1/* 2 * Copyright (c) 2016-2017, Mellanox Technologies. All rights reserved. 3 * Copyright (c) 2016-2017, Dave Watson <davejwatson@fb.com>. All rights reserved. 4 * 5 * This software is available to you under a choice of one of two 6 * licenses. You may choose to be licensed under the terms of the GNU 7 * General Public License (GPL) Version 2, available from the file 8 * COPYING in the main directory of this source tree, or the 9 * OpenIB.org BSD license below: 10 * 11 * Redistribution and use in source and binary forms, with or 12 * without modification, are permitted provided that the following 13 * conditions are met: 14 * 15 * - Redistributions of source code must retain the above 16 * copyright notice, this list of conditions and the following 17 * disclaimer. 18 * 19 * - Redistributions in binary form must reproduce the above 20 * copyright notice, this list of conditions and the following 21 * disclaimer in the documentation and/or other materials 22 * provided with the distribution. 23 * 24 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, 25 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF 26 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND 27 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS 28 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN 29 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN 30 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 31 * SOFTWARE. 32 */ 33 34#ifndef _TLS_OFFLOAD_H 35#define _TLS_OFFLOAD_H 36 37#include <linux/types.h> 38#include <asm/byteorder.h> 39#include <linux/crypto.h> 40#include <linux/socket.h> 41#include <linux/tcp.h> 42#include <linux/skmsg.h> 43#include <linux/mutex.h> 44#include <linux/netdevice.h> 45#include <linux/rcupdate.h> 46 47#include <net/net_namespace.h> 48#include <net/tcp.h> 49#include <net/strparser.h> 50#include <crypto/aead.h> 51#include <uapi/linux/tls.h> 52 53 54/* Maximum data size carried in a TLS record */ 55#define TLS_MAX_PAYLOAD_SIZE ((size_t)1 << 14) 56 57#define TLS_HEADER_SIZE 5 58#define TLS_NONCE_OFFSET TLS_HEADER_SIZE 59 60#define TLS_CRYPTO_INFO_READY(info) ((info)->cipher_type) 61 62#define TLS_RECORD_TYPE_DATA 0x17 63 64#define TLS_AAD_SPACE_SIZE 13 65 66#define MAX_IV_SIZE 16 67#define TLS_MAX_REC_SEQ_SIZE 8 68 69/* For AES-CCM, the full 16-bytes of IV is made of '4' fields of given sizes. 70 * 71 * IV[16] = b0[1] || implicit nonce[4] || explicit nonce[8] || length[3] 72 * 73 * The field 'length' is encoded in field 'b0' as '(length width - 1)'. 74 * Hence b0 contains (3 - 1) = 2. 75 */ 76#define TLS_AES_CCM_IV_B0_BYTE 2 77 78#define __TLS_INC_STATS(net, field) \ 79 __SNMP_INC_STATS((net)->mib.tls_statistics, field) 80#define TLS_INC_STATS(net, field) \ 81 SNMP_INC_STATS((net)->mib.tls_statistics, field) 82#define __TLS_DEC_STATS(net, field) \ 83 __SNMP_DEC_STATS((net)->mib.tls_statistics, field) 84#define TLS_DEC_STATS(net, field) \ 85 SNMP_DEC_STATS((net)->mib.tls_statistics, field) 86 87enum { 88 TLS_BASE, 89 TLS_SW, 90 TLS_HW, 91 TLS_HW_RECORD, 92 TLS_NUM_CONFIG, 93}; 94 95/* TLS records are maintained in 'struct tls_rec'. It stores the memory pages 96 * allocated or mapped for each TLS record. After encryption, the records are 97 * stores in a linked list. 98 */ 99struct tls_rec { 100 struct list_head