xref: /kernel/linux/linux-5.10/include/net/tcp.h (revision 8c2ecf20)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Definitions for the TCP module.
8 *
9 * Version:	@(#)tcp.h	1.0.5	05/23/93
10 *
11 * Authors:	Ross Biro
12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 */
14#ifndef _TCP_H
15#define _TCP_H
16
17#define FASTRETRANS_DEBUG 1
18
19#include <linux/list.h>
20#include <linux/tcp.h>
21#include <linux/bug.h>
22#include <linux/slab.h>
23#include <linux/cache.h>
24#include <linux/percpu.h>
25#include <linux/skbuff.h>
26#include <linux/kref.h>
27#include <linux/ktime.h>
28#include <linux/indirect_call_wrapper.h>
29
30#include <net/inet_connection_sock.h>
31#include <net/inet_timewait_sock.h>
32#include <net/inet_hashtables.h>
33#include <net/checksum.h>
34#include <net/request_sock.h>
35#include <net/sock_reuseport.h>
36#include <net/sock.h>
37#include <net/snmp.h>
38#include <net/ip.h>
39#include <net/tcp_states.h>
40#include <net/inet_ecn.h>
41#include <net/dst.h>
42#include <net/mptcp.h>
43#ifdef CONFIG_NEWIP
44#include <linux/nip.h> /* NIP */
45#endif
46#include <linux/seq_file.h>
47#include <linux/memcontrol.h>
48#include <linux/bpf-cgroup.h>
49#include <linux/siphash.h>
50
51extern struct inet_hashinfo tcp_hashinfo;
52
53DECLARE_PER_CPU(unsigned int, tcp_orphan_count);
54int tcp_orphan_count_sum(void);
55
56void tcp_time_wait(struct sock *sk, int state, int timeo);
57
58#define MAX_TCP_HEADER	L1_CACHE_ALIGN(128 + MAX_HEADER)
59#define MAX_TCP_OPTION_SPACE 40
60#define TCP_MIN_SND_MSS		48
61#define TCP_MIN_GSO_SIZE	(TCP_MIN_SND_MSS - MAX_TCP_OPTION_SPACE)
62
63/*
64 * Never offer a window over 32767 without using window scaling. Some
65 * poor stacks do signed 16bit maths!
66 */
67#define MAX_TCP_WINDOW		32767U
68
69/* Minimal accepted MSS. It is (60+60+8) - (20+20). */
70#define TCP_MIN_MSS		88U
71
72/* The initial MTU to use for probing */
73#define TCP_BASE_MSS		1024
74
75/* probing interval, default to 10 minutes as per RFC4821 */
76#define TCP_PROBE_INTERVAL	600
77
78/* Specify interval when tcp mtu probing will stop */
79#define TCP_PROBE_THRESHOLD	8
80
81/* After receiving this amount of duplicate ACKs fast retransmit starts. */
82#define TCP_FASTRETRANS_THRESH 3
83
84/* Maximal number of ACKs sent quickly to accelerate slow-start. */
85#define TCP_MAX_QUICKACKS	16U
86
87/* Maximal number of window scale according to RFC1323 */
88#define TCP_MAX_WSCALE		14U
89
90/* urg_data states */
91#define TCP_URG_VALID	0x0100
92#define TCP_URG_NOTYET	0x0200
93#define TCP_URG_READ	0x0400
94
95#define TCP_RETR1	3	/*
96				 * This is how many retries it does before it
97				 * tries to figure out if the gateway is
98				 * down. Minimal RFC value is 3; it corresponds
99				 * to ~3sec-8min depending on RTO.
100				 */
101
102#define TCP_RETR2	15	/*
103				 * This should take at least
104				 * 90 minutes to time out.
105				 * RFC1122 says that the limit is 100 sec.
106				 * 15 is ~13-30min depending on RTO.
107				 */
108
109#define TCP_SYN_RETRIES	 6	/* This is how many retries are done
110				 * when active opening a connection.
111				 * RFC1122 says the minimum retry MUST
112				 * be at least 180secs.  Nevertheless
113				 * this value is corresponding to
114				 * 63secs of retransmission with the
115				 * current initial RTO.
116				 */
117
118#define TCP_SYNACK_RETRIES 5	/* This is how may retries are done
119				 * when passive opening a connection.
120				 * This is corresponding to 31secs of
121				 * retransmission with the current
122				 * initial RTO.
123				 */
124
125#define TCP_TIMEWAIT_LEN (60*HZ) /* how long to wait to destroy TIME-WAIT
126				  * state, about 60 seconds	*/
127#define TCP_FIN_TIMEOUT	TCP_TIMEWAIT_LEN
128                                 /* BSD style FIN_WAIT2 deadlock breaker.
129				  * It used to be 3min, new value is 60sec,
130				  * to combine FIN-WAIT-2 timeout with
131				  * TIME-WAIT timer.
132				  */
133#define TCP_FIN_TIMEOUT_MAX (120 * HZ) /* max TCP_LINGER2 value (two minutes) */
134
135#define TCP_DELACK_MAX	((unsigned)(HZ/5))	/* maximal time to delay before sending an ACK */
136#if HZ >= 100
137#define TCP_DELACK_MIN	((unsigned)(HZ/25))	/* minimal time to delay before sending an ACK */
138#define TCP_ATO_MIN	((unsigned)(HZ/25))
139#else
140#define TCP_DELACK_MIN	4U
141#define TCP_ATO_MIN	4U
142#endif
143#define TCP_RTO_MAX	((unsigned)(120*HZ))
144#define TCP_RTO_MIN	((unsigned)(HZ/5))
145#define TCP_TIMEOUT_MIN	(2U) /* Min timeout for TCP timers in jiffies */
146
147#define TCP_TIMEOUT_MIN_US (2*USEC_PER_MSEC) /* Min TCP timeout in microsecs */
148
149#define TCP_TIMEOUT_INIT ((unsigned)(1*HZ))	/* RFC6298 2.1 initial RTO value	*/
150#define TCP_TIMEOUT_FALLBACK ((unsigned)(3*HZ))	/* RFC 1122 initial RTO value, now
151						 * used as a fallback RTO for the
152						 * initial data transmission if no
153						 * valid RTT sample has been acquired,
154						 * most likely due to retrans in 3WHS.
155						 */
156
157#define TCP_RESOURCE_PROBE_INTERVAL ((unsigned)(HZ/2U)) /* Maximal interval between probes
158					                 * for local resources.
159					                 */
160#define TCP_KEEPALIVE_TIME	(120*60*HZ)	/* two hours */
161#define TCP_KEEPALIVE_PROBES	9		/* Max of 9 keepalive probes	*/
162#define TCP_KEEPALIVE_INTVL	(75*HZ)
163
164#define MAX_TCP_KEEPIDLE	32767
165#define MAX_TCP_KEEPINTVL	32767
166#define MAX_TCP_KEEPCNT		127
167#define MAX_TCP_SYNCNT		127
168
169#define TCP_SYNQ_INTERVAL	(HZ/5)	/* Period of SYNACK timer */
170
171#define TCP_PAWS_24DAYS	(60 * 60 * 24 * 24)
172#define TCP_PAWS_MSL	60		/* Per-host timestamps are invalidated
173					 * after this time. It should be equal
174					 * (or greater than) TCP_TIMEWAIT_LEN
175					 * to provide reliability equal to one
176					 * provided by timewait state.
177					 */
178#define TCP_PAWS_WINDOW	1		/* Replay window for per-host
179					 * timestamps. It must be less than
180					 * minimal timewait lifetime.
181					 */
182/*
183 *	TCP option
184 */
185
186#define TCPOPT_NOP		1	/* Padding */
187#define TCPOPT_EOL		0	/* End of options */
188#define TCPOPT_MSS		2	/* Segment size negotiating */
189#define TCPOPT_WINDOW		3	/* Window scaling */
190#define TCPOPT_SACK_PERM        4       /* SACK Permitted */
191#define TCPOPT_SACK             5       /* SACK Block */
192#define TCPOPT_TIMESTAMP	8	/* Better RTT estimations/PAWS */
193#define TCPOPT_MD5SIG		19	/* MD5 Signature (RFC2385) */
194#define TCPOPT_MPTCP		30	/* Multipath TCP (RFC6824) */
195#define TCPOPT_FASTOPEN		34	/* Fast open (RFC7413) */
196#define TCPOPT_EXP		254	/* Experimental */
197/* Magic number to be after the option value for sharing TCP
198 * experimental options. See draft-ietf-tcpm-experimental-options-00.txt
199 */
200#define TCPOPT_FASTOPEN_MAGIC	0xF989
201#define TCPOPT_SMC_MAGIC	0xE2D4C3D9
202
203/*
204 *     TCP option lengths
205 */
206
207#define TCPOLEN_MSS            4
208#define TCPOLEN_WINDOW         3
209#define TCPOLEN_SACK_PERM      2
210#define TCPOLEN_TIMESTAMP      10
211#define TCPOLEN_MD5SIG         18
212#define TCPOLEN_FASTOPEN_BASE  2
213#define TCPOLEN_EXP_FASTOPEN_BASE  4
214#define TCPOLEN_EXP_SMC_BASE   6
215
216/* But this is what stacks really send out. */
217#define TCPOLEN_TSTAMP_ALIGNED		12
218#define TCPOLEN_WSCALE_ALIGNED		4
219#define TCPOLEN_SACKPERM_ALIGNED	4
220#define TCPOLEN_SACK_BASE		2
221#define TCPOLEN_SACK_BASE_ALIGNED	4
222#define TCPOLEN_SACK_PERBLOCK		8
223#define TCPOLEN_MD5SIG_ALIGNED		20
224#define TCPOLEN_MSS_ALIGNED		4
225#define TCPOLEN_EXP_SMC_BASE_ALIGNED	8
226
227/* Flags in tp->nonagle */
228#define TCP_NAGLE_OFF		1	/* Nagle's algo is disabled */
229#define TCP_NAGLE_CORK		2	/* Socket is corked	    */
230#define TCP_NAGLE_PUSH		4	/* Cork is overridden for already queued data */
231
232/* TCP thin-stream limits */
233#define TCP_THIN_LINEAR_RETRIES 6       /* After 6 linear retries, do exp. backoff */
234
235/* TCP initial congestion window as per rfc6928 */
236#define TCP_INIT_CWND		10
237
238/* Bit Flags for sysctl_tcp_fastopen */
239#define	TFO_CLIENT_ENABLE	1
240#define	TFO_SERVER_ENABLE	2
241#define	TFO_CLIENT_NO_COOKIE	4	/* Data in SYN w/o cookie option */
242
243/* Accept SYN data w/o any cookie option */
244#define	TFO_SERVER_COOKIE_NOT_REQD	0x200
245
246/* Force enable TFO on all listeners, i.e., not requiring the
247 * TCP_FASTOPEN socket option.
248 */
249#define	TFO_SERVER_WO_SOCKOPT1	0x400
250
251
252/* sysctl variables for tcp */
253extern int sysctl_tcp_max_orphans;
254extern long sysctl_tcp_mem[3];
255
256#define TCP_RACK_LOSS_DETECTION  0x1 /* Use RACK to detect losses */
257#define TCP_RACK_STATIC_REO_WND  0x2 /* Use static RACK reo wnd */
258#define TCP_RACK_NO_DUPTHRESH    0x4 /* Do not use DUPACK threshold in RACK */
259
260extern atomic_long_t tcp_memory_allocated;
261extern struct percpu_counter tcp_sockets_allocated;
262extern unsigned long tcp_memory_pressure;
263
264/* optimized version of sk_under_memory_pressure() for TCP sockets */
265static inline bool tcp_under_memory_pressure(const struct sock *sk)
266{
267	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
268	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
269		return true;
270
271	return READ_ONCE(tcp_memory_pressure);
272}
273/*
274 * The next routines deal with comparing 32 bit unsigned ints
275 * and worry about wraparound (automatic with unsigned arithmetic).
