xref: /kernel/linux/linux-5.10/include/net/tls.h (revision 8c2ecf20)
1/*
2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved.
3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved.
4 *
5 * This software is available to you under a choice of one of two
6 * licenses.  You may choose to be licensed under the terms of the GNU
7 * General Public License (GPL) Version 2, available from the file
8 * COPYING in the main directory of this source tree, or the
9 * OpenIB.org BSD license below:
10 *
11 *     Redistribution and use in source and binary forms, with or
12 *     without modification, are permitted provided that the following
13 *     conditions are met:
14 *
15 *      - Redistributions of source code must retain the above
16 *        copyright notice, this list of conditions and the following
17 *        disclaimer.
18 *
19 *      - Redistributions in binary form must reproduce the above
20 *        copyright notice, this list of conditions and the following
21 *        disclaimer in the documentation and/or other materials
22 *        provided with the distribution.
23 *
24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
31 * SOFTWARE.
32 */
33
34#ifndef _TLS_OFFLOAD_H
35#define _TLS_OFFLOAD_H
36
37#include <linux/types.h>
38#include <asm/byteorder.h>
39#include <linux/crypto.h>
40#include <linux/socket.h>
41#include <linux/tcp.h>
42#include <linux/skmsg.h>
43#include <linux/mutex.h>
44#include <linux/netdevice.h>
45#include <linux/rcupdate.h>
46
47#include <net/net_namespace.h>
48#include <net/tcp.h>
49#include <net/strparser.h>
50#include <crypto/aead.h>
51#include <uapi/linux/tls.h>
52
53
54/* Maximum data size carried in a TLS record */
55#define TLS_MAX_PAYLOAD_SIZE		((size_t)1 << 14)
56
57#define TLS_HEADER_SIZE			5
58#define TLS_NONCE_OFFSET		TLS_HEADER_SIZE
59
60#define TLS_CRYPTO_INFO_READY(info)	((info)->cipher_type)
61
62#define TLS_RECORD_TYPE_DATA		0x17
63
64#define TLS_AAD_SPACE_SIZE		13
65
66#define MAX_IV_SIZE			16
67#define TLS_MAX_REC_SEQ_SIZE		8
68
69/* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes.
70 *
71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3]
72 *
73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'.
74 * Hence b0 contains (3 - 1) = 2.
75 */
76#define TLS_AES_CCM_IV_B0_BYTE		2
77
78#define __TLS_INC_STATS(net, field)				\
79	__SNMP_INC_STATS((net)->mib.tls_statistics, field)
80#define TLS_INC_STATS(net, field)				\
81	SNMP_INC_STATS((net)->mib.tls_statistics, field)
82#define __TLS_DEC_STATS(net, field)				\
83	__SNMP_DEC_STATS((net)->mib.tls_statistics, field)
84#define TLS_DEC_STATS(net, field)				\
85	SNMP_DEC_STATS((net)->mib.tls_statistics, field)
86
87enum {
88	TLS_BASE,
89	TLS_SW,
90	TLS_HW,
91	TLS_HW_RECORD,
92	TLS_NUM_CONFIG,
93};
94
95/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages
96 * allocated or mapped for each TLS record. After encryption, the records are
97 * stores in a linked list.
