xref: /kernel/linux/linux-5.10/include/net/sock.h (revision 8c2ecf20)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * INET		An implementation of the TCP/IP protocol suite for the LINUX
4 *		operating system.  INET is implemented using the  BSD Socket
5 *		interface as the means of communication with the user level.
6 *
7 *		Definitions for the AF_INET socket handler.
8 *
9 * Version:	@(#)sock.h	1.0.4	05/13/93
10 *
11 * Authors:	Ross Biro
12 *		Fred N. van Kempen, <waltje@uWalt.NL.Mugnet.ORG>
13 *		Corey Minyard <wf-rch!minyard@relay.EU.net>
14 *		Florian La Roche <flla@stud.uni-sb.de>
15 *
16 * Fixes:
17 *		Alan Cox	:	Volatiles in skbuff pointers. See
18 *					skbuff comments. May be overdone,
19 *					better to prove they can be removed
20 *					than the reverse.
21 *		Alan Cox	:	Added a zapped field for tcp to note
22 *					a socket is reset and must stay shut up
23 *		Alan Cox	:	New fields for options
24 *	Pauline Middelink	:	identd support
25 *		Alan Cox	:	Eliminate low level recv/recvfrom
26 *		David S. Miller	:	New socket lookup architecture.
27 *              Steve Whitehouse:       Default routines for sock_ops
28 *              Arnaldo C. Melo :	removed net_pinfo, tp_pinfo and made
29 *              			protinfo be just a void pointer, as the
30 *              			protocol specific parts were moved to
31 *              			respective headers and ipv4/v6, etc now
32 *              			use private slabcaches for its socks
33 *              Pedro Hortas	:	New flags field for socket options
34 */
35#ifndef _SOCK_H
36#define _SOCK_H
37
38#include <linux/hardirq.h>
39#include <linux/kernel.h>
40#include <linux/list.h>
41#include <linux/list_nulls.h>
42#include <linux/timer.h>
43#include <linux/cache.h>
44#include <linux/bitops.h>
45#include <linux/lockdep.h>
46#include <linux/netdevice.h>
47#include <linux/skbuff.h>	/* struct sk_buff */
48#include <linux/mm.h>
49#include <linux/security.h>
50#include <linux/slab.h>
51#include <linux/uaccess.h>
52#include <linux/page_counter.h>
53#include <linux/memcontrol.h>
54#include <linux/static_key.h>
55#include <linux/sched.h>
56#include <linux/wait.h>
57#include <linux/cgroup-defs.h>
58#include <linux/rbtree.h>
59#include <linux/filter.h>
60#include <linux/rculist_nulls.h>
61#include <linux/poll.h>
62#include <linux/sockptr.h>
63
64#include <linux/atomic.h>
65#include <linux/refcount.h>
66#include <net/dst.h>
67#include <net/checksum.h>
68#include <net/tcp_states.h>
69#include <linux/net_tstamp.h>
70#include <net/l3mdev.h>
71#ifdef CONFIG_NEWIP
72#include <uapi/linux/nip_addr.h>
73#endif
74
75/*
76 * This structure really needs to be cleaned up.
77 * Most of it is for TCP, and not used by any of
78 * the other protocols.
79 */
80
81/* Define this to get the SOCK_DBG debugging facility. */
82#define SOCK_DEBUGGING
83#ifdef SOCK_DEBUGGING
84#define SOCK_DEBUG(sk, msg...) do { if ((sk) && sock_flag((sk), SOCK_DBG)) \
85					printk(KERN_DEBUG msg); } while (0)
86#else
87/* Validate arguments and do nothing */
88static inline __printf(2, 3)
89void SOCK_DEBUG(const struct sock *sk, const char *msg, ...)
90{
91}
92#endif
93
94/* This is the per-socket lock.  The spinlock provides a synchronization
95 * between user contexts and software interrupt processing, whereas the
96 * mini-semaphore synchronizes multiple users amongst themselves.
97 */
98typedef struct {
99	spinlock_t		slock;
100	int			owned;
101	wait_queue_head_t	wq;
102	/*
103	 * We express the mutex-alike socket_lock semantics
104	 * to the lock validator by explicitly managing
105	 * the slock as a lock variant (in addition to
106	 * the slock itself):
107	 */
108#ifdef CONFIG_DEBUG_LOCK_ALLOC
109	struct lockdep_map dep_map;
110#endif
111} socket_lock_t;
112
113struct sock;
114struct proto;
115struct net;
116
117typedef __u32 __bitwise __portpair;
118typedef __u64 __bitwise __addrpair;
119
120/**
121 *	struct sock_common - minimal network layer representation of sockets
122 *	@skc_daddr: Foreign IPv4 addr
123 *	@skc_rcv_saddr: Bound local IPv4 addr
124 *	@skc_addrpair: 8-byte-aligned __u64 union of @skc_daddr & @skc_rcv_saddr
125 *	@skc_hash: hash value used with various protocol lookup tables
126 *	@skc_u16hashes: two u16 hash values used by UDP lookup tables
127 *	@skc_dport: placeholder for inet_dport/tw_dport
128 *	@skc_num: placeholder for inet_num/tw_num
129 *	@skc_portpair: __u32 union of @skc_dport & @skc_num
130 *	@skc_family: network address family
131 *	@skc_state: Connection state
132 *	@skc_reuse: %SO_REUSEADDR setting
133 *	@skc_reuseport: %SO_REUSEPORT setting
134 *	@skc_ipv6only: socket is IPV6 only
135 *	@skc_net_refcnt: socket is using net ref counting
136 *	@skc_bound_dev_if: bound device index if != 0
137 *	@skc_bind_node: bind hash linkage for various protocol lookup tables
138 *	@skc_portaddr_node: second hash linkage for UDP/UDP-Lite protocol
139 *	@skc_prot: protocol handlers inside a network family
140 *	@skc_net: reference to the network namespace of this socket
141 *	@skc_v6_daddr: IPV6 destination address
142 *	@skc_v6_rcv_saddr: IPV6 source address
143 *	@skc_cookie: socket's cookie value
144 *	@skc_node: main hash linkage for various protocol lookup tables
145 *	@skc_nulls_node: main hash linkage for TCP/UDP/UDP-Lite protocol
146 *	@skc_tx_queue_mapping: tx queue number for this connection
147 *	@skc_rx_queue_mapping: rx queue number for this connection
148 *	@skc_flags: place holder for sk_flags
149 *		%SO_LINGER (l_onoff), %SO_BROADCAST, %SO_KEEPALIVE,
150 *		%SO_OOBINLINE settings, %SO_TIMESTAMPING settings
151 *	@skc_listener: connection request listener socket (aka rsk_listener)
152 *		[union with @skc_flags]
153 *	@skc_tw_dr: (aka tw_dr) ptr to &struct inet_timewait_death_row
154 *		[union with @skc_flags]
155 *	@skc_incoming_cpu: record/match cpu processing incoming packets
156 *	@skc_rcv_wnd: (aka rsk_rcv_wnd) TCP receive window size (possibly scaled)
157 *		[union with @skc_incoming_cpu]
158 *	@skc_tw_rcv_nxt: (aka tw_rcv_nxt) TCP window next expected seq number
159 *		[union with @skc_incoming_cpu]
160 *	@skc_refcnt: reference count
161 *
162 *	This is the minimal network layer representation of sockets, the header
163 *	for struct sock and struct inet_timewait_sock.
164 */
165struct sock_common {
166	union {
167		__addrpair	skc_addrpair;
168		struct {
169			__be32	skc_daddr;
170			__be32	skc_rcv_saddr;
171		};
172	};
173	union  {
174		unsigned int	skc_hash;
175		__u16		skc_u16hashes[2];
176	};
177	/* skc_dport && skc_num must be grouped as well */
178	union {
179		__portpair	skc_portpair;
180		struct {
181			__be16	skc_dport;
182			__u16	skc_num;
183		};
184	};
185
186	unsigned short		skc_family;
187	volatile unsigned char	skc_state;
188	unsigned char		skc_reuse:4;
189	unsigned char		skc_reuseport:1;
190	unsigned char		skc_ipv6only:1;
191	unsigned char		skc_net_refcnt:1;
192	int			skc_bound_dev_if;
193	union {
194		struct hlist_node	skc_bind_node;
195		struct hlist_node	skc_portaddr_node;
196	};
197	struct proto		*skc_prot;
198	possible_net_t		skc_net;
199
200#if IS_ENABLED(CONFIG_IPV6)
201	struct in6_addr		skc_v6_daddr;
202	struct in6_addr		skc_v6_rcv_saddr;
203#endif
204
205#if IS_ENABLED(CONFIG_NEWIP)
206	struct nip_addr		nip_daddr;	/* NIP */
207	struct nip_addr		nip_rcv_saddr;	/* NIP */
208#endif
209
210	atomic64_t		skc_cookie;
211
212	/* following fields are padding to force
213	 * offset(struct sock, sk_refcnt) == 128 on 64bit arches
214	 * assuming IPV6 is enabled. We use this padding differently
215	 * for different kind of 'sockets'
216	 */
217	union {
218		unsigned long	skc_flags;
219		struct sock	*skc_listener; /* request_sock */
220		struct inet_timewait_death_row *skc_tw_dr; /* inet_timewait_sock */
221	};
222	/*
223	 * fields between dontcopy_begin/dontcopy_end
224	 * are not copied in sock_copy()
225	 */
226	/* private: */
227	int			skc_dontcopy_begin[0];
228	/* public: */
229	union {
230		struct hlist_node	skc_node;
231		struct hlist_nulls_node skc_nulls_node;
232	};
233	unsigned short		skc_tx_queue_mapping;
234#ifdef CONFIG_XPS
235	unsigned short		skc_rx_queue_mapping;
236#endif
237	union {
238		int		skc_incoming_cpu;
239		u32		skc_rcv_wnd;
240		u32		skc_tw_rcv_nxt; /* struct tcp_timewait_sock  */
241	};
242
243	refcount_t		skc_refcnt;
244	/* private: */
245	int                     skc_dontcopy_end[0];
246	union {
247		u32		skc_rxhash;
248		u32		skc_window_clamp;
249		u32		skc_tw_snd_nxt; /* struct tcp_timewait_sock */
250	};
251	/* public: */
252};
253
254struct bpf_local_storage;
255
256/**
257  *	struct sock - network layer representation of sockets
258  *	@__sk_common: shared layout with inet_timewait_sock
259  *	@sk_shutdown: mask of %SEND_SHUTDOWN and/or %RCV_SHUTDOWN
260  *	@sk_userlocks: %SO_SNDBUF and %SO_RCVBUF settings
261  *	@sk_lock:	synchronizer
262  *	@sk_kern_sock: True if sock is using kernel lock classes
263  *	@sk_rcvbuf: size of receive buffer in bytes
264  *	@sk_wq: sock wait queue and async head
265  *	@sk_rx_dst: receive input route used by early demux
266  *	@sk_dst_cache: destination cache
267  *	@sk_dst_pending_confirm: need to confirm neighbour
268  *	@sk_policy: flow policy
269  *	@sk_rx_skb_cache: cache copy of recently accessed RX skb
270  *	@sk_receive_queue: incoming packets
271  *	@sk_wmem_alloc: transmit queue bytes committed
272  *	@sk_tsq_flags: TCP Small Queues flags
273  *	@sk_write_queue: Packet sending queue
274  *	@sk_omem_alloc: "o" is "option" or "other"
275  *	@sk_wmem_queued: persistent queue size
276  *	@sk_forward_alloc: space allocated forward
277  *	@sk_napi_id: id of the last napi context to receive data for sk
278  *	@sk_ll_usec: usecs to busypoll when there is no data
279  *	@sk_allocation: allocation mode
280  *	@sk_pacing_rate: Pacing rate (if supported by transport/packet scheduler)
281  *	@sk_pacing_status: Pacing status (requested, handled by sch_fq)
282  *	@sk_max_pacing_rate: Maximum pacing rate (%SO_MAX_PACING_RATE)
283  *	@sk_sndbuf: size of send buffer in bytes
284  *	@__sk_flags_offset: empty field used to determine location of bitfield
285  *	@sk_padding: unused element for alignment
286  *	@sk_no_check_tx: %SO_NO_CHECK setting, set checksum in TX packets
287  *	@sk_no_check_rx: allow zero checksum in RX packets
288  *	@sk_route_caps: route capabilities (e.g. %NETIF_F_TSO)
289  *	@sk_route_nocaps: forbidden route capabilities (e.g NETIF_F_GSO_MASK)
290  *	@sk_route_forced_caps: static, forced route capabilities
291  *		(set in tcp_init_sock())
292  *	@sk_gso_type: GSO type (e.g. %SKB_GSO_TCPV4)
293  *	@sk_gso_max_size: Maximum GSO segment size to build
294  *	@sk_gso_max_segs: Maximum number of GSO segments
295  *	@sk_pacing_shift: scaling factor for TCP Small Queues
296  *	@sk_lingertime: %SO_LINGER l_linger setting
297  *	@sk_backlog: always used with the per-socket spinlock held
298  *	@sk_callback_lock: used with the callbacks in the end of this struct
299  *	@sk_error_queue: rarely used
300  *	@sk_prot_creator: sk_prot of original sock creator (see ipv6_setsockopt,
301  *			  IPV6_ADDRFORM for instance)
302  *	@sk_err: last error
303  *	@sk_err_soft: errors that don't cause failure but are the cause of a
304  *		      persistent failure not just 'timed out'
305  *	@sk_drops: raw/udp drops counter
306  *	@sk_ack_backlog: current listen backlog
307  *	@sk_max_ack_backlog: listen backlog set in listen()
308  *	@sk_uid: user id of owner
309  *	@sk_priority: %SO_PRIORITY setting
310  *	@sk_type: socket type (%SOCK_STREAM, etc)
311  *	@sk_protocol: which protocol this socket belongs in this network family
312  *	@sk_peer_pid: &struct pid for this socket's peer
313  *	@sk_peer_cred: %SO_PEERCRED setting
314  *	@sk_rcvlowat: %SO_RCVLOWAT setting
315  *	@sk_rcvtimeo: %SO_RCVTIMEO setting
316  *	@sk_sndtimeo: %SO_SNDTIMEO setting
317  *	@sk_txhash: computed flow hash for use on transmit
318  *	@sk_filter: socket filtering instructions
319  *	@sk_timer: sock cleanup timer
320  *	@sk_stamp: time stamp of last packet received
321  *	@sk_stamp_seq: lock for accessing sk_stamp on 32 bit architectures only
322  *	@sk_tsflags: SO_TIMESTAMPING socket options
323  *	@sk_tskey: counter to disambiguate concurrent tstamp requests
324  *	@sk_zckey: counter to order MSG_ZEROCOPY notifications
325  *	@sk_socket: Identd and reporting IO signals
326  *	@sk_user_data: RPC layer private data. Write-protected by @sk_callback_lock.
