18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */
28c2ecf20Sopenharmony_ci#ifndef __NET_SCHED_RED_H
38c2ecf20Sopenharmony_ci#define __NET_SCHED_RED_H
48c2ecf20Sopenharmony_ci
58c2ecf20Sopenharmony_ci#include <linux/types.h>
68c2ecf20Sopenharmony_ci#include <linux/bug.h>
78c2ecf20Sopenharmony_ci#include <net/pkt_sched.h>
88c2ecf20Sopenharmony_ci#include <net/inet_ecn.h>
98c2ecf20Sopenharmony_ci#include <net/dsfield.h>
108c2ecf20Sopenharmony_ci#include <linux/reciprocal_div.h>
118c2ecf20Sopenharmony_ci
128c2ecf20Sopenharmony_ci/*	Random Early Detection (RED) algorithm.
138c2ecf20Sopenharmony_ci	=======================================
148c2ecf20Sopenharmony_ci
158c2ecf20Sopenharmony_ci	Source: Sally Floyd and Van Jacobson, "Random Early Detection Gateways
168c2ecf20Sopenharmony_ci	for Congestion Avoidance", 1993, IEEE/ACM Transactions on Networking.
178c2ecf20Sopenharmony_ci
188c2ecf20Sopenharmony_ci	This file codes a "divisionless" version of RED algorithm
198c2ecf20Sopenharmony_ci	as written down in Fig.17 of the paper.
208c2ecf20Sopenharmony_ci
218c2ecf20Sopenharmony_ci	Short description.
228c2ecf20Sopenharmony_ci	------------------
238c2ecf20Sopenharmony_ci
248c2ecf20Sopenharmony_ci	When a new packet arrives we calculate the average queue length:
258c2ecf20Sopenharmony_ci
268c2ecf20Sopenharmony_ci	avg = (1-W)*avg + W*current_queue_len,
278c2ecf20Sopenharmony_ci
288c2ecf20Sopenharmony_ci	W is the filter time constant (chosen as 2^(-Wlog)), it controls
298c2ecf20Sopenharmony_ci	the inertia of the algorithm. To allow larger bursts, W should be
308c2ecf20Sopenharmony_ci	decreased.
318c2ecf20Sopenharmony_ci
328c2ecf20Sopenharmony_ci	if (avg > th_max) -> packet marked (dropped).
338c2ecf20Sopenharmony_ci	if (avg < th_min) -> packet passes.
348c2ecf20Sopenharmony_ci	if (th_min < avg < th_max) we calculate probability:
358c2ecf20Sopenharmony_ci
368c2ecf20Sopenharmony_ci	Pb = max_P * (avg - th_min)/(th_max-th_min)
378c2ecf20Sopenharmony_ci
388c2ecf20Sopenharmony_ci	and mark (drop) packet with this probability.
398c2ecf20Sopenharmony_ci	Pb changes from 0 (at avg==th_min) to max_P (avg==th_max).
408c2ecf20Sopenharmony_ci	max_P should be small (not 1), usually 0.01..0.02 is good value.
418c2ecf20Sopenharmony_ci
428c2ecf20Sopenharmony_ci	max_P is chosen as a number, so that max_P/(th_max-th_min)
438c2ecf20Sopenharmony_ci	is a negative power of two in order arithmetics to contain
448c2ecf20Sopenharmony_ci	only shifts.
458c2ecf20Sopenharmony_ci
468c2ecf20Sopenharmony_ci
478c2ecf20Sopenharmony_ci	Parameters, settable by user:
488c2ecf20Sopenharmony_ci	-----------------------------
498c2ecf20Sopenharmony_ci
508c2ecf20Sopenharmony_ci	qth_min		- bytes (should be < qth_max/2)
518c2ecf20Sopenharmony_ci	qth_max		- bytes (should be at least 2*qth_min and less limit)
528c2ecf20Sopenharmony_ci	Wlog	       	- bits (<32) log(1/W).
538c2ecf20Sopenharmony_ci	Plog	       	- bits (<32)
548c2ecf20Sopenharmony_ci
558c2ecf20Sopenharmony_ci	Plog is related to max_P by formula:
568c2ecf20Sopenharmony_ci
578c2ecf20Sopenharmony_ci	max_P = (qth_max-qth_min)/2^Plog;
588c2ecf20Sopenharmony_ci
598c2ecf20Sopenharmony_ci	F.e. if qth_max=128K and qth_min=32K, then Plog=22
608c2ecf20Sopenharmony_ci	corresponds to max_P=0.02
618c2ecf20Sopenharmony_ci
628c2ecf20Sopenharmony_ci	Scell_log
638c2ecf20Sopenharmony_ci	Stab
648c2ecf20Sopenharmony_ci
658c2ecf20Sopenharmony_ci	Lookup table for log((1-W)^(t/t_ave).