98 */
99struct tls_rec {
100	struct list_head list;
101	int tx_ready;
102	int tx_flags;
103
104	struct sk_msg msg_plaintext;
105	struct sk_msg msg_encrypted;
106
107	/* AAD | msg_plaintext.sg.data | sg_tag */
108	struct scatterlist sg_aead_in[2];
109	/* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */
110	struct scatterlist sg_aead_out[2];
111
112	char content_type;
113	struct scatterlist sg_content_type;
114
115	char aad_space[TLS_AAD_SPACE_SIZE];
116	u8 iv_data[MAX_IV_SIZE];
117	struct aead_request aead_req;
118	u8 aead_req_ctx[];
119};
120
121struct tls_msg {
122	struct strp_msg rxm;
123	u8 control;
124};
125
126struct tx_work {
127	struct delayed_work work;
128	struct sock *sk;
129};
130
131struct tls_sw_context_tx {
132	struct crypto_aead *aead_send;
133	struct crypto_wait async_wait;
134	struct tx_work tx_work;
135	struct tls_rec *open_rec;
136	struct list_head tx_list;
137	atomic_t encrypt_pending;
138	/* protect crypto_wait with encrypt_pending */
139	spinlock_t encrypt_compl_lock;
140	int async_notify;
141	u8 async_capable:1;
142
143#define BIT_TX_SCHEDULED	0
144#define BIT_TX_CLOSING		1
145	unsigned long tx_bitmask;
146};
147
148struct tls_sw_context_rx {
149	struct crypto_aead *aead_recv;
150	struct crypto_wait async_wait;
151	struct strparser strp;
152	struct sk_buff_head rx_list;	/* list of decrypted 'data' records */
153	void (*saved_data_ready)(struct sock *sk);
154
155	struct sk_buff *recv_pkt;
156	u8 control;
157	u8 async_capable:1;
158	u8 decrypted:1;
159	atomic_t decrypt_pending;
160	/* protect crypto_wait with decrypt_pending*/
161	spinlock_t decrypt_compl_lock;
162	bool async_notify;
163};
164
165struct tls_record_info {
166	struct list_head list;
167	u32 end_seq;
168	int len;
169	int num_frags;
170	skb_frag_t frags[MAX_SKB_FRAGS];
171};
172
173struct tls_offload_context_tx {
174	struct crypto_aead *aead_send;
175	spinlock_t lock;	/* protects records list */
176	struct list_head records_list;
177	struct tls_record_info *open_record;
178	struct tls_record_info *retransmit_hint;
179	u64 hint_record_sn;
180	u64 unacked_record_sn;
181
182	struct scatterlist sg_tx_data[MAX_SKB_FRAGS];
183	void (*sk_destruct)(struct sock *sk);
184	u8 driver_state[] __aligned(8);
185	/* The TLS layer reserves room for driver specific state
186	 * Currently the belief is that there is not enough
187	 * driver specific state to justify another layer of indirection
188	 */
189#define TLS_DRIVER_STATE_SIZE_TX	16
190};
191
192#define TLS_OFFLOAD_CONTEXT_SIZE_TX                                            \
193	(sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX)
194
195enum tls_context_flags {
196	/* tls_device_down was called after the netdev went down, device state
197	 * was released, and kTLS works in software, even though rx_conf is
198	 * still TLS_HW (needed for transition).
199	 */
200	TLS_RX_DEV_DEGRADED = 0,
201	/* Unlike RX where resync is driven entirely by the core in TX only
202	 * the driver knows when things went out of sync, so we need the flag
203	 * to be atomic.
204	 */
205	TLS_TX_SYNC_SCHED = 1,
206	/* tls_dev_del was called for the RX side, device state was released,
207	 * but tls_ctx->netdev might still be kept, because TX-side driver
208	 * resources might not be released yet. Used to prevent the second
209	 * tls_dev_del call in tls_device_down if it happens simultaneously.