276 */
277
278static inline bool before(__u32 seq1, __u32 seq2)
279{
280        return (__s32)(seq1-seq2) < 0;
281}
282#define after(seq2, seq1) 	before(seq1, seq2)
283
284/* is s2<=s1<=s3 ? */
285static inline bool between(__u32 seq1, __u32 seq2, __u32 seq3)
286{
287	return seq3 - seq2 >= seq1 - seq2;
288}
289
290static inline bool tcp_out_of_memory(struct sock *sk)
291{
292	if (sk->sk_wmem_queued > SOCK_MIN_SNDBUF &&
293	    sk_memory_allocated(sk) > sk_prot_mem_limits(sk, 2))
294		return true;
295	return false;
296}
297
298void sk_forced_mem_schedule(struct sock *sk, int size);
299
300bool tcp_check_oom(struct sock *sk, int shift);
301
302
303extern struct proto tcp_prot;
304
305#define TCP_INC_STATS(net, field)	SNMP_INC_STATS((net)->mib.tcp_statistics, field)
306#define __TCP_INC_STATS(net, field)	__SNMP_INC_STATS((net)->mib.tcp_statistics, field)
307#define TCP_DEC_STATS(net, field)	SNMP_DEC_STATS((net)->mib.tcp_statistics, field)
308#define TCP_ADD_STATS(net, field, val)	SNMP_ADD_STATS((net)->mib.tcp_statistics, field, val)
309
310void tcp_tasklet_init(void);
311
312int tcp_v4_err(struct sk_buff *skb, u32);
313
314void tcp_shutdown(struct sock *sk, int how);
315
316int tcp_v4_early_demux(struct sk_buff *skb);
317int tcp_v4_rcv(struct sk_buff *skb);
318
319int tcp_v4_tw_remember_stamp(struct inet_timewait_sock *tw);
320int tcp_sendmsg(struct sock *sk, struct msghdr *msg, size_t size);
321int tcp_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t size);
322int tcp_sendpage(struct sock *sk, struct page *page, int offset, size_t size,
323		 int flags);
324int tcp_sendpage_locked(struct sock *sk, struct page *page, int offset,
325			size_t size, int flags);
326ssize_t do_tcp_sendpages(struct sock *sk, struct page *page, int offset,
327		 size_t size, int flags);
328int tcp_send_mss(struct sock *sk, int *size_goal, int flags);
329void tcp_push(struct sock *sk, int flags, int mss_now, int nonagle,
330	      int size_goal);
331void tcp_release_cb(struct sock *sk);
332void tcp_wfree(struct sk_buff *skb);
333void tcp_write_timer_handler(struct sock *sk);
334void tcp_delack_timer_handler(struct sock *sk);
335int tcp_ioctl(struct sock *sk, int cmd, unsigned long arg);
336int tcp_rcv_state_process(struct sock *sk, struct sk_buff *skb);
337void tcp_rcv_established(struct sock *sk, struct sk_buff *skb);
338void tcp_rcv_space_adjust(struct sock *sk);
339int tcp_twsk_unique(struct sock *sk, struct sock *sktw, void *twp);
340void tcp_twsk_destructor(struct sock *sk);
341ssize_t tcp_splice_read(struct socket *sk, loff_t *ppos,
342			struct pipe_inode_info *pipe, size_t len,
343			unsigned int flags);
344
345static inline void tcp_dec_quickack_mode(struct sock *sk)
346{
347	struct inet_connection_sock *icsk = inet_csk(sk);
348
349	if (icsk->icsk_ack.quick) {
350		/* How many ACKs S/ACKing new data have we sent? */
351		const unsigned int pkts = inet_csk_ack_scheduled(sk) ? 1 : 0;
352
353		if (pkts >= icsk->icsk_ack.quick) {
354			icsk->icsk_ack.quick = 0;
355			/* Leaving quickack mode we deflate ATO. */
356			icsk->icsk_ack.ato   = TCP_ATO_MIN;
357		} else
358			icsk->icsk_ack.quick -= pkts;
359	}
360}
361
362#define	TCP_ECN_OK		1
363#define	TCP_ECN_QUEUE_CWR	2
364#define	TCP_ECN_DEMAND_CWR	4
365#define	TCP_ECN_SEEN		8
366
367enum tcp_tw_status {
368	TCP_TW_SUCCESS = 0,
369	TCP_TW_RST = 1,
370	TCP_TW_ACK = 2,
371	TCP_TW_SYN = 3
372};
373
374
375enum tcp_tw_status tcp_timewait_state_process(struct inet_timewait_sock *tw,
376					      struct sk_buff *skb,
377					      const struct tcphdr *th);
378struct sock *tcp_check_req(struct sock *sk, struct sk_buff *skb,
379			   struct request_sock *req, bool fastopen,
380			   bool *lost_race);
381int tcp_child_process(struct sock *parent, struct sock *child,
382		      struct sk_buff *skb);
383void tcp_enter_loss(struct sock *sk);
384void tcp_cwnd_reduction(struct sock *sk, int newly_acked_sacked, int flag);
385void tcp_clear_retrans(struct tcp_sock *tp);
386void tcp_update_metrics(struct sock *sk);
387void tcp_init_metrics(struct sock *sk);
388void tcp_metrics_init(void);
389bool tcp_peer_is_proven(struct request_sock *req, struct dst_entry *dst);
390void __tcp_close(struct sock *sk, long timeout);
391void tcp_close(struct sock *sk, long timeout);
392void tcp_init_sock(struct sock *sk);
393void tcp_init_transfer(struct sock *sk, int bpf_op, struct sk_buff *skb);
394__poll_t tcp_poll(struct file *file, struct socket *sock,
395		      struct poll_table_struct *wait);
396int tcp_getsockopt(struct sock *sk, int level, int optname,
397		   char __user *optval, int __user *optlen);
398bool tcp_bpf_bypass_getsockopt(int level, int optname);
399int tcp_setsockopt(struct sock *sk, int level, int optname, sockptr_t optval,
400		   unsigned int optlen);
401void tcp_set_keepalive(struct sock *sk, int val);
402void tcp_syn_ack_timeout(const struct request_sock *req);
403int tcp_recvmsg(struct sock *sk, struct msghdr *msg, size_t len, int nonblock,
404		int flags, int *addr_len);
405int tcp_set_rcvlowat(struct sock *sk, int val);
406void tcp_data_ready(struct sock *sk);
407#ifdef CONFIG_MMU
408int tcp_mmap(struct file *file, struct socket *sock,
409	     struct vm_area_struct *vma);
410#endif
411void tcp_parse_options(const struct net *net, const struct sk_buff *skb,
412		       struct tcp_options_received *opt_rx,
413		       int estab, struct tcp_fastopen_cookie *foc);
414const u8 *tcp_parse_md5sig_option(const struct tcphdr *th);
415
416/*
417 *	BPF SKB-less helpers
418 */
419u16 tcp_v4_get_syncookie(struct sock *sk, struct iphdr *iph,
420			 struct tcphdr *th, u32 *cookie);
421u16 tcp_v6_get_syncookie(struct sock *sk, struct ipv6hdr *iph,
422			 struct tcphdr *th, u32 *cookie);
423u16 tcp_get_syncookie_mss(struct request_sock_ops *rsk_ops,
424			  const struct tcp_request_sock_ops *af_ops,
425			  struct sock *sk, struct tcphdr *th);
426/*
427 *	TCP v4 functions exported for the inet6 API
428 */
429
430void tcp_v4_send_check(struct sock *sk, struct sk_buff *skb);
431void tcp_v4_mtu_reduced(struct sock *sk);
432void tcp_req_err(struct sock *sk, u32 seq, bool abort);
433void tcp_ld_RTO_revert(struct sock *sk, u32 seq);
434int tcp_v4_conn_request(struct sock *sk, struct sk_buff *skb);
435struct sock *tcp_create_openreq_child(const struct sock *sk,
436				      struct request_sock *req,
437				      struct sk_buff *skb);
438void tcp_ca_openreq_child(struct sock *sk, const struct dst_entry *dst);
439struct sock *tcp_v4_syn_recv_sock(const struct sock *sk, struct sk_buff *skb,
440				  struct request_sock *req,
441				  struct dst_entry *dst,
442				  struct request_sock *req_unhash,
443				  bool *own_req);
444int tcp_v4_do_rcv(struct sock *sk, struct sk_buff *skb);
445int tcp_v4_connect(struct sock *sk, struct sockaddr *uaddr, int addr_len);
446int tcp_connect(struct sock *sk);
447enum tcp_synack_type {
448	TCP_SYNACK_NORMAL,
449	TCP_SYNACK_FASTOPEN,
450	TCP_SYNACK_COOKIE,
451};
452struct sk_buff *tcp_make_synack(const struct sock *sk, struct dst_entry *dst,
453				struct request_sock *req,
454				struct tcp_fastopen_cookie *foc,
455				enum tcp_synack_type synack_type,
456				struct sk_buff *syn_skb);
457int tcp_disconnect(struct sock *sk, int flags);
458
459void tcp_finish_connect(struct sock *sk, struct sk_buff *skb);
460int tcp_send_rcvq(struct sock *sk, struct msghdr *msg, size_t size);
461void inet_sk_rx_dst_set(struct sock *sk, const struct sk_buff *skb);
462
463/* From syncookies.c */
464struct sock *tcp_get_cookie_sock(struct sock *sk, struct sk_buff *skb,
465				 struct request_sock *req,
466				 struct dst_entry *dst, u32 tsoff);
467int __cookie_v4_check(const struct iphdr *iph, const struct tcphdr *th,
468		      u32 cookie);
469struct sock *cookie_v4_check(struct sock *sk, struct sk_buff *skb);
470struct request_sock *cookie_tcp_reqsk_alloc(const struct request_sock_ops *ops,
471					    const struct tcp_request_sock_ops *af_ops,
472					    struct sock *sk, struct sk_buff *skb);
473#ifdef CONFIG_SYN_COOKIES
474
475/* Syncookies use a monotonic timer which increments every 60 seconds.
476 * This counter is used both as a hash input and partially encoded into
477 * the cookie value.  A cookie is only validated further if the delta
478 * between the current counter value and the encoded one is less than this,
479 * i.e. a sent cookie is valid only at most for 2*60 seconds (or less if
480 * the counter advances immediately after a cookie is generated).
481 */
482#define MAX_SYNCOOKIE_AGE	2
483#define TCP_SYNCOOKIE_PERIOD	(60 * HZ)
484#define TCP_SYNCOOKIE_VALID	(MAX_SYNCOOKIE_AGE * TCP_SYNCOOKIE_PERIOD)
485
486/* syncookies: remember time of last synqueue overflow
487 * But do not dirty this field too often (once per second is enough)
488 * It is racy as we do not hold a lock, but race is very minor.
489 */
490static inline void tcp_synq_overflow(const struct sock *sk)
491{
492	unsigned int last_overflow;
493	unsigned int now = jiffies;
494
495	if (sk->sk_reuseport) {
496		struct sock_reuseport *reuse;
497
498		reuse = rcu_dereference(sk->sk_reuseport_cb);
499		if (likely(reuse)) {
500			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
501			if (!time_between32(now, last_overflow,
502					    last_overflow + HZ))
503				WRITE_ONCE(reuse->synq_overflow_ts, now);
504			return;
505		}
506	}
507
508	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
509	if (!time_between32(now, last_overflow, last_overflow + HZ))
510		WRITE_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp, now);
511}
512
513/* syncookies: no recent synqueue overflow on this listening socket? */
514static inline bool tcp_synq_no_recent_overflow(const struct sock *sk)
515{
516	unsigned int last_overflow;
517	unsigned int now = jiffies;
518
519	if (sk->sk_reuseport) {
520		struct sock_reuseport *reuse;
521
522		reuse = rcu_dereference(sk->sk_reuseport_cb);
523		if (likely(reuse)) {
524			last_overflow = READ_ONCE(reuse->synq_overflow_ts);
525			return !time_between32(now, last_overflow - HZ,
526					       last_overflow +
527					       TCP_SYNCOOKIE_VALID);
528		}
529	}
530
531	last_overflow = READ_ONCE(tcp_sk(sk)->rx_opt.ts_recent_stamp);
532
533	/* If last_overflow <= jiffies <= last_overflow + TCP_SYNCOOKIE_VALID,
534	 * then we're under synflood. However, we have to use
535	 * 'last_overflow - HZ' as lower bound. That's because a concurrent
536	 * tcp_synq_overflow() could update .ts_recent_stamp after we read
537	 * jiffies but before we store .ts_recent_stamp into last_overflow,
538	 * which could lead to rejecting a valid syncookie.
