being read. */
733	__u32 handle;
734	__u32 pad;
735	/** Offset into the object to read from */
736	__u64 offset;
737	/** Length of data to read */
738	__u64 size;
739	/**
740	 * Pointer to write the data into.
741	 *
742	 * This is a fixed-size type for 32/64 compatibility.
743	 */
744	__u64 data_ptr;
745};
746
747struct drm_i915_gem_pwrite {
748	/** Handle for the object being written to. */
749	__u32 handle;
750	__u32 pad;
751	/** Offset into the object to write to */
752	__u64 offset;
753	/** Length of data to write */
754	__u64 size;
755	/**
756	 * Pointer to read the data from.
757	 *
758	 * This is a fixed-size type for 32/64 compatibility.
759	 */
760	__u64 data_ptr;
761};
762
763struct drm_i915_gem_mmap {
764	/** Handle for the object being mapped. */
765	__u32 handle;
766	__u32 pad;
767	/** Offset in the object to map. */
768	__u64 offset;
769	/**
770	 * Length of data to map.
771	 *
772	 * The value will be page-aligned.
773	 */
774	__u64 size;
775	/**
776	 * Returned pointer the data was mapped at.
777	 *
778	 * This is a fixed-size type for 32/64 compatibility.
779	 */
780	__u64 addr_ptr;
781
782	/**
783	 * Flags for extended behaviour.
784	 *
785	 * Added in version 2.
786	 */
787	__u64 flags;
788#define I915_MMAP_WC 0x1
789};
790
791struct drm_i915_gem_mmap_gtt {
792	/** Handle for the object being mapped. */
793	__u32 handle;
794	__u32 pad;
795	/**
796	 * Fake offset to use for subsequent mmap call
797	 *
798	 * This is a fixed-size type for 32/64 compatibility.
799	 */
800	__u64 offset;
801};
802
803struct drm_i915_gem_mmap_offset {
804	/** Handle for the object being mapped. */
805	__u32 handle;
806	__u32 pad;
807	/**
808	 * Fake offset to use for subsequent mmap call
809	 *
810	 * This is a fixed-size type for 32/64 compatibility.
811	 */
812	__u64 offset;
813
814	/**
815	 * Flags for extended behaviour.
816	 *
817	 * It is mandatory that one of the MMAP_OFFSET types
818	 * (GTT, WC, WB, UC, etc) should be included.
819	 */
820	__u64 flags;
821#define I915_MMAP_OFFSET_GTT 0
822#define I915_MMAP_OFFSET_WC  1
823#define I915_MMAP_OFFSET_WB  2
824#define I915_MMAP_OFFSET_UC  3
825
826	/*
827	 * Zero-terminated chain of extensions.
828	 *
829	 * No current extensions defined; mbz.
830	 */
831	__u64 extensions;
832};
833
834struct drm_i915_gem_set_domain {
835	/** Handle for the object */
836	__u32 handle;
837
838	/** New read domains */
839	__u32 read_domains;
840
841	/** New write domain */
842	__u32 write_domain;
843};
844
845struct drm_i915_gem_sw_finish {
846	/** Handle for the object */
847	__u32 handle;
848};
849
850struct drm_i915_gem_relocation_entry {
851	/**
852	 * Handle of the buffer being pointed to by this relocation entry.
853	 *
854	 * It's appealing to make this be an index into the mm_validate_entry
855	 * list to refer to the buffer, but this allows the driver to create
856	 * a relocation list for state buffers and not re-write it per
857	 * exec using the buffer.
858	 */
859	__u32 target_handle;
860
861	/**
862	 * Value to be added to the offset of the target buffer to make up
863	 * the relocation entry.
864	 */
865	__u32 delta;
866
867	/** Offset in the buffer the relocation entry will be written into */
868	__u64 offset;
869
870	/**
871	 * Offset value of the target buffer that the relocation entry was last
872	 * written as.
873	 *
874	 * If the buffer has the same offset as last time, we can skip syncing
875	 * and writing the relocation.  This value is written back out by
876	 * the execbuffer ioctl when the relocation is written.
877	 */
878	__u64 presumed_offset;
879
880	/**
881	 * Target memory domains read by this operation.
882	 */
883	__u32 read_domains;
884
885	/**
886	 * Target memory domains written by this operation.
887	 *
888	 * Note that only one domain may be written by the whole
889	 * execbuffer operation, so that where there are conflicts,
890	 * the application will get -EINVAL back.
891	 */
892	__u32 write_domain;
893};
894
895/** @{
896 * Intel memory domains
897 *
898 * Most of these just align with the various caches in
899 * the system and are used to flush and invalidate as
900 * objects end up cached in different domains.
901 */
902/** CPU cache */
903#define I915_GEM_DOMAIN_CPU		0x00000001
904/** Render cache, used by 2D and 3D drawing */
905#define I915_GEM_DOMAIN_RENDER		0x00000002
906/** Sampler cache, used by texture engine */
907#define I915_GEM_DOMAIN_SAMPLER		0x00000004
908/** Command queue, used to load batch buffers */
909#define I915_GEM_DOMAIN_COMMAND		0x00000008
910/** Instruction cache, used by shader programs */
911#define I915_GEM_DOMAIN_INSTRUCTION	0x00000010
912/** Vertex address cache */
913#define I915_GEM_DOMAIN_VERTEX		0x00000020
914/** GTT domain - aperture and scanout */
915#define I915_GEM_DOMAIN_GTT		0x00000040
916/** WC domain - uncached access */
917#define I915_GEM_DOMAIN_WC		0x00000080
918/** @} */
919
920struct drm_i915_gem_exec_object {
921	/**
922	 * User's handle for a buffer to be bound into the GTT for this
923	 * operation.
924	 */
925	__u32 handle;
926
927	/** Number of relocations to be performed on this buffer */
928	__u32 relocation_count;
929	/**
930	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
931	 * the relocations to be performed in this buffer.
932	 */
933	__u64 relocs_ptr;
934
935	/** Required alignment in graphics aperture */
936	__u64 alignment;
937
938	/**
939	 * Returned value of the updated offset of the object, for future
940	 * presumed_offset writes.
941	 */
942	__u64 offset;
943};
944
945struct drm_i915_gem_execbuffer {
946	/**
947	 * List of buffers to be validated with their relocations to be
948	 * performend on them.
949	 *
950	 * This is a pointer to an array of struct drm_i915_gem_validate_entry.
951	 *
952	 * These buffers must be listed in an order such that all relocations
953	 * a buffer is performing refer to buffers that have already appeared
954	 * in the validate list.
955	 */
956	__u64 buffers_ptr;
957	__u32 buffer_count;
958
959	/** Offset in the batchbuffer to start execution from. */
960	__u32 batch_start_offset;
961	/** Bytes used in batchbuffer from batch_start_offset */
962	__u32 batch_len;
963	__u32 DR1;
964	__u32 DR4;
965	__u32 num_cliprects;
966	/** This is a struct drm_clip_rect *cliprects */
967	__u64 cliprects_ptr;
968};
969
970struct drm_i915_gem_exec_object2 {
971	/**
972	 * User's handle for a buffer to be bound into the GTT for this
973	 * operation.
974	 */
975	__u32 handle;
976
977	/** Number of relocations to be performed on this buffer */
978	__u32 relocation_count;
979	/**
980	 * Pointer to array of struct drm_i915_gem_relocation_entry containing
981	 * the relocations to be performed in this buffer.
982	 */
983	__u64 relocs_ptr;
984
985	/** Required alignment in graphics aperture */
986	__u64 alignment;
987
988	/**
989	 * When the EXEC_OBJECT_PINNED flag is specified this is populated by
990	 * the user with the GTT offset at which this object will be pinned.
991	 * When the I915_EXEC_NO_RELOC flag is specified this must contain the
992	 * presumed_offset of the object.
993	 * During execbuffer2 the kernel populates it with the value of the
994	 * current GTT offset of the object, for future presumed_offset writes.