210	 */
211	TLS_RX_DEV_CLOSED = 2,
212};
213
214struct cipher_context {
215	char *iv;
216	char *rec_seq;
217};
218
219union tls_crypto_context {
220	struct tls_crypto_info info;
221	union {
222		struct tls12_crypto_info_aes_gcm_128 aes_gcm_128;
223		struct tls12_crypto_info_aes_gcm_256 aes_gcm_256;
224	};
225};
226
227struct tls_prot_info {
228	u16 version;
229	u16 cipher_type;
230	u16 prepend_size;
231	u16 tag_size;
232	u16 overhead_size;
233	u16 iv_size;
234	u16 salt_size;
235	u16 rec_seq_size;
236	u16 aad_size;
237	u16 tail_size;
238};
239
240struct tls_context {
241	/* read-only cache line */
242	struct tls_prot_info prot_info;
243
244	u8 tx_conf:3;
245	u8 rx_conf:3;
246
247	int (*push_pending_record)(struct sock *sk, int flags);
248	void (*sk_write_space)(struct sock *sk);
249
250	void *priv_ctx_tx;
251	void *priv_ctx_rx;
252
253	struct net_device *netdev;
254
255	/* rw cache line */
256	struct cipher_context tx;
257	struct cipher_context rx;
258
259	struct scatterlist *partially_sent_record;
260	u16 partially_sent_offset;
261
262	bool in_tcp_sendpages;
263	bool pending_open_record_frags;
264
265	struct mutex tx_lock; /* protects partially_sent_* fields and
266			       * per-type TX fields
267			       */
268	unsigned long flags;
269
270	/* cache cold stuff */
271	struct proto *sk_proto;
272	struct sock *sk;
273
274	void (*sk_destruct)(struct sock *sk);
275
276	union tls_crypto_context crypto_send;
277	union tls_crypto_context crypto_recv;
278
279	struct list_head list;
280	refcount_t refcount;
281	struct rcu_head rcu;
282};
283
284enum tls_offload_ctx_dir {
285	TLS_OFFLOAD_CTX_DIR_RX,
286	TLS_OFFLOAD_CTX_DIR_TX,
287};
288
289struct tlsdev_ops {
290	int (*tls_dev_add)(struct net_device *netdev, struct sock *sk,
291			   enum tls_offload_ctx_dir direction,
292			   struct tls_crypto_info *crypto_info,
293			   u32 start_offload_tcp_sn);
294	void (*tls_dev_del)(struct net_device *netdev,
295			    struct tls_context *ctx,
296			    enum tls_offload_ctx_dir direction);
297	int (*tls_dev_resync)(struct net_device *netdev,
298			      struct sock *sk, u32 seq, u8 *rcd_sn,
299			      enum tls_offload_ctx_dir direction);
300};
301
302enum tls_offload_sync_type {
303	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0,
304	TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1,
305	TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2,
306};
307
308#define TLS_DEVICE_RESYNC_NH_START_IVAL		2
309#define TLS_DEVICE_RESYNC_NH_MAX_IVAL		128
310
311#define TLS_DEVICE_RESYNC_ASYNC_LOGMAX		13
312struct tls_offload_resync_async {
313	atomic64_t req;
314	u16 loglen;
315	u16 rcd_delta;
316	u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX];
317};
318
319struct tls_offload_context_rx {
320	/* sw must be the first member of tls_offload_context_rx */
321	struct tls_sw_context_rx sw;
322	enum tls_offload_sync_type resync_type;
323	/* this member is set regardless of resync_type, to avoid branches */
324	u8 resync_nh_reset:1;
325	/* CORE_NEXT_HINT-only member, but use the hole here */
326	u8 resync_nh_do_now:1;
327	union {
328		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */
329		struct {
330			atomic64_t resync_req;
331		};
332		/* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */
333		struct {
334			u32 decrypted_failed;
335			u32 decrypted_tgt;
336		} resync_nh;
337		/* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */
338		struct {
339			struct tls_offload_resync_async *resync_async;
340		};
341	};
342	u8 driver_state[] __aligned(8);
343	/* The TLS layer reserves room for driver specific state
344	 * Currently the belief is that there is not enough
345	 * driver specific state to justify another layer of indirection
346	 */
347#define TLS_DRIVER_STATE_SIZE_RX	8
348};
349
350#define TLS_OFFLOAD_CONTEXT_SIZE_RX					\
351	(sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX)
352
353struct tls_context *tls_ctx_create(struct sock *sk);
354void tls_ctx_free(struct sock *sk, struct tls_context *ctx);
355void update_sk_prot(struct sock *sk, struct tls_context *ctx);
356
357int wait_on_pending_writer(struct sock *sk, long *timeo);
358int tls_sk_query(struct sock *sk, int optname, char __user *optval,
359		int __user *optlen);
360int tls_sk_attach(struct sock *sk, int optname, char __user *optval,