539	 */
540	return !time_between32(now, last_overflow - HZ,
541			       last_overflow + TCP_SYNCOOKIE_VALID);
542}
543
544static inline u32 tcp_cookie_time(void)
545{
546	u64 val = get_jiffies_64();
547
548	do_div(val, TCP_SYNCOOKIE_PERIOD);
549	return val;
550}
551
552u32 __cookie_v4_init_sequence(const struct iphdr *iph, const struct tcphdr *th,
553			      u16 *mssp);
554__u32 cookie_v4_init_sequence(const struct sk_buff *skb, __u16 *mss);
555u64 cookie_init_timestamp(struct request_sock *req, u64 now);
556bool cookie_timestamp_decode(const struct net *net,
557			     struct tcp_options_received *opt);
558bool cookie_ecn_ok(const struct tcp_options_received *opt,
559		   const struct net *net, const struct dst_entry *dst);
560
561/* From net/ipv6/syncookies.c */
562int __cookie_v6_check(const struct ipv6hdr *iph, const struct tcphdr *th,
563		      u32 cookie);
564struct sock *cookie_v6_check(struct sock *sk, struct sk_buff *skb);
565
566u32 __cookie_v6_init_sequence(const struct ipv6hdr *iph,
567			      const struct tcphdr *th, u16 *mssp);
568__u32 cookie_v6_init_sequence(const struct sk_buff *skb, __u16 *mss);
569#endif
570/* tcp_output.c */
571
572void __tcp_push_pending_frames(struct sock *sk, unsigned int cur_mss,
573			       int nonagle);
574int __tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
575int tcp_retransmit_skb(struct sock *sk, struct sk_buff *skb, int segs);
576void tcp_retransmit_timer(struct sock *sk);
577void tcp_xmit_retransmit_queue(struct sock *);
578void tcp_simple_retransmit(struct sock *);
579void tcp_enter_recovery(struct sock *sk, bool ece_ack);
580int tcp_trim_head(struct sock *, struct sk_buff *, u32);
581enum tcp_queue {
582	TCP_FRAG_IN_WRITE_QUEUE,
583	TCP_FRAG_IN_RTX_QUEUE,
584};
585int tcp_fragment(struct sock *sk, enum tcp_queue tcp_queue,
586		 struct sk_buff *skb, u32 len,
587		 unsigned int mss_now, gfp_t gfp);
588
589void tcp_send_probe0(struct sock *);
590void tcp_send_partial(struct sock *);
591int tcp_write_wakeup(struct sock *, int mib);
592void tcp_send_fin(struct sock *sk);
593void tcp_send_active_reset(struct sock *sk, gfp_t priority);
594int tcp_send_synack(struct sock *);
595void tcp_push_one(struct sock *, unsigned int mss_now);
596void __tcp_send_ack(struct sock *sk, u32 rcv_nxt);
597void tcp_send_ack(struct sock *sk);
598void tcp_send_delayed_ack(struct sock *sk);
599void tcp_send_loss_probe(struct sock *sk);
600bool tcp_schedule_loss_probe(struct sock *sk, bool advancing_rto);
601void tcp_skb_collapse_tstamp(struct sk_buff *skb,
602			     const struct sk_buff *next_skb);
603
604/* tcp_input.c */
605void tcp_rearm_rto(struct sock *sk);
606void tcp_synack_rtt_meas(struct sock *sk, struct request_sock *req);
607void tcp_reset(struct sock *sk);
608void tcp_skb_mark_lost_uncond_verify(struct tcp_sock *tp, struct sk_buff *skb);
609void tcp_fin(struct sock *sk);
610void tcp_check_space(struct sock *sk);
611
612/* tcp_timer.c */
613void tcp_init_xmit_timers(struct sock *);
614static inline void tcp_clear_xmit_timers(struct sock *sk)
615{
616	if (hrtimer_try_to_cancel(&tcp_sk(sk)->pacing_timer) == 1)
617		__sock_put(sk);
618
619	if (hrtimer_try_to_cancel(&tcp_sk(sk)->compressed_ack_timer) == 1)
620		__sock_put(sk);
621
622	inet_csk_clear_xmit_timers(sk);
623}
624
625unsigned int tcp_sync_mss(struct sock *sk, u32 pmtu);
626unsigned int tcp_current_mss(struct sock *sk);
627u32 tcp_clamp_probe0_to_user_timeout(const struct sock *sk, u32 when);
628
629/* Bound MSS / TSO packet size with the half of the window */
630static inline int tcp_bound_to_half_wnd(struct tcp_sock *tp, int pktsize)
631{
632	int cutoff;
633
634	/* When peer uses tiny windows, there is no use in packetizing
635	 * to sub-MSS pieces for the sake of SWS or making sure there
636	 * are enough packets in the pipe for fast recovery.
637	 *
638	 * On the other hand, for extremely large MSS devices, handling
639	 * smaller than MSS windows in this way does make sense.
640	 */
641	if (tp->max_window > TCP_MSS_DEFAULT)
642		cutoff = (tp->max_window >> 1);
643	else
644		cutoff = tp->max_window;
645
646	if (cutoff && pktsize > cutoff)
647		return max_t(int, cutoff, 68U - tp->tcp_header_len);
648	else
649		return pktsize;
650}
651
652/* tcp.c */
653void tcp_get_info(struct sock *, struct tcp_info *);
654
655/* Read 'sendfile()'-style from a TCP socket */
656int tcp_read_sock(struct sock *sk, read_descriptor_t *desc,
657		  sk_read_actor_t recv_actor);
658
659void tcp_initialize_rcv_mss(struct sock *sk);
660
661int tcp_mtu_to_mss(struct sock *sk, int pmtu);
662int tcp_mss_to_mtu(struct sock *sk, int mss);
663void tcp_mtup_init(struct sock *sk);
664
665static inline void tcp_bound_rto(const struct sock *sk)
666{
667	if (inet_csk(sk)->icsk_rto > TCP_RTO_MAX)
668		inet_csk(sk)->icsk_rto = TCP_RTO_MAX;
669}
670
671static inline u32 __tcp_set_rto(const struct tcp_sock *tp)
672{
673	return usecs_to_jiffies((tp->srtt_us >> 3) + tp->rttvar_us);
674}
675
676static inline void __tcp_fast_path_on(struct tcp_sock *tp, u32 snd_wnd)
677{
678	/* mptcp hooks are only on the slow path */
679	if (sk_is_mptcp((struct sock *)tp))
680		return;
681
682	tp->pred_flags = htonl((tp->tcp_header_len << 26) |
683			       ntohl(TCP_FLAG_ACK) |
684			       snd_wnd);
685}
686
687static inline void tcp_fast_path_on(struct tcp_sock *tp)
688{
689	__tcp_fast_path_on(tp, tp->snd_wnd >> tp->rx_opt.snd_wscale);
690}
691
692static inline void tcp_fast_path_check(struct sock *sk)
693{
694	struct tcp_sock *tp = tcp_sk(sk);
695
696	if (RB_EMPTY_ROOT(&tp->out_of_order_queue) &&
697	    tp->rcv_wnd &&
698	    atomic_read(&sk->sk_rmem_alloc) < sk->sk_rcvbuf &&
699	    !tp->urg_data)
700		tcp_fast_path_on(tp);
701}
702
703/* Compute the actual rto_min value */
704static inline u32 tcp_rto_min(struct sock *sk)
705{
706	const struct dst_entry *dst = __sk_dst_get(sk);
707	u32 rto_min = inet_csk(sk)->icsk_rto_min;
708
709	if (dst && dst_metric_locked(dst, RTAX_RTO_MIN))
710		rto_min = dst_metric_rtt(dst, RTAX_RTO_MIN);
711	return rto_min;
712}
713
714static inline u32 tcp_rto_min_us(struct sock *sk)
715{
716	return jiffies_to_usecs(tcp_rto_min(sk));
717}
718
719static inline bool tcp_ca_dst_locked(const struct dst_entry *dst)
720{
721	return dst_metric_locked(dst, RTAX_CC_ALGO);
722}
723
724/* Minimum RTT in usec. ~0 means not available. */
725static inline u32 tcp_min_rtt(const struct tcp_sock *tp)
726{
727	return minmax_get(&tp->rtt_min);
728}
729
730/* Compute the actual receive window we are currently advertising.
731 * Rcv_nxt can be after the window if our peer push more data
732 * than the offered window.
733 */
734static inline u32 tcp_receive_window(const struct tcp_sock *tp)
735{
736	s32 win = tp->rcv_wup + tp->rcv_wnd - tp->rcv_nxt;
737
738	if (win < 0)
739		win = 0;
740	return (u32) win;
741}
742
743/* Choose a new window, without checks for shrinking, and without
744 * scaling applied to the result.  The caller does these things
745 * if necessary.  This is a "raw" window selection.
746 */
747u32 __tcp_select_window(struct sock *sk);
748
749void tcp_send_window_probe(struct sock *sk);
750
751/* TCP uses 32bit jiffies to save some space.
752 * Note that this is different from tcp_time_stamp, which
753 * historically has been the same until linux-4.13.
754 */
755#define tcp_jiffies32 ((u32)jiffies)
756
757/*
758 * Deliver a 32bit value for TCP timestamp option (RFC 7323)
759 * It is no longer tied to jiffies, but to 1 ms clock.
760 * Note: double check if you want to use tcp_jiffies32 instead of this.
761 */
762#define TCP_TS_HZ	1000
763
764static inline u64 tcp_clock_ns(void)
765{
766	return ktime_get_ns();
767}
768
769static inline u64 tcp_clock_us(void)
770{
771	return div_u64(tcp_clock_ns(), NSEC_PER_USEC);
772}
773
774/* This should only be used in contexts where tp->tcp_mstamp is up to date */
775static inline u32 tcp_time_stamp(const struct tcp_sock *tp)
776{
777	return div_u64(tp->tcp_mstamp, USEC_PER_SEC / TCP_TS_HZ);
778}
779
780/* Convert a nsec timestamp into TCP TSval timestamp (ms based currently) */
781static inline u64 tcp_ns_to_ts(u64 ns)
782{
783	return div_u64(ns, NSEC_PER_SEC / TCP_TS_HZ);
784}
785
786/* Could use tcp_clock_us() / 1000, but this version uses a single divide */
787static inline u32 tcp_time_stamp_raw(void)
788{
789	return tcp_ns_to_ts(tcp_clock_ns());
790}
791
792void tcp_mstamp_refresh(struct tcp_sock *tp);
793
794static inline u32 tcp_stamp_us_delta(u64 t1, u64 t0)
795{
796	return max_t(s64, t1 - t0, 0);
797}
798
799static inline u32 tcp_skb_timestamp(const struct sk_buff *skb)
800{
801	return tcp_ns_to_ts(skb->skb_mstamp_ns);
802}
803
804/* provide the departure time in us unit */
805static inline u64 tcp_skb_timestamp_us(const struct sk_buff *skb)
806{
807	return div_u64(skb->skb_mstamp_ns, NSEC_PER_USEC);
808}
809
810
811#define tcp_flag_byte(th) (((u_int8_t *)th)[13])
812
813#define TCPHDR_FIN 0x01
814#define TCPHDR_SYN 0x02
815#define TCPHDR_RST 0x04
816#define TCPHDR_PSH 0x08
817#define TCPHDR_ACK 0x10
818#define TCPHDR_URG 0x20
819#define TCPHDR_ECE 0x40
820#define TCPHDR_CWR 0x80
821
822#define TCPHDR_SYN_ECN	(TCPHDR_SYN | TCPHDR_ECE | TCPHDR_CWR)
823
824/* This is what the send packet queuing engine uses to pass
825 * TCP per-packet control information to the transmission code.
826 * We also store the host-order sequence numbers in here too.
827 * This is 44 bytes if IPV6 is enabled.
828 * If this grows please adjust skbuff.h:skbuff->cb[xxx] size appropriately.