995	 */
996	__u64 offset;
997
998#define EXEC_OBJECT_NEEDS_FENCE		 (1<<0)
999#define EXEC_OBJECT_NEEDS_GTT		 (1<<1)
1000#define EXEC_OBJECT_WRITE		 (1<<2)
1001#define EXEC_OBJECT_SUPPORTS_48B_ADDRESS (1<<3)
1002#define EXEC_OBJECT_PINNED		 (1<<4)
1003#define EXEC_OBJECT_PAD_TO_SIZE		 (1<<5)
1004/* The kernel implicitly tracks GPU activity on all GEM objects, and
1005 * synchronises operations with outstanding rendering. This includes
1006 * rendering on other devices if exported via dma-buf. However, sometimes
1007 * this tracking is too coarse and the user knows better. For example,
1008 * if the object is split into non-overlapping ranges shared between different
1009 * clients or engines (i.e. suballocating objects), the implicit tracking
1010 * by kernel assumes that each operation affects the whole object rather
1011 * than an individual range, causing needless synchronisation between clients.
1012 * The kernel will also forgo any CPU cache flushes prior to rendering from
1013 * the object as the client is expected to be also handling such domain
1014 * tracking.
1015 *
1016 * The kernel maintains the implicit tracking in order to manage resources
1017 * used by the GPU - this flag only disables the synchronisation prior to
1018 * rendering with this object in this execbuf.
1019 *
1020 * Opting out of implicit synhronisation requires the user to do its own
1021 * explicit tracking to avoid rendering corruption. See, for example,
1022 * I915_PARAM_HAS_EXEC_FENCE to order execbufs and execute them asynchronously.
1023 */
1024#define EXEC_OBJECT_ASYNC		(1<<6)
1025/* Request that the contents of this execobject be copied into the error
1026 * state upon a GPU hang involving this batch for post-mortem debugging.
1027 * These buffers are recorded in no particular order as "user" in
1028 * /sys/class/drm/cardN/error. Query I915_PARAM_HAS_EXEC_CAPTURE to see
1029 * if the kernel supports this flag.
1030 */
1031#define EXEC_OBJECT_CAPTURE		(1<<7)
1032/* All remaining bits are MBZ and RESERVED FOR FUTURE USE */
1033#define __EXEC_OBJECT_UNKNOWN_FLAGS -(EXEC_OBJECT_CAPTURE<<1)
1034	__u64 flags;
1035
1036	union {
1037		__u64 rsvd1;
1038		__u64 pad_to_size;
1039	};
1040	__u64 rsvd2;
1041};
1042
1043struct drm_i915_gem_exec_fence {
1044	/**
1045	 * User's handle for a drm_syncobj to wait on or signal.
1046	 */
1047	__u32 handle;
1048
1049#define I915_EXEC_FENCE_WAIT            (1<<0)
1050#define I915_EXEC_FENCE_SIGNAL          (1<<1)
1051#define __I915_EXEC_FENCE_UNKNOWN_FLAGS (-(I915_EXEC_FENCE_SIGNAL << 1))
1052	__u32 flags;
1053};
1054
1055/**
1056 * See drm_i915_gem_execbuffer_ext_timeline_fences.
1057 */
1058#define DRM_I915_GEM_EXECBUFFER_EXT_TIMELINE_FENCES 0
1059
1060/**
1061 * This structure describes an array of drm_syncobj and associated points for
1062 * timeline variants of drm_syncobj. It is invalid to append this structure to
1063 * the execbuf if I915_EXEC_FENCE_ARRAY is set.
1064 */
1065struct drm_i915_gem_execbuffer_ext_timeline_fences {
1066	struct i915_user_extension base;
1067
1068	/**
1069	 * Number of element in the handles_ptr & value_ptr arrays.
1070	 */
1071	__u64 fence_count;
1072
1073	/**
1074	 * Pointer to an array of struct drm_i915_gem_exec_fence of length
1075	 * fence_count.
1076	 */
1077	__u64 handles_ptr;
1078
1079	/**
1080	 * Pointer to an array of u64 values of length fence_count. Values
1081	 * must be 0 for a binary drm_syncobj. A Value of 0 for a timeline
1082	 * drm_syncobj is invalid as it turns a drm_syncobj into a binary one.
1083	 */
1084	__u64 values_ptr;
1085};
1086
1087struct drm_i915_gem_execbuffer2 {
1088	/**
1089	 * List of gem_exec_object2 structs
1090	 */
1091	__u64 buffers_ptr;
1092	__u32 buffer_count;
1093
1094	/** Offset in the batchbuffer to start execution from. */
1095	__u32 batch_start_offset;
1096	/** Bytes used in batchbuffer from batch_start_offset */
1097	__u32 batch_len;
1098	__u32 DR1;
1099	__u32 DR4;
1100	__u32 num_cliprects;
1101	/**
1102	 * This is a struct drm_clip_rect *cliprects if I915_EXEC_FENCE_ARRAY
1103	 * & I915_EXEC_USE_EXTENSIONS are not set.
1104	 *
1105	 * If I915_EXEC_FENCE_ARRAY is set, then this is a pointer to an array
1106	 * of struct drm_i915_gem_exec_fence and num_cliprects is the length
1107	 * of the array.
1108	 *
1109	 * If I915_EXEC_USE_EXTENSIONS is set, then this is a pointer to a
1110	 * single struct i915_user_extension and num_cliprects is 0.
1111	 */
1112	__u64 cliprects_ptr;
1113#define I915_EXEC_RING_MASK              (0x3f)
1114#define I915_EXEC_DEFAULT                (0<<0)
1115#define I915_EXEC_RENDER                 (1<<0)
1116#define I915_EXEC_BSD                    (2<<0)
1117#define I915_EXEC_BLT                    (3<<0)
1118#define I915_EXEC_VEBOX                  (4<<0)
1119
1120/* Used for switching the constants addressing mode on gen4+ RENDER ring.
1121 * Gen6+ only supports relative addressing to dynamic state (default) and
1122 * absolute addressing.
1123 *
1124 * These flags are ignored for the BSD and BLT rings.
1125 */
1126#define I915_EXEC_CONSTANTS_MASK 	(3<<6)
1127#define I915_EXEC_CONSTANTS_REL_GENERAL (0<<6) /* default */
1128#define I915_EXEC_CONSTANTS_ABSOLUTE 	(1<<6)
1129#define I915_EXEC_CONSTANTS_REL_SURFACE (2<<6) /* gen4/5 only */
1130	__u64 flags;
1131	__u64 rsvd1; /* now used for context info */
1132	__u64 rsvd2;
1133};
1134
1135/** Resets the SO write offset registers for transform feedback on gen7. */
1136#define I915_EXEC_GEN7_SOL_RESET	(1<<8)
1137
1138/** Request a privileged ("secure") batch buffer. Note only available for
1139 * DRM_ROOT_ONLY | DRM_MASTER processes.
1140 */
1141#define I915_EXEC_SECURE		(1<<9)
1142
1143/** Inform the kernel that the batch is and will always be pinned. This
1144 * negates the requirement for a workaround to be performed to avoid
1145 * an incoherent CS (such as can be found on 830/845). If this flag is
1146 * not passed, the kernel will endeavour to make sure the batch is
1147 * coherent with the CS before execution. If this flag is passed,
1148 * userspace assumes the responsibility for ensuring the same.
1149 */
1150#define I915_EXEC_IS_PINNED		(1<<10)
1151
1152/** Provide a hint to the kernel that the command stream and auxiliary
1153 * state buffers already holds the correct presumed addresses and so the
1154 * relocation process may be skipped if no buffers need to be moved in
1155 * preparation for the execbuffer.
1156 */
1157#define I915_EXEC_NO_RELOC		(1<<11)
1158
1159/** Use the reloc.handle as an index into the exec object array rather
1160 * than as the per-file handle.
1161 */
1162#define I915_EXEC_HANDLE_LUT		(1<<12)
1163
1164/** Used for switching BSD rings on the platforms with two BSD rings */
1165#define I915_EXEC_BSD_SHIFT	 (13)
1166#define I915_EXEC_BSD_MASK	 (3 << I915_EXEC_BSD_SHIFT)
1167/* default ping-pong mode */
1168#define I915_EXEC_BSD_DEFAULT	 (0 << I915_EXEC_BSD_SHIFT)
1169#define I915_EXEC_BSD_RING1	 (1 << I915_EXEC_BSD_SHIFT)
1170#define I915_EXEC_BSD_RING2	 (2 << I915_EXEC_BSD_SHIFT)
1171
1172/** Tell the kernel that the batchbuffer is processed by
1173 *  the resource streamer.