327  *	@sk_frag: cached page frag
328  *	@sk_peek_off: current peek_offset value
329  *	@sk_send_head: front of stuff to transmit
330  *	@tcp_rtx_queue: TCP re-transmit queue [union with @sk_send_head]
331  *	@sk_tx_skb_cache: cache copy of recently accessed TX skb
332  *	@sk_security: used by security modules
333  *	@sk_mark: generic packet mark
334  *	@sk_cgrp_data: cgroup data for this cgroup
335  *	@sk_memcg: this socket's memory cgroup association
336  *	@sk_write_pending: a write to stream socket waits to start
337  *	@sk_wait_pending: number of threads blocked on this socket
338  *	@sk_state_change: callback to indicate change in the state of the sock
339  *	@sk_data_ready: callback to indicate there is data to be processed
340  *	@sk_write_space: callback to indicate there is bf sending space available
341  *	@sk_error_report: callback to indicate errors (e.g. %MSG_ERRQUEUE)
342  *	@sk_backlog_rcv: callback to process the backlog
343  *	@sk_validate_xmit_skb: ptr to an optional validate function
344  *	@sk_destruct: called at sock freeing time, i.e. when all refcnt == 0
345  *	@sk_reuseport_cb: reuseport group container
346  *	@sk_bpf_storage: ptr to cache and control for bpf_sk_storage
347  *	@sk_rcu: used during RCU grace period
348  *	@sk_clockid: clockid used by time-based scheduling (SO_TXTIME)
349  *	@sk_txtime_deadline_mode: set deadline mode for SO_TXTIME
350  *	@sk_txtime_report_errors: set report errors mode for SO_TXTIME
351  *	@sk_txtime_unused: unused txtime flags
352  */
353struct sock {
354	/*
355	 * Now struct inet_timewait_sock also uses sock_common, so please just
356	 * don't add nothing before this first member (__sk_common) --acme
357	 */
358	struct sock_common	__sk_common;
359#define sk_node			__sk_common.skc_node
360#define sk_nulls_node		__sk_common.skc_nulls_node
361#define sk_refcnt		__sk_common.skc_refcnt
362#define sk_tx_queue_mapping	__sk_common.skc_tx_queue_mapping
363#ifdef CONFIG_XPS
364#define sk_rx_queue_mapping	__sk_common.skc_rx_queue_mapping
365#endif
366
367#define sk_dontcopy_begin	__sk_common.skc_dontcopy_begin
368#define sk_dontcopy_end		__sk_common.skc_dontcopy_end
369#define sk_hash			__sk_common.skc_hash
370#define sk_portpair		__sk_common.skc_portpair
371#define sk_num			__sk_common.skc_num
372#define sk_dport		__sk_common.skc_dport
373#define sk_addrpair		__sk_common.skc_addrpair
374#define sk_daddr		__sk_common.skc_daddr
375#define sk_rcv_saddr		__sk_common.skc_rcv_saddr
376#define sk_family		__sk_common.skc_family
377#define sk_state		__sk_common.skc_state
378#define sk_reuse		__sk_common.skc_reuse
379#define sk_reuseport		__sk_common.skc_reuseport
380#define sk_ipv6only		__sk_common.skc_ipv6only
381#define sk_net_refcnt		__sk_common.skc_net_refcnt
382#define sk_bound_dev_if		__sk_common.skc_bound_dev_if
383#define sk_bind_node		__sk_common.skc_bind_node
384#define sk_prot			__sk_common.skc_prot
385#define sk_net			__sk_common.skc_net
386#define sk_v6_daddr		__sk_common.skc_v6_daddr
387#define sk_v6_rcv_saddr	__sk_common.skc_v6_rcv_saddr
388#define sk_cookie		__sk_common.skc_cookie
389#define sk_incoming_cpu		__sk_common.skc_incoming_cpu
390#define sk_flags		__sk_common.skc_flags
391#define sk_rxhash		__sk_common.skc_rxhash
392
393	socket_lock_t		sk_lock;
394	atomic_t		sk_drops;
395	int			sk_rcvlowat;
396	struct sk_buff_head	sk_error_queue;
397	struct sk_buff		*sk_rx_skb_cache;
398	struct sk_buff_head	sk_receive_queue;
399	/*
400	 * The backlog queue is special, it is always used with
401	 * the per-socket spinlock held and requires low latency
402	 * access. Therefore we special case it's implementation.
403	 * Note : rmem_alloc is in this structure to fill a hole
404	 * on 64bit arches, not because its logically part of
405	 * backlog.
406	 */
407	struct {
408		atomic_t	rmem_alloc;
409		int		len;
410		struct sk_buff	*head;
411		struct sk_buff	*tail;
412	} sk_backlog;
413#define sk_rmem_alloc sk_backlog.rmem_alloc
414
415	int			sk_forward_alloc;
416#ifdef CONFIG_NET_RX_BUSY_POLL
417	unsigned int		sk_ll_usec;
418	/* ===== mostly read cache line ===== */
419	unsigned int		sk_napi_id;
420#endif
421	int			sk_rcvbuf;
422	int			sk_wait_pending;
423
424	struct sk_filter __rcu	*sk_filter;
425	union {
426		struct socket_wq __rcu	*sk_wq;
427		/* private: */
428		struct socket_wq	*sk_wq_raw;
429		/* public: */
430	};
431#ifdef CONFIG_XFRM
432	struct xfrm_policy __rcu *sk_policy[2];
433#endif
434	struct dst_entry __rcu	*sk_rx_dst;
435	struct dst_entry __rcu	*sk_dst_cache;
436	atomic_t		sk_omem_alloc;
437	int			sk_sndbuf;
438
439	/* ===== cache line for TX ===== */
440	int			sk_wmem_queued;
441	refcount_t		sk_wmem_alloc;
442	unsigned long		sk_tsq_flags;
443	union {
444		struct sk_buff	*sk_send_head;
445		struct rb_root	tcp_rtx_queue;
446	};
447	struct sk_buff		*sk_tx_skb_cache;
448	struct sk_buff_head	sk_write_queue;
449	__s32			sk_peek_off;
450	int			sk_write_pending;
451	__u32			sk_dst_pending_confirm;
452	u32			sk_pacing_status; /* see enum sk_pacing */
453	long			sk_sndtimeo;
454	struct timer_list	sk_timer;
455	__u32			sk_priority;
456	__u32			sk_mark;
457	unsigned long		sk_pacing_rate; /* bytes per second */
458	unsigned long		sk_max_pacing_rate;
459	struct page_frag	sk_frag;
460	netdev_features_t	sk_route_caps;
461	netdev_features_t	sk_route_nocaps;
462	netdev_features_t	sk_route_forced_caps;
463	int			sk_gso_type;
464	unsigned int		sk_gso_max_size;
465	gfp_t			sk_allocation;
466	__u32			sk_txhash;
467
468	/*
469	 * Because of non atomicity rules, all
470	 * changes are protected by socket lock.
471	 */
472	u8			sk_padding : 1,
473				sk_kern_sock : 1,
474				sk_no_check_tx : 1,
475				sk_no_check_rx : 1,
476				sk_userlocks : 4;
477	u8			sk_pacing_shift;
478	u16			sk_type;
479	u16			sk_protocol;
480	u16			sk_gso_max_segs;
481	unsigned long	        sk_lingertime;
482	struct proto		*sk_prot_creator;
483	rwlock_t		sk_callback_lock;
484	int			sk_err,
485				sk_err_soft;
486	u32			sk_ack_backlog;
487	u32			sk_max_ack_backlog;
488	kuid_t			sk_uid;
489	spinlock_t		sk_peer_lock;
490	struct pid		*sk_peer_pid;
491	const struct cred	*sk_peer_cred;
492
493	long			sk_rcvtimeo;
494	ktime_t			sk_stamp;
495#if BITS_PER_LONG==32
496	seqlock_t		sk_stamp_seq;
497#endif
498	u16			sk_tsflags;
499	u8			sk_shutdown;
500	u32			sk_tskey;
501	atomic_t		sk_zckey;
502
503	u8			sk_clockid;
504	u8			sk_txtime_deadline_mode : 1,
505				sk_txtime_report_errors : 1,
506				sk_txtime_unused : 6;
507
508	struct socket		*sk_socket;
509	void			*sk_user_data;
510#ifdef CONFIG_SECURITY
511	void			*sk_security;
512#endif
513	struct sock_cgroup_data	sk_cgrp_data;
514	struct mem_cgroup	*sk_memcg;
515	void			(*sk_state_change)(struct sock *sk);
516	void			(*sk_data_ready)(struct sock *sk);
517	void			(*sk_write_space)(struct sock *sk);
518	void			(*sk_error_report)(struct sock *sk);
519	int			(*sk_backlog_rcv)(struct sock *sk,
520						  struct sk_buff *skb);
521#ifdef CONFIG_SOCK_VALIDATE_XMIT
522	struct sk_buff*		(*sk_validate_xmit_skb)(struct sock *sk,
523							struct net_device *dev,
524							struct sk_buff *skb);
525#endif
526	void                    (*sk_destruct)(struct sock *sk);
527	struct sock_reuseport __rcu	*sk_reuseport_cb;
528#ifdef CONFIG_BPF_SYSCALL
529	struct bpf_local_storage __rcu	*sk_bpf_storage;
530#endif
531	struct rcu_head		sk_rcu;
532};
533
534enum sk_pacing {
535	SK_PACING_NONE		= 0,
536	SK_PACING_NEEDED	= 1,
537	SK_PACING_FQ		= 2,
538};
539
540/* flag bits in sk_user_data
541 *
542 * - SK_USER_DATA_NOCOPY:      Pointer stored in sk_user_data might
543 *   not be suitable for copying when cloning the socket. For instance,
544 *   it can point to a reference counted object. sk_user_data bottom
545 *   bit is set if pointer must not be copied.
546 *
547 * - SK_USER_DATA_BPF:         Mark whether sk_user_data field is
548 *   managed/owned by a BPF reuseport array. This bit should be set
549 *   when sk_user_data's sk is added to the bpf's reuseport_array.
550 *
551 * - SK_USER_DATA_PSOCK:       Mark whether pointer stored in
552 *   sk_user_data points to psock type. This bit should be set
553 *   when sk_user_data is assigned to a psock object.
554 */
555#define SK_USER_DATA_NOCOPY	1UL
556#define SK_USER_DATA_BPF	2UL
557#define SK_USER_DATA_PSOCK	4UL
558#define SK_USER_DATA_PTRMASK	~(SK_USER_DATA_NOCOPY | SK_USER_DATA_BPF |\
559				  SK_USER_DATA_PSOCK)
560
561/**
562 * sk_user_data_is_nocopy - Test if sk_user_data pointer must not be copied
563 * @sk: socket
564 */
565static inline bool sk_user_data_is_nocopy(const struct sock *sk)
566{
567	return ((uintptr_t)sk->sk_user_data & SK_USER_DATA_NOCOPY);
568}
569
570#define __sk_user_data(sk) ((*((void __rcu **)&(sk)->sk_user_data)))
571
572/**
573 * __rcu_dereference_sk_user_data_with_flags - return the pointer
574 * only if argument flags all has been set in sk_user_data. Otherwise
575 * return NULL
576 *
577 * @sk: socket
578 * @flags: flag bits
579 */
580static inline void *
581__rcu_dereference_sk_user_data_with_flags(const struct sock *sk,
582					  uintptr_t flags)
583{
584	uintptr_t sk_user_data = (uintptr_t)rcu_dereference(__sk_user_data(sk));
585
586	WARN_ON_ONCE(flags & SK_USER_DATA_PTRMASK);
587
588	if ((sk_user_data & flags) == flags)
589		return (void *)(sk_user_data & SK_USER_DATA_PTRMASK);
590	return NULL;
591}
592
593#define rcu_dereference_sk_user_data(sk)				\
594	__rcu_dereference_sk_user_data_with_flags(sk, 0)
595#define __rcu_assign_sk_user_data_with_flags(sk, ptr, flags)		\
596({									\
597	uintptr_t __tmp1 = (uintptr_t)(ptr),				\
598		  __tmp2 = (uintptr_t)(flags);				\
599	WARN_ON_ONCE(__tmp1 & ~SK_USER_DATA_PTRMASK);			\
600	WARN_ON_ONCE(__tmp2 & SK_USER_DATA_PTRMASK);			\
601	rcu_assign_pointer(__sk_user_data((sk)),			\
602			   __tmp1 | __tmp2);				\
603})
604#define rcu_assign_sk_user_data(sk, ptr)				\
605	__rcu_assign_sk_user_data_with_flags(sk, ptr, 0)
606
607/*
608 * SK_CAN_REUSE and SK_NO_REUSE on a socket mean that the socket is OK
609 * or not whether his port will be reused by someone else. SK_FORCE_REUSE
610 * on a socket means that the socket will reuse everybody else's port
611 * without looking at the other's sk_reuse value.