668c2ecf20Sopenharmony_ci
678c2ecf20Sopenharmony_ci
688c2ecf20Sopenharmony_ci	NOTES:
698c2ecf20Sopenharmony_ci
708c2ecf20Sopenharmony_ci	Upper bound on W.
718c2ecf20Sopenharmony_ci	-----------------
728c2ecf20Sopenharmony_ci
738c2ecf20Sopenharmony_ci	If you want to allow bursts of L packets of size S,
748c2ecf20Sopenharmony_ci	you should choose W:
758c2ecf20Sopenharmony_ci
768c2ecf20Sopenharmony_ci	L + 1 - th_min/S < (1-(1-W)^L)/W
778c2ecf20Sopenharmony_ci
788c2ecf20Sopenharmony_ci	th_min/S = 32         th_min/S = 4
798c2ecf20Sopenharmony_ci
808c2ecf20Sopenharmony_ci	log(W)	L
818c2ecf20Sopenharmony_ci	-1	33
828c2ecf20Sopenharmony_ci	-2	35
838c2ecf20Sopenharmony_ci	-3	39
848c2ecf20Sopenharmony_ci	-4	46
858c2ecf20Sopenharmony_ci	-5	57
868c2ecf20Sopenharmony_ci	-6	75
878c2ecf20Sopenharmony_ci	-7	101
888c2ecf20Sopenharmony_ci	-8	135
898c2ecf20Sopenharmony_ci	-9	190
908c2ecf20Sopenharmony_ci	etc.
918c2ecf20Sopenharmony_ci */
928c2ecf20Sopenharmony_ci
938c2ecf20Sopenharmony_ci/*
948c2ecf20Sopenharmony_ci * Adaptative RED : An Algorithm for Increasing the Robustness of RED's AQM
958c2ecf20Sopenharmony_ci * (Sally FLoyd, Ramakrishna Gummadi, and Scott Shenker) August 2001
968c2ecf20Sopenharmony_ci *
978c2ecf20Sopenharmony_ci * Every 500 ms:
988c2ecf20Sopenharmony_ci *  if (avg > target and max_p <= 0.5)
998c2ecf20Sopenharmony_ci *   increase max_p : max_p += alpha;
1008c2ecf20Sopenharmony_ci *  else if (avg < target and max_p >= 0.01)
1018c2ecf20Sopenharmony_ci *   decrease max_p : max_p *= beta;
1028c2ecf20Sopenharmony_ci *
1038c2ecf20Sopenharmony_ci * target :[qth_min + 0.4*(qth_min - qth_max),
1048c2ecf20Sopenharmony_ci *          qth_min + 0.6*(qth_min - qth_max)].
1058c2ecf20Sopenharmony_ci * alpha : min(0.01, max_p / 4)
1068c2ecf20Sopenharmony_ci * beta : 0.9
1078c2ecf20Sopenharmony_ci * max_P is a Q0.32 fixed point number (with 32 bits mantissa)
1088c2ecf20Sopenharmony_ci * max_P between 0.01 and 0.5 (1% - 50%) [ Its no longer a negative power of two ]
1098c2ecf20Sopenharmony_ci */
1108c2ecf20Sopenharmony_ci#define RED_ONE_PERCENT ((u32)DIV_ROUND_CLOSEST(1ULL<<32, 100))
1118c2ecf20Sopenharmony_ci
1128c2ecf20Sopenharmony_ci#define MAX_P_MIN (1 * RED_ONE_PERCENT)
1138c2ecf20Sopenharmony_ci#define MAX_P_MAX (50 * RED_ONE_PERCENT)
1148c2ecf20Sopenharmony_ci#define MAX_P_ALPHA(val) min(MAX_P_MIN, val / 4)
1158c2ecf20Sopenharmony_ci
1168c2ecf20Sopenharmony_ci#define RED_STAB_SIZE	256
1178c2ecf20Sopenharmony_ci#define RED_STAB_MASK	(RED_STAB_SIZE - 1)
1188c2ecf20Sopenharmony_ci
1198c2ecf20Sopenharmony_cistruct red_stats {
1208c2ecf20Sopenharmony_ci	u32		prob_drop;	/* Early probability drops */
1218c2ecf20Sopenharmony_ci	u32		prob_mark;	/* Early probability marks */
1228c2ecf20Sopenharmony_ci	u32		forced_drop;	/* Forced drops, qavg > max_thresh */
1238c2ecf20Sopenharmony_ci	u32		forced_mark;	/* Forced marks, qavg > max_thresh */
1248c2ecf20Sopenharmony_ci	u32		pdrop;          /* Drops due to queue limits */
