18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 28c2ecf20Sopenharmony_ci#ifndef __NET_SCHED_RED_H 38c2ecf20Sopenharmony_ci#define __NET_SCHED_RED_H 48c2ecf20Sopenharmony_ci 58c2ecf20Sopenharmony_ci#include <linux/types.h> 68c2ecf20Sopenharmony_ci#include <linux/bug.h> 78c2ecf20Sopenharmony_ci#include <net/pkt_sched.h> 88c2ecf20Sopenharmony_ci#include <net/inet_ecn.h> 98c2ecf20Sopenharmony_ci#include <net/dsfield.h> 108c2ecf20Sopenharmony_ci#include <linux/reciprocal_div.h> 118c2ecf20Sopenharmony_ci 128c2ecf20Sopenharmony_ci/* Random Early Detection (RED) algorithm. 138c2ecf20Sopenharmony_ci ======================================= 148c2ecf20Sopenharmony_ci 158c2ecf20Sopenharmony_ci Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways 168c2ecf20Sopenharmony_ci for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking. 178c2ecf20Sopenharmony_ci 188c2ecf20Sopenharmony_ci This file codes a "divisionless" version of RED algorithm 198c2ecf20Sopenharmony_ci as written down in Fig.17 of the paper. 208c2ecf20Sopenharmony_ci 218c2ecf20Sopenharmony_ci Short description. 228c2ecf20Sopenharmony_ci ------------------ 238c2ecf20Sopenharmony_ci 248c2ecf20Sopenharmony_ci When a new packet arrives we calculate the average queue length: 258c2ecf20Sopenharmony_ci 268c2ecf20Sopenharmony_ci avg = (1-W)*avg + W*current_queue_len, 278c2ecf20Sopenharmony_ci 288c2ecf20Sopenharmony_ci W is the filter time constant (chosen as 2^(-Wlog)), it controls 298c2ecf20Sopenharmony_ci the inertia of the algorithm. To allow larger bursts, W should be 308c2ecf20Sopenharmony_ci decreased. 318c2ecf20Sopenharmony_ci 328c2ecf20Sopenharmony_ci if (avg > th_max) -> packet marked (dropped). 338c2ecf20Sopenharmony_ci if (avg < th_min) -> packet passes. 348c2ecf20Sopenharmony_ci if (th_min < avg < th_max) we calculate probability: 358c2ecf20Sopenharmony_ci 368c2ecf20Sopenharmony_ci Pb = max_P * (avg - th_min)/(th_max-th_min) 378c2ecf20Sopenharmony_ci 388c2ecf20Sopenharmony_ci and mark (drop) packet with this probability. 398c2ecf20Sopenharmony_ci Pb changes from 0 (at avg==th_min) to max_P (avg==th_max). 408c2ecf20Sopenharmony_ci max_P should be small (not 1), usually 0.01..0.02 is good value. 418c2ecf20Sopenharmony_ci 428c2ecf20Sopenharmony_ci max_P is chosen as a number, so that max_P/(th_max-th_min) 438c2ecf20Sopenharmony_ci is a negative power of two in order arithmetics to contain 448c2ecf20Sopenharmony_ci only shifts. 458c2ecf20Sopenharmony_ci 468c2ecf20Sopenharmony_ci 478c2ecf20Sopenharmony_ci Parameters, settable by user: 488c2ecf20Sopenharmony_ci ----------------------------- 498c2ecf20Sopenharmony_ci 508c2ecf20Sopenharmony_ci qth_min - bytes (should be < qth_max/2) 518c2ecf20Sopenharmony_ci qth_max - bytes (should be at least 2*qth_min and less limit) 528c2ecf20Sopenharmony_ci Wlog - bits (<32) log(1/W). 