612 */
613
614#define SK_NO_REUSE	0
615#define SK_CAN_REUSE	1
616#define SK_FORCE_REUSE	2
617
618int sk_set_peek_off(struct sock *sk, int val);
619
620static inline int sk_peek_offset(struct sock *sk, int flags)
621{
622	if (unlikely(flags & MSG_PEEK)) {
623		return READ_ONCE(sk->sk_peek_off);
624	}
625
626	return 0;
627}
628
629static inline void sk_peek_offset_bwd(struct sock *sk, int val)
630{
631	s32 off = READ_ONCE(sk->sk_peek_off);
632
633	if (unlikely(off >= 0)) {
634		off = max_t(s32, off - val, 0);
635		WRITE_ONCE(sk->sk_peek_off, off);
636	}
637}
638
639static inline void sk_peek_offset_fwd(struct sock *sk, int val)
640{
641	sk_peek_offset_bwd(sk, -val);
642}
643
644/*
645 * Hashed lists helper routines
646 */
647static inline struct sock *sk_entry(const struct hlist_node *node)
648{
649	return hlist_entry(node, struct sock, sk_node);
650}
651
652static inline struct sock *__sk_head(const struct hlist_head *head)
653{
654	return hlist_entry(head->first, struct sock, sk_node);
655}
656
657static inline struct sock *sk_head(const struct hlist_head *head)
658{
659	return hlist_empty(head) ? NULL : __sk_head(head);
660}
661
662static inline struct sock *__sk_nulls_head(const struct hlist_nulls_head *head)
663{
664	return hlist_nulls_entry(head->first, struct sock, sk_nulls_node);
665}
666
667static inline struct sock *sk_nulls_head(const struct hlist_nulls_head *head)
668{
669	return hlist_nulls_empty(head) ? NULL : __sk_nulls_head(head);
670}
671
672static inline struct sock *sk_next(const struct sock *sk)
673{
674	return hlist_entry_safe(sk->sk_node.next, struct sock, sk_node);
675}
676
677static inline struct sock *sk_nulls_next(const struct sock *sk)
678{
679	return (!is_a_nulls(sk->sk_nulls_node.next)) ?
680		hlist_nulls_entry(sk->sk_nulls_node.next,
681				  struct sock, sk_nulls_node) :
682		NULL;
683}
684
685static inline bool sk_unhashed(const struct sock *sk)
686{
687	return hlist_unhashed(&sk->sk_node);
688}
689
690static inline bool sk_hashed(const struct sock *sk)
691{
692	return !sk_unhashed(sk);
693}
694
695static inline void sk_node_init(struct hlist_node *node)
696{
697	node->pprev = NULL;
698}
699
700static inline void sk_nulls_node_init(struct hlist_nulls_node *node)
701{
702	node->pprev = NULL;
703}
704
705static inline void __sk_del_node(struct sock *sk)
706{
707	__hlist_del(&sk->sk_node);
708}
709
710/* NB: equivalent to hlist_del_init_rcu */
711static inline bool __sk_del_node_init(struct sock *sk)
712{
713	if (sk_hashed(sk)) {
714		__sk_del_node(sk);
715		sk_node_init(&sk->sk_node);
716		return true;
717	}
718	return false;
719}
720
721/* Grab socket reference count. This operation is valid only
722   when sk is ALREADY grabbed f.e. it is found in hash table
723   or a list and the lookup is made under lock preventing hash table
724   modifications.
725 */
726
727static __always_inline void sock_hold(struct sock *sk)
728{
729	refcount_inc(&sk->sk_refcnt);
730}
731
732/* Ungrab socket in the context, which assumes that socket refcnt
733   cannot hit zero, f.e. it is true in context of any socketcall.
734 */
735static __always_inline void __sock_put(struct sock *sk)
736{
737	refcount_dec(&sk->sk_refcnt);
738}
739
740static inline bool sk_del_node_init(struct sock *sk)
741{
742	bool rc = __sk_del_node_init(sk);
743
744	if (rc) {
745		/* paranoid for a while -acme */
746		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
747		__sock_put(sk);
748	}
749	return rc;
750}
751#define sk_del_node_init_rcu(sk)	sk_del_node_init(sk)
752
753static inline bool __sk_nulls_del_node_init_rcu(struct sock *sk)
754{
755	if (sk_hashed(sk)) {
756		hlist_nulls_del_init_rcu(&sk->sk_nulls_node);
757		return true;
758	}
759	return false;
760}
761
762static inline bool sk_nulls_del_node_init_rcu(struct sock *sk)
763{
764	bool rc = __sk_nulls_del_node_init_rcu(sk);
765
766	if (rc) {
767		/* paranoid for a while -acme */
768		WARN_ON(refcount_read(&sk->sk_refcnt) == 1);
769		__sock_put(sk);
770	}
771	return rc;
772}
773
774static inline void __sk_add_node(struct sock *sk, struct hlist_head *list)
775{
776	hlist_add_head(&sk->sk_node, list);
777}
778
779static inline void sk_add_node(struct sock *sk, struct hlist_head *list)
780{
781	sock_hold(sk);
782	__sk_add_node(sk, list);
783}
784
785static inline void sk_add_node_rcu(struct sock *sk, struct hlist_head *list)
786{
787	sock_hold(sk);
788	if (IS_ENABLED(CONFIG_IPV6) && sk->sk_reuseport &&
789	    sk->sk_family == AF_INET6)
790		hlist_add_tail_rcu(&sk->sk_node, list);
791	else
792		hlist_add_head_rcu(&sk->sk_node, list);
793}
794
795static inline void sk_add_node_tail_rcu(struct sock *sk, struct hlist_head *list)
796{
797	sock_hold(sk);
798	hlist_add_tail_rcu(&sk->sk_node, list);
799}
800
801static inline void __sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
802{
803	hlist_nulls_add_head_rcu(&sk->sk_nulls_node, list);
804}
805
806static inline void __sk_nulls_add_node_tail_rcu(struct sock *sk, struct hlist_nulls_head *list)
807{
808	hlist_nulls_add_tail_rcu(&sk->sk_nulls_node, list);
809}
810
811static inline void sk_nulls_add_node_rcu(struct sock *sk, struct hlist_nulls_head *list)
812{
813	sock_hold(sk);
814	__sk_nulls_add_node_rcu(sk, list);
815}
816
817static inline void __sk_del_bind_node(struct sock *sk)
818{
819	__hlist_del(&sk->sk_bind_node);
820}
821
822static inline void sk_add_bind_node(struct sock *sk,
823					struct hlist_head *list)
824{
825	hlist_add_head(&sk->sk_bind_node, list);
826}
827
828#define sk_for_each(__sk, list) \
829	hlist_for_each_entry(__sk, list, sk_node)
830#define sk_for_each_rcu(__sk, list) \
831	hlist_for_each_entry_rcu(__sk, list, sk_node)
832#define sk_nulls_for_each(__sk, node, list) \
833	hlist_nulls_for_each_entry(__sk, node, list, sk_nulls_node)
834#define sk_nulls_for_each_rcu(__sk, node, list) \
835	hlist_nulls_for_each_entry_rcu(__sk, node, list, sk_nulls_node)
836#define sk_for_each_from(__sk) \
837	hlist_for_each_entry_from(__sk, sk_node)
838#define sk_nulls_for_each_from(__sk, node) \
839	if (__sk && ({ node = &(__sk)->sk_nulls_node; 1; })) \
840		hlist_nulls_for_each_entry_from(__sk, node, sk_nulls_node)
841#define sk_for_each_safe(__sk, tmp, list) \
842	hlist_for_each_entry_safe(__sk, tmp, list, sk_node)
843#define sk_for_each_bound(__sk, list) \
844	hlist_for_each_entry(__sk, list, sk_bind_node)
845
846/**
847 * sk_for_each_entry_offset_rcu - iterate over a list at a given struct offset
848 * @tpos:	the type * to use as a loop cursor.
849 * @pos:	the &struct hlist_node to use as a loop cursor.
850 * @head:	the head for your list.
851 * @offset:	offset of hlist_node within the struct.
852 *
853 */
854#define sk_for_each_entry_offset_rcu(tpos, pos, head, offset)		       \
855	for (pos = rcu_dereference(hlist_first_rcu(head));		       \
856	     pos != NULL &&						       \
857		({ tpos = (typeof(*tpos) *)((void *)pos - offset); 1;});       \
858	     pos = rcu_dereference(hlist_next_rcu(pos)))
859
860static inline struct user_namespace *sk_user_ns(struct sock *sk)
861{
862	/* Careful only use this in a context where these parameters
863	 * can not change and must all be valid, such as recvmsg from
864	 * userspace.
865	 */
866	return sk->sk_socket->file->f_cred->user_ns;
867}
868
869/* Sock flags */
870enum sock_flags {
871	SOCK_DEAD,
872	SOCK_DONE,
873	SOCK_URGINLINE,
874	SOCK_KEEPOPEN,
875	SOCK_LINGER,
876	SOCK_DESTROY,
877	SOCK_BROADCAST,
878	SOCK_TIMESTAMP,
879	SOCK_ZAPPED,
880	SOCK_USE_WRITE_QUEUE, /* whether to call sk->sk_write_space in sock_wfree */
881	SOCK_DBG, /* %SO_DEBUG setting */
882	SOCK_RCVTSTAMP, /* %SO_TIMESTAMP setting */
883	SOCK_RCVTSTAMPNS, /* %SO_TIMESTAMPNS setting */
884	SOCK_LOCALROUTE, /* route locally only, %SO_DONTROUTE setting */
885	SOCK_MEMALLOC, /* VM depends on this socket for swapping */
886	SOCK_TIMESTAMPING_RX_SOFTWARE,  /* %SOF_TIMESTAMPING_RX_SOFTWARE */
887	SOCK_FASYNC, /* fasync() active */
888	SOCK_RXQ_OVFL,
889	SOCK_ZEROCOPY, /* buffers from userspace */
890	SOCK_WIFI_STATUS, /* push wifi status to userspace */
891	SOCK_NOFCS, /* Tell NIC not to do the Ethernet FCS.
892		     * Will use last 4 bytes of packet sent from
893		     * user-space instead.
894		     */
895	SOCK_FILTER_LOCKED, /* Filter cannot be changed anymore */
896	SOCK_SELECT_ERR_QUEUE, /* Wake select on error queue */
897	SOCK_RCU_FREE, /* wait rcu grace period in sk_destruct() */
898	SOCK_TXTIME,
899	SOCK_XDP, /* XDP is attached */
900	SOCK_TSTAMP_NEW, /* Indicates 64 bit timestamps always */
901};
902
903#define SK_FLAGS_TIMESTAMP ((1UL << SOCK_TIMESTAMP) | (1UL << SOCK_TIMESTAMPING_RX_SOFTWARE))
904
905static inline void sock_copy_flags(struct sock *nsk, struct sock *osk)
906{
907	nsk->sk_flags = osk->sk_flags;
908}
909
910static inline void sock_set_flag(struct sock *sk, enum sock_flags flag)
911{
912	__set_bit(flag, &sk->sk_flags);
913}
914
915static inline void sock_reset_flag(struct sock *sk, enum sock_flags flag)
916{
917	__clear_bit(flag, &sk->sk_flags);
918}
919
920static inline void sock_valbool_flag(struct sock *sk, enum sock_flags bit,
921				     int valbool)
922{
923	if (valbool)
924		sock_set_flag(sk, bit);
925	else
926		sock_reset_flag(sk, bit);
927}
928
929static inline bool sock_flag(const struct sock *sk, enum sock_flags flag)
930{
931	return test_bit(flag, &sk->sk_flags);
932}
933
934#ifdef CONFIG_NET
935DECLARE_STATIC_KEY_FALSE(memalloc_socks_key);
936static inline int sk_memalloc_socks(void)
937{
938	return static_branch_unlikely(&memalloc_socks_key);
939}
940
941void __receive_sock(struct file *file);
942#else
943
944static inline int sk_memalloc_socks(void)
945{
946	return 0;
947}
948
949static inline void __receive_sock(struct file *file)
950{ }
951#endif
952
953static inline gfp_t sk_gfp_mask(const struct sock *sk, gfp_t gfp_mask)
954{
955	return gfp_mask | (sk->sk_allocation & __GFP_MEMALLOC);
956}
957
958static inline void sk_acceptq_removed(struct sock *sk)
959{
960	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog - 1);
961}
962
963static inline void sk_acceptq_added(struct sock *sk)
964{
965	WRITE_ONCE(sk->sk_ack_backlog, sk->sk_ack_backlog + 1);
966}
967
968static inline bool sk_acceptq_is_full(const struct sock *sk)
969{
970	return READ_ONCE(sk->sk_ack_backlog) > READ_ONCE(sk->sk_max_ack_backlog);
971}
972
973/*
974 * Compute minimal free write space needed to queue new packets.
975 */
976static inline int sk_stream_min_wspace(const struct sock *sk)
977{
978	return READ_ONCE(sk->sk_wmem_queued) >> 1;
979}
980
981static inline int sk_stream_wspace(const struct sock *sk)
982{
983	return READ_ONCE(sk->sk_sndbuf) - READ_ONCE(sk->sk_wmem_queued);
984}
985
986static inline void sk_wmem_queued_add(struct sock *sk, int val)
987{
988	WRITE_ONCE(sk->sk_wmem_queued, sk->sk_wmem_queued + val);
989}
990
991void sk_stream_write_space(struct sock *sk);
992
993/* OOB backlog add */
994static inline void __sk_add_backlog(struct sock *sk, struct sk_buff *skb)
995{
996	/* dont let skb dst not refcounted, we are going to leave rcu lock */
997	skb_dst_force(skb);
998
999	if (!sk->sk_backlog.tail)
1000		WRITE_ONCE(sk->sk_backlog.head, skb);
1001	else
1002		sk->sk_backlog.tail->next = skb;
1003
1004	WRITE_ONCE(sk->sk_backlog.tail, skb);
1005	skb->next = NULL;
1006}
1007
1008/*
1009 * Take into account size of receive queue and backlog queue
1010 * Do not take into account this skb truesize,
1011 * to allow even a single big packet to come.