1258c2ecf20Sopenharmony_ci	u32		other;          /* Drops due to drop() calls */
1268c2ecf20Sopenharmony_ci};
1278c2ecf20Sopenharmony_ci
1288c2ecf20Sopenharmony_cistruct red_parms {
1298c2ecf20Sopenharmony_ci	/* Parameters */
1308c2ecf20Sopenharmony_ci	u32		qth_min;	/* Min avg length threshold: Wlog scaled */
1318c2ecf20Sopenharmony_ci	u32		qth_max;	/* Max avg length threshold: Wlog scaled */
1328c2ecf20Sopenharmony_ci	u32		Scell_max;
1338c2ecf20Sopenharmony_ci	u32		max_P;		/* probability, [0 .. 1.0] 32 scaled */
1348c2ecf20Sopenharmony_ci	/* reciprocal_value(max_P / qth_delta) */
1358c2ecf20Sopenharmony_ci	struct reciprocal_value	max_P_reciprocal;
1368c2ecf20Sopenharmony_ci	u32		qth_delta;	/* max_th - min_th */
1378c2ecf20Sopenharmony_ci	u32		target_min;	/* min_th + 0.4*(max_th - min_th) */
1388c2ecf20Sopenharmony_ci	u32		target_max;	/* min_th + 0.6*(max_th - min_th) */
1398c2ecf20Sopenharmony_ci	u8		Scell_log;
1408c2ecf20Sopenharmony_ci	u8		Wlog;		/* log(W)		*/
1418c2ecf20Sopenharmony_ci	u8		Plog;		/* random number bits	*/
1428c2ecf20Sopenharmony_ci	u8		Stab[RED_STAB_SIZE];
1438c2ecf20Sopenharmony_ci};
1448c2ecf20Sopenharmony_ci
1458c2ecf20Sopenharmony_cistruct red_vars {
1468c2ecf20Sopenharmony_ci	/* Variables */
1478c2ecf20Sopenharmony_ci	int		qcount;		/* Number of packets since last random
1488c2ecf20Sopenharmony_ci					   number generation */
1498c2ecf20Sopenharmony_ci	u32		qR;		/* Cached random number */
1508c2ecf20Sopenharmony_ci
1518c2ecf20Sopenharmony_ci	unsigned long	qavg;		/* Average queue length: Wlog scaled */
1528c2ecf20Sopenharmony_ci	ktime_t		qidlestart;	/* Start of current idle period */
1538c2ecf20Sopenharmony_ci};
1548c2ecf20Sopenharmony_ci
1558c2ecf20Sopenharmony_cistatic inline u32 red_maxp(u8 Plog)
1568c2ecf20Sopenharmony_ci{
1578c2ecf20Sopenharmony_ci	return Plog < 32 ? (~0U >> Plog) : ~0U;
1588c2ecf20Sopenharmony_ci}
1598c2ecf20Sopenharmony_ci
1608c2ecf20Sopenharmony_cistatic inline void red_set_vars(struct red_vars *v)
1618c2ecf20Sopenharmony_ci{
1628c2ecf20Sopenharmony_ci	/* Reset average queue length, the value is strictly bound
1638c2ecf20Sopenharmony_ci	 * to the parameters below, reseting hurts a bit but leaving
1648c2ecf20Sopenharmony_ci	 * it might result in an unreasonable qavg for a while. --TGR
1658c2ecf20Sopenharmony_ci	 */
1668c2ecf20Sopenharmony_ci	v->qavg		= 0;
1678c2ecf20Sopenharmony_ci
1688c2ecf20Sopenharmony_ci	v->qcount	= -1;
1698c2ecf20Sopenharmony_ci}
1708c2ecf20Sopenharmony_ci
1718c2ecf20Sopenharmony_cistatic inline bool red_check_params(u32 qth_min, u32 qth_max, u8 Wlog,
1728c2ecf20Sopenharmony_ci				    u8 Scell_log, u8 *stab)
1738c2ecf20Sopenharmony_ci{
1748c2ecf20Sopenharmony_ci	if (fls(qth_min) + Wlog >= 32)
1758c2ecf20Sopenharmony_ci		return false;
1768c2ecf20Sopenharmony_ci	if (fls(qth_max) + Wlog >= 32)
1778c2ecf20Sopenharmony_ci		return false;
1788c2ecf20Sopenharmony_ci	if (Scell_log >= 32)
1798c2ecf20Sopenharmony_ci		return false;
1808c2ecf20Sopenharmony_ci	if (qth_max < qth_min)