538c2ecf20Sopenharmony_ci Plog - bits (<32) 548c2ecf20Sopenharmony_ci 558c2ecf20Sopenharmony_ci Plog is related to max_P by formula: 568c2ecf20Sopenharmony_ci 578c2ecf20Sopenharmony_ci max_P = (qth_max-qth_min)/2^Plog; 588c2ecf20Sopenharmony_ci 598c2ecf20Sopenharmony_ci F.e. if qth_max=128K and qth_min=32K, then Plog=22 608c2ecf20Sopenharmony_ci corresponds to max_P=0.02 618c2ecf20Sopenharmony_ci 628c2ecf20Sopenharmony_ci Scell_log 638c2ecf20Sopenharmony_ci Stab 648c2ecf20Sopenharmony_ci 658c2ecf20Sopenharmony_ci Lookup table for log((1-W)^(t/t_ave). 668c2ecf20Sopenharmony_ci 678c2ecf20Sopenharmony_ci 688c2ecf20Sopenharmony_ci NOTES: 698c2ecf20Sopenharmony_ci 708c2ecf20Sopenharmony_ci Upper bound on W. 718c2ecf20Sopenharmony_ci ----------------- 728c2ecf20Sopenharmony_ci 738c2ecf20Sopenharmony_ci If you want to allow bursts of L packets of size S, 748c2ecf20Sopenharmony_ci you should choose W: 758c2ecf20Sopenharmony_ci 768c2ecf20Sopenharmony_ci L + 1 - th_min/S < (1-(1-W)^L)/W 778c2ecf20Sopenharmony_ci 788c2ecf20Sopenharmony_ci th_min/S = 32 th_min/S = 4 798c2ecf20Sopenharmony_ci 808c2ecf20Sopenharmony_ci log(W) L 818c2ecf20Sopenharmony_ci -1 33 828c2ecf20Sopenharmony_ci -2 35 838c2ecf20Sopenharmony_ci -3 39 848c2ecf20Sopenharmony_ci -4 46 858c2ecf20Sopenharmony_ci -5 57 868c2ecf20Sopenharmony_ci -6 75 878c2ecf20Sopenharmony_ci -7 101 888c2ecf20Sopenharmony_ci -8 135 898c2ecf20Sopenharmony_ci -9 190 908c2ecf20Sopenharmony_ci etc. 918c2ecf20Sopenharmony_ci */ 928c2ecf20Sopenharmony_ci 938c2ecf20Sopenharmony_ci/* 948c2ecf20Sopenharmony_ci * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM 958c2ecf20Sopenharmony_ci * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001 968c2ecf20Sopenharmony_ci * 978c2ecf20Sopenharmony_ci * Every 500 ms: 988c2ecf20Sopenharmony_ci * if (avg > target and max_p <= 0.5) 998c2ecf20Sopenharmony_ci * increase max_p : max_p += alpha; 1008c2ecf20Sopenharmony_ci * else if (avg < target and max_p >= 0.01) 1018c2ecf20Sopenharmony_ci * decrease max_p : max_p *= beta; 1028c2ecf20Sopenharmony_ci * 1038c2ecf20Sopenharmony_ci * target :[qth_min + 0.4*(qth_min - qth_max), 1048c2ecf20Sopenharmony_ci * qth_min + 0.6*(qth_min - qth_max)]. 1058c2ecf20Sopenharmony_ci * alpha : min(0.01, max_p / 4) 1068c2ecf20Sopenharmony_ci * beta : 0.9 1078c2ecf20Sopenharmony_ci * max_P is a Q0.32 fixed point number (with 32 bits mantissa) 1088c2ecf20Sopenharmony_ci * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ] 1098c2ecf20Sopenharmony_ci */ 1108c2ecf20Sopenharmony_ci#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100)) 1118c2ecf20Sopenharmony_ci 1128c2ecf20Sopenharmony_ci#define MAX_P_MIN (1 * RED_ONE_PERCENT) 1138c2ecf20Sopenharmony_ci#define MAX_P_MAX (50 * RED_ONE_PERCENT) 1148c2ecf20Sopenharmony_ci#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4) 1158c2ecf20Sopenharmony_ci 1168c2ecf20Sopenharmony_ci#define RED_STAB_SIZE 256 1178c2ecf20Sopenharmony_ci#define RED_STAB_MASK (RED_STAB_SIZE - 1) 1188c2ecf20Sopenharmony_ci 1198c2ecf20Sopenharmony_cistruct red_stats { 1208c2ecf20Sopenharmony_ci u32 prob_drop; /* Early probability drops */ 1218c2ecf20Sopenharmony_ci u32 prob_mark; /* Early probability marks */ 1228c2ecf20Sopenharmony_ci u32 forced_drop; /* Forced drops, qavg > max_thresh */ 1238c2ecf20Sopenharmony_ci u32 forced_mark; /* Forced marks, qavg > max_thresh */ 1248c2ecf20Sopenharmony_ci u32 pdrop; /* Drops due to queue limits */ 1258c2ecf20Sopenharmony_ci u32 other; /* Drops due to drop() calls */ 1268c2ecf20Sopenharmony_ci}; 1278c2ecf20Sopenharmony_ci 1288c2ecf20Sopenharmony_cistruct red_parms { 1298c2ecf20Sopenharmony_ci /* Parameters */ 1308c2ecf20Sopenharmony_ci u32 qth_min; /* Min avg length threshold: Wlog scaled */ 1318c2ecf20Sopenharmony_ci u32 qth_max; /* Max avg length threshold: Wlog scaled */ 1328c2ecf20Sopenharmony_ci u32 Scell_max; 1338c2ecf20Sopenharmony_ci u32 max_P; /* probability, [0 .. 1.0] 32 scaled */ 1348c2ecf20Sopenharmony_ci /* reciprocal_value(max_P / qth_delta) */ 1358c2ecf20Sopenharmony_ci struct reciprocal_value max_P_reciprocal; 1368c2ecf20Sopenharmony_ci u32 qth_delta; /* max_th - min_th */ 1378c2ecf20Sopenharmony_ci u32 target_min; /* min_th + 0.4*(max_th - min_th) */ 1388c2ecf20Sopenharmony_ci u32 target_max; /* min_th + 0.6*(max_th - min_th) */ 1398c2ecf20Sopenharmony_ci u8 Scell_log; 1408c2ecf20Sopenharmony_ci u8 Wlog; /* log(W) */ 1418c2ecf20Sopenharmony_ci u8 Plog; /* random number bits */ 1428c2ecf20Sopenharmony_ci u8 Stab[RED_STAB_SIZE]; 1438c2ecf20Sopenharmony_ci}; 1448c2ecf20Sopenharmony_ci 1458c2ecf20Sopenharmony_cistruct red_vars { 1468c2ecf20Sopenharmony_ci /* Variables */ 1478c2ecf20Sopenharmony_ci int qcount; /* Number of packets since last random 1488c2ecf20Sopenharmony_ci number generation */ 1498c2ecf20Sopenharmony_ci u32 qR; /* Cached random number */ 1508c2ecf20Sopenharmony_ci 1518c2ecf20Sopenharmony_ci unsigned long qavg; /* Average queue length: Wlog scaled */ 1528c2ecf20Sopenharmony_ci ktime_t qidlestart; /* Start of current idle period */ 1538c2ecf20Sopenharmony_ci}; 1548c2ecf20Sopenharmony_ci 1558c2ecf20Sopenharmony_cistatic inline u32 red_maxp(u8 Plog) 1568c2ecf20Sopenharmony_ci{ 1578c2ecf20Sopenharmony_ci return Plog < 32 ? (~0U >> Plog) : ~0U; 1588c2ecf20Sopenharmony_ci} 1598c2ecf20Sopenharmony_ci 1608c2ecf20Sopenharmony_cistatic inline void red_set_vars(struct red_vars *v) 1618c2ecf20Sopenharmony_ci{ 1628c2ecf20Sopenharmony_ci /* Reset average queue length, the value is strictly bound 1638c2ecf20Sopenharmony_ci * to the parameters below, reseting hurts a bit but leaving 1648c2ecf20Sopenharmony_ci * it might result in an unreasonable qavg for a while. --TGR 1658c2ecf20Sopenharmony_ci */ 1668c2ecf20Sopenharmony_ci v->qavg = 0; 1678c2ecf20Sopenharmony_ci 1688c2ecf20Sopenharmony_ci v->qcount = -1; 1698c2ecf20Sopenharmony_ci} 1708c2ecf20Sopenharmony_ci 