829 */
830struct tcp_skb_cb {
831	__u32		seq;		/* Starting sequence number	*/
832	__u32		end_seq;	/* SEQ + FIN + SYN + datalen	*/
833	union {
834		/* Note : tcp_tw_isn is used in input path only
835		 *	  (isn chosen by tcp_timewait_state_process())
836		 *
837		 * 	  tcp_gso_segs/size are used in write queue only,
838		 *	  cf tcp_skb_pcount()/tcp_skb_mss()
839		 */
840		__u32		tcp_tw_isn;
841		struct {
842			u16	tcp_gso_segs;
843			u16	tcp_gso_size;
844		};
845	};
846	__u8		tcp_flags;	/* TCP header flags. (tcp[13])	*/
847
848	__u8		sacked;		/* State flags for SACK.	*/
849#define TCPCB_SACKED_ACKED	0x01	/* SKB ACK'd by a SACK block	*/
850#define TCPCB_SACKED_RETRANS	0x02	/* SKB retransmitted		*/
851#define TCPCB_LOST		0x04	/* SKB is lost			*/
852#define TCPCB_TAGBITS		0x07	/* All tag bits			*/
853#define TCPCB_REPAIRED		0x10	/* SKB repaired (no skb_mstamp_ns)	*/
854#define TCPCB_EVER_RETRANS	0x80	/* Ever retransmitted frame	*/
855#define TCPCB_RETRANS		(TCPCB_SACKED_RETRANS|TCPCB_EVER_RETRANS| \
856				TCPCB_REPAIRED)
857
858	__u8		ip_dsfield;	/* IPv4 tos or IPv6 dsfield	*/
859	__u8		txstamp_ack:1,	/* Record TX timestamp for ack? */
860			eor:1,		/* Is skb MSG_EOR marked? */
861			has_rxtstamp:1,	/* SKB has a RX timestamp	*/
862			unused:5;
863	__u32		ack_seq;	/* Sequence number ACK'd	*/
864	union {
865		struct {
866			/* There is space for up to 24 bytes */
867			__u32 in_flight:30,/* Bytes in flight at transmit */
868			      is_app_limited:1, /* cwnd not fully used? */
869			      unused:1;
870			/* pkts S/ACKed so far upon tx of skb, incl retrans: */
871			__u32 delivered;
872			/* start of send pipeline phase */
873			u64 first_tx_mstamp;
874			/* when we reached the "delivered" count */
875			u64 delivered_mstamp;
876		} tx;   /* only used for outgoing skbs */
877		union {
878			struct inet_skb_parm	h4;
879#if IS_ENABLED(CONFIG_IPV6)
880			struct inet6_skb_parm	h6;
881#endif
882#if IS_ENABLED(CONFIG_NEWIP)
883			struct ninet_skb_parm	hnip; /* NIP */
884#endif
885		} header;	/* For incoming skbs */
886		struct {
887			__u32 flags;
888			struct sock *sk_redir;
889			void *data_end;
890		} bpf;
891	};
892};
893
894#define TCP_SKB_CB(__skb)	((struct tcp_skb_cb *)&((__skb)->cb[0]))
895
896static inline void bpf_compute_data_end_sk_skb(struct sk_buff *skb)
897{
898	TCP_SKB_CB(skb)->bpf.data_end = skb->data + skb_headlen(skb);
899}
900
901static inline bool tcp_skb_bpf_ingress(const struct sk_buff *skb)
902{
903	return TCP_SKB_CB(skb)->bpf.flags & BPF_F_INGRESS;
904}
905
906static inline struct sock *tcp_skb_bpf_redirect_fetch(struct sk_buff *skb)
907{
908	return TCP_SKB_CB(skb)->bpf.sk_redir;
909}
910
911static inline void tcp_skb_bpf_redirect_clear(struct sk_buff *skb)
912{
913	TCP_SKB_CB(skb)->bpf.sk_redir = NULL;
914}
915
916extern const struct inet_connection_sock_af_ops ipv4_specific;
917
918#if IS_ENABLED(CONFIG_IPV6)
919/* This is the variant of inet6_iif() that must be used by TCP,
920 * as TCP moves IP6CB into a different location in skb->cb[]
921 */
922static inline int tcp_v6_iif(const struct sk_buff *skb)
923{
924	return TCP_SKB_CB(skb)->header.h6.iif;
925}
926
927static inline int tcp_v6_iif_l3_slave(const struct sk_buff *skb)
928{
929	bool l3_slave = ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags);
930
931	return l3_slave ? skb->skb_iif : TCP_SKB_CB(skb)->header.h6.iif;
932}
933
934/* TCP_SKB_CB reference means this can not be used from early demux */
935static inline int tcp_v6_sdif(const struct sk_buff *skb)
936{
937#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
938	if (skb && ipv6_l3mdev_skb(TCP_SKB_CB(skb)->header.h6.flags))
939		return TCP_SKB_CB(skb)->header.h6.iif;
940#endif
941	return 0;
942}
943
944extern const struct inet_connection_sock_af_ops ipv6_specific;
945
946INDIRECT_CALLABLE_DECLARE(void tcp_v6_send_check(struct sock *sk, struct sk_buff *skb));
947INDIRECT_CALLABLE_DECLARE(int tcp_v6_rcv(struct sk_buff *skb));
948void tcp_v6_early_demux(struct sk_buff *skb);
949
950#endif
951
952/* TCP_SKB_CB reference means this can not be used from early demux */
953static inline int tcp_v4_sdif(struct sk_buff *skb)
954{
955#if IS_ENABLED(CONFIG_NET_L3_MASTER_DEV)
956	if (skb && ipv4_l3mdev_skb(TCP_SKB_CB(skb)->header.h4.flags))
957		return TCP_SKB_CB(skb)->header.h4.iif;
958#endif
959	return 0;
960}
961
962/* Due to TSO, an SKB can be composed of multiple actual
963 * packets.  To keep these tracked properly, we use this.
964 */
965static inline int tcp_skb_pcount(const struct sk_buff *skb)
966{
967	return TCP_SKB_CB(skb)->tcp_gso_segs;
968}
969
970static inline void tcp_skb_pcount_set(struct sk_buff *skb, int segs)
971{
972	TCP_SKB_CB(skb)->tcp_gso_segs = segs;
973}
974
975static inline void tcp_skb_pcount_add(struct sk_buff *skb, int segs)
976{
977	TCP_SKB_CB(skb)->tcp_gso_segs += segs;
978}
979
980/* This is valid iff skb is in write queue and tcp_skb_pcount() > 1. */
981static inline int tcp_skb_mss(const struct sk_buff *skb)
982{
983	return TCP_SKB_CB(skb)->tcp_gso_size;
984}
985
986static inline bool tcp_skb_can_collapse_to(const struct sk_buff *skb)
987{
988	return likely(!TCP_SKB_CB(skb)->eor);
989}
990
991static inline bool tcp_skb_can_collapse(const struct sk_buff *to,
992					const struct sk_buff *from)
993{
994	return likely(tcp_skb_can_collapse_to(to) &&
995		      mptcp_skb_can_collapse(to, from));
996}
997
998/* Events passed to congestion control interface */
999enum tcp_ca_event {
1000	CA_EVENT_TX_START,	/* first transmit when no packets in flight */
1001	CA_EVENT_CWND_RESTART,	/* congestion window restart */
1002	CA_EVENT_COMPLETE_CWR,	/* end of congestion recovery */
1003	CA_EVENT_LOSS,		/* loss timeout */
1004	CA_EVENT_ECN_NO_CE,	/* ECT set, but not CE marked */
1005	CA_EVENT_ECN_IS_CE,	/* received CE marked IP packet */
1006};
1007
1008/* Information about inbound ACK, passed to cong_ops->in_ack_event() */
1009enum tcp_ca_ack_event_flags {
1010	CA_ACK_SLOWPATH		= (1 << 0),	/* In slow path processing */
1011	CA_ACK_WIN_UPDATE	= (1 << 1),	/* ACK updated window */
1012	CA_ACK_ECE		= (1 << 2),	/* ECE bit is set on ack */
1013};
1014
1015/*
1016 * Interface for adding new TCP congestion control handlers
1017 */
1018#define TCP_CA_NAME_MAX	16
1019#define TCP_CA_MAX	128
1020#define TCP_CA_BUF_MAX	(TCP_CA_NAME_MAX*TCP_CA_MAX)
1021
1022#define TCP_CA_UNSPEC	0
1023
1024/* Algorithm can be set on socket without CAP_NET_ADMIN privileges */
1025#define TCP_CONG_NON_RESTRICTED 0x1
1026/* Requires ECN/ECT set on all packets */
1027#define TCP_CONG_NEEDS_ECN	0x2
1028#define TCP_CONG_MASK	(TCP_CONG_NON_RESTRICTED | TCP_CONG_NEEDS_ECN)
1029
1030union tcp_cc_info;
1031
1032struct ack_sample {
1033	u32 pkts_acked;
1034	s32 rtt_us;
1035	u32 in_flight;
1036};
1037
1038/* A rate sample measures the number of (original/retransmitted) data
1039 * packets delivered "delivered" over an interval of time "interval_us".
1040 * The tcp_rate.c code fills in the rate sample, and congestion
1041 * control modules that define a cong_control function to run at the end
1042 * of ACK processing can optionally chose to consult this sample when
1043 * setting cwnd and pacing rate.
1044 * A sample is invalid if "delivered" or "interval_us" is negative.
1045 */
1046struct rate_sample {
1047	u64  prior_mstamp; /* starting timestamp for interval */
1048	u32  prior_delivered;	/* tp->delivered at "prior_mstamp" */
1049	s32  delivered;		/* number of packets delivered over interval */
1050	long interval_us;	/* time for tp->delivered to incr "delivered" */
1051	u32 snd_interval_us;	/* snd interval for delivered packets */
1052	u32 rcv_interval_us;	/* rcv interval for delivered packets */
1053	long rtt_us;		/* RTT of last (S)ACKed packet (or -1) */
1054	int  losses;		/* number of packets marked lost upon ACK */
1055	u32  acked_sacked;	/* number of packets newly (S)ACKed upon ACK */
1056	u32  prior_in_flight;	/* in flight before this ACK */
1057	u32  last_end_seq;	/* end_seq of most recently ACKed packet */
1058	bool is_app_limited;	/* is sample from packet with bubble in pipe? */
1059	bool is_retrans;	/* is sample from retransmission? */
1060	bool is_ack_delayed;	/* is this (likely) a delayed ACK? */
1061};
1062
1063struct tcp_congestion_ops {
1064	struct list_head	list;
1065	u32 key;
1066	u32 flags;
1067
1068	/* initialize private data (optional) */
1069	void (*init)(struct sock *sk);
1070	/* cleanup private data  (optional) */
1071	void (*release)(struct sock *sk);
1072
1073	/* return slow start threshold (required) */
1074	u32 (*ssthresh)(struct sock *sk);
1075	/* do new cwnd calculation (required) */
1076	void (*cong_avoid)(struct sock *sk, u32 ack, u32 acked);
1077	/* call before changing ca_state (optional) */
1078	void (*set_state)(struct sock *sk, u8 new_state);
1079	/* call when cwnd event occurs (optional) */
1080	void (*cwnd_event)(struct sock *sk, enum tcp_ca_event ev);
1081	/* call when ack arrives (optional) */
1082	void (*in_ack_event)(struct sock *sk, u32 flags);
1083	/* new value of cwnd after loss (required) */
1084	u32  (*undo_cwnd)(struct sock *sk);
1085	/* hook for packet ack accounting (optional) */
1086	void (*pkts_acked)(struct sock *sk, const struct ack_sample *sample);
1087	/* override sysctl_tcp_min_tso_segs */
1088	u32 (*min_tso_segs)(struct sock *sk);
1089	/* returns the multiplier used in tcp_sndbuf_expand (optional) */
1090	u32 (*sndbuf_expand)(struct sock *sk);
1091	/* call when packets are delivered to update cwnd and pacing rate,
1092	 * after all the ca_state processing. (optional)
1093	 */
1094	void (*cong_control)(struct sock *sk, const struct rate_sample *rs);
1095	/* get info for inet_diag (optional) */
1096	size_t (*get_info)(struct sock *sk, u32 ext, int *attr,
1097			   union tcp_cc_info *info);
1098
1099	char 		name[TCP_CA_NAME_MAX];
1100	struct module 	*owner;
1101};
1102
1103int tcp_register_congestion_control(struct tcp_congestion_ops *type);
1104void tcp_unregister_congestion_control(struct tcp_congestion_ops *type);
1105
1106void tcp_assign_congestion_control(struct sock *sk);
1107void tcp_init_congestion_control(struct sock *sk);
1108void tcp_cleanup_congestion_control(struct sock *sk);
1109int tcp_set_default_congestion_control(struct net *net, const char *name);
1110void tcp_get_default_congestion_control(struct net *net, char *name);
1111void tcp_get_available_congestion_control(char *buf, size_t len);
1112void tcp_get_allowed_congestion_control(char *buf, size_t len);
1113int tcp_set_allowed_congestion_control(char *allowed);
1114int tcp_set_congestion_control(struct sock *sk, const char *name, bool load,
1115			       bool cap_net_admin);
1116u32 tcp_slow_start(struct tcp_sock *tp, u32 acked);
1117void tcp_cong_avoid_ai(struct tcp_sock *tp, u32 w, u32 acked);
1118
1119u32 tcp_reno_ssthresh(struct sock *sk);
1120u32 tcp_reno_undo_cwnd(struct sock *sk);
1121void tcp_reno_cong_avoid(struct sock *sk, u32 ack, u32 acked);
1122extern struct tcp_congestion_ops tcp_reno;
1123
1124struct tcp_congestion_ops *tcp_ca_find(const char *name);
1125struct tcp_congestion_ops *tcp_ca_find_key(u32 key);
1126u32 tcp_ca_get_key_by_name(struct net *net, const char *name, bool *ecn_ca);
1127#ifdef CONFIG_INET
1128char *tcp_ca_get_name_by_key(u32 key, char *buffer);
1129#else
1130static inline char *tcp_ca_get_name_by_key(u32 key, char *buffer)
1131{
1132	return NULL;
1133}
1134#endif
1135
1136static inline bool tcp_ca_needs_ecn(const struct sock *sk)
1137{
1138	const struct inet_connection_sock *icsk = inet_csk(sk);
1139
1140	return icsk->icsk_ca_ops->flags & TCP_CONG_NEEDS_ECN;
1141}
1142
1143static inline void tcp_set_ca_state(struct sock *sk, const u8 ca_state)
1144{
1145	struct inet_connection_sock *icsk = inet_csk(sk);
1146
1147	if (icsk->icsk_ca_ops->set_state)
1148		icsk->icsk_ca_ops->set_state(sk, ca_state);
1149	icsk->icsk_ca_state = ca_state;
1150}
1151
1152static inline void tcp_ca_event(struct sock *sk, const enum tcp_ca_event event)
1153{
1154	const struct inet_connection_sock *icsk = inet_csk(sk);
1155
1156	if (icsk->icsk_ca_ops->cwnd_event)
1157		icsk->icsk_ca_ops->cwnd_event(sk, event);
1158}
1159
1160/* From tcp_rate.c */
1161void tcp_rate_skb_sent(struct sock *sk, struct sk_buff *skb);
1162void tcp_rate_skb_delivered(struct sock *sk, struct sk_buff *skb,
1163			    struct rate_sample *rs);
1164void tcp_rate_gen(struct sock *sk, u32 delivered, u32 lost,
1165		  bool is_sack_reneg, struct rate_sample *rs);
1166void tcp_rate_check_app_limited(struct sock *sk);
1167
1168static inline bool tcp_skb_sent_after(u64 t1, u64 t2, u32 seq1, u32 seq2)
1169{
1170	return t1 > t2 || (t1 == t2 && after(seq1, seq2));
1171}
1172
1173/* These functions determine how the current flow behaves in respect of SACK
1174 * handling. SACK is negotiated with the peer, and therefore it can vary
1175 * between different flows.