1012 */
1013static inline bool sk_rcvqueues_full(const struct sock *sk, unsigned int limit)
1014{
1015	unsigned int qsize = sk->sk_backlog.len + atomic_read(&sk->sk_rmem_alloc);
1016
1017	return qsize > limit;
1018}
1019
1020/* The per-socket spinlock must be held here. */
1021static inline __must_check int sk_add_backlog(struct sock *sk, struct sk_buff *skb,
1022					      unsigned int limit)
1023{
1024	if (sk_rcvqueues_full(sk, limit))
1025		return -ENOBUFS;
1026
1027	/*
1028	 * If the skb was allocated from pfmemalloc reserves, only
1029	 * allow SOCK_MEMALLOC sockets to use it as this socket is
1030	 * helping free memory
1031	 */
1032	if (skb_pfmemalloc(skb) && !sock_flag(sk, SOCK_MEMALLOC))
1033		return -ENOMEM;
1034
1035	__sk_add_backlog(sk, skb);
1036	sk->sk_backlog.len += skb->truesize;
1037	return 0;
1038}
1039
1040int __sk_backlog_rcv(struct sock *sk, struct sk_buff *skb);
1041
1042static inline int sk_backlog_rcv(struct sock *sk, struct sk_buff *skb)
1043{
1044	if (sk_memalloc_socks() && skb_pfmemalloc(skb))
1045		return __sk_backlog_rcv(sk, skb);
1046
1047	return sk->sk_backlog_rcv(sk, skb);
1048}
1049
1050static inline void sk_incoming_cpu_update(struct sock *sk)
1051{
1052	int cpu = raw_smp_processor_id();
1053
1054	if (unlikely(READ_ONCE(sk->sk_incoming_cpu) != cpu))
1055		WRITE_ONCE(sk->sk_incoming_cpu, cpu);
1056}
1057
1058static inline void sock_rps_record_flow_hash(__u32 hash)
1059{
1060#ifdef CONFIG_RPS
1061	struct rps_sock_flow_table *sock_flow_table;
1062
1063	rcu_read_lock();
1064	sock_flow_table = rcu_dereference(rps_sock_flow_table);
1065	rps_record_sock_flow(sock_flow_table, hash);
1066	rcu_read_unlock();
1067#endif
1068}
1069
1070static inline void sock_rps_record_flow(const struct sock *sk)
1071{
1072#ifdef CONFIG_RPS
1073	if (static_branch_unlikely(&rfs_needed)) {
1074		/* Reading sk->sk_rxhash might incur an expensive cache line
1075		 * miss.
1076		 *
1077		 * TCP_ESTABLISHED does cover almost all states where RFS
1078		 * might be useful, and is cheaper [1] than testing :
1079		 *	IPv4: inet_sk(sk)->inet_daddr
1080		 * 	IPv6: ipv6_addr_any(&sk->sk_v6_daddr)
1081		 * OR	an additional socket flag
1082		 * [1] : sk_state and sk_prot are in the same cache line.
1083		 */
1084		if (sk->sk_state == TCP_ESTABLISHED) {
1085			/* This READ_ONCE() is paired with the WRITE_ONCE()
1086			 * from sock_rps_save_rxhash() and sock_rps_reset_rxhash().
1087			 */
1088			sock_rps_record_flow_hash(READ_ONCE(sk->sk_rxhash));
1089		}
1090	}
1091#endif
1092}
1093
1094static inline void sock_rps_save_rxhash(struct sock *sk,
1095					const struct sk_buff *skb)
1096{
1097#ifdef CONFIG_RPS
1098	/* The following WRITE_ONCE() is paired with the READ_ONCE()
1099	 * here, and another one in sock_rps_record_flow().
1100	 */
1101	if (unlikely(READ_ONCE(sk->sk_rxhash) != skb->hash))
1102		WRITE_ONCE(sk->sk_rxhash, skb->hash);
1103#endif
1104}
1105
1106static inline void sock_rps_reset_rxhash(struct sock *sk)
1107{
1108#ifdef CONFIG_RPS
1109	/* Paired with READ_ONCE() in sock_rps_record_flow() */
1110	WRITE_ONCE(sk->sk_rxhash, 0);
1111#endif
1112}
1113
1114#define sk_wait_event(__sk, __timeo, __condition, __wait)		\
1115	({	int __rc;						\
1116		__sk->sk_wait_pending++;				\
1117		release_sock(__sk);					\
1118		__rc = __condition;					\
1119		if (!__rc) {						\
1120			*(__timeo) = wait_woken(__wait,			\
1121						TASK_INTERRUPTIBLE,	\
1122						*(__timeo));		\
1123		}							\
1124		sched_annotate_sleep();					\
1125		lock_sock(__sk);					\
1126		__sk->sk_wait_pending--;				\
1127		__rc = __condition;					\
1128		__rc;							\
1129	})
1130
1131int sk_stream_wait_connect(struct sock *sk, long *timeo_p);
1132int sk_stream_wait_memory(struct sock *sk, long *timeo_p);
1133void sk_stream_wait_close(struct sock *sk, long timeo_p);
1134int sk_stream_error(struct sock *sk, int flags, int err);
1135void sk_stream_kill_queues(struct sock *sk);
1136void sk_set_memalloc(struct sock *sk);
1137void sk_clear_memalloc(struct sock *sk);
1138
1139void __sk_flush_backlog(struct sock *sk);
1140
1141static inline bool sk_flush_backlog(struct sock *sk)
1142{
1143	if (unlikely(READ_ONCE(sk->sk_backlog.tail))) {
1144		__sk_flush_backlog(sk);
1145		return true;
1146	}
1147	return false;
1148}
1149
1150int sk_wait_data(struct sock *sk, long *timeo, const struct sk_buff *skb);
1151
1152struct request_sock_ops;
1153struct timewait_sock_ops;
1154struct inet_hashinfo;
1155struct raw_hashinfo;
1156struct smc_hashinfo;
1157struct module;
1158
1159/*
1160 * caches using SLAB_TYPESAFE_BY_RCU should let .next pointer from nulls nodes
1161 * un-modified. Special care is taken when initializing object to zero.
1162 */
1163static inline void sk_prot_clear_nulls(struct sock *sk, int size)
1164{
1165	if (offsetof(struct sock, sk_node.next) != 0)
1166		memset(sk, 0, offsetof(struct sock, sk_node.next));
1167	memset(&sk->sk_node.pprev, 0,
1168	       size - offsetof(struct sock, sk_node.pprev));
1169}
1170
1171/* Networking protocol blocks we attach to sockets.
1172 * socket layer -> transport layer interface
1173 */
1174struct proto {
1175	void			(*close)(struct sock *sk,
1176					long timeout);
1177	int			(*pre_connect)(struct sock *sk,
1178					struct sockaddr *uaddr,
1179					int addr_len);
1180	int			(*connect)(struct sock *sk,
1181					struct sockaddr *uaddr,
1182					int addr_len);
1183	int			(*disconnect)(struct sock *sk, int flags);
1184
1185	struct sock *		(*accept)(struct sock *sk, int flags, int *err,
1186					  bool kern);
1187
1188	int			(*ioctl)(struct sock *sk, int cmd,
1189					 unsigned long arg);
1190	int			(*init)(struct sock *sk);
1191	void			(*destroy)(struct sock *sk);
1192	void			(*shutdown)(struct sock *sk, int how);
1193	int			(*setsockopt)(struct sock *sk, int level,
1194					int optname, sockptr_t optval,
1195					unsigned int optlen);
1196	int			(*getsockopt)(struct sock *sk, int level,
1197					int optname, char __user *optval,
1198					int __user *option);
1199	void			(*keepalive)(struct sock *sk, int valbool);
1200#ifdef CONFIG_COMPAT
1201	int			(*compat_ioctl)(struct sock *sk,
1202					unsigned int cmd, unsigned long arg);
1203#endif
1204	int			(*sendmsg)(struct sock *sk, struct msghdr *msg,
1205					   size_t len);
1206	int			(*recvmsg)(struct sock *sk, struct msghdr *msg,
1207					   size_t len, int noblock, int flags,
1208					   int *addr_len);
1209	int			(*sendpage)(struct sock *sk, struct page *page,
1210					int offset, size_t size, int flags);
1211	int			(*bind)(struct sock *sk,
1212					struct sockaddr *addr, int addr_len);
1213	int			(*bind_add)(struct sock *sk,
1214					struct sockaddr *addr, int addr_len);
1215
1216	int			(*backlog_rcv) (struct sock *sk,
1217						struct sk_buff *skb);
1218	bool			(*bpf_bypass_getsockopt)(int level,
1219							 int optname);
1220
1221	void		(*release_cb)(struct sock *sk);
1222
1223	/* Keeping track of sk's, looking them up, and port selection methods. */
1224	int			(*hash)(struct sock *sk);
1225	void			(*unhash)(struct sock *sk);
1226	void			(*rehash)(struct sock *sk);
1227	int			(*get_port)(struct sock *sk, unsigned short snum);
1228
1229	/* Keeping track of sockets in use */
1230#ifdef CONFIG_PROC_FS
1231	unsigned int		inuse_idx;
1232#endif
1233
1234	bool			(*stream_memory_free)(const struct sock *sk, int wake);
1235	bool			(*stream_memory_read)(const struct sock *sk);
1236	/* Memory pressure */
1237	void			(*enter_memory_pressure)(struct sock *sk);
1238	void			(*leave_memory_pressure)(struct sock *sk);
1239	atomic_long_t		*memory_allocated;	/* Current allocated memory. */
1240	struct percpu_counter	*sockets_allocated;	/* Current number of sockets. */
1241	/*
1242	 * Pressure flag: try to collapse.
1243	 * Technical note: it is used by multiple contexts non atomically.
1244	 * Make sure to use READ_ONCE()/WRITE_ONCE() for all reads/writes.
1245	 * All the __sk_mem_schedule() is of this nature: accounting
1246	 * is strict, actions are advisory and have some latency.
1247	 */
1248	unsigned long		*memory_pressure;
1249	long			*sysctl_mem;
1250
1251	int			*sysctl_wmem;
1252	int			*sysctl_rmem;
1253	u32			sysctl_wmem_offset;
1254	u32			sysctl_rmem_offset;
1255
1256	int			max_header;
1257	bool			no_autobind;
1258
1259	struct kmem_cache	*slab;
1260	unsigned int		obj_size;
1261	slab_flags_t		slab_flags;
1262	unsigned int		useroffset;	/* Usercopy region offset */
1263	unsigned int		usersize;	/* Usercopy region size */
1264
1265	unsigned int __percpu	*orphan_count;
1266
1267	struct request_sock_ops	*rsk_prot;
1268	struct timewait_sock_ops *twsk_prot;
1269
1270	union {
1271		struct inet_hashinfo	*hashinfo;
1272		struct udp_table	*udp_table;
1273		struct raw_hashinfo	*raw_hash;
1274		struct smc_hashinfo	*smc_hash;
1275	} h;
1276
1277	struct module		*owner;
1278
1279	char			name[32];
1280
1281	struct list_head	node;
1282#ifdef SOCK_REFCNT_DEBUG
1283	atomic_t		socks;
1284#endif
1285	int			(*diag_destroy)(struct sock *sk, int err);
1286} __randomize_layout;
1287
1288int proto_register(struct proto *prot, int alloc_slab);
1289void proto_unregister(struct proto *prot);
1290int sock_load_diag_module(int family, int protocol);
1291
1292#ifdef SOCK_REFCNT_DEBUG
1293static inline void sk_refcnt_debug_inc(struct sock *sk)
1294{
1295	atomic_inc(&sk->sk_prot->socks);
1296}
1297
1298static inline void sk_refcnt_debug_dec(struct sock *sk)
1299{
1300	atomic_dec(&sk->sk_prot->socks);
1301	printk(KERN_DEBUG "%s socket %p released, %d are still alive\n",
1302	       sk->sk_prot->name, sk, atomic_read(&sk->sk_prot->socks));
1303}
1304
1305static inline void sk_refcnt_debug_release(const struct sock *sk)
1306{
1307	if (refcount_read(&sk->sk_refcnt) != 1)
1308		printk(KERN_DEBUG "Destruction of the %s socket %p delayed, refcnt=%d\n",
1309		       sk->sk_prot->name, sk, refcount_read(&sk->sk_refcnt));
1310}
1311#else /* SOCK_REFCNT_DEBUG */
1312#define sk_refcnt_debug_inc(sk) do { } while (0)
1313#define sk_refcnt_debug_dec(sk) do { } while (0)
1314#define sk_refcnt_debug_release(sk) do { } while (0)
1315#endif /* SOCK_REFCNT_DEBUG */
1316
1317static inline bool __sk_stream_memory_free(const struct sock *sk, int wake)
1318{
1319	if (READ_ONCE(sk->sk_wmem_queued) >= READ_ONCE(sk->sk_sndbuf))
1320		return false;
1321
1322	return sk->sk_prot->stream_memory_free ?
1323		sk->sk_prot->stream_memory_free(sk, wake) : true;
1324}
1325
1326static inline bool sk_stream_memory_free(const struct sock *sk)
1327{
1328	return __sk_stream_memory_free(sk, 0);
1329}
1330
1331static inline bool __sk_stream_is_writeable(const struct sock *sk, int wake)
1332{
1333	return sk_stream_wspace(sk) >= sk_stream_min_wspace(sk) &&
1334	       __sk_stream_memory_free(sk, wake);
1335}
1336
1337static inline bool sk_stream_is_writeable(const struct sock *sk)
1338{
1339	return __sk_stream_is_writeable(sk, 0);
1340}
1341
1342static inline int sk_under_cgroup_hierarchy(struct sock *sk,
1343					    struct cgroup *ancestor)
1344{
1345#ifdef CONFIG_SOCK_CGROUP_DATA
1346	return cgroup_is_descendant(sock_cgroup_ptr(&sk->sk_cgrp_data),
1347				    ancestor);
1348#else
1349	return -ENOTSUPP;
1350#endif
1351}
1352
1353static inline bool sk_has_memory_pressure(const struct sock *sk)
1354{
1355	return sk->sk_prot->memory_pressure != NULL;
1356}
1357
1358static inline bool sk_under_global_memory_pressure(const struct sock *sk)
1359{
1360	return sk->sk_prot->memory_pressure &&
1361		!!READ_ONCE(*sk->sk_prot->memory_pressure);
1362}
1363
1364static inline bool sk_under_memory_pressure(const struct sock *sk)
1365{
1366	if (!sk->sk_prot->memory_pressure)
1367		return false;
1368
1369	if (mem_cgroup_sockets_enabled && sk->sk_memcg &&
1370	    mem_cgroup_under_socket_pressure(sk->sk_memcg))
1371		return true;
1372
1373	return !!READ_ONCE(*sk->sk_prot->memory_pressure);
1374}
1375
1376static inline long
1377sk_memory_allocated(const struct sock *sk)
1378{
1379	return atomic_long_read(sk->sk_prot->memory_allocated);
1380}
1381
1382static inline long
1383sk_memory_allocated_add(struct sock *sk, int amt)
1384{
1385	return atomic_long_add_return(amt, sk->sk_prot->memory_allocated);
1386}
1387
1388static inline void
1389sk_memory_allocated_sub(struct sock *sk, int amt)
1390{
1391	atomic_long_sub(amt, sk->sk_prot->memory_allocated);
1392}
1393
1394static inline void sk_sockets_allocated_dec(struct sock *sk)
1395{
1396	percpu_counter_dec(sk->sk_prot->sockets_allocated);
1397}
1398
1399static inline void sk_sockets_allocated_inc(struct sock *sk)
1400{
1401	percpu_counter_inc(sk->sk_prot->sockets_allocated);
1402}
1403
1404static inline u64
1405sk_sockets_allocated_read_positive(struct sock *sk)
1406{
1407	return percpu_counter_read_positive(sk->sk_prot->sockets_allocated);
1408}
1409
1410static inline int
1411proto_sockets_allocated_sum_positive(struct proto *prot)
1412{
1413	return percpu_counter_sum_positive(prot->sockets_allocated);
1414}
1415
1416static inline long
1417proto_memory_allocated(struct proto *prot)
1418{
1419	return atomic_long_read(prot->memory_allocated);
1420}
1421
1422static inline bool
1423proto_memory_pressure(struct proto *prot)
1424{
1425	if (!prot->memory_pressure)
1426		return false;
1427	return !!READ_ONCE(*prot->memory_pressure);
1428}
1429
1430
1431#ifdef CONFIG_PROC_FS
1432/* Called with local bh disabled */
1433void sock_prot_inuse_add(struct net *net, struct proto *prot, int inc);
1434int sock_prot_inuse_get(struct net *net, struct proto *proto);
1435int sock_inuse_get(struct net *net);
1436#else
1437static inline void sock_prot_inuse_add(struct net *net, struct proto *prot,
1438		int inc)
1439{
1440}
1441#endif
1442
1443
1444/* With per-bucket locks this operation is not-atomic, so that
1445 * this version is not worse.