list; 101 int tx_ready; 102 int tx_flags; 103 104 struct sk_msg msg_plaintext; 105 struct sk_msg msg_encrypted; 106 107 /* AAD | msg_plaintext.sg.data | sg_tag */ 108 struct scatterlist sg_aead_in[2]; 109 /* AAD | msg_encrypted.sg.data (data contains overhead for hdr & iv & tag) */ 110 struct scatterlist sg_aead_out[2]; 111 112 char content_type; 113 struct scatterlist sg_content_type; 114 115 char aad_space[TLS_AAD_SPACE_SIZE]; 116 u8 iv_data[MAX_IV_SIZE]; 117 struct aead_request aead_req; 118 u8 aead_req_ctx[]; 119}; 120 121struct tls_msg { 122 struct strp_msg rxm; 123 u8 control; 124}; 125 126struct tx_work { 127 struct delayed_work work; 128 struct sock *sk; 129}; 130 131struct tls_sw_context_tx { 132 struct crypto_aead *aead_send; 133 struct crypto_wait async_wait; 134 struct tx_work tx_work; 135 struct tls_rec *open_rec; 136 struct list_head tx_list; 137 atomic_t encrypt_pending; 138 /* protect crypto_wait with encrypt_pending */ 139 spinlock_t encrypt_compl_lock; 140 int async_notify; 141 u8 async_capable:1; 142 143#define BIT_TX_SCHEDULED 0 144#define BIT_TX_CLOSING 1 145 unsigned long tx_bitmask; 146}; 147 148struct tls_sw_context_rx { 149 struct crypto_aead *aead_recv; 150 struct crypto_wait async_wait; 151 struct strparser strp; 152 struct sk_buff_head rx_list; /* list of decrypted 'data' records */ 153 void (*saved_data_ready)(struct sock *sk); 154 155 struct sk_buff *recv_pkt; 156 u8 control; 157 u8 async_capable:1; 158 u8 decrypted:1; 159 atomic_t decrypt_pending; 160 /* protect crypto_wait with decrypt_pending*/ 161 spinlock_t decrypt_compl_lock; 162 bool async_notify; 163}; 164 165struct tls_record_info { 166 struct list_head list; 167 u32 end_seq; 168 int len; 169 int num_frags; 170 skb_frag_t frags[MAX_SKB_FRAGS]; 171}; 172 173struct tls_offload_context_tx { 174 struct crypto_aead *aead_send; 175 spinlock_t lock; /* protects records list */ 176 struct list_head records_list; 177 struct tls_record_info *open_record; 178 struct tls_record_info *retransmit_hint; 179 u64 hint_record_sn; 180 u64 unacked_record_sn; 181 182 struct scatterlist sg_tx_data[MAX_SKB_FRAGS]; 183 void (*sk_destruct)(struct sock *sk); 184 u8 driver_state[] __aligned(8); 185 /* The TLS layer reserves room for driver specific state 186 * Currently the belief is that there is not enough 187 * driver specific state to justify another layer of indirection 188 */ 189#define TLS_DRIVER_STATE_SIZE_TX 16 190}; 191 192#define TLS_OFFLOAD_CONTEXT_SIZE_TX \ 193 (sizeof(struct tls_offload_context_tx) + TLS_DRIVER_STATE_SIZE_TX) 194 195enum tls_context_flags { 196 /* tls_device_down was called after the netdev went down, device state 197 * was released, and kTLS works in software, even though rx_conf is 198 * still TLS_HW (needed for transition). 199 */ 200 TLS_RX_DEV_DEGRADED = 0, 201 /* Unlike RX where resync is driven entirely by the core in TX only 202 * the driver knows when things went out of sync, so we need the flag 203 * to be atomic. 204 */ 205 TLS_TX_SYNC_SCHED = 1, 206 /* tls_dev_del was called for the RX side, device state was released, 207 * but tls_ctx->netdev might still be kept, because TX-side driver 208 * resources might not be released yet. Used to prevent the second 209 * tls_dev_del call in tls_device_down if it happens simultaneously. 