1176 *
1177 * tcp_is_sack - SACK enabled
1178 * tcp_is_reno - No SACK
1179 */
1180static inline int tcp_is_sack(const struct tcp_sock *tp)
1181{
1182	return likely(tp->rx_opt.sack_ok);
1183}
1184
1185static inline bool tcp_is_reno(const struct tcp_sock *tp)
1186{
1187	return !tcp_is_sack(tp);
1188}
1189
1190static inline unsigned int tcp_left_out(const struct tcp_sock *tp)
1191{
1192	return tp->sacked_out + tp->lost_out;
1193}
1194
1195/* This determines how many packets are "in the network" to the best
1196 * of our knowledge.  In many cases it is conservative, but where
1197 * detailed information is available from the receiver (via SACK
1198 * blocks etc.) we can make more aggressive calculations.
1199 *
1200 * Use this for decisions involving congestion control, use just
1201 * tp->packets_out to determine if the send queue is empty or not.
1202 *
1203 * Read this equation as:
1204 *
1205 *	"Packets sent once on transmission queue" MINUS
1206 *	"Packets left network, but not honestly ACKed yet" PLUS
1207 *	"Packets fast retransmitted"
1208 */
1209static inline unsigned int tcp_packets_in_flight(const struct tcp_sock *tp)
1210{
1211	return tp->packets_out - tcp_left_out(tp) + tp->retrans_out;
1212}
1213
1214#define TCP_INFINITE_SSTHRESH	0x7fffffff
1215
1216static inline bool tcp_in_slow_start(const struct tcp_sock *tp)
1217{
1218	return tp->snd_cwnd < tp->snd_ssthresh;
1219}
1220
1221static inline bool tcp_in_initial_slowstart(const struct tcp_sock *tp)
1222{
1223	return tp->snd_ssthresh >= TCP_INFINITE_SSTHRESH;
1224}
1225
1226static inline bool tcp_in_cwnd_reduction(const struct sock *sk)
1227{
1228	return (TCPF_CA_CWR | TCPF_CA_Recovery) &
1229	       (1 << inet_csk(sk)->icsk_ca_state);
1230}
1231
1232/* If cwnd > ssthresh, we may raise ssthresh to be half-way to cwnd.
1233 * The exception is cwnd reduction phase, when cwnd is decreasing towards
1234 * ssthresh.
1235 */
1236static inline __u32 tcp_current_ssthresh(const struct sock *sk)
1237{
1238	const struct tcp_sock *tp = tcp_sk(sk);
1239
1240	if (tcp_in_cwnd_reduction(sk))
1241		return tp->snd_ssthresh;
1242	else
1243		return max(tp->snd_ssthresh,
1244			   ((tp->snd_cwnd >> 1) +
1245			    (tp->snd_cwnd >> 2)));
1246}
1247
1248/* Use define here intentionally to get WARN_ON location shown at the caller */
1249#define tcp_verify_left_out(tp)	WARN_ON(tcp_left_out(tp) > tp->packets_out)
1250
1251void tcp_enter_cwr(struct sock *sk);
1252__u32 tcp_init_cwnd(const struct tcp_sock *tp, const struct dst_entry *dst);
1253
1254/* The maximum number of MSS of available cwnd for which TSO defers
1255 * sending if not using sysctl_tcp_tso_win_divisor.
1256 */
1257static inline __u32 tcp_max_tso_deferred_mss(const struct tcp_sock *tp)
1258{
1259	return 3;
1260}
1261
1262/* Returns end sequence number of the receiver's advertised window */
1263static inline u32 tcp_wnd_end(const struct tcp_sock *tp)
1264{
1265	return tp->snd_una + tp->snd_wnd;
1266}
1267
1268/* We follow the spirit of RFC2861 to validate cwnd but implement a more
1269 * flexible approach. The RFC suggests cwnd should not be raised unless
1270 * it was fully used previously. And that's exactly what we do in
1271 * congestion avoidance mode. But in slow start we allow cwnd to grow
1272 * as long as the application has used half the cwnd.
1273 * Example :
1274 *    cwnd is 10 (IW10), but application sends 9 frames.
1275 *    We allow cwnd to reach 18 when all frames are ACKed.
1276 * This check is safe because it's as aggressive as slow start which already
1277 * risks 100% overshoot. The advantage is that we discourage application to
1278 * either send more filler packets or data to artificially blow up the cwnd
1279 * usage, and allow application-limited process to probe bw more aggressively.
1280 */
1281static inline bool tcp_is_cwnd_limited(const struct sock *sk)
1282{
1283	const struct tcp_sock *tp = tcp_sk(sk);
1284
1285	if (tp->is_cwnd_limited)
1286		return true;
1287
1288	/* If in slow start, ensure cwnd grows to twice what was ACKed. */
1289	if (tcp_in_slow_start(tp))
1290		return tp->snd_cwnd < 2 * tp->max_packets_out;
1291
1292	return false;
1293}
1294
1295/* BBR congestion control needs pacing.
1296 * Same remark for SO_MAX_PACING_RATE.
1297 * sch_fq packet scheduler is efficiently handling pacing,
1298 * but is not always installed/used.
1299 * Return true if TCP stack should pace packets itself.
1300 */
1301static inline bool tcp_needs_internal_pacing(const struct sock *sk)
1302{
1303	return smp_load_acquire(&sk->sk_pacing_status) == SK_PACING_NEEDED;
1304}
1305
1306/* Estimates in how many jiffies next packet for this flow can be sent.
1307 * Scheduling a retransmit timer too early would be silly.
1308 */
1309static inline unsigned long tcp_pacing_delay(const struct sock *sk)
1310{
1311	s64 delay = tcp_sk(sk)->tcp_wstamp_ns - tcp_sk(sk)->tcp_clock_cache;
1312
1313	return delay > 0 ? nsecs_to_jiffies(delay) : 0;
1314}
1315
1316static inline void tcp_reset_xmit_timer(struct sock *sk,
1317					const int what,
1318					unsigned long when,
1319					const unsigned long max_when)
1320{
1321	inet_csk_reset_xmit_timer(sk, what, when + tcp_pacing_delay(sk),
1322				  max_when);
1323}
1324
1325/* Something is really bad, we could not queue an additional packet,
1326 * because qdisc is full or receiver sent a 0 window, or we are paced.
1327 * We do not want to add fuel to the fire, or abort too early,
1328 * so make sure the timer we arm now is at least 200ms in the future,
1329 * regardless of current icsk_rto value (as it could be ~2ms)
1330 */
1331static inline unsigned long tcp_probe0_base(const struct sock *sk)
1332{
1333	return max_t(unsigned long, inet_csk(sk)->icsk_rto, TCP_RTO_MIN);
1334}
1335
1336/* Variant of inet_csk_rto_backoff() used for zero window probes */
1337static inline unsigned long tcp_probe0_when(const struct sock *sk,
1338					    unsigned long max_when)
1339{
1340	u64 when = (u64)tcp_probe0_base(sk) << inet_csk(sk)->icsk_backoff;
1341
1342	return (unsigned long)min_t(u64, when, max_when);
1343}
1344
1345static inline void tcp_check_probe_timer(struct sock *sk)
1346{
1347	if (!tcp_sk(sk)->packets_out && !inet_csk(sk)->icsk_pending)
1348		tcp_reset_xmit_timer(sk, ICSK_TIME_PROBE0,
1349				     tcp_probe0_base(sk), TCP_RTO_MAX);
1350}
1351
1352static inline void tcp_init_wl(struct tcp_sock *tp, u32 seq)
1353{
1354	tp->snd_wl1 = seq;
1355}
1356
1357static inline void tcp_update_wl(struct tcp_sock *tp, u32 seq)
1358{
1359	tp->snd_wl1 = seq;
1360}
1361
1362/*
1363 * Calculate(/check) TCP checksum
1364 */
1365static inline __sum16 tcp_v4_check(int len, __be32 saddr,
1366				   __be32 daddr, __wsum base)
1367{
1368	return csum_tcpudp_magic(saddr, daddr, len, IPPROTO_TCP, base);
1369}
1370
1371static inline bool tcp_checksum_complete(struct sk_buff *skb)
1372{
1373	return !skb_csum_unnecessary(skb) &&
1374		__skb_checksum_complete(skb);
1375}
1376
1377bool tcp_add_backlog(struct sock *sk, struct sk_buff *skb);
1378int tcp_filter(struct sock *sk, struct sk_buff *skb);
1379void tcp_set_state(struct sock *sk, int state);
1380void tcp_done(struct sock *sk);
1381int tcp_abort(struct sock *sk, int err);
1382
1383static inline void tcp_sack_reset(struct tcp_options_received *rx_opt)
1384{
1385	rx_opt->dsack = 0;
1386	rx_opt->num_sacks = 0;
1387}
1388
1389void tcp_cwnd_restart(struct sock *sk, s32 delta);
1390
1391static inline void tcp_slow_start_after_idle_check(struct sock *sk)
1392{
1393	const struct tcp_congestion_ops *ca_ops = inet_csk(sk)->icsk_ca_ops;
1394	struct tcp_sock *tp = tcp_sk(sk);
1395	s32 delta;
1396
1397	if (!READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_slow_start_after_idle) ||
1398	    tp->packets_out || ca_ops->cong_control)
1399		return;
1400	delta = tcp_jiffies32 - tp->lsndtime;
1401	if (delta > inet_csk(sk)->icsk_rto)
1402		tcp_cwnd_restart(sk, delta);
1403}
1404
1405/* Determine a window scaling and initial window to offer. */
1406void tcp_select_initial_window(const struct sock *sk, int __space,
1407			       __u32 mss, __u32 *rcv_wnd,
1408			       __u32 *window_clamp, int wscale_ok,
1409			       __u8 *rcv_wscale, __u32 init_rcv_wnd);
1410
1411static inline int tcp_win_from_space(const struct sock *sk, int space)
1412{
1413	int tcp_adv_win_scale = READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_adv_win_scale);
1414
1415	return tcp_adv_win_scale <= 0 ?
1416		(space>>(-tcp_adv_win_scale)) :
1417		space - (space>>tcp_adv_win_scale);
1418}
1419
1420/* Note: caller must be prepared to deal with negative returns */
1421static inline int tcp_space(const struct sock *sk)
1422{
1423	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf) -
1424				  READ_ONCE(sk->sk_backlog.len) -
1425				  atomic_read(&sk->sk_rmem_alloc));
1426}
1427
1428static inline int tcp_full_space(const struct sock *sk)
1429{
1430	return tcp_win_from_space(sk, READ_ONCE(sk->sk_rcvbuf));
1431}
1432
1433void tcp_cleanup_rbuf(struct sock *sk, int copied);
1434
1435/* We provision sk_rcvbuf around 200% of sk_rcvlowat.
1436 * If 87.5 % (7/8) of the space has been consumed, we want to override
1437 * SO_RCVLOWAT constraint, since we are receiving skbs with too small
1438 * len/truesize ratio.
1439 */
1440static inline bool tcp_rmem_pressure(const struct sock *sk)
1441{
1442	int rcvbuf, threshold;
1443
1444	if (tcp_under_memory_pressure(sk))
1445		return true;
1446
1447	rcvbuf = READ_ONCE(sk->sk_rcvbuf);
1448	threshold = rcvbuf - (rcvbuf >> 3);
1449
1450	return atomic_read(&sk->sk_rmem_alloc) > threshold;
1451}
1452
1453extern void tcp_openreq_init_rwin(struct request_sock *req,
1454				  const struct sock *sk_listener,
1455				  const struct dst_entry *dst);
1456
1457void tcp_enter_memory_pressure(struct sock *sk);
1458void tcp_leave_memory_pressure(struct sock *sk);
1459
1460static inline int keepalive_intvl_when(const struct tcp_sock *tp)
1461{
1462	struct net *net = sock_net((struct sock *)tp);
1463	int val;
1464
1465	/* Paired with WRITE_ONCE() in tcp_sock_set_keepintvl()
1466	 * and do_tcp_setsockopt().
1467	 */
1468	val = READ_ONCE(tp->keepalive_intvl);
1469
1470	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_intvl);
1471}
1472
1473static inline int keepalive_time_when(const struct tcp_sock *tp)
1474{
1475	struct net *net = sock_net((struct sock *)tp);
1476	int val;
1477
1478	/* Paired with WRITE_ONCE() in tcp_sock_set_keepidle_locked() */
1479	val = READ_ONCE(tp->keepalive_time);
1480
1481	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_time);
1482}
1483
1484static inline int keepalive_probes(const struct tcp_sock *tp)
1485{
1486	struct net *net = sock_net((struct sock *)tp);
1487	int val;
1488
1489	/* Paired with WRITE_ONCE() in tcp_sock_set_keepcnt()
1490	 * and do_tcp_setsockopt().