1446 */
1447static inline int __sk_prot_rehash(struct sock *sk)
1448{
1449	sk->sk_prot->unhash(sk);
1450	return sk->sk_prot->hash(sk);
1451}
1452
1453/* About 10 seconds */
1454#define SOCK_DESTROY_TIME (10*HZ)
1455
1456/* Sockets 0-1023 can't be bound to unless you are superuser */
1457#define PROT_SOCK	1024
1458
1459#define SHUTDOWN_MASK	3
1460#define RCV_SHUTDOWN	1
1461#define SEND_SHUTDOWN	2
1462
1463#define SOCK_SNDBUF_LOCK	1
1464#define SOCK_RCVBUF_LOCK	2
1465#define SOCK_BINDADDR_LOCK	4
1466#define SOCK_BINDPORT_LOCK	8
1467
1468struct socket_alloc {
1469	struct socket socket;
1470	struct inode vfs_inode;
1471};
1472
1473static inline struct socket *SOCKET_I(struct inode *inode)
1474{
1475	return &container_of(inode, struct socket_alloc, vfs_inode)->socket;
1476}
1477
1478static inline struct inode *SOCK_INODE(struct socket *socket)
1479{
1480	return &container_of(socket, struct socket_alloc, socket)->vfs_inode;
1481}
1482
1483/*
1484 * Functions for memory accounting
1485 */
1486int __sk_mem_raise_allocated(struct sock *sk, int size, int amt, int kind);
1487int __sk_mem_schedule(struct sock *sk, int size, int kind);
1488void __sk_mem_reduce_allocated(struct sock *sk, int amount);
1489void __sk_mem_reclaim(struct sock *sk, int amount);
1490
1491/* We used to have PAGE_SIZE here, but systems with 64KB pages
1492 * do not necessarily have 16x time more memory than 4KB ones.
1493 */
1494#define SK_MEM_QUANTUM 4096
1495#define SK_MEM_QUANTUM_SHIFT ilog2(SK_MEM_QUANTUM)
1496#define SK_MEM_SEND	0
1497#define SK_MEM_RECV	1
1498
1499/* sysctl_mem values are in pages, we convert them in SK_MEM_QUANTUM units */
1500static inline long sk_prot_mem_limits(const struct sock *sk, int index)
1501{
1502	long val = READ_ONCE(sk->sk_prot->sysctl_mem[index]);
1503
1504#if PAGE_SIZE > SK_MEM_QUANTUM
1505	val <<= PAGE_SHIFT - SK_MEM_QUANTUM_SHIFT;
1506#elif PAGE_SIZE < SK_MEM_QUANTUM
1507	val >>= SK_MEM_QUANTUM_SHIFT - PAGE_SHIFT;
1508#endif
1509	return val;
1510}
1511
1512static inline int sk_mem_pages(int amt)
1513{
1514	return (amt + SK_MEM_QUANTUM - 1) >> SK_MEM_QUANTUM_SHIFT;
1515}
1516
1517static inline bool sk_has_account(struct sock *sk)
1518{
1519	/* return true if protocol supports memory accounting */
1520	return !!sk->sk_prot->memory_allocated;
1521}
1522
1523static inline bool sk_wmem_schedule(struct sock *sk, int size)
1524{
1525	int delta;
1526
1527	if (!sk_has_account(sk))
1528		return true;
1529	delta = size - sk->sk_forward_alloc;
1530	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_SEND);
1531}
1532
1533static inline bool
1534sk_rmem_schedule(struct sock *sk, struct sk_buff *skb, int size)
1535{
1536	int delta;
1537
1538	if (!sk_has_account(sk))
1539		return true;
1540	delta = size - sk->sk_forward_alloc;
1541	return delta <= 0 || __sk_mem_schedule(sk, delta, SK_MEM_RECV) ||
1542		skb_pfmemalloc(skb);
1543}
1544
1545static inline void sk_mem_reclaim(struct sock *sk)
1546{
1547	if (!sk_has_account(sk))
1548		return;
1549	if (sk->sk_forward_alloc >= SK_MEM_QUANTUM)
1550		__sk_mem_reclaim(sk, sk->sk_forward_alloc);
1551}
1552
1553static inline void sk_mem_reclaim_partial(struct sock *sk)
1554{
1555	if (!sk_has_account(sk))
1556		return;
1557	if (sk->sk_forward_alloc > SK_MEM_QUANTUM)
1558		__sk_mem_reclaim(sk, sk->sk_forward_alloc - 1);
1559}
1560
1561static inline void sk_mem_charge(struct sock *sk, int size)
1562{
1563	if (!sk_has_account(sk))
1564		return;
1565	sk->sk_forward_alloc -= size;
1566}
1567
1568static inline void sk_mem_uncharge(struct sock *sk, int size)
1569{
1570	if (!sk_has_account(sk))
1571		return;
1572	sk->sk_forward_alloc += size;
1573
1574	/* Avoid a possible overflow.
1575	 * TCP send queues can make this happen, if sk_mem_reclaim()
1576	 * is not called and more than 2 GBytes are released at once.
1577	 *
1578	 * If we reach 2 MBytes, reclaim 1 MBytes right now, there is
1579	 * no need to hold that much forward allocation anyway.
1580	 */
1581	if (unlikely(sk->sk_forward_alloc >= 1 << 21))
1582		__sk_mem_reclaim(sk, 1 << 20);
1583}
1584
1585DECLARE_STATIC_KEY_FALSE(tcp_tx_skb_cache_key);
1586static inline void sk_wmem_free_skb(struct sock *sk, struct sk_buff *skb)
1587{
1588	sk_wmem_queued_add(sk, -skb->truesize);
1589	sk_mem_uncharge(sk, skb->truesize);
1590	if (static_branch_unlikely(&tcp_tx_skb_cache_key) &&
1591	    !sk->sk_tx_skb_cache && !skb_cloned(skb)) {
1592		skb_ext_reset(skb);
1593		skb_zcopy_clear(skb, true);
1594		sk->sk_tx_skb_cache = skb;
1595		return;
1596	}
1597	__kfree_skb(skb);
1598}
1599
1600static inline void sock_release_ownership(struct sock *sk)
1601{
1602	if (sk->sk_lock.owned) {
1603		sk->sk_lock.owned = 0;
1604
1605		/* The sk_lock has mutex_unlock() semantics: */
1606		mutex_release(&sk->sk_lock.dep_map, _RET_IP_);
1607	}
1608}
1609
1610/*
1611 * Macro so as to not evaluate some arguments when
1612 * lockdep is not enabled.
1613 *
1614 * Mark both the sk_lock and the sk_lock.slock as a
1615 * per-address-family lock class.
1616 */
1617#define sock_lock_init_class_and_name(sk, sname, skey, name, key)	\
1618do {									\
1619	sk->sk_lock.owned = 0;						\
1620	init_waitqueue_head(&sk->sk_lock.wq);				\
1621	spin_lock_init(&(sk)->sk_lock.slock);				\
1622	debug_check_no_locks_freed((void *)&(sk)->sk_lock,		\
1623			sizeof((sk)->sk_lock));				\
1624	lockdep_set_class_and_name(&(sk)->sk_lock.slock,		\
1625				(skey), (sname));				\
1626	lockdep_init_map(&(sk)->sk_lock.dep_map, (name), (key), 0);	\
1627} while (0)
1628
1629#ifdef CONFIG_LOCKDEP
1630static inline bool lockdep_sock_is_held(const struct sock *sk)
1631{
1632	return lockdep_is_held(&sk->sk_lock) ||
1633	       lockdep_is_held(&sk->sk_lock.slock);
1634}
1635#endif
1636
1637void lock_sock_nested(struct sock *sk, int subclass);
1638
1639static inline void lock_sock(struct sock *sk)
1640{
1641	lock_sock_nested(sk, 0);
1642}
1643
1644void __release_sock(struct sock *sk);
1645void release_sock(struct sock *sk);
1646
1647/* BH context may only use the following locking interface. */
1648#define bh_lock_sock(__sk)	spin_lock(&((__sk)->sk_lock.slock))
1649#define bh_lock_sock_nested(__sk) \
1650				spin_lock_nested(&((__sk)->sk_lock.slock), \
1651				SINGLE_DEPTH_NESTING)
1652#define bh_unlock_sock(__sk)	spin_unlock(&((__sk)->sk_lock.slock))
1653
1654bool lock_sock_fast(struct sock *sk);
1655/**
1656 * unlock_sock_fast - complement of lock_sock_fast
1657 * @sk: socket
1658 * @slow: slow mode
1659 *
1660 * fast unlock socket for user context.
1661 * If slow mode is on, we call regular release_sock()
1662 */
1663static inline void unlock_sock_fast(struct sock *sk, bool slow)
1664{
1665	if (slow)
1666		release_sock(sk);
1667	else
1668		spin_unlock_bh(&sk->sk_lock.slock);
1669}
1670
1671/* Used by processes to "lock" a socket state, so that
1672 * interrupts and bottom half handlers won't change it
1673 * from under us. It essentially blocks any incoming
1674 * packets, so that we won't get any new data or any
1675 * packets that change the state of the socket.
1676 *
1677 * While locked, BH processing will add new packets to
1678 * the backlog queue.  This queue is processed by the
1679 * owner of the socket lock right before it is released.
1680 *
1681 * Since ~2.3.5 it is also exclusive sleep lock serializing
1682 * accesses from user process context.
1683 */
1684
1685static inline void sock_owned_by_me(const struct sock *sk)
1686{
1687#ifdef CONFIG_LOCKDEP
1688	WARN_ON_ONCE(!lockdep_sock_is_held(sk) && debug_locks);
1689#endif
1690}
1691
1692static inline void sock_not_owned_by_me(const struct sock *sk)
1693{
1694#ifdef CONFIG_LOCKDEP
1695	WARN_ON_ONCE(lockdep_sock_is_held(sk) && debug_locks);
1696#endif
1697}
1698
1699static inline bool sock_owned_by_user(const struct sock *sk)
1700{
1701	sock_owned_by_me(sk);
1702	return sk->sk_lock.owned;
1703}
1704
1705static inline bool sock_owned_by_user_nocheck(const struct sock *sk)
1706{
1707	return sk->sk_lock.owned;
1708}
1709
1710/* no reclassification while locks are held */
1711static inline bool sock_allow_reclassification(const struct sock *csk)
1712{
1713	struct sock *sk = (struct sock *)csk;
1714
1715	return !sk->sk_lock.owned && !spin_is_locked(&sk->sk_lock.slock);
1716}
1717
1718struct sock *sk_alloc(struct net *net, int family, gfp_t priority,
1719		      struct proto *prot, int kern);
1720void sk_free(struct sock *sk);
1721void sk_destruct(struct sock *sk);
1722struct sock *sk_clone_lock(const struct sock *sk, const gfp_t priority);
1723void sk_free_unlock_clone(struct sock *sk);
1724
1725struct sk_buff *sock_wmalloc(struct sock *sk, unsigned long size, int force,
1726			     gfp_t priority);
1727void __sock_wfree(struct sk_buff *skb);
1728void sock_wfree(struct sk_buff *skb);
1729struct sk_buff *sock_omalloc(struct sock *sk, unsigned long size,
1730			     gfp_t priority);
1731void skb_orphan_partial(struct sk_buff *skb);
1732void sock_rfree(struct sk_buff *skb);
1733void sock_efree(struct sk_buff *skb);
1734#ifdef CONFIG_INET
1735void sock_edemux(struct sk_buff *skb);
1736void sock_pfree(struct sk_buff *skb);
1737#else
1738#define sock_edemux sock_efree
1739#endif
1740
1741int sock_setsockopt(struct socket *sock, int level, int op,
1742		    sockptr_t optval, unsigned int optlen);
1743
1744int sock_getsockopt(struct socket *sock, int level, int op,
1745		    char __user *optval, int __user *optlen);
1746int sock_gettstamp(struct socket *sock, void __user *userstamp,
1747		   bool timeval, bool time32);
1748struct sk_buff *sock_alloc_send_skb(struct sock *sk, unsigned long size,
1749				    int noblock, int *errcode);
1750struct sk_buff *sock_alloc_send_pskb(struct sock *sk, unsigned long header_len,
1751				     unsigned long data_len, int noblock,
1752				     int *errcode, int max_page_order);
1753void *sock_kmalloc(struct sock *sk, int size, gfp_t priority);
1754void sock_kfree_s(struct sock *sk, void *mem, int size);
1755void sock_kzfree_s(struct sock *sk, void *mem, int size);
1756void sk_send_sigurg(struct sock *sk);
1757
1758struct sockcm_cookie {
1759	u64 transmit_time;
1760	u32 mark;
1761	u16 tsflags;
1762};
1763
1764static inline void sockcm_init(struct sockcm_cookie *sockc,
1765			       const struct sock *sk)
1766{
1767	*sockc = (struct sockcm_cookie) { .tsflags = sk->sk_tsflags };
1768}
1769
1770int __sock_cmsg_send(struct sock *sk, struct msghdr *msg, struct cmsghdr *cmsg,
1771		     struct sockcm_cookie *sockc);
1772int sock_cmsg_send(struct sock *sk, struct msghdr *msg,
1773		   struct sockcm_cookie *sockc);
1774
1775/*
1776 * Functions to fill in entries in struct proto_ops when a protocol
1777 * does not implement a particular function.