210 */ 211 TLS_RX_DEV_CLOSED = 2, 212}; 213 214struct cipher_context { 215 char *iv; 216 char *rec_seq; 217}; 218 219union tls_crypto_context { 220 struct tls_crypto_info info; 221 union { 222 struct tls12_crypto_info_aes_gcm_128 aes_gcm_128; 223 struct tls12_crypto_info_aes_gcm_256 aes_gcm_256; 224 }; 225}; 226 227struct tls_prot_info { 228 u16 version; 229 u16 cipher_type; 230 u16 prepend_size; 231 u16 tag_size; 232 u16 overhead_size; 233 u16 iv_size; 234 u16 salt_size; 235 u16 rec_seq_size; 236 u16 aad_size; 237 u16 tail_size; 238}; 239 240struct tls_context { 241 /* read-only cache line */ 242 struct tls_prot_info prot_info; 243 244 u8 tx_conf:3; 245 u8 rx_conf:3; 246 247 int (*push_pending_record)(struct sock *sk, int flags); 248 void (*sk_write_space)(struct sock *sk); 249 250 void *priv_ctx_tx; 251 void *priv_ctx_rx; 252 253 struct net_device *netdev; 254 255 /* rw cache line */ 256 struct cipher_context tx; 257 struct cipher_context rx; 258 259 struct scatterlist *partially_sent_record; 260 u16 partially_sent_offset; 261 262 bool in_tcp_sendpages; 263 bool pending_open_record_frags; 264 265 struct mutex tx_lock; /* protects partially_sent_* fields and 266 * per-type TX fields 267 */ 268 unsigned long flags; 269 270 /* cache cold stuff */ 271 struct proto *sk_proto; 272 struct sock *sk; 273 274 void (*sk_destruct)(struct sock *sk); 275 276 union tls_crypto_context crypto_send; 277 union tls_crypto_context crypto_recv; 278 279 struct list_head list; 280 refcount_t refcount; 281 struct rcu_head rcu; 282}; 283 284enum tls_offload_ctx_dir { 285 TLS_OFFLOAD_CTX_DIR_RX, 286 TLS_OFFLOAD_CTX_DIR_TX, 287}; 288 289struct tlsdev_ops { 290 int (*tls_dev_add)(struct net_device *netdev, struct sock *sk, 291 enum tls_offload_ctx_dir direction, 292 struct tls_crypto_info *crypto_info, 293 u32 start_offload_tcp_sn); 294 void (*tls_dev_del)(struct net_device *netdev, 295 struct tls_context *ctx, 296 enum tls_offload_ctx_dir direction); 297 int (*tls_dev_resync)(struct net_device *netdev, 298 struct sock *sk, u32 seq, u8 *rcd_sn, 299 enum tls_offload_ctx_dir direction); 300}; 301 302enum tls_offload_sync_type { 303 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ = 0, 304 TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT = 1, 305 TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC = 2, 306}; 307 308#define TLS_DEVICE_RESYNC_NH_START_IVAL 2 309#define TLS_DEVICE_RESYNC_NH_MAX_IVAL 128 310 311#define TLS_DEVICE_RESYNC_ASYNC_LOGMAX 13 312struct tls_offload_resync_async { 313 atomic64_t req; 314 u16 loglen; 315 u16 rcd_delta; 316 u32 log[TLS_DEVICE_RESYNC_ASYNC_LOGMAX]; 317}; 318 319struct tls_offload_context_rx { 320 /* sw must be the first member of tls_offload_context_rx */ 321 struct tls_sw_context_rx sw; 322 enum tls_offload_sync_type resync_type; 323 /* this member is set regardless of resync_type, to avoid branches */ 324 u8 resync_nh_reset:1; 325 /* CORE_NEXT_HINT-only member, but use the hole here */ 326 u8 resync_nh_do_now:1; 327 union { 328 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ */ 329 struct { 330 atomic64_t resync_req; 331 }; 332 /* TLS_OFFLOAD_SYNC_TYPE_CORE_NEXT_HINT */ 333 struct { 334 u32 decrypted_failed; 335 u32 decrypted_tgt; 336 } resync_nh; 337 /* TLS_OFFLOAD_SYNC_TYPE_DRIVER_REQ_ASYNC */ 338 struct { 339 struct tls_offload_resync_async *resync_async; 340 }; 341 }; 342 u8 driver_state[] __aligned(8); 343 /* The TLS layer reserves room for driver specific state 344 * Currently the belief is that there is not enough 345 * driver specific state to justify another layer of indirection 346 */ 347#define TLS_DRIVER_STATE_SIZE_RX 8 348}; 349 350#define TLS_OFFLOAD_CONTEXT_SIZE_RX \ 351 (sizeof(struct tls_offload_context_rx) + TLS_DRIVER_STATE_SIZE_RX) 352 353struct tls_context *tls_ctx_create(struct sock *sk); 354void tls_ctx_free(struct sock *sk, struct tls_context *ctx); 355void update_sk_prot(struct sock *sk, struct tls_context *ctx); 356 357int wait_on_pending_writer(struct sock *sk, long *timeo); 358int tls_sk_query(struct sock *sk, int optname, char __user *optval, 359 int __user *optlen); 360int tls_sk_attach(struct sock *sk, int optname, char __user *optval, 361 unsigned int optlen); 362void tls_err_abort(struct sock *sk, int err); 363 364int tls_set_sw_offload(struct sock *sk, struct tls_context *ctx, int tx); 365void tls_sw_strparser_arm(struct sock *sk, struct tls_context *ctx); 366void tls_sw_strparser_done(struct tls_context *tls_ctx); 367int tls_sw_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 368int tls_sw_sendpage_locked(struct sock *sk, struct page *page, 369 int offset, size_t size, int flags); 370int tls_sw_sendpage(struct sock *sk, struct page *page, 371 int offset, size_t size, int flags); 372void tls_sw_cancel_work_tx(struct tls_context *tls_ctx); 373void tls_sw_release_resources_tx(struct sock *sk); 374void tls_sw_free_ctx_tx(struct tls_context *tls_ctx); 375void tls_sw_free_resources_rx(struct sock *sk); 376void tls_sw_release_resources_rx(struct sock *sk); 377void tls_sw_free_ctx_rx(struct tls_context *tls_ctx); 378int tls_sw_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, 379 int nonblock, int flags, int *addr_len); 380bool tls_sw_stream_read(const struct sock *sk); 381ssize_t tls_sw_splice_read(struct socket *sock, loff_t *ppos, 382 struct pipe_inode_info *pipe, 383 size_t len, unsigned int flags); 384 385int tls_device_sendmsg(struct sock *sk, struct msghdr *msg, size_t size); 386int tls_device_sendpage(struct sock *sk, struct page *page, 387 int offset, size_t size, int flags); 388int tls_tx_records(struct sock *sk, int flags); 389 390struct tls_record_info *tls_get_record(struct tls_offload_context_tx *context, 391 u32 seq, u64 *p_record_sn); 392 393static inline bool tls_record_is_start_marker(struct tls_record_info *rec) 394{ 395 return rec->len == 0; 396} 397 398static inline u32 tls_record_start_seq(struct tls_record_info *rec) 399{ 400 return rec->end_seq - rec->len; 401} 402 403int tls_push_sg(struct sock *sk, struct tls_context *ctx, 404 struct scatterlist *sg, u16 first_offset, 405 int flags); 406int tls_push_partial_record(struct sock *sk, struct tls_context *ctx, 407 int flags); 408void tls_free_partial_record(struct sock *sk, struct tls_context *ctx); 409 410static inline struct tls_msg *tls_msg(struct sk_buff *skb) 411{ 412 return (struct tls_msg *)strp_msg(skb); 413} 414 415static inline bool tls_is_partially_sent_record(struct tls_context *ctx) 416{ 417 return !!ctx->partially_sent_record; 418} 419 420static inline bool tls_is_pending_open_record(struct