1718c2ecf20Sopenharmony_cistatic inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog, 1728c2ecf20Sopenharmony_ci u8 Scell_log, u8 *stab) 1738c2ecf20Sopenharmony_ci{ 1748c2ecf20Sopenharmony_ci if (fls(qth_min) + Wlog >= 32) 1758c2ecf20Sopenharmony_ci return false; 1768c2ecf20Sopenharmony_ci if (fls(qth_max) + Wlog >= 32) 1778c2ecf20Sopenharmony_ci return false; 1788c2ecf20Sopenharmony_ci if (Scell_log >= 32) 1798c2ecf20Sopenharmony_ci return false; 1808c2ecf20Sopenharmony_ci if (qth_max < qth_min) 1818c2ecf20Sopenharmony_ci return false; 1828c2ecf20Sopenharmony_ci if (stab) { 1838c2ecf20Sopenharmony_ci int i; 1848c2ecf20Sopenharmony_ci 1858c2ecf20Sopenharmony_ci for (i = 0; i < RED_STAB_SIZE; i++) 1868c2ecf20Sopenharmony_ci if (stab[i] >= 32) 1878c2ecf20Sopenharmony_ci return false; 1888c2ecf20Sopenharmony_ci } 1898c2ecf20Sopenharmony_ci return true; 1908c2ecf20Sopenharmony_ci} 1918c2ecf20Sopenharmony_ci 1928c2ecf20Sopenharmony_cistatic inline int red_get_flags(unsigned char qopt_flags, 1938c2ecf20Sopenharmony_ci unsigned char historic_mask, 1948c2ecf20Sopenharmony_ci struct nlattr *flags_attr, 1958c2ecf20Sopenharmony_ci unsigned char supported_mask, 1968c2ecf20Sopenharmony_ci struct nla_bitfield32 *p_flags, 1978c2ecf20Sopenharmony_ci unsigned char *p_userbits, 1988c2ecf20Sopenharmony_ci struct netlink_ext_ack *extack) 1998c2ecf20Sopenharmony_ci{ 2008c2ecf20Sopenharmony_ci struct nla_bitfield32 flags; 2018c2ecf20Sopenharmony_ci 2028c2ecf20Sopenharmony_ci if (qopt_flags && flags_attr) { 2038c2ecf20Sopenharmony_ci NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute"); 2048c2ecf20Sopenharmony_ci return -EINVAL; 2058c2ecf20Sopenharmony_ci } 2068c2ecf20Sopenharmony_ci 2078c2ecf20Sopenharmony_ci if (flags_attr) { 2088c2ecf20Sopenharmony_ci flags = nla_get_bitfield32(flags_attr); 2098c2ecf20Sopenharmony_ci } else { 2108c2ecf20Sopenharmony_ci flags.selector = historic_mask; 2118c2ecf20Sopenharmony_ci flags.value = qopt_flags & historic_mask; 2128c2ecf20Sopenharmony_ci } 2138c2ecf20Sopenharmony_ci 2148c2ecf20Sopenharmony_ci *p_flags = flags; 2158c2ecf20Sopenharmony_ci *p_userbits = qopt_flags & ~historic_mask; 2168c2ecf20Sopenharmony_ci return 0; 2178c2ecf20Sopenharmony_ci} 2188c2ecf20Sopenharmony_ci 2198c2ecf20Sopenharmony_cistatic inline int red_validate_flags(unsigned char flags, 2208c2ecf20Sopenharmony_ci struct netlink_ext_ack *extack) 2218c2ecf20Sopenharmony_ci{ 2228c2ecf20Sopenharmony_ci if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) { 2238c2ecf20Sopenharmony_ci NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN"); 2248c2ecf20Sopenharmony_ci return -EINVAL; 2258c2ecf20Sopenharmony_ci } 2268c2ecf20Sopenharmony_ci 2278c2ecf20Sopenharmony_ci return 0; 2288c2ecf20Sopenharmony_ci} 2298c2ecf20Sopenharmony_ci 2308c2ecf20Sopenharmony_cistatic inline void red_set_parms(struct red_parms *p, 2318c2ecf20Sopenharmony_ci