1778 */
1779int sock_no_bind(struct socket *, struct sockaddr *, int);
1780int sock_no_connect(struct socket *, struct sockaddr *, int, int);
1781int sock_no_socketpair(struct socket *, struct socket *);
1782int sock_no_accept(struct socket *, struct socket *, int, bool);
1783int sock_no_getname(struct socket *, struct sockaddr *, int);
1784int sock_no_ioctl(struct socket *, unsigned int, unsigned long);
1785int sock_no_listen(struct socket *, int);
1786int sock_no_shutdown(struct socket *, int);
1787int sock_no_sendmsg(struct socket *, struct msghdr *, size_t);
1788int sock_no_sendmsg_locked(struct sock *sk, struct msghdr *msg, size_t len);
1789int sock_no_recvmsg(struct socket *, struct msghdr *, size_t, int);
1790int sock_no_mmap(struct file *file, struct socket *sock,
1791		 struct vm_area_struct *vma);
1792ssize_t sock_no_sendpage(struct socket *sock, struct page *page, int offset,
1793			 size_t size, int flags);
1794ssize_t sock_no_sendpage_locked(struct sock *sk, struct page *page,
1795				int offset, size_t size, int flags);
1796
1797/*
1798 * Functions to fill in entries in struct proto_ops when a protocol
1799 * uses the inet style.
1800 */
1801int sock_common_getsockopt(struct socket *sock, int level, int optname,
1802				  char __user *optval, int __user *optlen);
1803int sock_common_recvmsg(struct socket *sock, struct msghdr *msg, size_t size,
1804			int flags);
1805int sock_common_setsockopt(struct socket *sock, int level, int optname,
1806			   sockptr_t optval, unsigned int optlen);
1807
1808void sk_common_release(struct sock *sk);
1809
1810/*
1811 *	Default socket callbacks and setup code
1812 */
1813
1814/* Initialise core socket variables using an explicit uid. */
1815void sock_init_data_uid(struct socket *sock, struct sock *sk, kuid_t uid);
1816
1817/* Initialise core socket variables.
1818 * Assumes struct socket *sock is embedded in a struct socket_alloc.
1819 */
1820void sock_init_data(struct socket *sock, struct sock *sk);
1821
1822/*
1823 * Socket reference counting postulates.
1824 *
1825 * * Each user of socket SHOULD hold a reference count.
1826 * * Each access point to socket (an hash table bucket, reference from a list,
1827 *   running timer, skb in flight MUST hold a reference count.
1828 * * When reference count hits 0, it means it will never increase back.
1829 * * When reference count hits 0, it means that no references from
1830 *   outside exist to this socket and current process on current CPU
1831 *   is last user and may/should destroy this socket.
1832 * * sk_free is called from any context: process, BH, IRQ. When
1833 *   it is called, socket has no references from outside -> sk_free
1834 *   may release descendant resources allocated by the socket, but
1835 *   to the time when it is called, socket is NOT referenced by any
1836 *   hash tables, lists etc.
1837 * * Packets, delivered from outside (from network or from another process)
1838 *   and enqueued on receive/error queues SHOULD NOT grab reference count,
1839 *   when they sit in queue. Otherwise, packets will leak to hole, when
1840 *   socket is looked up by one cpu and unhasing is made by another CPU.
1841 *   It is true for udp/raw, netlink (leak to receive and error queues), tcp
1842 *   (leak to backlog). Packet socket does all the processing inside
1843 *   BR_NETPROTO_LOCK, so that it has not this race condition. UNIX sockets
1844 *   use separate SMP lock, so that they are prone too.
1845 */
1846
1847/* Ungrab socket and destroy it, if it was the last reference. */
1848static inline void sock_put(struct sock *sk)
1849{
1850	if (refcount_dec_and_test(&sk->sk_refcnt))
1851		sk_free(sk);
1852}
1853/* Generic version of sock_put(), dealing with all sockets
1854 * (TCP_TIMEWAIT, TCP_NEW_SYN_RECV, ESTABLISHED...)
1855 */
1856void sock_gen_put(struct sock *sk);
1857
1858int __sk_receive_skb(struct sock *sk, struct sk_buff *skb, const int nested,
1859		     unsigned int trim_cap, bool refcounted);
1860static inline int sk_receive_skb(struct sock *sk, struct sk_buff *skb,
1861				 const int nested)
1862{
1863	return __sk_receive_skb(sk, skb, nested, 1, true);
1864}
1865
1866static inline void sk_tx_queue_set(struct sock *sk, int tx_queue)
1867{
1868	/* sk_tx_queue_mapping accept only upto a 16-bit value */
1869	if (WARN_ON_ONCE((unsigned short)tx_queue >= USHRT_MAX))
1870		return;
1871	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1872	 * other WRITE_ONCE() because socket lock might be not held.
1873	 */
1874	WRITE_ONCE(sk->sk_tx_queue_mapping, tx_queue);
1875}
1876
1877#define NO_QUEUE_MAPPING	USHRT_MAX
1878
1879static inline void sk_tx_queue_clear(struct sock *sk)
1880{
1881	/* Paired with READ_ONCE() in sk_tx_queue_get() and
1882	 * other WRITE_ONCE() because socket lock might be not held.
1883	 */
1884	WRITE_ONCE(sk->sk_tx_queue_mapping, NO_QUEUE_MAPPING);
1885}
1886
1887static inline int sk_tx_queue_get(const struct sock *sk)
1888{
1889	if (sk) {
1890		/* Paired with WRITE_ONCE() in sk_tx_queue_clear()
1891		 * and sk_tx_queue_set().
1892		 */
1893		int val = READ_ONCE(sk->sk_tx_queue_mapping);
1894
1895		if (val != NO_QUEUE_MAPPING)
1896			return val;
1897	}
1898	return -1;
1899}
1900
1901static inline void sk_rx_queue_set(struct sock *sk, const struct sk_buff *skb)
1902{
1903#ifdef CONFIG_XPS
1904	if (skb_rx_queue_recorded(skb)) {
1905		u16 rx_queue = skb_get_rx_queue(skb);
1906
1907		if (WARN_ON_ONCE(rx_queue == NO_QUEUE_MAPPING))
1908			return;
1909
1910		sk->sk_rx_queue_mapping = rx_queue;
1911	}
1912#endif
1913}
1914
1915static inline void sk_rx_queue_clear(struct sock *sk)
1916{
1917#ifdef CONFIG_XPS
1918	sk->sk_rx_queue_mapping = NO_QUEUE_MAPPING;
1919#endif
1920}
1921
1922#ifdef CONFIG_XPS
1923static inline int sk_rx_queue_get(const struct sock *sk)
1924{
1925	if (sk && sk->sk_rx_queue_mapping != NO_QUEUE_MAPPING)
1926		return sk->sk_rx_queue_mapping;
1927
1928	return -1;
1929}
1930#endif
1931
1932static inline void sk_set_socket(struct sock *sk, struct socket *sock)
1933{
1934	sk->sk_socket = sock;
1935}
1936
1937static inline wait_queue_head_t *sk_sleep(struct sock *sk)
1938{
1939	BUILD_BUG_ON(offsetof(struct socket_wq, wait) != 0);
1940	return &rcu_dereference_raw(sk->sk_wq)->wait;
1941}
1942/* Detach socket from process context.
1943 * Announce socket dead, detach it from wait queue and inode.
1944 * Note that parent inode held reference count on this struct sock,
1945 * we do not release it in this function, because protocol
1946 * probably wants some additional cleanups or even continuing
1947 * to work with this socket (TCP).
1948 */
1949static inline void sock_orphan(struct sock *sk)
1950{
1951	write_lock_bh(&sk->sk_callback_lock);
1952	sock_set_flag(sk, SOCK_DEAD);
1953	sk_set_socket(sk, NULL);
1954	sk->sk_wq  = NULL;
1955	write_unlock_bh(&sk->sk_callback_lock);
1956}
1957
1958static inline void sock_graft(struct sock *sk, struct socket *parent)
1959{
1960	WARN_ON(parent->sk);
1961	write_lock_bh(&sk->sk_callback_lock);
1962	rcu_assign_pointer(sk->sk_wq, &parent->wq);
1963	parent->sk = sk;
1964	sk_set_socket(sk, parent);
1965	sk->sk_uid = SOCK_INODE(parent)->i_uid;
1966	security_sock_graft(sk, parent);
1967	write_unlock_bh(&sk->sk_callback_lock);
1968}
1969
1970kuid_t sock_i_uid(struct sock *sk);
1971unsigned long __sock_i_ino(struct sock *sk);
1972unsigned long sock_i_ino(struct sock *sk);
1973
1974static inline kuid_t sock_net_uid(const struct net *net, const struct sock *sk)
1975{
1976	return sk ? sk->sk_uid : make_kuid(net->user_ns, 0);
1977}
1978
1979static inline u32 net_tx_rndhash(void)
1980{
1981	u32 v = prandom_u32();
1982
1983	return v ?: 1;
1984}
1985
1986static inline void sk_set_txhash(struct sock *sk)
1987{
1988	/* This pairs with READ_ONCE() in skb_set_hash_from_sk() */
1989	WRITE_ONCE(sk->sk_txhash, net_tx_rndhash());
1990}
1991
1992static inline bool sk_rethink_txhash(struct sock *sk)
1993{
1994	if (sk->sk_txhash) {
1995		sk_set_txhash(sk);
1996		return true;
1997	}
1998	return false;
1999}
2000
2001static inline struct dst_entry *
2002__sk_dst_get(struct sock *sk)
2003{
2004	return rcu_dereference_check(sk->sk_dst_cache,
2005				     lockdep_sock_is_held(sk));
2006}
2007
2008static inline struct dst_entry *
2009sk_dst_get(struct sock *sk)
2010{
2011	struct dst_entry *dst;
2012
2013	rcu_read_lock();
2014	dst = rcu_dereference(sk->sk_dst_cache);
2015	if (dst && !atomic_inc_not_zero(&dst->__refcnt))
2016		dst = NULL;
2017	rcu_read_unlock();
2018	return dst;
2019}
2020
2021static inline void __dst_negative_advice(struct sock *sk)
2022{
2023	struct dst_entry *dst = __sk_dst_get(sk);
2024
2025	if (dst && dst->ops->negative_advice)
2026		dst->ops->negative_advice(sk, dst);
2027}
2028
2029static inline void dst_negative_advice(struct sock *sk)
2030{
2031	sk_rethink_txhash(sk);
2032	__dst_negative_advice(sk);
2033}
2034
2035static inline void
2036__sk_dst_set(struct sock *sk, struct dst_entry *dst)
2037{
2038	struct dst_entry *old_dst;
2039
2040	sk_tx_queue_clear(sk);
2041	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2042	old_dst = rcu_dereference_protected(sk->sk_dst_cache,
2043					    lockdep_sock_is_held(sk));
2044	rcu_assign_pointer(sk->sk_dst_cache, dst);
2045	dst_release(old_dst);
2046}
2047
2048static inline void
2049sk_dst_set(struct sock *sk, struct dst_entry *dst)
2050{
2051	struct dst_entry *old_dst;
2052
2053	sk_tx_queue_clear(sk);
2054	WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2055	old_dst = xchg((__force struct dst_entry **)&sk->sk_dst_cache, dst);
2056	dst_release(old_dst);
2057}
2058
2059static inline void
2060__sk_dst_reset(struct sock *sk)
2061{
2062	__sk_dst_set(sk, NULL);
2063}
2064
2065static inline void
2066sk_dst_reset(struct sock *sk)
2067{
2068	sk_dst_set(sk, NULL);
2069}
2070
2071struct dst_entry *__sk_dst_check(struct sock *sk, u32 cookie);
2072
2073struct dst_entry *sk_dst_check(struct sock *sk, u32 cookie);
2074
2075static inline void sk_dst_confirm(struct sock *sk)
2076{
2077	if (!READ_ONCE(sk->sk_dst_pending_confirm))
2078		WRITE_ONCE(sk->sk_dst_pending_confirm, 1);
2079}
2080
2081static inline void sock_confirm_neigh(struct sk_buff *skb, struct neighbour *n)
2082{
2083	if (skb_get_dst_pending_confirm(skb)) {
2084		struct sock *sk = skb->sk;
2085		unsigned long now = jiffies;
2086
2087		/* avoid dirtying neighbour */
2088		if (READ_ONCE(n->confirmed) != now)
2089			WRITE_ONCE(n->confirmed, now);
2090		if (sk && READ_ONCE(sk->sk_dst_pending_confirm))
2091			WRITE_ONCE(sk->sk_dst_pending_confirm, 0);
2092	}
2093}
2094
2095bool sk_mc_loop(struct sock *sk);
2096
2097static inline bool sk_can_gso(const struct sock *sk)
2098{
2099	return net_gso_ok(sk->sk_route_caps, sk->sk_gso_type);
2100}
2101
2102void sk_setup_caps(struct sock *sk, struct dst_entry *dst);
2103
2104static inline void sk_nocaps_add(struct sock *sk, netdev_features_t flags)
2105{
2106	sk->sk_route_nocaps |= flags;
2107	sk->sk_route_caps &= ~flags;
2108}
2109
2110static inline int skb_do_copy_data_nocache(struct sock *sk, struct sk_buff *skb,
2111					   struct iov_iter *from, char *to,
2112					   int copy, int offset)
2113{
2114	if (skb->ip_summed == CHECKSUM_NONE) {
2115		__wsum csum = 0;
2116		if (!csum_and_copy_from_iter_full(to, copy, &csum, from))
2117			return -EFAULT;
2118		skb->csum = csum_block_add(skb->csum, csum, offset);
2119	} else if (sk->sk_route_caps & NETIF_F_NOCACHE_COPY) {
2120		if (!copy_from_iter_full_nocache(to, copy, from))
2121			return -EFAULT;
2122	} else if (!copy_from_iter_full(to, copy, from))
2123		return -EFAULT;
2124
2125	return 0;
2126}
2127
2128static inline int skb_add_data_nocache(struct sock *sk, struct sk_buff *skb,
2129				       struct iov_iter *from, int copy)
2130{
2131	int err, offset = skb->len;
2132
2133	err = skb_do_copy_data_nocache(sk, skb, from, skb_put(skb, copy),
2134				       copy, offset);
2135	if (err)
2136		__skb_trim(skb, offset);
2137
2138	return err;
2139}
2140
2141static inline int skb_copy_to_page_nocache(struct sock *sk, struct iov_iter *from,
2142					   struct sk_buff *skb,
2143					   struct page *page,
2144					   int off, int copy)
2145{
2146	int err;
2147
2148	err = skb_do_copy_data_nocache(sk, skb, from, page_address(page) + off,
2149				       copy, skb->len);
2150	if (err)
2151		return err;
2152
2153	skb->len	     += copy;
2154	skb->data_len	     += copy;
2155	skb->truesize	     += copy;
2156	sk_wmem_queued_add(sk, copy);
2157	sk_mem_charge(sk, copy);
2158	return 0;
2159}
2160
2161/**
2162 * sk_wmem_alloc_get - returns write allocations
2163 * @sk: socket
2164 *
2165 * Return: sk_wmem_alloc minus initial offset of one
2166 */
2167static inline int sk_wmem_alloc_get(const struct sock *sk)
2168{
2169	return refcount_read(&sk->sk_wmem_alloc) - 1;
2170}
2171
2172/**
2173 * sk_rmem_alloc_get - returns read allocations
2174 * @sk: socket
2175 *
2176 * Return: sk_rmem_alloc
2177 */
2178static inline int sk_rmem_alloc_get(const struct sock *sk)
2179{
2180	return atomic_read(&sk->sk_rmem_alloc);
2181}
2182
2183/**
2184 * sk_has_allocations - check if allocations are outstanding
2185 * @sk: socket
2186 *
2187 * Return: true if socket has write or read allocations
2188 */
2189static inline bool sk_has_allocations(const struct sock *sk)
2190{
2191	return sk_wmem_alloc_get(sk) || sk_rmem_alloc_get(sk);
2192}
2193
2194/**
2195 * skwq_has_sleeper - check if there are any waiting processes
2196 * @wq: struct socket_wq
2197 *
2198 * Return: true if socket_wq has waiting processes
2199 *
2200 * The purpose of the skwq_has_sleeper and sock_poll_wait is to wrap the memory
2201 * barrier call. They were added due to the race found within the tcp code.