1174 */
1175#define I915_EXEC_RESOURCE_STREAMER     (1<<15)
1176
1177/* Setting I915_EXEC_FENCE_IN implies that lower_32_bits(rsvd2) represent
1178 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1179 * the batch.
1180 *
1181 * Returns -EINVAL if the sync_file fd cannot be found.
1182 */
1183#define I915_EXEC_FENCE_IN		(1<<16)
1184
1185/* Setting I915_EXEC_FENCE_OUT causes the ioctl to return a sync_file fd
1186 * in the upper_32_bits(rsvd2) upon success. Ownership of the fd is given
1187 * to the caller, and it should be close() after use. (The fd is a regular
1188 * file descriptor and will be cleaned up on process termination. It holds
1189 * a reference to the request, but nothing else.)
1190 *
1191 * The sync_file fd can be combined with other sync_file and passed either
1192 * to execbuf using I915_EXEC_FENCE_IN, to atomic KMS ioctls (so that a flip
1193 * will only occur after this request completes), or to other devices.
1194 *
1195 * Using I915_EXEC_FENCE_OUT requires use of
1196 * DRM_IOCTL_I915_GEM_EXECBUFFER2_WR ioctl so that the result is written
1197 * back to userspace. Failure to do so will cause the out-fence to always
1198 * be reported as zero, and the real fence fd to be leaked.
1199 */
1200#define I915_EXEC_FENCE_OUT		(1<<17)
1201
1202/*
1203 * Traditionally the execbuf ioctl has only considered the final element in
1204 * the execobject[] to be the executable batch. Often though, the client
1205 * will known the batch object prior to construction and being able to place
1206 * it into the execobject[] array first can simplify the relocation tracking.
1207 * Setting I915_EXEC_BATCH_FIRST tells execbuf to use element 0 of the
1208 * execobject[] as the * batch instead (the default is to use the last
1209 * element).
1210 */
1211#define I915_EXEC_BATCH_FIRST		(1<<18)
1212
1213/* Setting I915_FENCE_ARRAY implies that num_cliprects and cliprects_ptr
1214 * define an array of i915_gem_exec_fence structures which specify a set of
1215 * dma fences to wait upon or signal.
1216 */
1217#define I915_EXEC_FENCE_ARRAY   (1<<19)
1218
1219/*
1220 * Setting I915_EXEC_FENCE_SUBMIT implies that lower_32_bits(rsvd2) represent
1221 * a sync_file fd to wait upon (in a nonblocking manner) prior to executing
1222 * the batch.
1223 *
1224 * Returns -EINVAL if the sync_file fd cannot be found.
1225 */
1226#define I915_EXEC_FENCE_SUBMIT		(1 << 20)
1227
1228/*
1229 * Setting I915_EXEC_USE_EXTENSIONS implies that
1230 * drm_i915_gem_execbuffer2.cliprects_ptr is treated as a pointer to an linked
1231 * list of i915_user_extension. Each i915_user_extension node is the base of a
1232 * larger structure. The list of supported structures are listed in the
1233 * drm_i915_gem_execbuffer_ext enum.
1234 */
1235#define I915_EXEC_USE_EXTENSIONS	(1 << 21)
1236
1237#define __I915_EXEC_UNKNOWN_FLAGS (-(I915_EXEC_USE_EXTENSIONS << 1))
1238
1239#define I915_EXEC_CONTEXT_ID_MASK	(0xffffffff)
1240#define i915_execbuffer2_set_context_id(eb2, context) \
1241	(eb2).rsvd1 = context & I915_EXEC_CONTEXT_ID_MASK
1242#define i915_execbuffer2_get_context_id(eb2) \
1243	((eb2).rsvd1 & I915_EXEC_CONTEXT_ID_MASK)
1244
1245struct drm_i915_gem_pin {
1246	/** Handle of the buffer to be pinned. */
1247	__u32 handle;
1248	__u32 pad;
1249
1250	/** alignment required within the aperture */
1251	__u64 alignment;
1252
1253	/** Returned GTT offset of the buffer. */
1254	__u64 offset;
1255};
1256
1257struct drm_i915_gem_unpin {
1258	/** Handle of the buffer to be unpinned. */
1259	__u32 handle;
1260	__u32 pad;
1261};
1262
1263struct drm_i915_gem_busy {
1264	/** Handle of the buffer to check for busy */
1265	__u32 handle;
1266
1267	/** Return busy status
1268	 *
1269	 * A return of 0 implies that the object is idle (after
1270	 * having flushed any pending activity), and a non-zero return that
1271	 * the object is still in-flight on the GPU. (The GPU has not yet
1272	 * signaled completion for all pending requests that reference the
1273	 * object.) An object is guaranteed to become idle eventually (so
1274	 * long as no new GPU commands are executed upon it). Due to the
1275	 * asynchronous nature of the hardware, an object reported
1276	 * as busy may become idle before the ioctl is completed.
1277	 *
1278	 * Furthermore, if the object is busy, which engine is busy is only
1279	 * provided as a guide and only indirectly by reporting its class
1280	 * (there may be more than one engine in each class). There are race
1281	 * conditions which prevent the report of which engines are busy from
1282	 * being always accurate.  However, the converse is not true. If the
1283	 * object is idle, the result of the ioctl, that all engines are idle,
1284	 * is accurate.
1285	 *
1286	 * The returned dword is split into two fields to indicate both
1287	 * the engine classess on which the object is being read, and the
1288	 * engine class on which it is currently being written (if any).
1289	 *
1290	 * The low word (bits 0:15) indicate if the object is being written
1291	 * to by any engine (there can only be one, as the GEM implicit
1292	 * synchronisation rules force writes to be serialised). Only the
1293	 * engine class (offset by 1, I915_ENGINE_CLASS_RENDER is reported as
1294	 * 1 not 0 etc) for the last write is reported.
1295	 *
1296	 * The high word (bits 16:31) are a bitmask of which engines classes
1297	 * are currently reading from the object. Multiple engines may be
1298	 * reading from the object simultaneously.
1299	 *
1300	 * The value of each engine class is the same as specified in the
1301	 * I915_CONTEXT_SET_ENGINES parameter and via perf, i.e.
1302	 * I915_ENGINE_CLASS_RENDER, I915_ENGINE_CLASS_COPY, etc.
1303	 * reported as active itself. Some hardware may have parallel
1304	 * execution engines, e.g. multiple media engines, which are
1305	 * mapped to the same class identifier and so are not separately
1306	 * reported for busyness.
1307	 *
1308	 * Caveat emptor:
1309	 * Only the boolean result of this query is reliable; that is whether
1310	 * the object is idle or busy. The report of which engines are busy
1311	 * should be only used as a heuristic.
1312	 */
1313	__u32 busy;
1314};
1315
1316/**
1317 * I915_CACHING_NONE
1318 *
1319 * GPU access is not coherent with cpu caches. Default for machines without an
1320 * LLC.
1321 */
1322#define I915_CACHING_NONE		0
1323/**
1324 * I915_CACHING_CACHED
1325 *
1326 * GPU access is coherent with cpu caches and furthermore the data is cached in
1327 * last-level caches shared between cpu cores and the gpu GT. Default on
1328 * machines with HAS_LLC.
1329 */
1330#define I915_CACHING_CACHED		1
1331/**
1332 * I915_CACHING_DISPLAY
1333 *
1334 * Special GPU caching mode which is coherent with the scanout engines.
1335 * Transparently falls back to I915_CACHING_NONE on platforms where no special
1336 * cache mode (like write-through or gfdt flushing) is available. The kernel
1337 * automatically sets this mode when using a buffer as a scanout target.
1338 * Userspace can manually set this mode to avoid a costly stall and clflush in
1339 * the hotpath of drawing the first frame.