tls_context *tls_ctx) 421{ 422 return tls_ctx->pending_open_record_frags; 423} 424 425static inline bool is_tx_ready(struct tls_sw_context_tx *ctx) 426{ 427 struct tls_rec *rec; 428 429 rec = list_first_entry(&ctx->tx_list, struct tls_rec, list); 430 if (!rec) 431 return false; 432 433 return READ_ONCE(rec->tx_ready); 434} 435 436static inline u16 tls_user_config(struct tls_context *ctx, bool tx) 437{ 438 u16 config = tx ? ctx->tx_conf : ctx->rx_conf; 439 440 switch (config) { 441 case TLS_BASE: 442 return TLS_CONF_BASE; 443 case TLS_SW: 444 return TLS_CONF_SW; 445 case TLS_HW: 446 return TLS_CONF_HW; 447 case TLS_HW_RECORD: 448 return TLS_CONF_HW_RECORD; 449 } 450 return 0; 451} 452 453struct sk_buff * 454tls_validate_xmit_skb(struct sock *sk, struct net_device *dev, 455 struct sk_buff *skb); 456struct sk_buff * 457tls_validate_xmit_skb_sw(struct sock *sk, struct net_device *dev, 458 struct sk_buff *skb); 459 460static inline bool tls_is_sk_tx_device_offloaded(struct sock *sk) 461{ 462#ifdef CONFIG_SOCK_VALIDATE_XMIT 463 return sk_fullsock(sk) && 464 (smp_load_acquire(&sk->sk_validate_xmit_skb) == 465 &tls_validate_xmit_skb); 466#else 467 return false; 468#endif 469} 470 471static inline bool tls_bigint_increment(unsigned char *seq, int len) 472{ 473 int i; 474 475 for (i = len - 1; i >= 0; i--) { 476 ++seq[i]; 477 if (seq[i] != 0) 478 break; 479 } 480 481 return (i == -1); 482} 483 484static inline void tls_bigint_subtract(unsigned char *seq, int n) 485{ 486 u64 rcd_sn; 487 __be64 *p; 488 489 BUILD_BUG_ON(TLS_MAX_REC_SEQ_SIZE != 8); 490 491 p = (__be64 *)seq; 492 rcd_sn = be64_to_cpu(*p); 493 *p = cpu_to_be64(rcd_sn - n); 494} 495 496static inline struct tls_context *tls_get_ctx(const struct sock *sk) 497{ 498 struct inet_connection_sock *icsk = inet_csk(sk); 499 500 /* Use RCU on icsk_ulp_data only for sock diag code, 501 * TLS data path doesn't need rcu_dereference(). 502 */ 503 return (__force void *)icsk->icsk_ulp_data; 504} 505 506static inline void tls_advance_record_sn(struct sock *sk, 507 struct tls_prot_info *prot, 508 struct cipher_context *ctx) 509{ 510 if (tls_bigint_increment(ctx->rec_seq, prot->rec_seq_size)) 511 tls_err_abort(sk, -EBADMSG); 512 513 if (prot->version != TLS_1_3_VERSION) 514 tls_bigint_increment(ctx->iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, 515 prot->iv_size); 516} 517 518static inline void tls_fill_prepend(struct tls_context *ctx, 519 char *buf, 520 size_t plaintext_len, 521 unsigned char record_type, 522 int version) 523{ 524 struct tls_prot_info *prot = &ctx->prot_info; 525 size_t pkt_len, iv_size = prot->iv_size; 526 527 pkt_len = plaintext_len + prot->tag_size; 528 if (version != TLS_1_3_VERSION) { 529 pkt_len += iv_size; 530 531 memcpy(buf + TLS_NONCE_OFFSET, 532 ctx->tx.iv + TLS_CIPHER_AES_GCM_128_SALT_SIZE, iv_size); 533 } 534 535 /* we cover nonce explicit here as well, so buf should be of 536 * size KTLS_DTLS_HEADER_SIZE + KTLS_DTLS_NONCE_EXPLICIT_SIZE 537 */ 538 buf[0] = version == TLS_1_3_VERSION ? 