1818c2ecf20Sopenharmony_ci		return false;
1828c2ecf20Sopenharmony_ci	if (stab) {
1838c2ecf20Sopenharmony_ci		int i;
1848c2ecf20Sopenharmony_ci
1858c2ecf20Sopenharmony_ci		for (i = 0; i < RED_STAB_SIZE; i++)
1868c2ecf20Sopenharmony_ci			if (stab[i] >= 32)
1878c2ecf20Sopenharmony_ci				return false;
1888c2ecf20Sopenharmony_ci	}
1898c2ecf20Sopenharmony_ci	return true;
1908c2ecf20Sopenharmony_ci}
1918c2ecf20Sopenharmony_ci
1928c2ecf20Sopenharmony_cistatic inline int red_get_flags(unsigned char qopt_flags,
1938c2ecf20Sopenharmony_ci				unsigned char historic_mask,
1948c2ecf20Sopenharmony_ci				struct nlattr *flags_attr,
1958c2ecf20Sopenharmony_ci				unsigned char supported_mask,
1968c2ecf20Sopenharmony_ci				struct nla_bitfield32 *p_flags,
1978c2ecf20Sopenharmony_ci				unsigned char *p_userbits,
1988c2ecf20Sopenharmony_ci				struct netlink_ext_ack *extack)
1998c2ecf20Sopenharmony_ci{
2008c2ecf20Sopenharmony_ci	struct nla_bitfield32 flags;
2018c2ecf20Sopenharmony_ci
2028c2ecf20Sopenharmony_ci	if (qopt_flags && flags_attr) {
2038c2ecf20Sopenharmony_ci		NL_SET_ERR_MSG_MOD(extack, "flags should be passed either through qopt, or through a dedicated attribute");
2048c2ecf20Sopenharmony_ci		return -EINVAL;
2058c2ecf20Sopenharmony_ci	}
2068c2ecf20Sopenharmony_ci
2078c2ecf20Sopenharmony_ci	if (flags_attr) {
2088c2ecf20Sopenharmony_ci		flags = nla_get_bitfield32(flags_attr);
2098c2ecf20Sopenharmony_ci	} else {
2108c2ecf20Sopenharmony_ci		flags.selector = historic_mask;
2118c2ecf20Sopenharmony_ci		flags.value = qopt_flags & historic_mask;
2128c2ecf20Sopenharmony_ci	}
2138c2ecf20Sopenharmony_ci
2148c2ecf20Sopenharmony_ci	*p_flags = flags;
2158c2ecf20Sopenharmony_ci	*p_userbits = qopt_flags & ~historic_mask;
2168c2ecf20Sopenharmony_ci	return 0;
2178c2ecf20Sopenharmony_ci}
2188c2ecf20Sopenharmony_ci
2198c2ecf20Sopenharmony_cistatic inline int red_validate_flags(unsigned char flags,
2208c2ecf20Sopenharmony_ci				     struct netlink_ext_ack *extack)
2218c2ecf20Sopenharmony_ci{
2228c2ecf20Sopenharmony_ci	if ((flags & TC_RED_NODROP) && !(flags & TC_RED_ECN)) {
2238c2ecf20Sopenharmony_ci		NL_SET_ERR_MSG_MOD(extack, "nodrop mode is only meaningful with ECN");
2248c2ecf20Sopenharmony_ci		return -EINVAL;
2258c2ecf20Sopenharmony_ci	}
2268c2ecf20Sopenharmony_ci
2278c2ecf20Sopenharmony_ci	return 0;
2288c2ecf20Sopenharmony_ci}
2298c2ecf20Sopenharmony_ci
2308c2ecf20Sopenharmony_cistatic inline void red_set_parms(struct red_parms *p,
2318c2ecf20Sopenharmony_ci				 u32 qth_min, u32 qth_max, u8 Wlog, u8 Plog,
2328c2ecf20Sopenharmony_ci				 u8 Scell_log, u8 *stab, u32 max_P)
2338c2ecf20Sopenharmony_ci{
2348c2ecf20Sopenharmony_ci	int delta = qth_max - qth_min;
2358c2ecf20Sopenharmony_ci	u32 max_p_delta;
2368c2ecf20Sopenharmony_ci
2378c2ecf20Sopenharmony_ci	p->qth_min	= qth_min << Wlog;
2388c2ecf20Sopenharmony_ci	p->qth_max	= qth_max << Wlog;
2398c2ecf20Sopenharmony_ci	p->Wlog		= Wlog;
2408c2ecf20Sopenharmony_ci	p->Plog		= Plog;
2418c2ecf20Sopenharmony_ci	if (delta <= 0)