1340 */
1341#define I915_CACHING_DISPLAY		2
1342
1343struct drm_i915_gem_caching {
1344	/**
1345	 * Handle of the buffer to set/get the caching level of. */
1346	__u32 handle;
1347
1348	/**
1349	 * Cacheing level to apply or return value
1350	 *
1351	 * bits0-15 are for generic caching control (i.e. the above defined
1352	 * values). bits16-31 are reserved for platform-specific variations
1353	 * (e.g. l3$ caching on gen7). */
1354	__u32 caching;
1355};
1356
1357#define I915_TILING_NONE	0
1358#define I915_TILING_X		1
1359#define I915_TILING_Y		2
1360#define I915_TILING_LAST	I915_TILING_Y
1361
1362#define I915_BIT_6_SWIZZLE_NONE		0
1363#define I915_BIT_6_SWIZZLE_9		1
1364#define I915_BIT_6_SWIZZLE_9_10		2
1365#define I915_BIT_6_SWIZZLE_9_11		3
1366#define I915_BIT_6_SWIZZLE_9_10_11	4
1367/* Not seen by userland */
1368#define I915_BIT_6_SWIZZLE_UNKNOWN	5
1369/* Seen by userland. */
1370#define I915_BIT_6_SWIZZLE_9_17		6
1371#define I915_BIT_6_SWIZZLE_9_10_17	7
1372
1373struct drm_i915_gem_set_tiling {
1374	/** Handle of the buffer to have its tiling state updated */
1375	__u32 handle;
1376
1377	/**
1378	 * Tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1379	 * I915_TILING_Y).
1380	 *
1381	 * This value is to be set on request, and will be updated by the
1382	 * kernel on successful return with the actual chosen tiling layout.
1383	 *
1384	 * The tiling mode may be demoted to I915_TILING_NONE when the system
1385	 * has bit 6 swizzling that can't be managed correctly by GEM.
1386	 *
1387	 * Buffer contents become undefined when changing tiling_mode.
1388	 */
1389	__u32 tiling_mode;
1390
1391	/**
1392	 * Stride in bytes for the object when in I915_TILING_X or
1393	 * I915_TILING_Y.
1394	 */
1395	__u32 stride;
1396
1397	/**
1398	 * Returned address bit 6 swizzling required for CPU access through
1399	 * mmap mapping.
1400	 */
1401	__u32 swizzle_mode;
1402};
1403
1404struct drm_i915_gem_get_tiling {
1405	/** Handle of the buffer to get tiling state for. */
1406	__u32 handle;
1407
1408	/**
1409	 * Current tiling mode for the object (I915_TILING_NONE, I915_TILING_X,
1410	 * I915_TILING_Y).
1411	 */
1412	__u32 tiling_mode;
1413
1414	/**
1415	 * Returned address bit 6 swizzling required for CPU access through
1416	 * mmap mapping.
1417	 */
1418	__u32 swizzle_mode;
1419
1420	/**
1421	 * Returned address bit 6 swizzling required for CPU access through
1422	 * mmap mapping whilst bound.
1423	 */
1424	__u32 phys_swizzle_mode;
1425};
1426
1427struct drm_i915_gem_get_aperture {
1428	/** Total size of the aperture used by i915_gem_execbuffer, in bytes */
1429	__u64 aper_size;
1430
1431	/**
1432	 * Available space in the aperture used by i915_gem_execbuffer, in
1433	 * bytes
1434	 */
1435	__u64 aper_available_size;
1436};
1437
1438struct drm_i915_get_pipe_from_crtc_id {
1439	/** ID of CRTC being requested **/
1440	__u32 crtc_id;
1441
1442	/** pipe of requested CRTC **/
1443	__u32 pipe;
1444};
1445
1446#define I915_MADV_WILLNEED 0
1447#define I915_MADV_DONTNEED 1
1448#define __I915_MADV_PURGED 2 /* internal state */
1449
1450struct drm_i915_gem_madvise {
1451	/** Handle of the buffer to change the backing store advice */
1452	__u32 handle;
1453
1454	/* Advice: either the buffer will be needed again in the near future,
1455	 *         or wont be and could be discarded under memory pressure.
1456	 */
1457	__u32 madv;
1458
1459	/** Whether the backing store still exists. */
1460	__u32 retained;
1461};
1462
1463/* flags */
1464#define I915_OVERLAY_TYPE_MASK 		0xff
1465#define I915_OVERLAY_YUV_PLANAR 	0x01
1466#define I915_OVERLAY_YUV_PACKED 	0x02
1467#define I915_OVERLAY_RGB		0x03
1468
1469#define I915_OVERLAY_DEPTH_MASK		0xff00
1470#define I915_OVERLAY_RGB24		0x1000
1471#define I915_OVERLAY_RGB16		0x2000
1472#define I915_OVERLAY_RGB15		0x3000
1473#define I915_OVERLAY_YUV422		0x0100
1474#define I915_OVERLAY_YUV411		0x0200
1475#define I915_OVERLAY_YUV420		0x0300
1476#define I915_OVERLAY_YUV410		0x0400
1477
1478#define I915_OVERLAY_SWAP_MASK		0xff0000
1479#define I915_OVERLAY_NO_SWAP		0x000000
1480#define I915_OVERLAY_UV_SWAP		0x010000
1481#define I915_OVERLAY_Y_SWAP		0x020000
1482#define I915_OVERLAY_Y_AND_UV_SWAP	0x030000
1483
1484#define I915_OVERLAY_FLAGS_MASK		0xff000000
1485#define I915_OVERLAY_ENABLE		0x01000000
1486
1487struct drm_intel_overlay_put_image {
1488	/* various flags and src format description */
1489	__u32 flags;
1490	/* source picture description */
1491	__u32 bo_handle;
1492	/* stride values and offsets are in bytes, buffer relative */
1493	__u16 stride_Y; /* stride for packed formats */
1494	__u16 stride_UV;
1495	__u32 offset_Y; /* offset for packet formats */
1496	__u32 offset_U;
1497	__u32 offset_V;
1498	/* in pixels */
1499	__u16 src_width;
1500	__u16 src_height;
1501	/* to compensate the scaling factors for partially covered surfaces */
1502	__u16 src_scan_width;
1503	__u16 src_scan_height;
1504	/* output crtc description */
1505	__u32 crtc_id;
1506	__u16 dst_x;
1507	__u16 dst_y;
1508	__u16 dst_width;
1509	__u16 dst_height;
1510};
1511
1512/* flags */
1513#define I915_OVERLAY_UPDATE_ATTRS	(1<<0)
1514#define I915_OVERLAY_UPDATE_GAMMA	(1<<1)
1515#define I915_OVERLAY_DISABLE_DEST_COLORKEY	(1<<2)
1516struct drm_intel_overlay_attrs {
1517	__u32 flags;
1518	__u32 color_key;
1519	__s32 brightness;
1520	__u32 contrast;
1521	__u32 saturation;
1522	__u32 gamma0;
1523	__u32 gamma1;
1524	__u32 gamma2;
1525	__u32 gamma3;
1526	__u32 gamma4;
1527	__u32 gamma5;
1528};
1529
1530/*
1531 * Intel sprite handling
1532 *
1533 * Color keying works with a min/mask/max tuple.  Both source and destination
1534 * color keying is allowed.
1535 *
1536 * Source keying:
1537 * Sprite pixels within the min & max values, masked against the color channels
1538 * specified in the mask field, will be transparent.  All other pixels will
1539 * be displayed on top of the primary plane.  For RGB surfaces, only the min
1540 * and mask fields will be used; ranged compares are not allowed.
1541 *
1542 * Destination keying:
1543 * Primary plane pixels that match the min value, masked against the color
1544 * channels specified in the mask field, will be replaced by corresponding
1545 * pixels from the sprite plane.
1546 *
1547 * Note that source & destination keying are exclusive; only one can be
1548 * active on a given plane.
1549 */
1550
1551#define I915_SET_COLORKEY_NONE		(1<<0) /* Deprecated. Instead set
1552						* flags==0 to disable colorkeying.