1491	 */
1492	val = READ_ONCE(tp->keepalive_probes);
1493
1494	return val ? : READ_ONCE(net->ipv4.sysctl_tcp_keepalive_probes);
1495}
1496
1497static inline u32 keepalive_time_elapsed(const struct tcp_sock *tp)
1498{
1499	const struct inet_connection_sock *icsk = &tp->inet_conn;
1500
1501	return min_t(u32, tcp_jiffies32 - icsk->icsk_ack.lrcvtime,
1502			  tcp_jiffies32 - tp->rcv_tstamp);
1503}
1504
1505static inline int tcp_fin_time(const struct sock *sk)
1506{
1507	int fin_timeout = tcp_sk(sk)->linger2 ? :
1508		READ_ONCE(sock_net(sk)->ipv4.sysctl_tcp_fin_timeout);
1509	const int rto = inet_csk(sk)->icsk_rto;
1510
1511	if (fin_timeout < (rto << 2) - (rto >> 1))
1512		fin_timeout = (rto << 2) - (rto >> 1);
1513
1514	return fin_timeout;
1515}
1516
1517static inline bool tcp_paws_check(const struct tcp_options_received *rx_opt,
1518				  int paws_win)
1519{
1520	if ((s32)(rx_opt->ts_recent - rx_opt->rcv_tsval) <= paws_win)
1521		return true;
1522	if (unlikely(!time_before32(ktime_get_seconds(),
1523				    rx_opt->ts_recent_stamp + TCP_PAWS_24DAYS)))
1524		return true;
1525	/*
1526	 * Some OSes send SYN and SYNACK messages with tsval=0 tsecr=0,
1527	 * then following tcp messages have valid values. Ignore 0 value,
1528	 * or else 'negative' tsval might forbid us to accept their packets.
1529	 */
1530	if (!rx_opt->ts_recent)
1531		return true;
1532	return false;
1533}
1534
1535static inline bool tcp_paws_reject(const struct tcp_options_received *rx_opt,
1536				   int rst)
1537{
1538	if (tcp_paws_check(rx_opt, 0))
1539		return false;
1540
1541	/* RST segments are not recommended to carry timestamp,
1542	   and, if they do, it is recommended to ignore PAWS because
1543	   "their cleanup function should take precedence over timestamps."
1544	   Certainly, it is mistake. It is necessary to understand the reasons
1545	   of this constraint to relax it: if peer reboots, clock may go
1546	   out-of-sync and half-open connections will not be reset.
1547	   Actually, the problem would be not existing if all
1548	   the implementations followed draft about maintaining clock
1549	   via reboots. Linux-2.2 DOES NOT!
1550
1551	   However, we can relax time bounds for RST segments to MSL.
1552	 */
1553	if (rst && !time_before32(ktime_get_seconds(),
1554				  rx_opt->ts_recent_stamp + TCP_PAWS_MSL))
1555		return false;
1556	return true;
1557}
1558
1559bool tcp_oow_rate_limited(struct net *net, const struct sk_buff *skb,
1560			  int mib_idx, u32 *last_oow_ack_time);
1561
1562static inline void tcp_mib_init(struct net *net)
1563{
1564	/* See RFC 2012 */
1565	TCP_ADD_STATS(net, TCP_MIB_RTOALGORITHM, 1);
1566	TCP_ADD_STATS(net, TCP_MIB_RTOMIN, TCP_RTO_MIN*1000/HZ);
1567	TCP_ADD_STATS(net, TCP_MIB_RTOMAX, TCP_RTO_MAX*1000/HZ);
1568	TCP_ADD_STATS(net, TCP_MIB_MAXCONN, -1);
1569}
1570
1571/* from STCP */
1572static inline void tcp_clear_retrans_hints_partial(struct tcp_sock *tp)
1573{
1574	tp->lost_skb_hint = NULL;
1575}
1576
1577static inline void tcp_clear_all_retrans_hints(struct tcp_sock *tp)
1578{
1579	tcp_clear_retrans_hints_partial(tp);
1580	tp->retransmit_skb_hint = NULL;
1581}
1582
1583union tcp_md5_addr {
1584	struct in_addr  a4;
1585#if IS_ENABLED(CONFIG_IPV6)
1586	struct in6_addr	a6;
1587#endif
1588};
1589
1590/* - key database */
1591struct tcp_md5sig_key {
1592	struct hlist_node	node;
1593	u8			keylen;
1594	u8			family; /* AF_INET or AF_INET6 */
1595	u8			prefixlen;
1596	union tcp_md5_addr	addr;
1597	int			l3index; /* set if key added with L3 scope */
1598	u8			key[TCP_MD5SIG_MAXKEYLEN];
1599	struct rcu_head		rcu;
1600};
1601
1602/* - sock block */
1603struct tcp_md5sig_info {
1604	struct hlist_head	head;
1605	struct rcu_head		rcu;
1606};
1607
1608/* - pseudo header */
1609struct tcp4_pseudohdr {
1610	__be32		saddr;
1611	__be32		daddr;
1612	__u8		pad;
1613	__u8		protocol;
1614	__be16		len;
1615};
1616
1617struct tcp6_pseudohdr {
1618	struct in6_addr	saddr;
1619	struct in6_addr daddr;
1620	__be32		len;
1621	__be32		protocol;	/* including padding */
1622};
1623
1624union tcp_md5sum_block {
1625	struct tcp4_pseudohdr ip4;
1626#if IS_ENABLED(CONFIG_IPV6)
1627	struct tcp6_pseudohdr ip6;
1628#endif
1629};
1630
1631/* - pool: digest algorithm, hash description and scratch buffer */
1632struct tcp_md5sig_pool {
1633	struct ahash_request	*md5_req;
1634	void			*scratch;
1635};
1636
1637/* - functions */
1638int tcp_v4_md5_hash_skb(char *md5_hash, const struct tcp_md5sig_key *key,
1639			const struct sock *sk, const struct sk_buff *skb);
1640int tcp_md5_do_add(struct sock *sk, const union tcp_md5_addr *addr,
1641		   int family, u8 prefixlen, int l3index,
1642		   const u8 *newkey, u8 newkeylen, gfp_t gfp);
1643int tcp_md5_do_del(struct sock *sk, const union tcp_md5_addr *addr,
1644		   int family, u8 prefixlen, int l3index);
1645struct tcp_md5sig_key *tcp_v4_md5_lookup(const struct sock *sk,
1646					 const struct sock *addr_sk);
1647
1648#ifdef CONFIG_TCP_MD5SIG
1649#include <linux/jump_label.h>
1650extern struct static_key_false tcp_md5_needed;
1651struct tcp_md5sig_key *__tcp_md5_do_lookup(const struct sock *sk, int l3index,
1652					   const union tcp_md5_addr *addr,
1653					   int family);
1654static inline struct tcp_md5sig_key *
1655tcp_md5_do_lookup(const struct sock *sk, int l3index,
1656		  const union tcp_md5_addr *addr, int family)
1657{
1658	if (!static_branch_unlikely(&tcp_md5_needed))
1659		return NULL;
1660	return __tcp_md5_do_lookup(sk, l3index, addr, family);
1661}
1662
1663#define tcp_twsk_md5_key(twsk)	((twsk)->tw_md5_key)
1664#else
1665static inline struct tcp_md5sig_key *
1666tcp_md5_do_lookup(const struct sock *sk, int l3index,
1667		  const union tcp_md5_addr *addr, int family)
1668{
1669	return NULL;
1670}
1671#define tcp_twsk_md5_key(twsk)	NULL
1672#endif
1673
1674bool tcp_alloc_md5sig_pool(void);
1675
1676struct tcp_md5sig_pool *tcp_get_md5sig_pool(void);
1677static inline void tcp_put_md5sig_pool(void)
1678{
1679	local_bh_enable();
1680}
1681
1682int tcp_md5_hash_skb_data(struct tcp_md5sig_pool *, const struct sk_buff *,
1683			  unsigned int header_len);
1684int tcp_md5_hash_key(struct tcp_md5sig_pool *hp,
1685		     const struct tcp_md5sig_key *key);
1686
1687/* From tcp_fastopen.c */
1688void tcp_fastopen_cache_get(struct sock *sk, u16 *mss,
1689			    struct tcp_fastopen_cookie *cookie);
1690void tcp_fastopen_cache_set(struct sock *sk, u16 mss,
1691			    struct tcp_fastopen_cookie *cookie, bool syn_lost,
1692			    u16 try_exp);
1693struct tcp_fastopen_request {
1694	/* Fast Open cookie. Size 0 means a cookie request */
1695	struct tcp_fastopen_cookie	cookie;
1696	struct msghdr			*data;  /* data in MSG_FASTOPEN */
1697	size_t				size;
1698	int				copied;	/* queued in tcp_connect() */
1699	struct ubuf_info		*uarg;
1700};
1701void tcp_free_fastopen_req(struct tcp_sock *tp);
1702void tcp_fastopen_destroy_cipher(struct sock *sk);
1703void tcp_fastopen_ctx_destroy(struct net *net);
1704int tcp_fastopen_reset_cipher(struct net *net, struct sock *sk,
1705			      void *primary_key, void *backup_key);
1706int tcp_fastopen_get_cipher(struct net *net, struct inet_connection_sock *icsk,
1707			    u64 *key);
1708void tcp_fastopen_add_skb(struct sock *sk, struct sk_buff *skb);
1709struct sock *tcp_try_fastopen(struct sock *sk, struct sk_buff *skb,
1710			      struct request_sock *req,
1711			      struct tcp_fastopen_cookie *foc,
1712			      const struct dst_entry *dst);
1713void tcp_fastopen_init_key_once(struct net *net);
1714bool tcp_fastopen_cookie_check(struct sock *sk, u16 *mss,
1715			     struct tcp_fastopen_cookie *cookie);
1716bool tcp_fastopen_defer_connect(struct sock *sk, int *err);
1717#define TCP_FASTOPEN_KEY_LENGTH sizeof(siphash_key_t)
1718#define TCP_FASTOPEN_KEY_MAX 2
1719#define TCP_FASTOPEN_KEY_BUF_LENGTH \
1720	(TCP_FASTOPEN_KEY_LENGTH * TCP_FASTOPEN_KEY_MAX)
1721
1722/* Fastopen key context */
1723struct tcp_fastopen_context {
1724	siphash_key_t	key[TCP_FASTOPEN_KEY_MAX];
1725	int		num;
1726	struct rcu_head	rcu;
1727};
1728
1729extern unsigned int sysctl_tcp_fastopen_blackhole_timeout;
1730void tcp_fastopen_active_disable(struct sock *sk);
1731bool tcp_fastopen_active_should_disable(struct sock *sk);
1732void tcp_fastopen_active_disable_ofo_check(struct sock *sk);
1733void tcp_fastopen_active_detect_blackhole(struct sock *sk, bool expired);
1734
1735/* Caller needs to wrap with rcu_read_(un)lock() */
1736static inline
1737struct tcp_fastopen_context *tcp_fastopen_get_ctx(const struct sock *sk)
1738{
1739	struct tcp_fastopen_context *ctx;
1740
1741	ctx = rcu_dereference(inet_csk(sk)->icsk_accept_queue.fastopenq.ctx);
1742	if (!ctx)
1743		ctx = rcu_dereference(sock_net(sk)->ipv4.tcp_fastopen_ctx);
1744	return ctx;
1745}
1746
1747static inline
1748bool tcp_fastopen_cookie_match(const struct tcp_fastopen_cookie *foc,
1749			       const struct tcp_fastopen_cookie *orig)
1750{
1751	if (orig->len == TCP_FASTOPEN_COOKIE_SIZE &&
1752	    orig->len == foc->len &&
1753	    !memcmp(orig->val, foc->val, foc->len))
1754		return true;
1755	return false;
1756}
1757
1758static inline
1759int tcp_fastopen_context_len(const struct tcp_fastopen_context *ctx)
1760{
1761	return ctx->num;
1762}
1763
1764/* Latencies incurred by various limits for a sender. They are
1765 * chronograph-like stats that are mutually exclusive.
