1/* SPDX-License-Identifier: GPL-2.0-or-later */ 2/* 3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al. 4 */ 5 6#ifndef __MTD_MTD_H__ 7#define __MTD_MTD_H__ 8 9#include <linux/types.h> 10#include <linux/uio.h> 11#include <linux/list.h> 12#include <linux/notifier.h> 13#include <linux/device.h> 14#include <linux/of.h> 15#include <linux/nvmem-provider.h> 16 17#include <mtd/mtd-abi.h> 18 19#include <asm/div64.h> 20 21#define MTD_FAIL_ADDR_UNKNOWN -1LL 22 23struct mtd_info; 24 25/* 26 * If the erase fails, fail_addr might indicate exactly which block failed. If 27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level 28 * or was not specific to any particular block. 29 */ 30struct erase_info { 31 uint64_t addr; 32 uint64_t len; 33 uint64_t fail_addr; 34}; 35 36struct mtd_erase_region_info { 37 uint64_t offset; /* At which this region starts, from the beginning of the MTD */ 38 uint32_t erasesize; /* For this region */ 39 uint32_t numblocks; /* Number of blocks of erasesize in this region */ 40 unsigned long *lockmap; /* If keeping bitmap of locks */ 41}; 42 43/** 44 * struct mtd_oob_ops - oob operation operands 45 * @mode: operation mode 46 * 47 * @len: number of data bytes to write/read 48 * 49 * @retlen: number of data bytes written/read 50 * 51 * @ooblen: number of oob bytes to write/read 52 * @oobretlen: number of oob bytes written/read 53 * @ooboffs: offset of oob data in the oob area (only relevant when 54 * mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW) 55 * @datbuf: data buffer - if NULL only oob data are read/written 56 * @oobbuf: oob data buffer 57 * 58 * Note, some MTD drivers do not allow you to write more than one OOB area at 59 * one go. If you try to do that on such an MTD device, -EINVAL will be 60 * returned. If you want to make your implementation portable on all kind of MTD 61 * devices you should split the write request into several sub-requests when the 62 * request crosses a page boundary. 63 */ 64struct mtd_oob_ops { 65 unsigned int mode; 66 size_t len; 67 size_t retlen; 68 size_t ooblen; 69 size_t oobretlen; 70 uint32_t ooboffs; 71 uint8_t *datbuf; 72 uint8_t *oobbuf; 73}; 74 75#define MTD_MAX_OOBFREE_ENTRIES_LARGE 32 76#define MTD_MAX_ECCPOS_ENTRIES_LARGE 640 77/** 78 * struct mtd_oob_region - oob region definition 79 * @offset: region offset 80 * @length: region length 81 * 82 * This structure describes a region of the OOB area, and is used 83 * to retrieve ECC or free bytes sections. 84 * Each section is defined by an offset within the OOB area and a 85 * length. 86 */ 87struct mtd_oob_region { 88 u32 offset; 89 u32 length; 90}; 91 92/* 93 * struct mtd_ooblayout_ops - NAND OOB layout operations 94 * @ecc: function returning an ECC region in the OOB area. 95 * Should return -ERANGE if %section exceeds the total number of 96 * ECC sections. 97 * @free: function returning a free region in the OOB area. 98 * Should return -ERANGE if %section exceeds the total number of 99 * free sections. 100 */ 101struct mtd_ooblayout_ops { 102 int (*ecc)(struct mtd_info *mtd, int section, 103 struct mtd_oob_region *oobecc); 104 int (*free)(struct mtd_info *mtd, int section, 105 struct mtd_oob_region *oobfree); 106}; 107 108/** 109 * struct mtd_pairing_info - page pairing information 110 * 111 * @pair: pair id 112 * @group: group id 113 * 114 * The term "pair" is used here, even though TLC NANDs might group pages by 3 115 * (3 bits in a single cell). A pair should regroup all pages that are sharing 116 * the same cell. Pairs are then indexed in ascending order. 117 * 118 * @group is defining the position of a page in a given pair. It can also be 119 * seen as the bit position in the cell: page attached to bit 0 belongs to 120 * group 0, page attached to bit 1 belongs to group 1, etc. 121 * 122 * Example: 123 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme: 124 * 125 * group-0 group-1 126 * 127 * pair-0 page-0 page-4 128 * pair-1 page-1 page-5 129 * pair-2 page-2 page-8 130 * ... 131 * pair-127 page-251 page-255 132 * 133 * 134 * Note that the "group" and "pair" terms were extracted from Samsung and 135 * Hynix datasheets, and might be referenced under other names in other 136 * datasheets (Micron is describing this concept as "shared pages"). 137 */ 138struct mtd_pairing_info { 139 int pair; 140 int group; 141}; 142 143/** 144 * struct mtd_pairing_scheme - page pairing scheme description 145 * 146 * @ngroups: number of groups. Should be related to the number of bits 147 * per cell. 148 * @get_info: converts a write-unit (page number within an erase block) into 149 * mtd_pairing information (pair + group). This function should 150 * fill the info parameter based on the wunit index or return 151 * -EINVAL if the wunit parameter is invalid. 152 * @get_wunit: converts pairing information into a write-unit (page) number. 153 * This function should return the wunit index pointed by the 154 * pairing information described in the info argument. It should 155 * return -EINVAL, if there's no wunit corresponding to the 156 * passed pairing information. 