1553						*/
1554#define I915_SET_COLORKEY_DESTINATION	(1<<1)
1555#define I915_SET_COLORKEY_SOURCE	(1<<2)
1556struct drm_intel_sprite_colorkey {
1557	__u32 plane_id;
1558	__u32 min_value;
1559	__u32 channel_mask;
1560	__u32 max_value;
1561	__u32 flags;
1562};
1563
1564struct drm_i915_gem_wait {
1565	/** Handle of BO we shall wait on */
1566	__u32 bo_handle;
1567	__u32 flags;
1568	/** Number of nanoseconds to wait, Returns time remaining. */
1569	__s64 timeout_ns;
1570};
1571
1572struct drm_i915_gem_context_create {
1573	__u32 ctx_id; /* output: id of new context*/
1574	__u32 pad;
1575};
1576
1577struct drm_i915_gem_context_create_ext {
1578	__u32 ctx_id; /* output: id of new context*/
1579	__u32 flags;
1580#define I915_CONTEXT_CREATE_FLAGS_USE_EXTENSIONS	(1u << 0)
1581#define I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE	(1u << 1)
1582#define I915_CONTEXT_CREATE_FLAGS_UNKNOWN \
1583	(-(I915_CONTEXT_CREATE_FLAGS_SINGLE_TIMELINE << 1))
1584	__u64 extensions;
1585};
1586
1587struct drm_i915_gem_context_param {
1588	__u32 ctx_id;
1589	__u32 size;
1590	__u64 param;
1591#define I915_CONTEXT_PARAM_BAN_PERIOD	0x1
1592#define I915_CONTEXT_PARAM_NO_ZEROMAP	0x2
1593#define I915_CONTEXT_PARAM_GTT_SIZE	0x3
1594#define I915_CONTEXT_PARAM_NO_ERROR_CAPTURE	0x4
1595#define I915_CONTEXT_PARAM_BANNABLE	0x5
1596#define I915_CONTEXT_PARAM_PRIORITY	0x6
1597#define   I915_CONTEXT_MAX_USER_PRIORITY	1023 /* inclusive */
1598#define   I915_CONTEXT_DEFAULT_PRIORITY		0
1599#define   I915_CONTEXT_MIN_USER_PRIORITY	-1023 /* inclusive */
1600	/*
1601	 * When using the following param, value should be a pointer to
1602	 * drm_i915_gem_context_param_sseu.
1603	 */
1604#define I915_CONTEXT_PARAM_SSEU		0x7
1605
1606/*
1607 * Not all clients may want to attempt automatic recover of a context after
1608 * a hang (for example, some clients may only submit very small incremental
1609 * batches relying on known logical state of previous batches which will never
1610 * recover correctly and each attempt will hang), and so would prefer that
1611 * the context is forever banned instead.
1612 *
1613 * If set to false (0), after a reset, subsequent (and in flight) rendering
1614 * from this context is discarded, and the client will need to create a new
1615 * context to use instead.
1616 *
1617 * If set to true (1), the kernel will automatically attempt to recover the
1618 * context by skipping the hanging batch and executing the next batch starting
1619 * from the default context state (discarding the incomplete logical context
1620 * state lost due to the reset).
1621 *
1622 * On creation, all new contexts are marked as recoverable.
1623 */
1624#define I915_CONTEXT_PARAM_RECOVERABLE	0x8
1625
1626	/*
1627	 * The id of the associated virtual memory address space (ppGTT) of
1628	 * this context. Can be retrieved and passed to another context
1629	 * (on the same fd) for both to use the same ppGTT and so share
1630	 * address layouts, and avoid reloading the page tables on context
1631	 * switches between themselves.
1632	 *
1633	 * See DRM_I915_GEM_VM_CREATE and DRM_I915_GEM_VM_DESTROY.
1634	 */
1635#define I915_CONTEXT_PARAM_VM		0x9
1636
1637/*
1638 * I915_CONTEXT_PARAM_ENGINES:
1639 *
1640 * Bind this context to operate on this subset of available engines. Henceforth,
1641 * the I915_EXEC_RING selector for DRM_IOCTL_I915_GEM_EXECBUFFER2 operates as
1642 * an index into this array of engines; I915_EXEC_DEFAULT selecting engine[0]
1643 * and upwards. Slots 0...N are filled in using the specified (class, instance).
1644 * Use
1645 *	engine_class: I915_ENGINE_CLASS_INVALID,
1646 *	engine_instance: I915_ENGINE_CLASS_INVALID_NONE
1647 * to specify a gap in the array that can be filled in later, e.g. by a
1648 * virtual engine used for load balancing.
1649 *
1650 * Setting the number of engines bound to the context to 0, by passing a zero
1651 * sized argument, will revert back to default settings.
1652 *
1653 * See struct i915_context_param_engines.
1654 *
1655 * Extensions:
1656 *   i915_context_engines_load_balance (I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE)
1657 *   i915_context_engines_bond (I915_CONTEXT_ENGINES_EXT_BOND)
1658 */
1659#define I915_CONTEXT_PARAM_ENGINES	0xa
1660
1661/*
1662 * I915_CONTEXT_PARAM_PERSISTENCE:
1663 *
1664 * Allow the context and active rendering to survive the process until
1665 * completion. Persistence allows fire-and-forget clients to queue up a
1666 * bunch of work, hand the output over to a display server and then quit.
1667 * If the context is marked as not persistent, upon closing (either via
1668 * an explicit DRM_I915_GEM_CONTEXT_DESTROY or implicitly from file closure
1669 * or process termination), the context and any outstanding requests will be
1670 * cancelled (and exported fences for cancelled requests marked as -EIO).
1671 *
1672 * By default, new contexts allow persistence.
1673 */
1674#define I915_CONTEXT_PARAM_PERSISTENCE	0xb
1675
1676/*
1677 * I915_CONTEXT_PARAM_RINGSIZE:
1678 *
1679 * Sets the size of the CS ringbuffer to use for logical ring contexts. This
1680 * applies a limit of how many batches can be queued to HW before the caller
1681 * is blocked due to lack of space for more commands.
1682 *
1683 * Only reliably possible to be set prior to first use, i.e. during
1684 * construction. At any later point, the current execution must be flushed as
1685 * the ring can only be changed while the context is idle. Note, the ringsize
1686 * can be specified as a constructor property, see
1687 * I915_CONTEXT_CREATE_EXT_SETPARAM, but can also be set later if required.
1688 *
1689 * Only applies to the current set of engine and lost when those engines
1690 * are replaced by a new mapping (see I915_CONTEXT_PARAM_ENGINES).
1691 *
1692 * Must be between 4 - 512 KiB, in intervals of page size [4 KiB].
1693 * Default is 16 KiB.
1694 */
1695#define I915_CONTEXT_PARAM_RINGSIZE	0xc
1696/* Must be kept compact -- no holes and well documented */
1697
1698	__u64 value;
1699};
1700
1701/**
1702 * Context SSEU programming
1703 *
1704 * It may be necessary for either functional or performance reason to configure
1705 * a context to run with a reduced number of SSEU (where SSEU stands for Slice/
1706 * Sub-slice/EU).
1707 *
1708 * This is done by configuring SSEU configuration using the below
1709 * @struct drm_i915_gem_context_param_sseu for every supported engine which
1710 * userspace intends to use.
1711 *
1712 * Not all GPUs or engines support this functionality in which case an error
1713 * code -ENODEV will be returned.
1714 *
1715 * Also, flexibility of possible SSEU configuration permutations varies between
1716 * GPU generations and software imposed limitations. Requesting such a
1717 * combination will return an error code of -EINVAL.
1718 *
1719 * NOTE: When perf/OA is active the context's SSEU configuration is ignored in
1720 * favour of a single global setting.
1721 */
1722struct drm_i915_gem_context_param_sseu {
1723	/*
1724	 * Engine class & instance to be configured or queried.
1725	 */
1726	struct i915_engine_class_instance engine;
1727
1728	/*
1729	 * Unknown flags must be cleared to zero.
1730	 */
1731	__u32 flags;
1732#define I915_CONTEXT_SSEU_FLAG_ENGINE_INDEX (1u << 0)
1733
1734	/*
1735	 * Mask of slices to enable for the context. Valid values are a subset
1736	 * of the bitmask value returned for I915_PARAM_SLICE_MASK.