u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog, 2328c2ecf20Sopenharmony_ci u8 Scell_log, u8 *stab, u32 max_P) 2338c2ecf20Sopenharmony_ci{ 2348c2ecf20Sopenharmony_ci int delta = qth_max - qth_min; 2358c2ecf20Sopenharmony_ci u32 max_p_delta; 2368c2ecf20Sopenharmony_ci 2378c2ecf20Sopenharmony_ci p->qth_min = qth_min << Wlog; 2388c2ecf20Sopenharmony_ci p->qth_max = qth_max << Wlog; 2398c2ecf20Sopenharmony_ci p->Wlog = Wlog; 2408c2ecf20Sopenharmony_ci p->Plog = Plog; 2418c2ecf20Sopenharmony_ci if (delta <= 0) 2428c2ecf20Sopenharmony_ci delta = 1; 2438c2ecf20Sopenharmony_ci p->qth_delta = delta; 2448c2ecf20Sopenharmony_ci if (!max_P) { 2458c2ecf20Sopenharmony_ci max_P = red_maxp(Plog); 2468c2ecf20Sopenharmony_ci max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */ 2478c2ecf20Sopenharmony_ci } 2488c2ecf20Sopenharmony_ci p->max_P = max_P; 2498c2ecf20Sopenharmony_ci max_p_delta = max_P / delta; 2508c2ecf20Sopenharmony_ci max_p_delta = max(max_p_delta, 1U); 2518c2ecf20Sopenharmony_ci p->max_P_reciprocal = reciprocal_value(max_p_delta); 2528c2ecf20Sopenharmony_ci 2538c2ecf20Sopenharmony_ci /* RED Adaptative target : 2548c2ecf20Sopenharmony_ci * [min_th + 0.4*(min_th - max_th), 2558c2ecf20Sopenharmony_ci * min_th + 0.6*(min_th - max_th)]. 2568c2ecf20Sopenharmony_ci */ 2578c2ecf20Sopenharmony_ci delta /= 5; 2588c2ecf20Sopenharmony_ci p->target_min = qth_min + 2*delta; 2598c2ecf20Sopenharmony_ci p->target_max = qth_min + 3*delta; 2608c2ecf20Sopenharmony_ci 2618c2ecf20Sopenharmony_ci p->Scell_log = Scell_log; 2628c2ecf20Sopenharmony_ci p->Scell_max = (255 << Scell_log); 2638c2ecf20Sopenharmony_ci 2648c2ecf20Sopenharmony_ci if (stab) 2658c2ecf20Sopenharmony_ci memcpy(p->Stab, stab, sizeof(p->Stab)); 2668c2ecf20Sopenharmony_ci} 2678c2ecf20Sopenharmony_ci 2688c2ecf20Sopenharmony_cistatic inline int red_is_idling(const struct red_vars *v) 2698c2ecf20Sopenharmony_ci{ 2708c2ecf20Sopenharmony_ci return v->qidlestart != 0; 2718c2ecf20Sopenharmony_ci} 2728c2ecf20Sopenharmony_ci 2738c2ecf20Sopenharmony_cistatic inline void red_start_of_idle_period(struct red_vars *v) 2748c2ecf20Sopenharmony_ci{ 2758c2ecf20Sopenharmony_ci v->qidlestart = ktime_get(); 2768c2ecf20Sopenharmony_ci} 2778c2ecf20Sopenharmony_ci 2788c2ecf20Sopenharmony_cistatic inline void red_end_of_idle_period(struct red_vars *v) 2798c2ecf20Sopenharmony_ci{ 2808c2ecf20Sopenharmony_ci v->qidlestart = 0; 2818c2ecf20Sopenharmony_ci} 2828c2ecf20Sopenharmony_ci 2838c2ecf20Sopenharmony_cistatic inline void red_restart(struct red_vars *v) 2848c2ecf20Sopenharmony_ci{ 2858c2ecf20Sopenharmony_ci red_end_of_idle_period(v); 2868c2ecf20Sopenharmony_ci v->qavg = 0; 2878c2ecf20Sopenharmony_ci v->qcount = -1; 2888c2ecf20Sopenharmony_ci} 2898c2ecf20Sopenharmony_ci 2908c2ecf20Sopenharmony_cistatic inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p, 2918c2ecf20Sopenharmony_ci const struct red_vars *v) 