539 TLS_RECORD_TYPE_DATA : record_type; 540 /* Note that VERSION must be TLS_1_2 for both TLS1.2 and TLS1.3 */ 541 buf[1] = TLS_1_2_VERSION_MINOR; 542 buf[2] = TLS_1_2_VERSION_MAJOR; 543 /* we can use IV for nonce explicit according to spec */ 544 buf[3] = pkt_len >> 8; 545 buf[4] = pkt_len & 0xFF; 546} 547 548static inline void tls_make_aad(char *buf, 549 size_t size, 550 char *record_sequence, 551 int record_sequence_size, 552 unsigned char record_type, 553 int version) 554{ 555 if (version != TLS_1_3_VERSION) { 556 memcpy(buf, record_sequence, record_sequence_size); 557 buf += 8; 558 } else { 559 size += TLS_CIPHER_AES_GCM_128_TAG_SIZE; 560 } 561 562 buf[0] = version == TLS_1_3_VERSION ? 563 TLS_RECORD_TYPE_DATA : record_type; 564 buf[1] = TLS_1_2_VERSION_MAJOR; 565 buf[2] = TLS_1_2_VERSION_MINOR; 566 buf[3] = size >> 8; 567 buf[4] = size & 0xFF; 568} 569 570static inline void xor_iv_with_seq(int version, char *iv, char *seq) 571{ 572 int i; 573 574 if (version == TLS_1_3_VERSION) { 575 for (i = 0; i < 8; i++) 576 iv[i + 4] ^= seq[i]; 577 } 578} 579 580 581static inline struct tls_sw_context_rx *tls_sw_ctx_rx( 582 const struct tls_context *tls_ctx) 583{ 584 return (struct tls_sw_context_rx *)tls_ctx->priv_ctx_rx; 585} 586 587static inline struct tls_sw_context_tx *tls_sw_ctx_tx( 588 const struct tls_context *tls_ctx) 589{ 590 return (struct tls_sw_context_tx *)tls_ctx->priv_ctx_tx; 591} 592 593static inline struct tls_offload_context_tx * 594tls_offload_ctx_tx(const struct tls_context *tls_ctx) 595{ 596 return (struct tls_offload_context_tx *)tls_ctx->priv_ctx_tx; 597} 598 599static inline bool tls_sw_has_ctx_tx(const struct sock *sk) 600{ 601 struct tls_context *ctx = tls_get_ctx(sk); 602 603 if (!ctx) 604 return false; 605 return !!tls_sw_ctx_tx(ctx); 606} 607 608static inline bool tls_sw_has_ctx_rx(const struct sock *sk) 609{ 610 struct tls_context *ctx = tls_get_ctx(sk); 611 612 if (!ctx) 613 return false; 614 return !!tls_sw_ctx_rx(ctx); 615} 616 617void tls_sw_write_space(struct sock *sk, struct tls_context *ctx); 618void tls_device_write_space(struct sock *sk, struct tls_context *ctx); 619 620static inline struct tls_offload_context_rx * 621tls_offload_ctx_rx(const struct tls_context *tls_ctx) 622{ 623 return (struct tls_offload_context_rx *)tls_ctx->priv_ctx_rx; 624} 625 626#if IS_ENABLED(CONFIG_TLS_DEVICE) 627static inline void *__tls_driver_ctx(struct tls_context *tls_ctx, 628 enum tls_offload_ctx_dir direction) 629{ 630 if (direction == TLS_OFFLOAD_CTX_DIR_TX) 631 return tls_offload_ctx_tx(tls_ctx)->driver_state; 632 else 633 return tls_offload_ctx_rx(tls_ctx)->driver_state; 634} 635 636static inline void * 637tls_driver_ctx(const struct sock *sk, enum tls_offload_ctx_dir direction) 638{ 639 return __tls_driver_ctx(tls_get_ctx(sk), direction); 640} 641#endif 642 643#define RESYNC_REQ BIT(0) 644#define RESYNC_REQ_ASYNC BIT(1) 645/* The TLS context is valid until sk_destruct is called */ 646static inline void tls_offload_rx_resync_request(struct sock *sk, __be32 seq) 647{ 648 struct tls_context *tls_ctx = tls_get_ctx(sk); 649 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 650 651 atomic64_set(&rx_ctx->resync_req, ((u64)ntohl(seq) << 32) | RESYNC_REQ); 652} 653 654/* Log all TLS record header TCP sequences in [seq, seq+len] */ 655static inline void 656tls_offload_rx_resync_async_request_start(struct sock *sk, __be32 seq, u16 len) 657{ 658 struct tls_context *tls_ctx = tls_get_ctx(sk); 659 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 660 661 