2428c2ecf20Sopenharmony_ci		delta = 1;
2438c2ecf20Sopenharmony_ci	p->qth_delta	= delta;
2448c2ecf20Sopenharmony_ci	if (!max_P) {
2458c2ecf20Sopenharmony_ci		max_P = red_maxp(Plog);
2468c2ecf20Sopenharmony_ci		max_P *= delta; /* max_P = (qth_max - qth_min)/2^Plog */
2478c2ecf20Sopenharmony_ci	}
2488c2ecf20Sopenharmony_ci	p->max_P = max_P;
2498c2ecf20Sopenharmony_ci	max_p_delta = max_P / delta;
2508c2ecf20Sopenharmony_ci	max_p_delta = max(max_p_delta, 1U);
2518c2ecf20Sopenharmony_ci	p->max_P_reciprocal  = reciprocal_value(max_p_delta);
2528c2ecf20Sopenharmony_ci
2538c2ecf20Sopenharmony_ci	/* RED Adaptative target :
2548c2ecf20Sopenharmony_ci	 * [min_th + 0.4*(min_th - max_th),
2558c2ecf20Sopenharmony_ci	 *  min_th + 0.6*(min_th - max_th)].
2568c2ecf20Sopenharmony_ci	 */
2578c2ecf20Sopenharmony_ci	delta /= 5;
2588c2ecf20Sopenharmony_ci	p->target_min = qth_min + 2*delta;
2598c2ecf20Sopenharmony_ci	p->target_max = qth_min + 3*delta;
2608c2ecf20Sopenharmony_ci
2618c2ecf20Sopenharmony_ci	p->Scell_log	= Scell_log;
2628c2ecf20Sopenharmony_ci	p->Scell_max	= (255 << Scell_log);
2638c2ecf20Sopenharmony_ci
2648c2ecf20Sopenharmony_ci	if (stab)
2658c2ecf20Sopenharmony_ci		memcpy(p->Stab, stab, sizeof(p->Stab));
2668c2ecf20Sopenharmony_ci}
2678c2ecf20Sopenharmony_ci
2688c2ecf20Sopenharmony_cistatic inline int red_is_idling(const struct red_vars *v)
2698c2ecf20Sopenharmony_ci{
2708c2ecf20Sopenharmony_ci	return v->qidlestart != 0;
2718c2ecf20Sopenharmony_ci}
2728c2ecf20Sopenharmony_ci
2738c2ecf20Sopenharmony_cistatic inline void red_start_of_idle_period(struct red_vars *v)
2748c2ecf20Sopenharmony_ci{
2758c2ecf20Sopenharmony_ci	v->qidlestart = ktime_get();
2768c2ecf20Sopenharmony_ci}
2778c2ecf20Sopenharmony_ci
2788c2ecf20Sopenharmony_cistatic inline void red_end_of_idle_period(struct red_vars *v)
2798c2ecf20Sopenharmony_ci{
2808c2ecf20Sopenharmony_ci	v->qidlestart = 0;
2818c2ecf20Sopenharmony_ci}
2828c2ecf20Sopenharmony_ci
2838c2ecf20Sopenharmony_cistatic inline void red_restart(struct red_vars *v)
2848c2ecf20Sopenharmony_ci{
2858c2ecf20Sopenharmony_ci	red_end_of_idle_period(v);
2868c2ecf20Sopenharmony_ci	v->qavg = 0;
2878c2ecf20Sopenharmony_ci	v->qcount = -1;
2888c2ecf20Sopenharmony_ci}
2898c2ecf20Sopenharmony_ci
2908c2ecf20Sopenharmony_cistatic inline unsigned long red_calc_qavg_from_idle_time(const struct red_parms *p,
2918c2ecf20Sopenharmony_ci							 const struct red_vars *v)
2928c2ecf20Sopenharmony_ci{
2938c2ecf20Sopenharmony_ci	s64 delta = ktime_us_delta(ktime_get(), v->qidlestart);
2948c2ecf20Sopenharmony_ci	long us_idle = min_t(s64, delta, p->Scell_max);
2958c2ecf20Sopenharmony_ci	int  shift;
2968c2ecf20Sopenharmony_ci
2978c2ecf20Sopenharmony_ci	/*
2988c2ecf20Sopenharmony_ci	 * The problem: ideally, average length queue recalcultion should
2998c2ecf20Sopenharmony_ci	 * be done over constant clock intervals. This is too expensive, so
3008c2ecf20Sopenharmony_ci	 * that the calculation is driven by outgoing packets.