2928c2ecf20Sopenharmony_ci{ 2938c2ecf20Sopenharmony_ci s64 delta = ktime_us_delta(ktime_get(), v->qidlestart); 2948c2ecf20Sopenharmony_ci long us_idle = min_t(s64, delta, p->Scell_max); 2958c2ecf20Sopenharmony_ci int shift; 2968c2ecf20Sopenharmony_ci 2978c2ecf20Sopenharmony_ci /* 2988c2ecf20Sopenharmony_ci * The problem: ideally, average length queue recalcultion should 2998c2ecf20Sopenharmony_ci * be done over constant clock intervals. This is too expensive, so 3008c2ecf20Sopenharmony_ci * that the calculation is driven by outgoing packets. 3018c2ecf20Sopenharmony_ci * When the queue is idle we have to model this clock by hand. 3028c2ecf20Sopenharmony_ci * 3038c2ecf20Sopenharmony_ci * SF+VJ proposed to "generate": 3048c2ecf20Sopenharmony_ci * 3058c2ecf20Sopenharmony_ci * m = idletime / (average_pkt_size / bandwidth) 3068c2ecf20Sopenharmony_ci * 3078c2ecf20Sopenharmony_ci * dummy packets as a burst after idle time, i.e. 3088c2ecf20Sopenharmony_ci * 3098c2ecf20Sopenharmony_ci * v->qavg *= (1-W)^m 3108c2ecf20Sopenharmony_ci * 3118c2ecf20Sopenharmony_ci * This is an apparently overcomplicated solution (f.e. we have to 3128c2ecf20Sopenharmony_ci * precompute a table to make this calculation in reasonable time) 3138c2ecf20Sopenharmony_ci * I believe that a simpler model may be used here, 3148c2ecf20Sopenharmony_ci * but it is field for experiments. 3158c2ecf20Sopenharmony_ci */ 3168c2ecf20Sopenharmony_ci 3178c2ecf20Sopenharmony_ci shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK]; 3188c2ecf20Sopenharmony_ci 3198c2ecf20Sopenharmony_ci if (shift) 3208c2ecf20Sopenharmony_ci return v->qavg >> shift; 3218c2ecf20Sopenharmony_ci else { 3228c2ecf20Sopenharmony_ci /* Approximate initial part of exponent with linear function: 3238c2ecf20Sopenharmony_ci * 3248c2ecf20Sopenharmony_ci * (1-W)^m ~= 1-mW + ... 3258c2ecf20Sopenharmony_ci * 3268c2ecf20Sopenharmony_ci * Seems, it is the best solution to 3278c2ecf20Sopenharmony_ci * problem of too coarse exponent tabulation. 3288c2ecf20Sopenharmony_ci */ 3298c2ecf20Sopenharmony_ci us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log; 3308c2ecf20Sopenharmony_ci 3318c2ecf20Sopenharmony_ci if (us_idle < (v->qavg >> 1)) 3328c2ecf20Sopenharmony_ci return v->qavg - us_idle; 3338c2ecf20Sopenharmony_ci else 3348c2ecf20Sopenharmony_ci return v->qavg >> 1; 3358c2ecf20Sopenharmony_ci } 3368c2ecf20Sopenharmony_ci} 3378c2ecf20Sopenharmony_ci 3388c2ecf20Sopenharmony_cistatic inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p, 3398c2ecf20Sopenharmony_ci const struct red_vars *v, 3408c2ecf20Sopenharmony_ci unsigned int backlog) 3418c2ecf20Sopenharmony_ci{ 3428c2ecf20Sopenharmony_ci /* 3438c2ecf20Sopenharmony_ci * NOTE: v->qavg is fixed point number with point at Wlog. 3448c2ecf20Sopenharmony_ci * The formula below is equvalent to floating point 3458c2ecf20Sopenharmony_ci * version: 3468c2ecf20Sopenharmony_ci * 3478c2ecf20Sopenharmony_ci * qavg = qavg*(1-W) + backlog*W; 3488c2ecf20Sopenharmony_ci * 3498c2ecf20Sopenharmony_ci * --ANK (980924) 3508c2ecf20Sopenharmony_ci */ 3518c2ecf20Sopenharmony_ci return v->qavg + (backlog - (v->qavg >> p->Wlog)); 3528c2ecf20Sopenharmony_ci} 3538c2ecf20Sopenharmony_ci 3548c2ecf20Sopenharmony_cistatic inline unsigned long red_calc_qavg(const struct red_parms *p, 3558c2ecf20Sopenharmony_ci const struct red_vars *v, 3568c2ecf20Sopenharmony_ci unsigned int backlog) 3578c2ecf20Sopenharmony_ci{ 3588c2ecf20Sopenharmony_ci if (!red_is_idling(v)) 3598c2ecf20Sopenharmony_ci return red_calc_qavg_no_idle_time(p, v, backlog); 3608c2ecf20Sopenharmony_ci else 3618c2ecf20Sopenharmony_ci return red_calc_qavg_from_idle_time(p, v); 3628c2ecf20Sopenharmony_ci} 3638c2ecf20Sopenharmony_ci 3648c2ecf20Sopenharmony_ci 3658c2ecf20Sopenharmony_cistatic inline u32 red_random(const struct red_parms *p) 3668c2ecf20Sopenharmony_ci{ 3678c2ecf20Sopenharmony_ci return reciprocal_divide(prandom_u32(), p->max_P_reciprocal); 3688c2ecf20Sopenharmony_ci} 3698c2ecf20Sopenharmony_ci 3708c2ecf20Sopenharmony_cistatic inline int red_mark_probability(const struct red_parms *p, 3718c2ecf20Sopenharmony_ci const struct red_vars *v, 3728c2ecf20Sopenharmony_ci unsigned long qavg) 3738c2ecf20Sopenharmony_ci{ 3748c2ecf20Sopenharmony_ci /* The formula used below causes questions. 3758c2ecf20Sopenharmony_ci 3768c2ecf20Sopenharmony_ci OK. qR is random number in the interval 3778c2ecf20Sopenharmony_ci (0..1/max_P)*(qth_max-qth_min) 3788c2ecf20Sopenharmony_ci i.e. 0..(2^Plog). If we used floating point 3798c2ecf20Sopenharmony_ci arithmetics, it would be: (2^Plog)*rnd_num, 3808c2ecf20Sopenharmony_ci where rnd_num is less 1. 3818c2ecf20Sopenharmony_ci 3828c2ecf20Sopenharmony_ci Taking into account, that qavg have fixed 3838c2ecf20Sopenharmony_ci point at Wlog, two lines 3848c2ecf20Sopenharmony_ci below have the following floating point equivalent: 3858c2ecf20Sopenharmony_ci 3868c2ecf20Sopenharmony_ci max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount 3878c2ecf20Sopenharmony_ci 3888c2ecf20Sopenharmony_ci Any questions? --ANK (980924) 3898c2ecf20Sopenharmony_ci */ 3908c2ecf20Sopenharmony_ci return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR); 3918c2ecf20Sopenharmony_ci} 3928c2ecf20Sopenharmony_ci 3938c2ecf20Sopenharmony_cienum { 3948c2ecf20Sopenharmony_ci RED_BELOW_MIN_THRESH, 3958c2ecf20Sopenharmony_ci RED_BETWEEN_TRESH, 3968c2ecf20Sopenharmony_ci RED_ABOVE_MAX_TRESH, 3978c2ecf20Sopenharmony_ci}; 3988c2ecf20Sopenharmony_ci 3998c2ecf20Sopenharmony_cistatic inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg) 4008c2ecf20Sopenharmony_ci{ 4018c2ecf20Sopenharmony_ci if (qavg < p->qth_min) 4028c2ecf20Sopenharmony_ci return RED_BELOW_MIN_THRESH; 4038c2ecf20Sopenharmony_ci else if (qavg >= p->qth_max) 4048c2ecf20Sopenharmony_ci return RED_ABOVE_MAX_TRESH; 