157 * 158 * See mtd_pairing_info documentation for a detailed explanation of the 159 * pair and group concepts. 160 * 161 * The mtd_pairing_scheme structure provides a generic solution to represent 162 * NAND page pairing scheme. Instead of exposing two big tables to do the 163 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to 164 * implement the ->get_info() and ->get_wunit() functions. 165 * 166 * MTD users will then be able to query these information by using the 167 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers. 168 * 169 * @ngroups is here to help MTD users iterating over all the pages in a 170 * given pair. This value can be retrieved by MTD users using the 171 * mtd_pairing_groups() helper. 172 * 173 * Examples are given in the mtd_pairing_info_to_wunit() and 174 * mtd_wunit_to_pairing_info() documentation. 175 */ 176struct mtd_pairing_scheme { 177 int ngroups; 178 int (*get_info)(struct mtd_info *mtd, int wunit, 179 struct mtd_pairing_info *info); 180 int (*get_wunit)(struct mtd_info *mtd, 181 const struct mtd_pairing_info *info); 182}; 183 184struct module; /* only needed for owner field in mtd_info */ 185 186/** 187 * struct mtd_debug_info - debugging information for an MTD device. 188 * 189 * @dfs_dir: direntry object of the MTD device debugfs directory 190 */ 191struct mtd_debug_info { 192 struct dentry *dfs_dir; 193 194 const char *partname; 195 const char *partid; 196}; 197 198/** 199 * struct mtd_part - MTD partition specific fields 200 * 201 * @node: list node used to add an MTD partition to the parent partition list 202 * @offset: offset of the partition relatively to the parent offset 203 * @size: partition size. Should be equal to mtd->size unless 204 * MTD_SLC_ON_MLC_EMULATION is set 205 * @flags: original flags (before the mtdpart logic decided to tweak them based 206 * on flash constraints, like eraseblock/pagesize alignment) 207 * 208 * This struct is embedded in mtd_info and contains partition-specific 209 * properties/fields. 210 */ 211struct mtd_part { 212 struct list_head node; 213 u64 offset; 214 u64 size; 215 u32 flags; 216}; 217 218/** 219 * struct mtd_master - MTD master specific fields 220 * 221 * @partitions_lock: lock protecting accesses to the partition list. Protects 222 * not only the master partition list, but also all 223 * sub-partitions. 224 * @suspended: et to 1 when the device is suspended, 0 otherwise 225 * 226 * This struct is embedded in mtd_info and contains master-specific 227 * properties/fields. The master is the root MTD device from the MTD partition 228 * point of view. 229 */ 230struct mtd_master { 231 struct mutex partitions_lock; 232 unsigned int suspended : 1; 233}; 234 235struct mtd_info { 236 u_char type; 237 uint32_t flags; 238 uint64_t size; // Total size of the MTD 239 240 /* "Major" erase size for the device. Naïve users may take this 241 * to be the only erase size available, or may use the more detailed 242 * information below if they desire 243 */ 244 uint32_t erasesize; 245 /* Minimal writable flash unit size. In case of NOR flash it is 1 (even 246 * though individual bits can be cleared), in case of NAND flash it is 247 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR 248 * it is of ECC block size, etc. It is illegal to have writesize = 0. 249 * Any driver registering a struct mtd_info must ensure a writesize of 250 * 1 or larger. 251 */ 252 uint32_t writesize; 253 254 /* 255 * Size of the write buffer used by the MTD. MTD devices having a write 256 * buffer can write multiple writesize chunks at a time. E.g. while 257 * writing 4 * writesize bytes to a device with 2 * writesize bytes 258 * buffer the MTD driver can (but doesn't have to) do 2 writesize 259 * operations, but not 4. Currently, all NANDs have writebufsize 260 * equivalent to writesize (NAND page size). Some NOR flashes do have 261 * writebufsize greater than writesize. 262 */ 263 uint32_t writebufsize; 264 265 uint32_t oobsize; // Amount of OOB data per block (e.g. 16) 266 uint32_t oobavail; // Available OOB bytes per block 267 268 /* 269 * If erasesize is a power of 2 then the shift is stored in 270 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize. 271 */ 272 unsigned int erasesize_shift; 273 unsigned int writesize_shift; 274 /* Masks based on erasesize_shift and writesize_shift */ 275 unsigned int erasesize_mask; 276 unsigned int writesize_mask; 277 278 /* 279 * read ops return -EUCLEAN if max number of bitflips corrected on any 280 * one region comprising an ecc step equals or exceeds this value. 281 * Settable by driver, else defaults to ecc_strength. User can override 282 * in sysfs. N.B. The meaning of the -EUCLEAN return code has changed; 283 * see Documentation/ABI/testing/sysfs-class-mtd for more detail. 284 */ 285 unsigned int bitflip_threshold; 286 287 /* Kernel-only stuff starts here. */ 288 const char *name; 289 int index; 290 291 /* OOB layout description */ 292 const struct mtd_ooblayout_ops *ooblayout; 293 294 /* NAND pairing scheme, only provided for MLC/TLC NANDs */ 295 const struct mtd_pairing_scheme *pairing; 296 297 /* the ecc step size. */ 298 unsigned int ecc_step_size; 299 300 /* max number of correctible bit errors per ecc step */ 301 unsigned int ecc_strength; 302 303 /* Data for variable erase regions. If numeraseregions is zero, 304 * it means that the whole device has erasesize as given above. 