1737	 */
1738	__u64 slice_mask;
1739
1740	/*
1741	 * Mask of subslices to enable for the context. Valid values are a
1742	 * subset of the bitmask value return by I915_PARAM_SUBSLICE_MASK.
1743	 */
1744	__u64 subslice_mask;
1745
1746	/*
1747	 * Minimum/Maximum number of EUs to enable per subslice for the
1748	 * context. min_eus_per_subslice must be inferior or equal to
1749	 * max_eus_per_subslice.
1750	 */
1751	__u16 min_eus_per_subslice;
1752	__u16 max_eus_per_subslice;
1753
1754	/*
1755	 * Unused for now. Must be cleared to zero.
1756	 */
1757	__u32 rsvd;
1758};
1759
1760/*
1761 * i915_context_engines_load_balance:
1762 *
1763 * Enable load balancing across this set of engines.
1764 *
1765 * Into the I915_EXEC_DEFAULT slot [0], a virtual engine is created that when
1766 * used will proxy the execbuffer request onto one of the set of engines
1767 * in such a way as to distribute the load evenly across the set.
1768 *
1769 * The set of engines must be compatible (e.g. the same HW class) as they
1770 * will share the same logical GPU context and ring.
1771 *
1772 * To intermix rendering with the virtual engine and direct rendering onto
1773 * the backing engines (bypassing the load balancing proxy), the context must
1774 * be defined to use a single timeline for all engines.
1775 */
1776struct i915_context_engines_load_balance {
1777	struct i915_user_extension base;
1778
1779	__u16 engine_index;
1780	__u16 num_siblings;
1781	__u32 flags; /* all undefined flags must be zero */
1782
1783	__u64 mbz64; /* reserved for future use; must be zero */
1784
1785	struct i915_engine_class_instance engines[0];
1786} __attribute__((packed));
1787
1788#define I915_DEFINE_CONTEXT_ENGINES_LOAD_BALANCE(name__, N__) struct { \
1789	struct i915_user_extension base; \
1790	__u16 engine_index; \
1791	__u16 num_siblings; \
1792	__u32 flags; \
1793	__u64 mbz64; \
1794	struct i915_engine_class_instance engines[N__]; \
1795} __attribute__((packed)) name__
1796
1797/*
1798 * i915_context_engines_bond:
1799 *
1800 * Constructed bonded pairs for execution within a virtual engine.
1801 *
1802 * All engines are equal, but some are more equal than others. Given
1803 * the distribution of resources in the HW, it may be preferable to run
1804 * a request on a given subset of engines in parallel to a request on a
1805 * specific engine. We enable this selection of engines within a virtual
1806 * engine by specifying bonding pairs, for any given master engine we will
1807 * only execute on one of the corresponding siblings within the virtual engine.
1808 *
1809 * To execute a request in parallel on the master engine and a sibling requires
1810 * coordination with a I915_EXEC_FENCE_SUBMIT.
1811 */
1812struct i915_context_engines_bond {
1813	struct i915_user_extension base;
1814
1815	struct i915_engine_class_instance master;
1816
1817	__u16 virtual_index; /* index of virtual engine in ctx->engines[] */
1818	__u16 num_bonds;
1819
1820	__u64 flags; /* all undefined flags must be zero */
1821	__u64 mbz64[4]; /* reserved for future use; must be zero */
1822
1823	struct i915_engine_class_instance engines[0];
1824} __attribute__((packed));
1825
1826#define I915_DEFINE_CONTEXT_ENGINES_BOND(name__, N__) struct { \
1827	struct i915_user_extension base; \
1828	struct i915_engine_class_instance master; \
1829	__u16 virtual_index; \
1830	__u16 num_bonds; \
1831	__u64 flags; \
1832	__u64 mbz64[4]; \
1833	struct i915_engine_class_instance engines[N__]; \
1834} __attribute__((packed)) name__
1835
1836struct i915_context_param_engines {
1837	__u64 extensions; /* linked chain of extension blocks, 0 terminates */
1838#define I915_CONTEXT_ENGINES_EXT_LOAD_BALANCE 0 /* see i915_context_engines_load_balance */
1839#define I915_CONTEXT_ENGINES_EXT_BOND 1 /* see i915_context_engines_bond */
1840	struct i915_engine_class_instance engines[0];
1841} __attribute__((packed));
1842
1843#define I915_DEFINE_CONTEXT_PARAM_ENGINES(name__, N__) struct { \
1844	__u64 extensions; \
1845	struct i915_engine_class_instance engines[N__]; \
1846} __attribute__((packed)) name__
1847
1848struct drm_i915_gem_context_create_ext_setparam {
1849#define I915_CONTEXT_CREATE_EXT_SETPARAM 0
1850	struct i915_user_extension base;
1851	struct drm_i915_gem_context_param param;
1852};
1853
1854struct drm_i915_gem_context_create_ext_clone {
1855#define I915_CONTEXT_CREATE_EXT_CLONE 1
1856	struct i915_user_extension base;
1857	__u32 clone_id;
1858	__u32 flags;
1859#define I915_CONTEXT_CLONE_ENGINES	(1u << 0)
1860#define I915_CONTEXT_CLONE_FLAGS	(1u << 1)
1861#define I915_CONTEXT_CLONE_SCHEDATTR	(1u << 2)
1862#define I915_CONTEXT_CLONE_SSEU		(1u << 3)
1863#define I915_CONTEXT_CLONE_TIMELINE	(1u << 4)
1864#define I915_CONTEXT_CLONE_VM		(1u << 5)
1865#define I915_CONTEXT_CLONE_UNKNOWN -(I915_CONTEXT_CLONE_VM << 1)
1866	__u64 rsvd;
1867};
1868
1869struct drm_i915_gem_context_destroy {
1870	__u32 ctx_id;
1871	__u32 pad;
1872};
1873
1874/*
1875 * DRM_I915_GEM_VM_CREATE -
1876 *
1877 * Create a new virtual memory address space (ppGTT) for use within a context
1878 * on the same file. Extensions can be provided to configure exactly how the
1879 * address space is setup upon creation.
1880 *
1881 * The id of new VM (bound to the fd) for use with I915_CONTEXT_PARAM_VM is
1882 * returned in the outparam @id.
1883 *
1884 * No flags are defined, with all bits reserved and must be zero.
1885 *
1886 * An extension chain maybe provided, starting with @extensions, and terminated
1887 * by the @next_extension being 0. Currently, no extensions are defined.
1888 *
1889 * DRM_I915_GEM_VM_DESTROY -
1890 *
1891 * Destroys a previously created VM id, specified in @id.
1892 *
1893 * No extensions or flags are allowed currently, and so must be zero.
1894 */
1895struct drm_i915_gem_vm_control {
1896	__u64 extensions;
1897	__u32 flags;
1898	__u32 vm_id;
1899};
1900
1901struct drm_i915_reg_read {
1902	/*
1903	 * Register offset.
1904	 * For 64bit wide registers where the upper 32bits don't immediately
1905	 * follow the lower 32bits, the offset of the lower 32bits must
1906	 * be specified
1907	 */
1908	__u64 offset;
1909#define I915_REG_READ_8B_WA (1ul << 0)
1910
1911	__u64 val; /* Return value */
1912};
1913
1914/* Known registers:
1915 *
1916 * Render engine timestamp - 0x2358 + 64bit - gen7+
1917 * - Note this register returns an invalid value if using the default
1918 *   single instruction 8byte read, in order to workaround that pass
1919 *   flag I915_REG_READ_8B_WA in offset field.
1920 *
1921 */
1922
1923struct drm_i915_reset_stats {
1924	__u32 ctx_id;
1925	__u32 flags;
1926
1927	/* All resets since boot/module reload, for all contexts */
1928	__u32 reset_count;
1929
1930	/* Number of batches lost when active in GPU, for this context */
1931	__u32 batch_active;
1932
1933	/* Number of batches lost pending for execution, for this context */
1934	__u32 batch_pending;
1935
1936	__u32 pad;
1937};
1938
1939struct drm_i915_gem_userptr {
1940	__u64 user_ptr;
1941	__u64 user_size;
1942	__u32 flags;
1943#define I915_USERPTR_READ_ONLY 0x1
1944#define I915_USERPTR_UNSYNCHRONIZED 0x80000000
1945	/**
1946	 * Returned handle for the object.