2202 *
2203 * Consider following tcp code paths::
2204 *
2205 *   CPU1                CPU2
2206 *   sys_select          receive packet
2207 *   ...                 ...
2208 *   __add_wait_queue    update tp->rcv_nxt
2209 *   ...                 ...
2210 *   tp->rcv_nxt check   sock_def_readable
2211 *   ...                 {
2212 *   schedule               rcu_read_lock();
2213 *                          wq = rcu_dereference(sk->sk_wq);
2214 *                          if (wq && waitqueue_active(&wq->wait))
2215 *                              wake_up_interruptible(&wq->wait)
2216 *                          ...
2217 *                       }
2218 *
2219 * The race for tcp fires when the __add_wait_queue changes done by CPU1 stay
2220 * in its cache, and so does the tp->rcv_nxt update on CPU2 side.  The CPU1
2221 * could then endup calling schedule and sleep forever if there are no more
2222 * data on the socket.
2223 *
2224 */
2225static inline bool skwq_has_sleeper(struct socket_wq *wq)
2226{
2227	return wq && wq_has_sleeper(&wq->wait);
2228}
2229
2230/**
2231 * sock_poll_wait - place memory barrier behind the poll_wait call.
2232 * @filp:           file
2233 * @sock:           socket to wait on
2234 * @p:              poll_table
2235 *
2236 * See the comments in the wq_has_sleeper function.
2237 */
2238static inline void sock_poll_wait(struct file *filp, struct socket *sock,
2239				  poll_table *p)
2240{
2241	if (!poll_does_not_wait(p)) {
2242		poll_wait(filp, &sock->wq.wait, p);
2243		/* We need to be sure we are in sync with the
2244		 * socket flags modification.
2245		 *
2246		 * This memory barrier is paired in the wq_has_sleeper.
2247		 */
2248		smp_mb();
2249	}
2250}
2251
2252static inline void skb_set_hash_from_sk(struct sk_buff *skb, struct sock *sk)
2253{
2254	/* This pairs with WRITE_ONCE() in sk_set_txhash() */
2255	u32 txhash = READ_ONCE(sk->sk_txhash);
2256
2257	if (txhash) {
2258		skb->l4_hash = 1;
2259		skb->hash = txhash;
2260	}
2261}
2262
2263void skb_set_owner_w(struct sk_buff *skb, struct sock *sk);
2264
2265/*
2266 *	Queue a received datagram if it will fit. Stream and sequenced
2267 *	protocols can't normally use this as they need to fit buffers in
2268 *	and play with them.
2269 *
2270 *	Inlined as it's very short and called for pretty much every
2271 *	packet ever received.
2272 */
2273static inline void skb_set_owner_r(struct sk_buff *skb, struct sock *sk)
2274{
2275	skb_orphan(skb);
2276	skb->sk = sk;
2277	skb->destructor = sock_rfree;
2278	atomic_add(skb->truesize, &sk->sk_rmem_alloc);
2279	sk_mem_charge(sk, skb->truesize);
2280}
2281
2282static inline __must_check bool skb_set_owner_sk_safe(struct sk_buff *skb, struct sock *sk)
2283{
2284	if (sk && refcount_inc_not_zero(&sk->sk_refcnt)) {
2285		skb_orphan(skb);
2286		skb->destructor = sock_efree;
2287		skb->sk = sk;
2288		return true;
2289	}
2290	return false;
2291}
2292
2293static inline struct sk_buff *skb_clone_and_charge_r(struct sk_buff *skb, struct sock *sk)
2294{
2295	skb = skb_clone(skb, sk_gfp_mask(sk, GFP_ATOMIC));
2296	if (skb) {
2297		if (sk_rmem_schedule(sk, skb, skb->truesize)) {
2298			skb_set_owner_r(skb, sk);
2299			return skb;
2300		}
2301		__kfree_skb(skb);
2302	}
2303	return NULL;
2304}
2305
2306void sk_reset_timer(struct sock *sk, struct timer_list *timer,
2307		    unsigned long expires);
2308
2309void sk_stop_timer(struct sock *sk, struct timer_list *timer);
2310
2311void sk_stop_timer_sync(struct sock *sk, struct timer_list *timer);
2312
2313int __sk_queue_drop_skb(struct sock *sk, struct sk_buff_head *sk_queue,
2314			struct sk_buff *skb, unsigned int flags,
2315			void (*destructor)(struct sock *sk,
2316					   struct sk_buff *skb));
2317int __sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2318int sock_queue_rcv_skb(struct sock *sk, struct sk_buff *skb);
2319
2320int sock_queue_err_skb(struct sock *sk, struct sk_buff *skb);
2321struct sk_buff *sock_dequeue_err_skb(struct sock *sk);
2322
2323/*
2324 *	Recover an error report and clear atomically
2325 */
2326
2327static inline int sock_error(struct sock *sk)
2328{
2329	int err;
2330
2331	/* Avoid an atomic operation for the common case.
2332	 * This is racy since another cpu/thread can change sk_err under us.
2333	 */
2334	if (likely(data_race(!sk->sk_err)))
2335		return 0;
2336
2337	err = xchg(&sk->sk_err, 0);
2338	return -err;
2339}
2340
2341static inline unsigned long sock_wspace(struct sock *sk)
2342{
2343	int amt = 0;
2344
2345	if (!(sk->sk_shutdown & SEND_SHUTDOWN)) {
2346		amt = sk->sk_sndbuf - refcount_read(&sk->sk_wmem_alloc);
2347		if (amt < 0)
2348			amt = 0;
2349	}
2350	return amt;
2351}
2352
2353/* Note:
2354 *  We use sk->sk_wq_raw, from contexts knowing this
2355 *  pointer is not NULL and cannot disappear/change.
2356 */
2357static inline void sk_set_bit(int nr, struct sock *sk)
2358{
2359	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2360	    !sock_flag(sk, SOCK_FASYNC))
2361		return;
2362
2363	set_bit(nr, &sk->sk_wq_raw->flags);
2364}
2365
2366static inline void sk_clear_bit(int nr, struct sock *sk)
2367{
2368	if ((nr == SOCKWQ_ASYNC_NOSPACE || nr == SOCKWQ_ASYNC_WAITDATA) &&
2369	    !sock_flag(sk, SOCK_FASYNC))
2370		return;
2371
2372	clear_bit(nr, &sk->sk_wq_raw->flags);
2373}
2374
2375static inline void sk_wake_async(const struct sock *sk, int how, int band)
2376{
2377	if (sock_flag(sk, SOCK_FASYNC)) {
2378		rcu_read_lock();
2379		sock_wake_async(rcu_dereference(sk->sk_wq), how, band);
2380		rcu_read_unlock();
2381	}
2382}
2383
2384/* Since sk_{r,w}mem_alloc sums skb->truesize, even a small frame might
2385 * need sizeof(sk_buff) + MTU + padding, unless net driver perform copybreak.
2386 * Note: for send buffers, TCP works better if we can build two skbs at
2387 * minimum.
2388 */
2389#define TCP_SKB_MIN_TRUESIZE	(2048 + SKB_DATA_ALIGN(sizeof(struct sk_buff)))
2390
2391#define SOCK_MIN_SNDBUF		(TCP_SKB_MIN_TRUESIZE * 2)
2392#define SOCK_MIN_RCVBUF		 TCP_SKB_MIN_TRUESIZE
2393
2394static inline void sk_stream_moderate_sndbuf(struct sock *sk)
2395{
2396	u32 val;
2397
2398	if (sk->sk_userlocks & SOCK_SNDBUF_LOCK)
2399		return;
2400
2401	val = min(sk->sk_sndbuf, sk->sk_wmem_queued >> 1);
2402
2403	WRITE_ONCE(sk->sk_sndbuf, max_t(u32, val, SOCK_MIN_SNDBUF));
2404}
2405
2406struct sk_buff *sk_stream_alloc_skb(struct sock *sk, int size, gfp_t gfp,
2407				    bool force_schedule);
2408
2409/**
2410 * sk_page_frag - return an appropriate page_frag
2411 * @sk: socket
2412 *
2413 * Use the per task page_frag instead of the per socket one for
2414 * optimization when we know that we're in process context and own
2415 * everything that's associated with %current.
2416 *
2417 * Both direct reclaim and page faults can nest inside other
2418 * socket operations and end up recursing into sk_page_frag()
2419 * while it's already in use: explicitly avoid task page_frag
2420 * usage if the caller is potentially doing any of them.
2421 * This assumes that page fault handlers use the GFP_NOFS flags.
2422 *
2423 * Return: a per task page_frag if context allows that,
2424 * otherwise a per socket one.
2425 */
2426static inline struct page_frag *sk_page_frag(struct sock *sk)
2427{
2428	if ((sk->sk_allocation & (__GFP_DIRECT_RECLAIM | __GFP_MEMALLOC | __GFP_FS)) ==
2429	    (__GFP_DIRECT_RECLAIM | __GFP_FS))
2430		return &current->task_frag;
2431
2432	return &sk->sk_frag;
2433}
2434
2435bool sk_page_frag_refill(struct sock *sk, struct page_frag *pfrag);
2436
2437/*
2438 *	Default write policy as shown to user space via poll/select/SIGIO
2439 */
2440static inline bool sock_writeable(const struct sock *sk)
2441{
2442	return refcount_read(&sk->sk_wmem_alloc) < (READ_ONCE(sk->sk_sndbuf) >> 1);
2443}
2444
2445static inline gfp_t gfp_any(void)
2446{
2447	return in_softirq() ? GFP_ATOMIC : GFP_KERNEL;
2448}
2449
2450static inline long sock_rcvtimeo(const struct sock *sk, bool noblock)
2451{
2452	return noblock ? 0 : sk->sk_rcvtimeo;
2453}
2454
2455static inline long sock_sndtimeo(const struct sock *sk, bool noblock)
2456{
2457	return noblock ? 0 : sk->sk_sndtimeo;
2458}
2459
2460static inline int sock_rcvlowat(const struct sock *sk, int waitall, int len)
2461{
2462	int v = waitall ? len : min_t(int, READ_ONCE(sk->sk_rcvlowat), len);
2463
2464	return v ?: 1;
2465}
2466
2467/* Alas, with timeout socket operations are not restartable.
2468 * Compare this to poll().
2469 */
2470static inline int sock_intr_errno(long timeo)
2471{
2472	return timeo == MAX_SCHEDULE_TIMEOUT ? -ERESTARTSYS : -EINTR;
2473}
2474
2475struct sock_skb_cb {
2476	u32 dropcount;
2477};
2478
2479/* Store sock_skb_cb at the end of skb->cb[] so protocol families
2480 * using skb->cb[] would keep using it directly and utilize its
2481 * alignement guarantee.