3018c2ecf20Sopenharmony_ci	 * When the queue is idle we have to model this clock by hand.
3028c2ecf20Sopenharmony_ci	 *
3038c2ecf20Sopenharmony_ci	 * SF+VJ proposed to "generate":
3048c2ecf20Sopenharmony_ci	 *
3058c2ecf20Sopenharmony_ci	 *	m = idletime / (average_pkt_size / bandwidth)
3068c2ecf20Sopenharmony_ci	 *
3078c2ecf20Sopenharmony_ci	 * dummy packets as a burst after idle time, i.e.
3088c2ecf20Sopenharmony_ci	 *
3098c2ecf20Sopenharmony_ci	 * 	v->qavg *= (1-W)^m
3108c2ecf20Sopenharmony_ci	 *
3118c2ecf20Sopenharmony_ci	 * This is an apparently overcomplicated solution (f.e. we have to
3128c2ecf20Sopenharmony_ci	 * precompute a table to make this calculation in reasonable time)
3138c2ecf20Sopenharmony_ci	 * I believe that a simpler model may be used here,
3148c2ecf20Sopenharmony_ci	 * but it is field for experiments.
3158c2ecf20Sopenharmony_ci	 */
3168c2ecf20Sopenharmony_ci
3178c2ecf20Sopenharmony_ci	shift = p->Stab[(us_idle >> p->Scell_log) & RED_STAB_MASK];
3188c2ecf20Sopenharmony_ci
3198c2ecf20Sopenharmony_ci	if (shift)
3208c2ecf20Sopenharmony_ci		return v->qavg >> shift;
3218c2ecf20Sopenharmony_ci	else {
3228c2ecf20Sopenharmony_ci		/* Approximate initial part of exponent with linear function:
3238c2ecf20Sopenharmony_ci		 *
3248c2ecf20Sopenharmony_ci		 * 	(1-W)^m ~= 1-mW + ...
3258c2ecf20Sopenharmony_ci		 *
3268c2ecf20Sopenharmony_ci		 * Seems, it is the best solution to
3278c2ecf20Sopenharmony_ci		 * problem of too coarse exponent tabulation.
3288c2ecf20Sopenharmony_ci		 */
3298c2ecf20Sopenharmony_ci		us_idle = (v->qavg * (u64)us_idle) >> p->Scell_log;
3308c2ecf20Sopenharmony_ci
3318c2ecf20Sopenharmony_ci		if (us_idle < (v->qavg >> 1))
3328c2ecf20Sopenharmony_ci			return v->qavg - us_idle;
3338c2ecf20Sopenharmony_ci		else
3348c2ecf20Sopenharmony_ci			return v->qavg >> 1;
3358c2ecf20Sopenharmony_ci	}
3368c2ecf20Sopenharmony_ci}
3378c2ecf20Sopenharmony_ci
3388c2ecf20Sopenharmony_cistatic inline unsigned long red_calc_qavg_no_idle_time(const struct red_parms *p,
3398c2ecf20Sopenharmony_ci						       const struct red_vars *v,
3408c2ecf20Sopenharmony_ci						       unsigned int backlog)
3418c2ecf20Sopenharmony_ci{
3428c2ecf20Sopenharmony_ci	/*
3438c2ecf20Sopenharmony_ci	 * NOTE: v->qavg is fixed point number with point at Wlog.