1947	 *
1948	 * Object handles are nonzero.
1949	 */
1950	__u32 handle;
1951};
1952
1953enum drm_i915_oa_format {
1954	I915_OA_FORMAT_A13 = 1,	    /* HSW only */
1955	I915_OA_FORMAT_A29,	    /* HSW only */
1956	I915_OA_FORMAT_A13_B8_C8,   /* HSW only */
1957	I915_OA_FORMAT_B4_C8,	    /* HSW only */
1958	I915_OA_FORMAT_A45_B8_C8,   /* HSW only */
1959	I915_OA_FORMAT_B4_C8_A16,   /* HSW only */
1960	I915_OA_FORMAT_C4_B8,	    /* HSW+ */
1961
1962	/* Gen8+ */
1963	I915_OA_FORMAT_A12,
1964	I915_OA_FORMAT_A12_B8_C8,
1965	I915_OA_FORMAT_A32u40_A4u32_B8_C8,
1966
1967	I915_OA_FORMAT_MAX	    /* non-ABI */
1968};
1969
1970enum drm_i915_perf_property_id {
1971	/**
1972	 * Open the stream for a specific context handle (as used with
1973	 * execbuffer2). A stream opened for a specific context this way
1974	 * won't typically require root privileges.
1975	 *
1976	 * This property is available in perf revision 1.
1977	 */
1978	DRM_I915_PERF_PROP_CTX_HANDLE = 1,
1979
1980	/**
1981	 * A value of 1 requests the inclusion of raw OA unit reports as
1982	 * part of stream samples.
1983	 *
1984	 * This property is available in perf revision 1.
1985	 */
1986	DRM_I915_PERF_PROP_SAMPLE_OA,
1987
1988	/**
1989	 * The value specifies which set of OA unit metrics should be
1990	 * configured, defining the contents of any OA unit reports.
1991	 *
1992	 * This property is available in perf revision 1.
1993	 */
1994	DRM_I915_PERF_PROP_OA_METRICS_SET,
1995
1996	/**
1997	 * The value specifies the size and layout of OA unit reports.
1998	 *
1999	 * This property is available in perf revision 1.
2000	 */
2001	DRM_I915_PERF_PROP_OA_FORMAT,
2002
2003	/**
2004	 * Specifying this property implicitly requests periodic OA unit
2005	 * sampling and (at least on Haswell) the sampling frequency is derived
2006	 * from this exponent as follows:
2007	 *
2008	 *   80ns * 2^(period_exponent + 1)
2009	 *
2010	 * This property is available in perf revision 1.
2011	 */
2012	DRM_I915_PERF_PROP_OA_EXPONENT,
2013
2014	/**
2015	 * Specifying this property is only valid when specify a context to
2016	 * filter with DRM_I915_PERF_PROP_CTX_HANDLE. Specifying this property
2017	 * will hold preemption of the particular context we want to gather
2018	 * performance data about. The execbuf2 submissions must include a
2019	 * drm_i915_gem_execbuffer_ext_perf parameter for this to apply.
2020	 *
2021	 * This property is available in perf revision 3.
2022	 */
2023	DRM_I915_PERF_PROP_HOLD_PREEMPTION,
2024
2025	/**
2026	 * Specifying this pins all contexts to the specified SSEU power
2027	 * configuration for the duration of the recording.
2028	 *
2029	 * This parameter's value is a pointer to a struct
2030	 * drm_i915_gem_context_param_sseu.
2031	 *
2032	 * This property is available in perf revision 4.
2033	 */
2034	DRM_I915_PERF_PROP_GLOBAL_SSEU,
2035
2036	/**
2037	 * This optional parameter specifies the timer interval in nanoseconds
2038	 * at which the i915 driver will check the OA buffer for available data.
2039	 * Minimum allowed value is 100 microseconds. A default value is used by
2040	 * the driver if this parameter is not specified. Note that larger timer
2041	 * values will reduce cpu consumption during OA perf captures. However,
2042	 * excessively large values would potentially result in OA buffer
2043	 * overwrites as captures reach end of the OA buffer.
2044	 *
2045	 * This property is available in perf revision 5.
2046	 */
2047	DRM_I915_PERF_PROP_POLL_OA_PERIOD,
2048
2049	DRM_I915_PERF_PROP_MAX /* non-ABI */
2050};
2051
2052struct drm_i915_perf_open_param {
2053	__u32 flags;
2054#define I915_PERF_FLAG_FD_CLOEXEC	(1<<0)
2055#define I915_PERF_FLAG_FD_NONBLOCK	(1<<1)
2056#define I915_PERF_FLAG_DISABLED		(1<<2)
2057
2058	/** The number of u64 (id, value) pairs */
2059	__u32 num_properties;
2060
2061	/**
2062	 * Pointer to array of u64 (id, value) pairs configuring the stream
2063	 * to open.
2064	 */
2065	__u64 properties_ptr;
2066};
2067
2068/**
2069 * Enable data capture for a stream that was either opened in a disabled state
2070 * via I915_PERF_FLAG_DISABLED or was later disabled via
2071 * I915_PERF_IOCTL_DISABLE.
2072 *
2073 * It is intended to be cheaper to disable and enable a stream than it may be
2074 * to close and re-open a stream with the same configuration.
2075 *
2076 * It's undefined whether any pending data for the stream will be lost.
2077 *
2078 * This ioctl is available in perf revision 1.
2079 */
2080#define I915_PERF_IOCTL_ENABLE	_IO('i', 0x0)
2081
2082/**
2083 * Disable data capture for a stream.
2084 *
2085 * It is an error to try and read a stream that is disabled.
2086 *
2087 * This ioctl is available in perf revision 1.
2088 */
2089#define I915_PERF_IOCTL_DISABLE	_IO('i', 0x1)
2090
2091/**
2092 * Change metrics_set captured by a stream.
2093 *
2094 * If the stream is bound to a specific context, the configuration change
2095 * will performed inline with that context such that it takes effect before
2096 * the next execbuf submission.
2097 *
2098 * Returns the previously bound metrics set id, or a negative error code.
2099 *
2100 * This ioctl is available in perf revision 2.
2101 */
2102#define I915_PERF_IOCTL_CONFIG	_IO('i', 0x2)
2103
2104/**
2105 * Common to all i915 perf records
2106 */
2107struct drm_i915_perf_record_header {
2108	__u32 type;
2109	__u16 pad;
2110	__u16 size;
2111};
2112
2113enum drm_i915_perf_record_type {
2114
2115	/**
2116	 * Samples are the work horse record type whose contents are extensible
2117	 * and defined when opening an i915 perf stream based on the given
2118	 * properties.
2119	 *
2120	 * Boolean properties following the naming convention
2121	 * DRM_I915_PERF_SAMPLE_xyz_PROP request the inclusion of 'xyz' data in
2122	 * every sample.
2123	 *
2124	 * The order of these sample properties given by userspace has no
2125	 * affect on the ordering of data within a sample. The order is
2126	 * documented here.
2127	 *
2128	 * struct {
2129	 *     struct drm_i915_perf_record_header header;
2130	 *
2131	 *     { u32 oa_report[]; } && DRM_I915_PERF_PROP_SAMPLE_OA
2132	 * };
2133	 */
2134	DRM_I915_PERF_RECORD_SAMPLE = 1,
2135
2136	/*
2137	 * Indicates that one or more OA reports were not written by the
2138	 * hardware. This can happen for example if an MI_REPORT_PERF_COUNT
2139	 * command collides with periodic sampling - which would be more likely
2140	 * at higher sampling frequencies.
2141	 */
2142	DRM_I915_PERF_RECORD_OA_REPORT_LOST = 2,
2143
2144	/**
2145	 * An error occurred that resulted in all pending OA reports being lost.