1766 */
1767enum tcp_chrono {
1768	TCP_CHRONO_UNSPEC,
1769	TCP_CHRONO_BUSY, /* Actively sending data (non-empty write queue) */
1770	TCP_CHRONO_RWND_LIMITED, /* Stalled by insufficient receive window */
1771	TCP_CHRONO_SNDBUF_LIMITED, /* Stalled by insufficient send buffer */
1772	__TCP_CHRONO_MAX,
1773};
1774
1775void tcp_chrono_start(struct sock *sk, const enum tcp_chrono type);
1776void tcp_chrono_stop(struct sock *sk, const enum tcp_chrono type);
1777
1778/* This helper is needed, because skb->tcp_tsorted_anchor uses
1779 * the same memory storage than skb->destructor/_skb_refdst
1780 */
1781static inline void tcp_skb_tsorted_anchor_cleanup(struct sk_buff *skb)
1782{
1783	skb->destructor = NULL;
1784	skb->_skb_refdst = 0UL;
1785}
1786
1787#define tcp_skb_tsorted_save(skb) {		\
1788	unsigned long _save = skb->_skb_refdst;	\
1789	skb->_skb_refdst = 0UL;
1790
1791#define tcp_skb_tsorted_restore(skb)		\
1792	skb->_skb_refdst = _save;		\
1793}
1794
1795void tcp_write_queue_purge(struct sock *sk);
1796
1797static inline struct sk_buff *tcp_rtx_queue_head(const struct sock *sk)
1798{
1799	return skb_rb_first(&sk->tcp_rtx_queue);
1800}
1801
1802static inline struct sk_buff *tcp_rtx_queue_tail(const struct sock *sk)
1803{
1804	return skb_rb_last(&sk->tcp_rtx_queue);
1805}
1806
1807static inline struct sk_buff *tcp_write_queue_head(const struct sock *sk)
1808{
1809	return skb_peek(&sk->sk_write_queue);
1810}
1811
1812static inline struct sk_buff *tcp_write_queue_tail(const struct sock *sk)
1813{
1814	return skb_peek_tail(&sk->sk_write_queue);
1815}
1816
1817#define tcp_for_write_queue_from_safe(skb, tmp, sk)			\
1818	skb_queue_walk_from_safe(&(sk)->sk_write_queue, skb, tmp)
1819
1820static inline struct sk_buff *tcp_send_head(const struct sock *sk)
1821{
1822	return skb_peek(&sk->sk_write_queue);
1823}
1824
1825static inline bool tcp_skb_is_last(const struct sock *sk,
1826				   const struct sk_buff *skb)
1827{
1828	return skb_queue_is_last(&sk->sk_write_queue, skb);
1829}
1830
1831/**
1832 * tcp_write_queue_empty - test if any payload (or FIN) is available in write queue
1833 * @sk: socket
1834 *
1835 * Since the write queue can have a temporary empty skb in it,
1836 * we must not use "return skb_queue_empty(&sk->sk_write_queue)"
1837 */
1838static inline bool tcp_write_queue_empty(const struct sock *sk)
1839{
1840	const struct tcp_sock *tp = tcp_sk(sk);
1841
1842	return tp->write_seq == tp->snd_nxt;
1843}
1844
1845static inline bool tcp_rtx_queue_empty(const struct sock *sk)
1846{
1847	return RB_EMPTY_ROOT(&sk->tcp_rtx_queue);
1848}
1849
1850static inline bool tcp_rtx_and_write_queues_empty(const struct sock *sk)
1851{
1852	return tcp_rtx_queue_empty(sk) && tcp_write_queue_empty(sk);
1853}
1854
1855static inline void tcp_add_write_queue_tail(struct sock *sk, struct sk_buff *skb)
1856{
1857	__skb_queue_tail(&sk->sk_write_queue, skb);
1858
1859	/* Queue it, remembering where we must start sending. */
1860	if (sk->sk_write_queue.next == skb)
1861		tcp_chrono_start(sk, TCP_CHRONO_BUSY);
1862}
1863
1864/* Insert new before skb on the write queue of sk.  */
1865static inline void tcp_insert_write_queue_before(struct sk_buff *new,
1866						  struct sk_buff *skb,
1867						  struct sock *sk)
1868{
1869	__skb_queue_before(&sk->sk_write_queue, skb, new);
1870}
1871
1872static inline void tcp_unlink_write_queue(struct sk_buff *skb, struct sock *sk)
1873{
1874	tcp_skb_tsorted_anchor_cleanup(skb);
1875	__skb_unlink(skb, &sk->sk_write_queue);
1876}
1877
1878void tcp_rbtree_insert(struct rb_root *root, struct sk_buff *skb);
1879
1880static inline void tcp_rtx_queue_unlink(struct sk_buff *skb, struct sock *sk)
1881{
1882	tcp_skb_tsorted_anchor_cleanup(skb);
1883	rb_erase(&skb->rbnode, &sk->tcp_rtx_queue);
1884}
1885
1886static inline void tcp_rtx_queue_unlink_and_free(struct sk_buff *skb, struct sock *sk)
1887{
1888	list_del(&skb->tcp_tsorted_anchor);
1889	tcp_rtx_queue_unlink(skb, sk);
1890	sk_wmem_free_skb(sk, skb);
1891}
1892
1893static inline void tcp_push_pending_frames(struct sock *sk)
1894{
1895	if (tcp_send_head(sk)) {
1896		struct tcp_sock *tp = tcp_sk(sk);
1897
1898		__tcp_push_pending_frames(sk, tcp_current_mss(sk), tp->nonagle);
1899	}
1900}
1901
1902/* Start sequence of the skb just after the highest skb with SACKed
1903 * bit, valid only if sacked_out > 0 or when the caller has ensured
1904 * validity by itself.
1905 */
1906static inline u32 tcp_highest_sack_seq(struct tcp_sock *tp)
1907{
1908	if (!tp->sacked_out)
1909		return tp->snd_una;
1910
1911	if (tp->highest_sack == NULL)
1912		return tp->snd_nxt;
1913
1914	return TCP_SKB_CB(tp->highest_sack)->seq;
1915}
1916
1917static inline void tcp_advance_highest_sack(struct sock *sk, struct sk_buff *skb)
1918{
1919	tcp_sk(sk)->highest_sack = skb_rb_next(skb);
1920}
1921
1922static inline struct sk_buff *tcp_highest_sack(struct sock *sk)
1923{
1924	return tcp_sk(sk)->highest_sack;
1925}
1926
1927static inline void tcp_highest_sack_reset(struct sock *sk)
1928{
1929	tcp_sk(sk)->highest_sack = tcp_rtx_queue_head(sk);
1930}
1931
1932/* Called when old skb is about to be deleted and replaced by new skb */
1933static inline void tcp_highest_sack_replace(struct sock *sk,
1934					    struct sk_buff *old,
1935					    struct sk_buff *new)
1936{
1937	if (old == tcp_highest_sack(sk))
1938		tcp_sk(sk)->highest_sack = new;
1939}
1940
1941/* This helper checks if socket has IP_TRANSPARENT set */
1942static inline bool inet_sk_transparent(const struct sock *sk)
1943{
1944	switch (sk->sk_state) {
1945	case TCP_TIME_WAIT:
1946		return inet_twsk(sk)->tw_transparent;
1947	case TCP_NEW_SYN_RECV:
1948		return inet_rsk(inet_reqsk(sk))->no_srccheck;
1949	}
1950	return inet_sk(sk)->transparent;
1951}
1952
1953/* Determines whether this is a thin stream (which may suffer from
1954 * increased latency). Used to trigger latency-reducing mechanisms.
1955 */
1956static inline bool tcp_stream_is_thin(struct tcp_sock *tp)
1957{
1958	return tp->packets_out < 4 && !tcp_in_initial_slowstart(tp);
1959}
1960
1961/* /proc */
1962enum tcp_seq_states {
1963	TCP_SEQ_STATE_LISTENING,
1964	TCP_SEQ_STATE_ESTABLISHED,
1965};
1966
1967void *tcp_seq_start(struct seq_file *seq, loff_t *pos);
1968void *tcp_seq_next(struct seq_file *seq, void *v, loff_t *pos);
1969void tcp_seq_stop(struct seq_file *seq, void *v);
1970
1971struct tcp_seq_afinfo {
1972	sa_family_t			family;
1973};
1974
1975struct tcp_iter_state {
1976	struct seq_net_private	p;
1977	enum tcp_seq_states	state;
1978	struct sock		*syn_wait_sk;
1979	struct tcp_seq_afinfo	*bpf_seq_afinfo;
1980	int			bucket, offset, sbucket, num;
1981	loff_t			last_pos;
1982};
1983
1984extern struct request_sock_ops tcp_request_sock_ops;
1985extern struct request_sock_ops tcp6_request_sock_ops;
1986
1987void tcp_v4_destroy_sock(struct sock *sk);
1988
1989struct sk_buff *tcp_gso_segment(struct sk_buff *skb,
1990				netdev_features_t features);
1991struct sk_buff *tcp_gro_receive(struct list_head *head, struct sk_buff *skb);
1992INDIRECT_CALLABLE_DECLARE(int tcp4_gro_complete(struct sk_buff *skb, int thoff));
1993INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp4_gro_receive(struct list_head *head, struct sk_buff *skb));
1994INDIRECT_CALLABLE_DECLARE(int tcp6_gro_complete(struct sk_buff *skb, int thoff));
1995INDIRECT_CALLABLE_DECLARE(struct sk_buff *tcp6_gro_receive(struct list_head *head, struct sk_buff *skb));
1996int tcp_gro_complete(struct sk_buff *skb);
1997
1998void __tcp_v4_send_check(struct sk_buff *skb, __be32 saddr, __be32 daddr);
1999
2000static inline u32 tcp_notsent_lowat(const struct tcp_sock *tp)
2001{
2002	struct net *net = sock_net((struct sock *)tp);
2003	u32 val;
2004
2005	val = READ_ONCE(tp->notsent_lowat);
2006
2007	return val ?: READ_ONCE(net->ipv4.sysctl_tcp_notsent_lowat);
2008}
2009
2010/* @wake is one when sk_stream_write_space() calls us.
2011 * This sends EPOLLOUT only if notsent_bytes is half the limit.
2012 * This mimics the strategy used in sock_def_write_space().
2013 */
2014static inline bool tcp_stream_memory_free(const struct sock *sk, int wake)
2015{
2016	const struct tcp_sock *tp = tcp_sk(sk);
2017	u32 notsent_bytes = READ_ONCE(tp->write_seq) -
2018			    READ_ONCE(tp->snd_nxt);
2019
2020	return (notsent_bytes << wake) < tcp_notsent_lowat(tp);
2021}
2022
2023#ifdef CONFIG_PROC_FS
2024int tcp4_proc_init(void);
2025void tcp4_proc_exit(void);
2026#endif
2027
2028int tcp_rtx_synack(const struct sock *sk, struct request_sock *req);
2029int tcp_conn_request(struct request_sock_ops *rsk_ops,
2030		     const struct tcp_request_sock_ops *af_ops,
2031		     struct sock *sk, struct sk_buff *skb);
2032
2033/* TCP af-specific functions */
2034struct tcp_sock_af_ops {
2035#ifdef CONFIG_TCP_MD5SIG
2036	struct tcp_md5sig_key	*(*md5_lookup) (const struct sock *sk,
2037						const struct sock *addr_sk);
2038	int		(*calc_md5_hash)(char *location,
2039					 const struct tcp_md5sig_key *md5,
2040					 const struct sock *sk,
2041					 const struct sk_buff *skb);
2042	int		(*md5_parse)(struct sock *sk,
2043				     int optname,
2044				     sockptr_t optval,
2045				     int optlen);
2046#endif
2047};
2048
2049struct tcp_request_sock_ops {
2050	u16 mss_clamp;
2051#ifdef CONFIG_TCP_MD5SIG
2052	struct tcp_md5sig_key *(*req_md5_lookup)(const struct sock *sk,
2053						 const struct sock *addr_sk);
2054	int		(*calc_md5_hash) (char *location,
2055					  const struct tcp_md5sig_key *md5,
2056					  const struct sock *sk,
2057					  const struct sk_buff *skb);
2058#endif
2059	void (*init_req)(struct request_sock *req,
2060			 const struct sock *sk_listener,
2061			 struct sk_buff *skb);
2062#ifdef CONFIG_SYN_COOKIES
2063	__u32 (*cookie_init_seq)(const struct sk_buff *skb,
2064				 __u16 *mss);
2065#endif
2066	struct dst_entry *(*route_req)(const struct sock *sk, struct flowi *fl,
2067				       const struct request_sock *req);
2068	u32 (*init_seq)(const struct sk_buff *skb);
2069	u32 (*init_ts_off)(const struct net *net, const struct sk_buff *skb);
2070	int (*send_synack)(const struct sock *sk, struct dst_entry *dst,
2071			   struct flowi *fl, struct request_sock *req,
2072			   struct tcp_fastopen_cookie *foc,
2073			   enum tcp_synack_type synack_type,
2074			   struct sk_buff *syn_skb);
2075};
2076
2077extern const struct tcp_request_sock_ops tcp_request_sock_ipv4_ops;
2078#if IS_ENABLED(CONFIG_IPV6)
2079extern const struct tcp_request_sock_ops tcp_request_sock_ipv6_ops;
2080#endif
2081
2082#ifdef CONFIG_SYN_COOKIES
2083static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2084					 const struct sock *sk, struct sk_buff *skb,
2085					 __u16 *mss)
2086{
2087	tcp_synq_overflow(sk);
2088	__NET_INC_STATS(sock_net(sk), LINUX_MIB_SYNCOOKIESSENT);
2089	return ops->cookie_init_seq(skb, mss);
2090}
2091#else
2092static inline __u32 cookie_init_sequence(const struct tcp_request_sock_ops *ops,
2093					 const struct sock *sk, struct sk_buff *skb,
2094					 __u16 *mss)
2095{
2096	return 0;
2097}
2098#endif
2099
2100int tcpv4_offload_init(void);
2101
2102void tcp_v4_init(void);
2103void tcp_init(void);
2104
2105/* tcp_recovery.c */
2106void tcp_mark_skb_lost(struct sock *sk, struct sk_buff *skb);
2107void tcp_newreno_mark_lost(struct sock *sk, bool snd_una_advanced);
2108extern s32 tcp_rack_skb_timeout(struct tcp_sock *tp, struct sk_buff *skb,
2109				u32 reo_wnd);
2110extern bool tcp_rack_mark_lost(struct sock *sk);
2111extern void tcp_rack_advance(struct tcp_sock *tp, u8 sacked, u32 end_seq,
2112			     u64 xmit_time);
2113extern void tcp_rack_reo_timeout(struct sock *sk);
2114extern void tcp_rack_update_reo_wnd(struct sock *sk, struct rate_sample *rs);
2115
2116/* At how many usecs into the future should the RTO fire? */
2117static inline s64 tcp_rto_delta_us(const struct sock *sk)
2118{
2119	const struct sk_buff *skb = tcp_rtx_queue_head(sk);
2120	u32 rto = inet_csk(sk)->icsk_rto;
2121	u64 rto_time_stamp_us = tcp_skb_timestamp_us(skb) + jiffies_to_usecs(rto);
2122
2123	return rto_time_stamp_us - tcp_sk(sk)->tcp_mstamp;
2124}
2125
2126/*
2127 * Save and compile IPv4 options, return a pointer to it
2128 */
2129static inline struct ip_options_rcu *tcp_v4_save_options(struct net *net,
2130							 struct sk_buff *skb)
2131{
2132	const struct ip_options *opt = &TCP_SKB_CB(skb)->header.h4.opt;
2133	struct ip_options_rcu *dopt = NULL;
2134
2135	if (opt->optlen) {
2136		int opt_size = sizeof(*dopt) + opt->optlen;
2137
2138		dopt = kmalloc(opt_size, GFP_ATOMIC);
2139		if (dopt && __ip_options_echo(net, &dopt->opt, skb, opt)) {
2140			kfree(dopt);
2141			dopt = NULL;
2142		}
2143	}
2144	return dopt;
2145}
2146
2147/* locally generated TCP pure ACKs have skb->truesize == 2
2148 * (check tcp_send_ack() in net/ipv4/tcp_output.c )
2149 * This is much faster than dissecting the packet to find out.