3448c2ecf20Sopenharmony_ci	 * The formula below is equvalent to floating point
3458c2ecf20Sopenharmony_ci	 * version:
3468c2ecf20Sopenharmony_ci	 *
3478c2ecf20Sopenharmony_ci	 * 	qavg = qavg*(1-W) + backlog*W;
3488c2ecf20Sopenharmony_ci	 *
3498c2ecf20Sopenharmony_ci	 * --ANK (980924)
3508c2ecf20Sopenharmony_ci	 */
3518c2ecf20Sopenharmony_ci	return v->qavg + (backlog - (v->qavg >> p->Wlog));
3528c2ecf20Sopenharmony_ci}
3538c2ecf20Sopenharmony_ci
3548c2ecf20Sopenharmony_cistatic inline unsigned long red_calc_qavg(const struct red_parms *p,
3558c2ecf20Sopenharmony_ci					  const struct red_vars *v,
3568c2ecf20Sopenharmony_ci					  unsigned int backlog)
3578c2ecf20Sopenharmony_ci{
3588c2ecf20Sopenharmony_ci	if (!red_is_idling(v))
3598c2ecf20Sopenharmony_ci		return red_calc_qavg_no_idle_time(p, v, backlog);
3608c2ecf20Sopenharmony_ci	else
3618c2ecf20Sopenharmony_ci		return red_calc_qavg_from_idle_time(p, v);
3628c2ecf20Sopenharmony_ci}
3638c2ecf20Sopenharmony_ci
3648c2ecf20Sopenharmony_ci
3658c2ecf20Sopenharmony_cistatic inline u32 red_random(const struct red_parms *p)
3668c2ecf20Sopenharmony_ci{
3678c2ecf20Sopenharmony_ci	return reciprocal_divide(prandom_u32(), p->max_P_reciprocal);
3688c2ecf20Sopenharmony_ci}
3698c2ecf20Sopenharmony_ci
3708c2ecf20Sopenharmony_cistatic inline int red_mark_probability(const struct red_parms *p,
3718c2ecf20Sopenharmony_ci				       const struct red_vars *v,
3728c2ecf20Sopenharmony_ci				       unsigned long qavg)
3738c2ecf20Sopenharmony_ci{
3748c2ecf20Sopenharmony_ci	/* The formula used below causes questions.
3758c2ecf20Sopenharmony_ci
3768c2ecf20Sopenharmony_ci	   OK. qR is random number in the interval
3778c2ecf20Sopenharmony_ci		(0..1/max_P)*(qth_max-qth_min)
3788c2ecf20Sopenharmony_ci	   i.e. 0..(2^Plog). If we used floating point
3798c2ecf20Sopenharmony_ci	   arithmetics, it would be: (2^Plog)*rnd_num,
3808c2ecf20Sopenharmony_ci	   where rnd_num is less 1.
3818c2ecf20Sopenharmony_ci
3828c2ecf20Sopenharmony_ci	   Taking into account, that qavg have fixed
3838c2ecf20Sopenharmony_ci	   point at Wlog, two lines
3848c2ecf20Sopenharmony_ci	   below have the following floating point equivalent:
3858c2ecf20Sopenharmony_ci
3868c2ecf20Sopenharmony_ci	   max_P*(qavg - qth_min)/(qth_max-qth_min) < rnd/qcount
3878c2ecf20Sopenharmony_ci
3888c2ecf20Sopenharmony_ci	   Any questions? --ANK (980924)
3898c2ecf20Sopenharmony_ci	 */
3908c2ecf20Sopenharmony_ci	return !(((qavg - p->qth_min) >> p->Wlog) * v->qcount < v->qR);
3918c2ecf20Sopenharmony_ci}
3928c2ecf20Sopenharmony_ci
3938c2ecf20Sopenharmony_cienum {
3948c2ecf20Sopenharmony_ci	RED_BELOW_MIN_THRESH,
3958c2ecf20Sopenharmony_ci	RED_BETWEEN_TRESH,
3968c2ecf20Sopenharmony_ci	RED_ABOVE_MAX_TRESH,
3978c2ecf20Sopenharmony_ci};
3988c2ecf20Sopenharmony_ci
3998c2ecf20Sopenharmony_cistatic inline int red_cmp_thresh(const struct red_parms *p, unsigned long qavg)
4008c2ecf20Sopenharmony_ci{
4018c2ecf20Sopenharmony_ci	if (qavg < p->qth_min)
4028c2ecf20Sopenharmony_ci		return RED_BELOW_MIN_THRESH;
4038c2ecf20Sopenharmony_ci	else if (qavg >= p->qth_max)