2146	 */
2147	DRM_I915_PERF_RECORD_OA_BUFFER_LOST = 3,
2148
2149	DRM_I915_PERF_RECORD_MAX /* non-ABI */
2150};
2151
2152/**
2153 * Structure to upload perf dynamic configuration into the kernel.
2154 */
2155struct drm_i915_perf_oa_config {
2156	/** String formatted like "%08x-%04x-%04x-%04x-%012x" */
2157	char uuid[36];
2158
2159	__u32 n_mux_regs;
2160	__u32 n_boolean_regs;
2161	__u32 n_flex_regs;
2162
2163	/*
2164	 * These fields are pointers to tuples of u32 values (register address,
2165	 * value). For example the expected length of the buffer pointed by
2166	 * mux_regs_ptr is (2 * sizeof(u32) * n_mux_regs).
2167	 */
2168	__u64 mux_regs_ptr;
2169	__u64 boolean_regs_ptr;
2170	__u64 flex_regs_ptr;
2171};
2172
2173struct drm_i915_query_item {
2174	__u64 query_id;
2175#define DRM_I915_QUERY_TOPOLOGY_INFO    1
2176#define DRM_I915_QUERY_ENGINE_INFO	2
2177#define DRM_I915_QUERY_PERF_CONFIG      3
2178/* Must be kept compact -- no holes and well documented */
2179
2180	/*
2181	 * When set to zero by userspace, this is filled with the size of the
2182	 * data to be written at the data_ptr pointer. The kernel sets this
2183	 * value to a negative value to signal an error on a particular query
2184	 * item.
2185	 */
2186	__s32 length;
2187
2188	/*
2189	 * When query_id == DRM_I915_QUERY_TOPOLOGY_INFO, must be 0.
2190	 *
2191	 * When query_id == DRM_I915_QUERY_PERF_CONFIG, must be one of the
2192	 * following :
2193	 *         - DRM_I915_QUERY_PERF_CONFIG_LIST
2194	 *         - DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID
2195	 *         - DRM_I915_QUERY_PERF_CONFIG_FOR_UUID
2196	 */
2197	__u32 flags;
2198#define DRM_I915_QUERY_PERF_CONFIG_LIST          1
2199#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID 2
2200#define DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID   3
2201
2202	/*
2203	 * Data will be written at the location pointed by data_ptr when the
2204	 * value of length matches the length of the data to be written by the
2205	 * kernel.
2206	 */
2207	__u64 data_ptr;
2208};
2209
2210struct drm_i915_query {
2211	__u32 num_items;
2212
2213	/*
2214	 * Unused for now. Must be cleared to zero.
2215	 */
2216	__u32 flags;
2217
2218	/*
2219	 * This points to an array of num_items drm_i915_query_item structures.
2220	 */
2221	__u64 items_ptr;
2222};
2223
2224/*
2225 * Data written by the kernel with query DRM_I915_QUERY_TOPOLOGY_INFO :
2226 *
2227 * data: contains the 3 pieces of information :
2228 *
2229 * - the slice mask with one bit per slice telling whether a slice is
2230 *   available. The availability of slice X can be queried with the following
2231 *   formula :
2232 *
2233 *           (data[X / 8] >> (X % 8)) & 1
2234 *
2235 * - the subslice mask for each slice with one bit per subslice telling
2236 *   whether a subslice is available. Gen12 has dual-subslices, which are
2237 *   similar to two gen11 subslices. For gen12, this array represents dual-
2238 *   subslices. The availability of subslice Y in slice X can be queried
2239 *   with the following formula :
2240 *
2241 *           (data[subslice_offset +
2242 *                 X * subslice_stride +
2243 *                 Y / 8] >> (Y % 8)) & 1
2244 *
2245 * - the EU mask for each subslice in each slice with one bit per EU telling
2246 *   whether an EU is available. The availability of EU Z in subslice Y in
2247 *   slice X can be queried with the following formula :
2248 *
2249 *           (data[eu_offset +
2250 *                 (X * max_subslices + Y) * eu_stride +
2251 *                 Z / 8] >> (Z % 8)) & 1
2252 */
2253struct drm_i915_query_topology_info {
2254	/*
2255	 * Unused for now. Must be cleared to zero.
2256	 */
2257	__u16 flags;
2258
2259	__u16 max_slices;
2260	__u16 max_subslices;
2261	__u16 max_eus_per_subslice;
2262
2263	/*
2264	 * Offset in data[] at which the subslice masks are stored.
2265	 */
2266	__u16 subslice_offset;
2267
2268	/*
2269	 * Stride at which each of the subslice masks for each slice are
2270	 * stored.
2271	 */
2272	__u16 subslice_stride;
2273
2274	/*
2275	 * Offset in data[] at which the EU masks are stored.
2276	 */
2277	__u16 eu_offset;
2278
2279	/*
2280	 * Stride at which each of the EU masks for each subslice are stored.
2281	 */
2282	__u16 eu_stride;
2283
2284	__u8 data[];
2285};
2286
2287/**
2288 * struct drm_i915_engine_info
2289 *
2290 * Describes one engine and it's capabilities as known to the driver.
2291 */
2292struct drm_i915_engine_info {
2293	/** Engine class and instance. */
2294	struct i915_engine_class_instance engine;
2295
2296	/** Reserved field. */
2297	__u32 rsvd0;
2298
2299	/** Engine flags. */
2300	__u64 flags;
2301
2302	/** Capabilities of this engine. */
2303	__u64 capabilities;
2304#define I915_VIDEO_CLASS_CAPABILITY_HEVC		(1 << 0)
2305#define I915_VIDEO_AND_ENHANCE_CLASS_CAPABILITY_SFC	(1 << 1)
2306
2307	/** Reserved fields. */
2308	__u64 rsvd1[4];
2309};
2310
2311/**
2312 * struct drm_i915_query_engine_info
2313 *
2314 * Engine info query enumerates all engines known to the driver by filling in
2315 * an array of struct drm_i915_engine_info structures.
2316 */
2317struct drm_i915_query_engine_info {
2318	/** Number of struct drm_i915_engine_info structs following. */
2319	__u32 num_engines;
2320
2321	/** MBZ */
2322	__u32 rsvd[3];
2323
2324	/** Marker for drm_i915_engine_info structures. */
2325	struct drm_i915_engine_info engines[];
2326};
2327
2328/*
2329 * Data written by the kernel with query DRM_I915_QUERY_PERF_CONFIG.
2330 */
2331struct drm_i915_query_perf_config {
2332	union {
2333		/*
2334		 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 sets
2335		 * this fields to the number of configurations available.
2336		 */
2337		__u64 n_configs;
2338
2339		/*
2340		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_ID,
2341		 * i915 will use the value in this field as configuration
2342		 * identifier to decide what data to write into config_ptr.
2343		 */
2344		__u64 config;
2345
2346		/*
2347		 * When query_id == DRM_I915_QUERY_PERF_CONFIG_DATA_FOR_UUID,
2348		 * i915 will use the value in this field as configuration
2349		 * identifier to decide what data to write into config_ptr.
2350		 *
2351		 * String formatted like "%08x-%04x-%04x-%04x-%012x"
2352		 */
2353		char uuid[36];
2354	};
2355
2356	/*
2357	 * Unused for now. Must be cleared to zero.
2358	 */
2359	__u32 flags;
2360
2361	/*
2362	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_LIST, i915 will
2363	 * write an array of __u64 of configuration identifiers.
2364	 *
2365	 * When query_item.flags == DRM_I915_QUERY_PERF_CONFIG_DATA, i915 will
2366	 * write a struct drm_i915_perf_oa_config. If the following fields of
2367	 * drm_i915_perf_oa_config are set not set to 0, i915 will write into
2368	 * the associated pointers the values of submitted when the
2369	 * configuration was created :
2370	 *
2371	 *         - n_mux_regs
2372	 *         - n_boolean_regs
2373	 *         - n_flex_regs
2374	 */
2375	__u8 data[];
2376};
2377
2378#if defined(__cplusplus)
2379}
2380#endif
2381
2382#endif /* _UAPI_I915_DRM_H_ */
2383