2150 * (Think of GRE encapsulations, IPv4, IPv6, ...)
2151 */
2152static inline bool skb_is_tcp_pure_ack(const struct sk_buff *skb)
2153{
2154	return skb->truesize == 2;
2155}
2156
2157static inline void skb_set_tcp_pure_ack(struct sk_buff *skb)
2158{
2159	skb->truesize = 2;
2160}
2161
2162static inline int tcp_inq(struct sock *sk)
2163{
2164	struct tcp_sock *tp = tcp_sk(sk);
2165	int answ;
2166
2167	if ((1 << sk->sk_state) & (TCPF_SYN_SENT | TCPF_SYN_RECV)) {
2168		answ = 0;
2169	} else if (sock_flag(sk, SOCK_URGINLINE) ||
2170		   !tp->urg_data ||
2171		   before(tp->urg_seq, tp->copied_seq) ||
2172		   !before(tp->urg_seq, tp->rcv_nxt)) {
2173
2174		answ = tp->rcv_nxt - tp->copied_seq;
2175
2176		/* Subtract 1, if FIN was received */
2177		if (answ && sock_flag(sk, SOCK_DONE))
2178			answ--;
2179	} else {
2180		answ = tp->urg_seq - tp->copied_seq;
2181	}
2182
2183	return answ;
2184}
2185
2186int tcp_peek_len(struct socket *sock);
2187
2188static inline void tcp_segs_in(struct tcp_sock *tp, const struct sk_buff *skb)
2189{
2190	u16 segs_in;
2191
2192	segs_in = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2193	tp->segs_in += segs_in;
2194	if (skb->len > tcp_hdrlen(skb))
2195		tp->data_segs_in += segs_in;
2196}
2197
2198/*
2199 * TCP listen path runs lockless.
2200 * We forced "struct sock" to be const qualified to make sure
2201 * we don't modify one of its field by mistake.
2202 * Here, we increment sk_drops which is an atomic_t, so we can safely
2203 * make sock writable again.
2204 */
2205static inline void tcp_listendrop(const struct sock *sk)
2206{
2207	atomic_inc(&((struct sock *)sk)->sk_drops);
2208	__NET_INC_STATS(sock_net(sk), LINUX_MIB_LISTENDROPS);
2209}
2210
2211enum hrtimer_restart tcp_pace_kick(struct hrtimer *timer);
2212
2213/*
2214 * Interface for adding Upper Level Protocols over TCP
2215 */
2216
2217#define TCP_ULP_NAME_MAX	16
2218#define TCP_ULP_MAX		128
2219#define TCP_ULP_BUF_MAX		(TCP_ULP_NAME_MAX*TCP_ULP_MAX)
2220
2221struct tcp_ulp_ops {
2222	struct list_head	list;
2223
2224	/* initialize ulp */
2225	int (*init)(struct sock *sk);
2226	/* update ulp */
2227	void (*update)(struct sock *sk, struct proto *p,
2228		       void (*write_space)(struct sock *sk));
2229	/* cleanup ulp */
2230	void (*release)(struct sock *sk);
2231	/* diagnostic */
2232	int (*get_info)(const struct sock *sk, struct sk_buff *skb);
2233	size_t (*get_info_size)(const struct sock *sk);
2234	/* clone ulp */
2235	void (*clone)(const struct request_sock *req, struct sock *newsk,
2236		      const gfp_t priority);
2237
2238	char		name[TCP_ULP_NAME_MAX];
2239	struct module	*owner;
2240};
2241int tcp_register_ulp(struct tcp_ulp_ops *type);
2242void tcp_unregister_ulp(struct tcp_ulp_ops *type);
2243int tcp_set_ulp(struct sock *sk, const char *name);
2244void tcp_get_available_ulp(char *buf, size_t len);
2245void tcp_cleanup_ulp(struct sock *sk);
2246void tcp_update_ulp(struct sock *sk, struct proto *p,
2247		    void (*write_space)(struct sock *sk));
2248
2249#define MODULE_ALIAS_TCP_ULP(name)				\
2250	__MODULE_INFO(alias, alias_userspace, name);		\
2251	__MODULE_INFO(alias, alias_tcp_ulp, "tcp-ulp-" name)
2252
2253struct sk_msg;
2254struct sk_psock;
2255
2256#ifdef CONFIG_BPF_STREAM_PARSER
2257struct proto *tcp_bpf_get_proto(struct sock *sk, struct sk_psock *psock);
2258void tcp_bpf_clone(const struct sock *sk, struct sock *newsk);
2259#else
2260static inline void tcp_bpf_clone(const struct sock *sk, struct sock *newsk)
2261{
2262}
2263#endif /* CONFIG_BPF_STREAM_PARSER */
2264
2265#ifdef CONFIG_NET_SOCK_MSG
2266int tcp_bpf_sendmsg_redir(struct sock *sk, struct sk_msg *msg, u32 bytes,
2267			  int flags);
2268int __tcp_bpf_recvmsg(struct sock *sk, struct sk_psock *psock,
2269		      struct msghdr *msg, int len, int flags);
2270#endif /* CONFIG_NET_SOCK_MSG */
2271
2272#ifdef CONFIG_CGROUP_BPF
2273static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2274				      struct sk_buff *skb,
2275				      unsigned int end_offset)
2276{
2277	skops->skb = skb;
2278	skops->skb_data_end = skb->data + end_offset;
2279}
2280#else
2281static inline void bpf_skops_init_skb(struct bpf_sock_ops_kern *skops,
2282				      struct sk_buff *skb,
2283				      unsigned int end_offset)
2284{
2285}
2286#endif
2287
2288/* Call BPF_SOCK_OPS program that returns an int. If the return value
2289 * is < 0, then the BPF op failed (for example if the loaded BPF
2290 * program does not support the chosen operation or there is no BPF
2291 * program loaded).
2292 */
2293#ifdef CONFIG_BPF
2294static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2295{
2296	struct bpf_sock_ops_kern sock_ops;
2297	int ret;
2298
2299	memset(&sock_ops, 0, offsetof(struct bpf_sock_ops_kern, temp));
2300	if (sk_fullsock(sk)) {
2301		sock_ops.is_fullsock = 1;
2302		sock_owned_by_me(sk);
2303	}
2304
2305	sock_ops.sk = sk;
2306	sock_ops.op = op;
2307	if (nargs > 0)
2308		memcpy(sock_ops.args, args, nargs * sizeof(*args));
2309
2310	ret = BPF_CGROUP_RUN_PROG_SOCK_OPS(&sock_ops);
2311	if (ret == 0)
2312		ret = sock_ops.reply;
2313	else
2314		ret = -1;
2315	return ret;
2316}
2317
2318static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2319{
2320	u32 args[2] = {arg1, arg2};
2321
2322	return tcp_call_bpf(sk, op, 2, args);
2323}
2324
2325static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2326				    u32 arg3)
2327{
2328	u32 args[3] = {arg1, arg2, arg3};
2329
2330	return tcp_call_bpf(sk, op, 3, args);
2331}
2332
2333#else
2334static inline int tcp_call_bpf(struct sock *sk, int op, u32 nargs, u32 *args)
2335{
2336	return -EPERM;
2337}
2338
2339static inline int tcp_call_bpf_2arg(struct sock *sk, int op, u32 arg1, u32 arg2)
2340{
2341	return -EPERM;
2342}
2343
2344static inline int tcp_call_bpf_3arg(struct sock *sk, int op, u32 arg1, u32 arg2,
2345				    u32 arg3)
2346{
2347	return -EPERM;
2348}
2349
2350#endif
2351
2352static inline u32 tcp_timeout_init(struct sock *sk)
2353{
2354	int timeout;
2355
2356	timeout = tcp_call_bpf(sk, BPF_SOCK_OPS_TIMEOUT_INIT, 0, NULL);
2357
2358	if (timeout <= 0)
2359		timeout = TCP_TIMEOUT_INIT;
2360	return timeout;
2361}
2362
2363static inline u32 tcp_rwnd_init_bpf(struct sock *sk)
2364{
2365	int rwnd;
2366
2367	rwnd = tcp_call_bpf(sk, BPF_SOCK_OPS_RWND_INIT, 0, NULL);
2368
2369	if (rwnd < 0)
2370		rwnd = 0;
2371	return rwnd;
2372}
2373
2374static inline bool tcp_bpf_ca_needs_ecn(struct sock *sk)
2375{
2376	return (tcp_call_bpf(sk, BPF_SOCK_OPS_NEEDS_ECN, 0, NULL) == 1);
2377}
2378
2379static inline void tcp_bpf_rtt(struct sock *sk)
2380{
2381	if (BPF_SOCK_OPS_TEST_FLAG(tcp_sk(sk), BPF_SOCK_OPS_RTT_CB_FLAG))
2382		tcp_call_bpf(sk, BPF_SOCK_OPS_RTT_CB, 0, NULL);
2383}
2384
2385#if IS_ENABLED(CONFIG_SMC)
2386extern struct static_key_false tcp_have_smc;
2387#endif
2388
2389#if IS_ENABLED(CONFIG_TLS_DEVICE)
2390void clean_acked_data_enable(struct inet_connection_sock *icsk,
2391			     void (*cad)(struct sock *sk, u32 ack_seq));
2392void clean_acked_data_disable(struct inet_connection_sock *icsk);
2393void clean_acked_data_flush(void);
2394#endif
2395
2396DECLARE_STATIC_KEY_FALSE(tcp_tx_delay_enabled);
2397static inline void tcp_add_tx_delay(struct sk_buff *skb,
2398				    const struct tcp_sock *tp)
2399{
2400	if (static_branch_unlikely(&tcp_tx_delay_enabled))
2401		skb->skb_mstamp_ns += (u64)tp->tcp_tx_delay * NSEC_PER_USEC;
2402}
2403
2404/* Compute Earliest Departure Time for some control packets
2405 * like ACK or RST for TIME_WAIT or non ESTABLISHED sockets.
2406 */
2407static inline u64 tcp_transmit_time(const struct sock *sk)
2408{
2409	if (static_branch_unlikely(&tcp_tx_delay_enabled)) {
2410		u32 delay = (sk->sk_state == TCP_TIME_WAIT) ?
2411			tcp_twsk(sk)->tw_tx_delay : tcp_sk(sk)->tcp_tx_delay;
2412
2413		return tcp_clock_ns() + (u64)delay * NSEC_PER_USEC;
2414	}
2415	return 0;
2416}
2417
2418#endif	/* _TCP_H */
2419