361		  unsigned int optlen);
362void tls_err_abort(struct sock *sk, int err);
363
364int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx);
365void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx);
366void tls_sw_strparser_done(struct tls_context *tls_ctx);
367int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
368int tls_sw_sendpage_locked(struct sock *sk, struct page *page,
369			   int offset, size_t size, int flags);
370int tls_sw_sendpage(struct sock *sk, struct page *page,
371		    int offset, size_t size, int flags);
372void tls_sw_cancel_work_tx(struct tls_context *tls_ctx);
373void tls_sw_release_resources_tx(struct sock *sk);
374void tls_sw_free_ctx_tx(struct tls_context *tls_ctx);
375void tls_sw_free_resources_rx(struct sock *sk);
376void tls_sw_release_resources_rx(struct sock *sk);
377void tls_sw_free_ctx_rx(struct tls_context *tls_ctx);
378int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len,
379		   int nonblock, int flags, int *addr_len);
380bool tls_sw_stream_read(const struct sock *sk);
381ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos,
382			   struct pipe_inode_info *pipe,
383			   size_t len, unsigned int flags);
384
385int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
386int tls_device_sendpage(struct sock *sk, struct page *page,
387			int offset, size_t size, int flags);
388int tls_tx_records(struct sock *sk, int flags);
389
390struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context,
391				       u32 seq, u64 *p_record_sn);
392
393static inline bool tls_record_is_start_marker(struct tls_record_info *rec)
394{
395	return rec->len == 0;
396}
397
398static inline u32 tls_record_start_seq(struct tls_record_info *rec)
399{
400	return rec->end_seq - rec->len;
401}
402
403int tls_push_sg(struct sock *sk, struct tls_context *ctx,
404		struct scatterlist *sg, u16 first_offset,
405		int flags);
406int tls_push_partial_record(struct sock *sk, struct tls_context *ctx,
407			    int flags);
408void tls_free_partial_record(struct sock *sk, struct tls_context *ctx);
409
410static inline struct tls_msg *tls_msg(struct sk_buff *skb)
411{
412	return (struct tls_msg *)strp_msg(skb);
413}
414
415static inline bool tls_is_partially_sent_record(struct tls_context *ctx)
416{
417	return !!ctx->partially_sent_record;
418}
419
420static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx)
421{
422	return tls_ctx->pending_open_record_frags;
423}
424
425static inline bool is_tx_ready(struct tls_sw_context_tx *ctx)
426{
427	struct tls_rec *rec;
428
429	rec = list_first_entry(&ctx->tx_list, struct tls_rec, list);
430	if (!rec)
431		return false;
432
433	return READ_ONCE(rec->tx_ready);
434}
435
436static inline u16 tls_user_config(struct tls_context *ctx, bool tx)
437{
438	u16 config = tx ? ctx->tx_conf : ctx->rx_conf;
439
440	switch (config) {
441	case TLS_BASE:
442		return TLS_CONF_BASE;
443	case TLS_SW:
444		return TLS_CONF_SW;
445	case TLS_HW:
446		return TLS_CONF_HW;
447	case TLS_HW_RECORD:
448		return TLS_CONF_HW_RECORD;
449	}
450	return 0;
451}
452
453struct sk_buff *
454tls_validate_xmit_skb(struct sock *sk, struct net_device *dev,
455		      struct sk_buff *skb);
456struct sk_buff *
457tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev,
458			 struct sk_buff *skb);
459
460static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk)
461{
462#ifdef CONFIG_SOCK_VALIDATE_XMIT
463	return sk_fullsock(sk) &&
464	       (smp_load_acquire(&sk->sk_validate_xmit_skb) ==
465	       &tls_validate_xmit_skb);
466#else
467	return false;
468#endif
469}
470
471static inline bool tls_bigint_increment(unsigned char *seq, int len)
472{
473	int i;
474
475	for (i = len - 1; i >= 0; i--) {
476		++seq[i];
477		if (seq[i] != 0)
478			break;
479	}
480
481	return (i == -1);
482}
483
484static inline void tls_bigint_subtract(unsigned char *seq, int  n)
485{
486	u64 rcd_sn;
487	__be64 *p;
488
489	BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8);
490
491	p = (__be64 *)seq;
492	rcd_sn = be64_to_cpu(*p);
493	*p = cpu_to_be64(rcd_sn - n);
494}
495
496static inline struct tls_context *tls_get_ctx(const struct sock *sk)
497{
498	struct inet_connection_sock *icsk = inet_csk(sk);
499
500	/* Use RCU on icsk_ulp_data only for sock diag code,
501	 * TLS data path doesn't need rcu_dereference().