4058c2ecf20Sopenharmony_ci else 4068c2ecf20Sopenharmony_ci return RED_BETWEEN_TRESH; 4078c2ecf20Sopenharmony_ci} 4088c2ecf20Sopenharmony_ci 4098c2ecf20Sopenharmony_cienum { 4108c2ecf20Sopenharmony_ci RED_DONT_MARK, 4118c2ecf20Sopenharmony_ci RED_PROB_MARK, 4128c2ecf20Sopenharmony_ci RED_HARD_MARK, 4138c2ecf20Sopenharmony_ci}; 4148c2ecf20Sopenharmony_ci 4158c2ecf20Sopenharmony_cistatic inline int red_action(const struct red_parms *p, 4168c2ecf20Sopenharmony_ci struct red_vars *v, 4178c2ecf20Sopenharmony_ci unsigned long qavg) 4188c2ecf20Sopenharmony_ci{ 4198c2ecf20Sopenharmony_ci switch (red_cmp_thresh(p, qavg)) { 4208c2ecf20Sopenharmony_ci case RED_BELOW_MIN_THRESH: 4218c2ecf20Sopenharmony_ci v->qcount = -1; 4228c2ecf20Sopenharmony_ci return RED_DONT_MARK; 4238c2ecf20Sopenharmony_ci 4248c2ecf20Sopenharmony_ci case RED_BETWEEN_TRESH: 4258c2ecf20Sopenharmony_ci if (++v->qcount) { 4268c2ecf20Sopenharmony_ci if (red_mark_probability(p, v, qavg)) { 4278c2ecf20Sopenharmony_ci v->qcount = 0; 4288c2ecf20Sopenharmony_ci v->qR = red_random(p); 4298c2ecf20Sopenharmony_ci return RED_PROB_MARK; 4308c2ecf20Sopenharmony_ci } 4318c2ecf20Sopenharmony_ci } else 4328c2ecf20Sopenharmony_ci v->qR = red_random(p); 4338c2ecf20Sopenharmony_ci 4348c2ecf20Sopenharmony_ci return RED_DONT_MARK; 4358c2ecf20Sopenharmony_ci 4368c2ecf20Sopenharmony_ci case RED_ABOVE_MAX_TRESH: 4378c2ecf20Sopenharmony_ci v->qcount = -1; 4388c2ecf20Sopenharmony_ci return RED_HARD_MARK; 4398c2ecf20Sopenharmony_ci } 4408c2ecf20Sopenharmony_ci 4418c2ecf20Sopenharmony_ci BUG(); 4428c2ecf20Sopenharmony_ci return RED_DONT_MARK; 4438c2ecf20Sopenharmony_ci} 4448c2ecf20Sopenharmony_ci 4458c2ecf20Sopenharmony_cistatic inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v) 4468c2ecf20Sopenharmony_ci{ 4478c2ecf20Sopenharmony_ci unsigned long qavg; 4488c2ecf20Sopenharmony_ci u32 max_p_delta; 4498c2ecf20Sopenharmony_ci 4508c2ecf20Sopenharmony_ci qavg = v->qavg; 4518c2ecf20Sopenharmony_ci if (red_is_idling(v)) 4528c2ecf20Sopenharmony_ci qavg = red_calc_qavg_from_idle_time(p, v); 4538c2ecf20Sopenharmony_ci 4548c2ecf20Sopenharmony_ci /* v->qavg is fixed point number with point at Wlog */ 4558c2ecf20Sopenharmony_ci qavg >>= p->Wlog; 4568c2ecf20Sopenharmony_ci 4578c2ecf20Sopenharmony_ci if (qavg > p->target_max && p->max_P <= MAX_P_MAX) 4588c2ecf20Sopenharmony_ci p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */ 4598c2ecf20Sopenharmony_ci else if (qavg < p->target_min && p->max_P >= MAX_P_MIN) 4608c2ecf20Sopenharmony_ci p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */ 4618c2ecf20Sopenharmony_ci 4628c2ecf20Sopenharmony_ci max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta); 4638c2ecf20Sopenharmony_ci max_p_delta = max(max_p_delta, 1U); 4648c2ecf20Sopenharmony_ci p->max_P_reciprocal = reciprocal_value(max_p_delta); 4658c2ecf20Sopenharmony_ci} 4668c2ecf20Sopenharmony_ci#endif 467