4048c2ecf20Sopenharmony_ci		return RED_ABOVE_MAX_TRESH;
4058c2ecf20Sopenharmony_ci	else
4068c2ecf20Sopenharmony_ci		return RED_BETWEEN_TRESH;
4078c2ecf20Sopenharmony_ci}
4088c2ecf20Sopenharmony_ci
4098c2ecf20Sopenharmony_cienum {
4108c2ecf20Sopenharmony_ci	RED_DONT_MARK,
4118c2ecf20Sopenharmony_ci	RED_PROB_MARK,
4128c2ecf20Sopenharmony_ci	RED_HARD_MARK,
4138c2ecf20Sopenharmony_ci};
4148c2ecf20Sopenharmony_ci
4158c2ecf20Sopenharmony_cistatic inline int red_action(const struct red_parms *p,
4168c2ecf20Sopenharmony_ci			     struct red_vars *v,
4178c2ecf20Sopenharmony_ci			     unsigned long qavg)
4188c2ecf20Sopenharmony_ci{
4198c2ecf20Sopenharmony_ci	switch (red_cmp_thresh(p, qavg)) {
4208c2ecf20Sopenharmony_ci		case RED_BELOW_MIN_THRESH:
4218c2ecf20Sopenharmony_ci			v->qcount = -1;
4228c2ecf20Sopenharmony_ci			return RED_DONT_MARK;
4238c2ecf20Sopenharmony_ci
4248c2ecf20Sopenharmony_ci		case RED_BETWEEN_TRESH:
4258c2ecf20Sopenharmony_ci			if (++v->qcount) {
4268c2ecf20Sopenharmony_ci				if (red_mark_probability(p, v, qavg)) {
4278c2ecf20Sopenharmony_ci					v->qcount = 0;
4288c2ecf20Sopenharmony_ci					v->qR = red_random(p);
4298c2ecf20Sopenharmony_ci					return RED_PROB_MARK;
4308c2ecf20Sopenharmony_ci				}
4318c2ecf20Sopenharmony_ci			} else
4328c2ecf20Sopenharmony_ci				v->qR = red_random(p);
4338c2ecf20Sopenharmony_ci
4348c2ecf20Sopenharmony_ci			return RED_DONT_MARK;
4358c2ecf20Sopenharmony_ci
4368c2ecf20Sopenharmony_ci		case RED_ABOVE_MAX_TRESH:
4378c2ecf20Sopenharmony_ci			v->qcount = -1;
4388c2ecf20Sopenharmony_ci			return RED_HARD_MARK;
4398c2ecf20Sopenharmony_ci	}
4408c2ecf20Sopenharmony_ci
4418c2ecf20Sopenharmony_ci	BUG();
4428c2ecf20Sopenharmony_ci	return RED_DONT_MARK;
4438c2ecf20Sopenharmony_ci}
4448c2ecf20Sopenharmony_ci
4458c2ecf20Sopenharmony_cistatic inline void red_adaptative_algo(struct red_parms *p, struct red_vars *v)
4468c2ecf20Sopenharmony_ci{
4478c2ecf20Sopenharmony_ci	unsigned long qavg;
4488c2ecf20Sopenharmony_ci	u32 max_p_delta;
4498c2ecf20Sopenharmony_ci
4508c2ecf20Sopenharmony_ci	qavg = v->qavg;
4518c2ecf20Sopenharmony_ci	if (red_is_idling(v))
4528c2ecf20Sopenharmony_ci		qavg = red_calc_qavg_from_idle_time(p, v);
4538c2ecf20Sopenharmony_ci
4548c2ecf20Sopenharmony_ci	/* v->qavg is fixed point number with point at Wlog */
4558c2ecf20Sopenharmony_ci	qavg >>= p->Wlog;
4568c2ecf20Sopenharmony_ci
4578c2ecf20Sopenharmony_ci	if (qavg > p->target_max && p->max_P <= MAX_P_MAX)
4588c2ecf20Sopenharmony_ci		p->max_P += MAX_P_ALPHA(p->max_P); /* maxp = maxp + alpha */
4598c2ecf20Sopenharmony_ci	else if (qavg < p->target_min && p->max_P >= MAX_P_MIN)
4608c2ecf20Sopenharmony_ci		p->max_P = (p->max_P/10)*9; /* maxp = maxp * Beta */
4618c2ecf20Sopenharmony_ci
4628c2ecf20Sopenharmony_ci	max_p_delta = DIV_ROUND_CLOSEST(p->max_P, p->qth_delta);
4638c2ecf20Sopenharmony_ci	max_p_delta = max(max_p_delta, 1U);
4648c2ecf20Sopenharmony_ci	p->max_P_reciprocal = reciprocal_value(max_p_delta);
4658c2ecf20Sopenharmony_ci}
4668c2ecf20Sopenharmony_ci#endif
467