502	 */
503	return (__force void *)icsk->icsk_ulp_data;
504}
505
506static inline void tls_advance_record_sn(struct sock *sk,
507					 struct tls_prot_info *prot,
508					 struct cipher_context *ctx)
509{
510	if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size))
511		tls_err_abort(sk, -EBADMSG);
512
513	if (prot->version != TLS_1_3_VERSION)
514		tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE,
515				     prot->iv_size);
516}
517
518static inline void tls_fill_prepend(struct tls_context *ctx,
519			     char *buf,
520			     size_t plaintext_len,
521			     unsigned char record_type,
522			     int version)
523{
524	struct tls_prot_info *prot = &ctx->prot_info;
525	size_t pkt_len, iv_size = prot->iv_size;
526
527	pkt_len = plaintext_len + prot->tag_size;
528	if (version != TLS_1_3_VERSION) {
529		pkt_len += iv_size;
530
531		memcpy(buf + TLS_NONCE_OFFSET,
532		       ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size);
533	}
534
535	/* we cover nonce explicit here as well, so buf should be of
536	 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE
537	 */
538	buf[0] = version == TLS_1_3_VERSION ?
539		   TLS_RECORD_TYPE_DATA : record_type;
540	/* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */
541	buf[1] = TLS_1_2_VERSION_MINOR;
542	buf[2] = TLS_1_2_VERSION_MAJOR;
543	/* we can use IV for nonce explicit according to spec */
544	buf[3] = pkt_len >> 8;
545	buf[4] = pkt_len & 0xFF;
546}
547
548static inline void tls_make_aad(char *buf,
549				size_t size,
550				char *record_sequence,
551				int record_sequence_size,
552				unsigned char record_type,
553				int version)
554{
555	if (version != TLS_1_3_VERSION) {
556		memcpy(buf, record_sequence, record_sequence_size);
557		buf += 8;
558	} else {
559		size += TLS_CIPHER_AES_GCM_128_TAG_SIZE;
560	}
561
562	buf[0] = version == TLS_1_3_VERSION ?
563		  TLS_RECORD_TYPE_DATA : record_type;
564	buf[1] = TLS_1_2_VERSION_MAJOR;
565	buf[2] = TLS_1_2_VERSION_MINOR;
566	buf[3] = size >> 8;
567	buf[4] = size & 0xFF;
568}
569
570static inline void xor_iv_with_seq(int version, char *iv, char *seq)
571{
572	int i;
573
574	if (version == TLS_1_3_VERSION) {
575		for (i = 0; i < 8; i++)
576			iv[i + 4] ^= seq[i];
577	}
578}
579
580
581static inline struct tls_sw_context_rx *tls_sw_ctx_rx(
582		const struct tls_context *tls_ctx)
583{
584	return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx;
585}
586
587static inline struct tls_sw_context_tx *tls_sw_ctx_tx(
588		const struct tls_context *tls_ctx)
589{
590	return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx;
591}
592
593static inline struct tls_offload_context_tx *
594tls_offload_ctx_tx(const struct tls_context *tls_ctx)
595{
596	return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx;
597}
598
599static inline bool tls_sw_has_ctx_tx(const struct sock *sk)
600{
601	struct tls_context *ctx = tls_get_ctx(sk);
602
603	if (!ctx)
604		return false;
605	return !!tls_sw_ctx_tx(ctx);
606}
607
608static inline bool tls_sw_has_ctx_rx(const struct sock *sk)
609{
610	struct tls_context *ctx = tls_get_ctx(sk);
611
612	if (!ctx)
613		return false;
614	return !!tls_sw_ctx_rx(ctx);
615}
616
617void tls_sw_write_space(struct sock *sk, struct tls_context *ctx);
618void tls_device_write_space(struct sock *sk, struct tls_context *ctx);
619
620static inline struct tls_offload_context_rx *
621tls_offload_ctx_rx(const struct tls_context *tls_ctx)
622{
623	return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx;
624}
625
626#if IS_ENABLED(CONFIG_TLS_DEVICE)
627static inline void *__tls_driver_ctx(struct tls_context *tls_ctx,
628				     enum tls_offload_ctx_dir direction)
629{
630	if (direction == TLS_OFFLOAD_CTX_DIR_TX)
631		return tls_offload_ctx_tx(tls_ctx)->driver_state;
632	else
633		return tls_offload_ctx_rx(tls_ctx)->driver_state;
634}
635
636static inline void *
637tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction)
638{