2482 */
2483#define SOCK_SKB_CB_OFFSET ((sizeof_field(struct sk_buff, cb) - \
2484			    sizeof(struct sock_skb_cb)))
2485
2486#define SOCK_SKB_CB(__skb) ((struct sock_skb_cb *)((__skb)->cb + \
2487			    SOCK_SKB_CB_OFFSET))
2488
2489#define sock_skb_cb_check_size(size) \
2490	BUILD_BUG_ON((size) > SOCK_SKB_CB_OFFSET)
2491
2492static inline void
2493sock_skb_set_dropcount(const struct sock *sk, struct sk_buff *skb)
2494{
2495	SOCK_SKB_CB(skb)->dropcount = sock_flag(sk, SOCK_RXQ_OVFL) ?
2496						atomic_read(&sk->sk_drops) : 0;
2497}
2498
2499static inline void sk_drops_add(struct sock *sk, const struct sk_buff *skb)
2500{
2501	int segs = max_t(u16, 1, skb_shinfo(skb)->gso_segs);
2502
2503	atomic_add(segs, &sk->sk_drops);
2504}
2505
2506static inline ktime_t sock_read_timestamp(struct sock *sk)
2507{
2508#if BITS_PER_LONG==32
2509	unsigned int seq;
2510	ktime_t kt;
2511
2512	do {
2513		seq = read_seqbegin(&sk->sk_stamp_seq);
2514		kt = sk->sk_stamp;
2515	} while (read_seqretry(&sk->sk_stamp_seq, seq));
2516
2517	return kt;
2518#else
2519	return READ_ONCE(sk->sk_stamp);
2520#endif
2521}
2522
2523static inline void sock_write_timestamp(struct sock *sk, ktime_t kt)
2524{
2525#if BITS_PER_LONG==32
2526	write_seqlock(&sk->sk_stamp_seq);
2527	sk->sk_stamp = kt;
2528	write_sequnlock(&sk->sk_stamp_seq);
2529#else
2530	WRITE_ONCE(sk->sk_stamp, kt);
2531#endif
2532}
2533
2534void __sock_recv_timestamp(struct msghdr *msg, struct sock *sk,
2535			   struct sk_buff *skb);
2536void __sock_recv_wifi_status(struct msghdr *msg, struct sock *sk,
2537			     struct sk_buff *skb);
2538
2539static inline void
2540sock_recv_timestamp(struct msghdr *msg, struct sock *sk, struct sk_buff *skb)
2541{
2542	ktime_t kt = skb->tstamp;
2543	struct skb_shared_hwtstamps *hwtstamps = skb_hwtstamps(skb);
2544
2545	/*
2546	 * generate control messages if
2547	 * - receive time stamping in software requested
2548	 * - software time stamp available and wanted
2549	 * - hardware time stamps available and wanted
2550	 */
2551	if (sock_flag(sk, SOCK_RCVTSTAMP) ||
2552	    (sk->sk_tsflags & SOF_TIMESTAMPING_RX_SOFTWARE) ||
2553	    (kt && sk->sk_tsflags & SOF_TIMESTAMPING_SOFTWARE) ||
2554	    (hwtstamps->hwtstamp &&
2555	     (sk->sk_tsflags & SOF_TIMESTAMPING_RAW_HARDWARE)))
2556		__sock_recv_timestamp(msg, sk, skb);
2557	else
2558		sock_write_timestamp(sk, kt);
2559
2560	if (sock_flag(sk, SOCK_WIFI_STATUS) && skb->wifi_acked_valid)
2561		__sock_recv_wifi_status(msg, sk, skb);
2562}
2563
2564void __sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2565			      struct sk_buff *skb);
2566
2567#define SK_DEFAULT_STAMP (-1L * NSEC_PER_SEC)
2568static inline void sock_recv_ts_and_drops(struct msghdr *msg, struct sock *sk,
2569					  struct sk_buff *skb)
2570{
2571#define FLAGS_TS_OR_DROPS ((1UL << SOCK_RXQ_OVFL)			| \
2572			   (1UL << SOCK_RCVTSTAMP))
2573#define TSFLAGS_ANY	  (SOF_TIMESTAMPING_SOFTWARE			| \
2574			   SOF_TIMESTAMPING_RAW_HARDWARE)
2575
2576	if (sk->sk_flags & FLAGS_TS_OR_DROPS || sk->sk_tsflags & TSFLAGS_ANY)
2577		__sock_recv_ts_and_drops(msg, sk, skb);
2578	else if (unlikely(sock_flag(sk, SOCK_TIMESTAMP)))
2579		sock_write_timestamp(sk, skb->tstamp);
2580	else if (unlikely(sock_read_timestamp(sk) == SK_DEFAULT_STAMP))
2581		sock_write_timestamp(sk, 0);
2582}
2583
2584void __sock_tx_timestamp(__u16 tsflags, __u8 *tx_flags);
2585
2586/**
2587 * _sock_tx_timestamp - checks whether the outgoing packet is to be time stamped
2588 * @sk:		socket sending this packet
2589 * @tsflags:	timestamping flags to use
2590 * @tx_flags:	completed with instructions for time stamping
2591 * @tskey:      filled in with next sk_tskey (not for TCP, which uses seqno)
2592 *
2593 * Note: callers should take care of initial ``*tx_flags`` value (usually 0)
2594 */
2595static inline void _sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2596				      __u8 *tx_flags, __u32 *tskey)
2597{
2598	if (unlikely(tsflags)) {
2599		__sock_tx_timestamp(tsflags, tx_flags);
2600		if (tsflags & SOF_TIMESTAMPING_OPT_ID && tskey &&
2601		    tsflags & SOF_TIMESTAMPING_TX_RECORD_MASK)
2602			*tskey = sk->sk_tskey++;
2603	}
2604	if (unlikely(sock_flag(sk, SOCK_WIFI_STATUS)))
2605		*tx_flags |= SKBTX_WIFI_STATUS;
2606}
2607
2608static inline void sock_tx_timestamp(struct sock *sk, __u16 tsflags,
2609				     __u8 *tx_flags)
2610{
2611	_sock_tx_timestamp(sk, tsflags, tx_flags, NULL);
2612}
2613
2614static inline void skb_setup_tx_timestamp(struct sk_buff *skb, __u16 tsflags)
2615{
2616	_sock_tx_timestamp(skb->sk, tsflags, &skb_shinfo(skb)->tx_flags,
2617			   &skb_shinfo(skb)->tskey);
2618}
2619
2620DECLARE_STATIC_KEY_FALSE(tcp_rx_skb_cache_key);
2621/**
2622 * sk_eat_skb - Release a skb if it is no longer needed
2623 * @sk: socket to eat this skb from
2624 * @skb: socket buffer to eat
2625 *
2626 * This routine must be called with interrupts disabled or with the socket
2627 * locked so that the sk_buff queue operation is ok.
2628*/
2629static inline void sk_eat_skb(struct sock *sk, struct sk_buff *skb)
2630{
2631	__skb_unlink(skb, &sk->sk_receive_queue);
2632	if (static_branch_unlikely(&tcp_rx_skb_cache_key) &&
2633	    !sk->sk_rx_skb_cache) {
2634		sk->sk_rx_skb_cache = skb;
2635		skb_orphan(skb);
2636		return;
2637	}
2638	__kfree_skb(skb);
2639}
2640
2641static inline
2642struct net *sock_net(const struct sock *sk)
2643{
2644	return read_pnet(&sk->sk_net);
2645}
2646
2647static inline
2648void sock_net_set(struct sock *sk, struct net *net)
2649{
2650	write_pnet(&sk->sk_net, net);
2651}
2652
2653static inline bool
2654skb_sk_is_prefetched(struct sk_buff *skb)
2655{
2656#ifdef CONFIG_INET
2657	return skb->destructor == sock_pfree;
2658#else
2659	return false;
2660#endif /* CONFIG_INET */
2661}
2662
2663/* This helper checks if a socket is a full socket,
2664 * ie _not_ a timewait or request socket.
2665 */
2666static inline bool sk_fullsock(const struct sock *sk)
2667{
2668	return (1 << sk->sk_state) & ~(TCPF_TIME_WAIT | TCPF_NEW_SYN_RECV);
2669}
2670
2671static inline bool
2672sk_is_refcounted(struct sock *sk)
2673{
2674	/* Only full sockets have sk->sk_flags. */
2675	return !sk_fullsock(sk) || !sock_flag(sk, SOCK_RCU_FREE);
2676}
2677
2678/**
2679 * skb_steal_sock - steal a socket from an sk_buff
2680 * @skb: sk_buff to steal the socket from
2681 * @refcounted: is set to true if the socket is reference-counted
2682 */
2683static inline struct sock *
2684skb_steal_sock(struct sk_buff *skb, bool *refcounted)
2685{
2686	if (skb->sk) {
2687		struct sock *sk = skb->sk;
2688
2689		*refcounted = true;
2690		if (skb_sk_is_prefetched(skb))
2691			*refcounted = sk_is_refcounted(sk);
2692		skb->destructor = NULL;
2693		skb->sk = NULL;
2694		return sk;
2695	}
2696	*refcounted = false;
2697	return NULL;
2698}
2699
2700/* Checks if this SKB belongs to an HW offloaded socket
2701 * and whether any SW fallbacks are required based on dev.
2702 * Check decrypted mark in case skb_orphan() cleared socket.
2703 */
2704static inline struct sk_buff *sk_validate_xmit_skb(struct sk_buff *skb,
2705						   struct net_device *dev)
2706{
2707#ifdef CONFIG_SOCK_VALIDATE_XMIT
2708	struct sock *sk = skb->sk;
2709
2710	if (sk && sk_fullsock(sk) && sk->sk_validate_xmit_skb) {
2711		skb = sk->sk_validate_xmit_skb(sk, dev, skb);
2712#ifdef CONFIG_TLS_DEVICE
2713	} else if (unlikely(skb->decrypted)) {
2714		pr_warn_ratelimited("unencrypted skb with no associated socket - dropping\n");
2715		kfree_skb(skb);
2716		skb = NULL;
2717#endif
2718	}
2719#endif
2720
2721	return skb;
2722}
2723
2724/* This helper checks if a socket is a LISTEN or NEW_SYN_RECV
2725 * SYNACK messages can be attached to either ones (depending on SYNCOOKIE)
2726 */
2727static inline bool sk_listener(const struct sock *sk)
2728{
2729	return (1 << sk->sk_state) & (TCPF_LISTEN | TCPF_NEW_SYN_RECV);
2730}
2731
2732void sock_enable_timestamp(struct sock *sk, enum sock_flags flag);
2733int sock_recv_errqueue(struct sock *sk, struct msghdr *msg, int len, int level,
2734		       int type);
2735
2736bool sk_ns_capable(const struct sock *sk,
2737		   struct user_namespace *user_ns, int cap);
2738bool sk_capable(const struct sock *sk, int cap);
2739bool sk_net_capable(const struct sock *sk, int cap);
2740
2741void sk_get_meminfo(const struct sock *sk, u32 *meminfo);
2742
2743/* Take into consideration the size of the struct sk_buff overhead in the
2744 * determination of these values, since that is non-constant across
2745 * platforms.  This makes socket queueing behavior and performance
2746 * not depend upon such differences.
2747 */
2748#define _SK_MEM_PACKETS		256
2749#define _SK_MEM_OVERHEAD	SKB_TRUESIZE(256)
2750#define SK_WMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2751#define SK_RMEM_MAX		(_SK_MEM_OVERHEAD * _SK_MEM_PACKETS)
2752
2753extern __u32 sysctl_wmem_max;
2754extern __u32 sysctl_rmem_max;
2755
2756extern int sysctl_tstamp_allow_data;
2757extern int sysctl_optmem_max;
2758
2759extern __u32 sysctl_wmem_default;
2760extern __u32 sysctl_rmem_default;
2761
2762#define SKB_FRAG_PAGE_ORDER	get_order(32768)
2763DECLARE_STATIC_KEY_FALSE(net_high_order_alloc_disable_key);
2764
2765static inline int sk_get_wmem0(const struct sock *sk, const struct proto *proto)
2766{
2767	/* Does this proto have per netns sysctl_wmem ? */
2768	if (proto->sysctl_wmem_offset)
2769		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_wmem_offset));
2770
2771	return READ_ONCE(*proto->sysctl_wmem);
2772}
2773
2774static inline int sk_get_rmem0(const struct sock *sk, const struct proto *proto)
2775{
2776	/* Does this proto have per netns sysctl_rmem ? */
2777	if (proto->sysctl_rmem_offset)
2778		return READ_ONCE(*(int *)((void *)sock_net(sk) + proto->sysctl_rmem_offset));
2779
2780	return READ_ONCE(*proto->sysctl_rmem);
2781}
2782
2783/* Default TCP Small queue budget is ~1 ms of data (1sec >> 10)
2784 * Some wifi drivers need to tweak it to get more chunks.
2785 * They can use this helper from their ndo_start_xmit()
2786 */
2787static inline void sk_pacing_shift_update(struct sock *sk, int val)
2788{
2789	if (!sk || !sk_fullsock(sk) || READ_ONCE(sk->sk_pacing_shift) == val)
2790		return;
2791	WRITE_ONCE(sk->sk_pacing_shift, val);
2792}
2793
2794/* if a socket is bound to a device, check that the given device
2795 * index is either the same or that the socket is bound to an L3
2796 * master device and the given device index is also enslaved to
2797 * that L3 master
2798 */
2799static inline bool sk_dev_equal_l3scope(struct sock *sk, int dif)
2800{
2801	int mdif;
2802
2803	if (!sk->sk_bound_dev_if || sk->sk_bound_dev_if == dif)
2804		return true;
2805
2806	mdif = l3mdev_master_ifindex_by_index(sock_net(sk), dif);
2807	if (mdif && mdif == sk->sk_bound_dev_if)
2808		return true;
2809
2810	return false;
2811}
2812
2813void sock_def_readable(struct sock *sk);
2814
2815int sock_bindtoindex(struct sock *sk, int ifindex, bool lock_sk);
2816void sock_enable_timestamps(struct sock *sk);
2817void sock_no_linger(struct sock *sk);
2818void sock_set_keepalive(struct sock *sk);
2819void sock_set_priority(struct sock *sk, u32 priority);
2820void sock_set_rcvbuf(struct sock *sk, int val);
2821void sock_set_mark(struct sock *sk, u32 val);
2822void sock_set_reuseaddr(struct sock *sk);
2823void sock_set_reuseport(struct sock *sk);
2824void sock_set_sndtimeo(struct sock *sk, s64 secs);
2825
2826int sock_bind_add(struct sock *sk, struct sockaddr *addr, int addr_len);
2827
2828#endif	/* _SOCK_H */
2829