atomic64_set(&rx_ctx->resync_async->req, ((u64)ntohl(seq) << 32) | 662 ((u64)len << 16) | RESYNC_REQ | RESYNC_REQ_ASYNC); 663 rx_ctx->resync_async->loglen = 0; 664 rx_ctx->resync_async->rcd_delta = 0; 665} 666 667static inline void 668tls_offload_rx_resync_async_request_end(struct sock *sk, __be32 seq) 669{ 670 struct tls_context *tls_ctx = tls_get_ctx(sk); 671 struct tls_offload_context_rx *rx_ctx = tls_offload_ctx_rx(tls_ctx); 672 673 atomic64_set(&rx_ctx->resync_async->req, 674 ((u64)ntohl(seq) << 32) | RESYNC_REQ); 675} 676 677static inline void 678tls_offload_rx_resync_set_type(struct sock *sk, enum tls_offload_sync_type type) 679{ 680 struct tls_context *tls_ctx = tls_get_ctx(sk); 681 682 tls_offload_ctx_rx(tls_ctx)->resync_type = type; 683} 684 685/* Driver's seq tracking has to be disabled until resync succeeded */ 686static inline bool tls_offload_tx_resync_pending(struct sock *sk) 687{ 688 struct tls_context *tls_ctx = tls_get_ctx(sk); 689 bool ret; 690 691 ret = test_bit(TLS_TX_SYNC_SCHED, &tls_ctx->flags); 692 smp_mb__after_atomic(); 693 return ret; 694} 695 696int __net_init tls_proc_init(struct net *net); 697void __net_exit tls_proc_fini(struct net *net); 698 699int tls_proccess_cmsg(struct sock *sk, struct msghdr *msg, 700 unsigned char *record_type); 701int decrypt_skb(struct sock *sk, struct sk_buff *skb, 702 struct scatterlist *sgout); 703struct sk_buff *tls_encrypt_skb(struct sk_buff *skb); 704 705int tls_sw_fallback_init(struct sock *sk, 706 struct tls_offload_context_tx *offload_ctx, 707 struct tls_crypto_info *crypto_info); 708 709#ifdef CONFIG_TLS_DEVICE 710int tls_device_init(void); 711void tls_device_cleanup(void); 712void tls_device_sk_destruct(struct sock *sk); 713int tls_set_device_offload(struct sock *sk, struct tls_context *ctx); 714void tls_device_free_resources_tx(struct sock *sk); 715int tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx); 716void tls_device_offload_cleanup_rx(struct sock *sk); 717void tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq); 718void tls_offload_tx_resync_request(struct sock *sk, u32 got_seq, u32 exp_seq); 719int tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 720 struct sk_buff *skb, struct strp_msg *rxm); 721 722static inline bool tls_is_sk_rx_device_offloaded(struct sock *sk) 723{ 724 if (!sk_fullsock(sk) || 725 smp_load_acquire(&sk->sk_destruct) != tls_device_sk_destruct) 726 return false; 727 return tls_get_ctx(sk)->rx_conf == TLS_HW; 728} 729#else 730static inline int tls_device_init(void) { return 0; } 731static inline void tls_device_cleanup(void) {} 732 733static inline int 734tls_set_device_offload(struct sock *sk, struct tls_context *ctx) 735{ 736 return -EOPNOTSUPP; 737} 738 739static inline void tls_device_free_resources_tx(struct sock *sk) {} 740 741static inline int 742tls_set_device_offload_rx(struct sock *sk, struct tls_context *ctx) 743{ 744 return -EOPNOTSUPP; 745} 746 747static inline void tls_device_offload_cleanup_rx(struct sock *sk) {} 748static inline void 749tls_device_rx_resync_new_rec(struct sock *sk, u32 rcd_len, u32 seq) {} 750 751static inline int 752tls_device_decrypted(struct sock *sk, struct tls_context *tls_ctx, 753 struct sk_buff *skb, struct strp_msg *rxm) 754{ 755 return 0; 756} 757#endif 758#endif /* _TLS_OFFLOAD_H */ 759