639	return __tls_driver_ctx(tls_get_ctx(sk), direction);
640}
641#endif
642
643#define RESYNC_REQ BIT(0)
644#define RESYNC_REQ_ASYNC BIT(1)
645/* The TLS context is valid until sk_destruct is called */
646static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq)
647{
648	struct tls_context *tls_ctx = tls_get_ctx(sk);
649	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
650
651	atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ);
652}
653
654/* Log all TLS record header TCP sequences in [seq, seq+len] */
655static inline void
656tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len)
657{
658	struct tls_context *tls_ctx = tls_get_ctx(sk);
659	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
660
661	atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) |
662		     ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC);
663	rx_ctx->resync_async->loglen = 0;
664	rx_ctx->resync_async->rcd_delta = 0;
665}
666
667static inline void
668tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq)
669{
670	struct tls_context *tls_ctx = tls_get_ctx(sk);
671	struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx);
672
673	atomic64_set(&rx_ctx->resync_async->req,
674		     ((u64)ntohl(seq) << 32) | RESYNC_REQ);
675}
676
677static inline void
678tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type)
679{
680	struct tls_context *tls_ctx = tls_get_ctx(sk);
681
682	tls_offload_ctx_rx(tls_ctx)->resync_type = type;
683}
684
685/* Driver's seq tracking has to be disabled until resync succeeded */
686static inline bool tls_offload_tx_resync_pending(struct sock *sk)
687{
688	struct tls_context *tls_ctx = tls_get_ctx(sk);
689	bool ret;
690
691	ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags);
692	smp_mb__after_atomic();
693	return ret;
694}
695
696int __net_init tls_proc_init(struct net *net);
697void __net_exit tls_proc_fini(struct net *net);
698
699int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg,
700		      unsigned char *record_type);
701int decrypt_skb(struct sock *sk, struct sk_buff *skb,
702		struct scatterlist *sgout);
703struct sk_buff *tls_encrypt_skb(struct sk_buff *skb);
704
705int tls_sw_fallback_init(struct sock *sk,
706			 struct tls_offload_context_tx *offload_ctx,
707			 struct tls_crypto_info *crypto_info);
708
709#ifdef CONFIG_TLS_DEVICE
710int tls_device_init(void);
711void tls_device_cleanup(void);
712void tls_device_sk_destruct(struct sock *sk);
713int tls_set_device_offload(struct sock *sk, struct tls_context *ctx);
714void tls_device_free_resources_tx(struct sock *sk);
715int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx);
716void tls_device_offload_cleanup_rx(struct sock *sk);
717void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq);
718void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq);
719int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
720			 struct sk_buff *skb, struct strp_msg *rxm);
721
722static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk)
723{
724	if (!sk_fullsock(sk) ||
725	    smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct)
726		return false;
727	return tls_get_ctx(sk)->rx_conf == TLS_HW;
728}
729#else
730static inline int tls_device_init(void) { return 0; }
731static inline void tls_device_cleanup(void) {}
732
733static inline int
734tls_set_device_offload(struct sock *sk, struct tls_context *ctx)
735{
736	return -EOPNOTSUPP;
737}
738
739static inline void tls_device_free_resources_tx(struct sock *sk) {}
740
741static inline int
742tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx)
743{
744	return -EOPNOTSUPP;
745}
746
747static inline void tls_device_offload_cleanup_rx(struct sock *sk) {}
748static inline void
749tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {}
750
751static inline int
752tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx,
753		     struct sk_buff *skb, struct strp_msg *rxm)
754{
755	return 0;
756}
757#endif
758#endif /* _TLS_OFFLOAD_H */
759