305 */ 306 int numeraseregions; 307 struct mtd_erase_region_info *eraseregions; 308 309 /* 310 * Do not call via these pointers, use corresponding mtd_*() 311 * wrappers instead. 312 */ 313 int (*_erase) (struct mtd_info *mtd, struct erase_info *instr); 314 int (*_point) (struct mtd_info *mtd, loff_t from, size_t len, 315 size_t *retlen, void **virt, resource_size_t *phys); 316 int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len); 317 int (*_read) (struct mtd_info *mtd, loff_t from, size_t len, 318 size_t *retlen, u_char *buf); 319 int (*_write) (struct mtd_info *mtd, loff_t to, size_t len, 320 size_t *retlen, const u_char *buf); 321 int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len, 322 size_t *retlen, const u_char *buf); 323 int (*_read_oob) (struct mtd_info *mtd, loff_t from, 324 struct mtd_oob_ops *ops); 325 int (*_write_oob) (struct mtd_info *mtd, loff_t to, 326 struct mtd_oob_ops *ops); 327 int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len, 328 size_t *retlen, struct otp_info *buf); 329 int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from, 330 size_t len, size_t *retlen, u_char *buf); 331 int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len, 332 size_t *retlen, struct otp_info *buf); 333 int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from, 334 size_t len, size_t *retlen, u_char *buf); 335 int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to, 336 size_t len, size_t *retlen, u_char *buf); 337 int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from, 338 size_t len); 339 int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs, 340 unsigned long count, loff_t to, size_t *retlen); 341 void (*_sync) (struct mtd_info *mtd); 342 int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 343 int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 344 int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len); 345 int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs); 346 int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs); 347 int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs); 348 int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len); 349 int (*_suspend) (struct mtd_info *mtd); 350 void (*_resume) (struct mtd_info *mtd); 351 void (*_reboot) (struct mtd_info *mtd); 352 /* 353 * If the driver is something smart, like UBI, it may need to maintain 354 * its own reference counting. The below functions are only for driver. 355 */ 356 int (*_get_device) (struct mtd_info *mtd); 357 void (*_put_device) (struct mtd_info *mtd); 358 359 /* 360 * flag indicates a panic write, low level drivers can take appropriate 361 * action if required to ensure writes go through 362 */ 363 bool oops_panic_write; 364 365 struct notifier_block reboot_notifier; /* default mode before reboot */ 366 367 /* ECC status information */ 368 struct mtd_ecc_stats ecc_stats; 369 /* Subpage shift (NAND) */ 370 int subpage_sft; 371 372 void *priv; 373 374 struct module *owner; 375 struct device dev; 376 int usecount; 377 struct mtd_debug_info dbg; 378 struct nvmem_device *nvmem; 379 380 /* 381 * Parent device from the MTD partition point of view. 382 * 383 * MTD masters do not have any parent, MTD partitions do. The parent 384 * MTD device can itself be a partition. 385 */ 386 struct mtd_info *parent; 387 388 /* List of partitions attached to this MTD device */ 389 struct list_head partitions; 390 391 struct mtd_part part; 392 struct mtd_master master; 393}; 394 395static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd) 396{ 397 while (mtd->parent) 398 mtd = mtd->parent; 399 400 return mtd; 401} 402 403static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs) 404{ 405 while (mtd->parent) { 406 ofs += mtd->part.offset; 407 mtd = mtd->parent; 408 } 409 410 return ofs; 411} 412 413static inline bool mtd_is_partition(const struct mtd_info *mtd) 414{ 415 return mtd->parent; 416} 417 418static inline bool mtd_has_partitions(const struct mtd_info *mtd) 419{ 420 return !list_empty(&mtd->partitions); 421} 422 423int mtd_ooblayout_ecc(struct mtd_info *mtd, int section, 424 struct mtd_oob_region *oobecc); 425int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte, 426 int *section, 427 struct mtd_oob_region *oobregion); 428int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf, 429 const u8 *oobbuf, int start, int nbytes); 430int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf, 431 u8 *oobbuf, int start, int nbytes); 432int mtd_ooblayout_free(struct mtd_info *mtd, int section, 433 struct mtd_oob_region *oobfree); 434int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf, 435 const u8 *oobbuf, int start, int nbytes); 436int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf, 437 u8 *oobbuf, int start, int nbytes); 438int mtd_ooblayout_count_freebytes(struct mtd_info *mtd); 439int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd); 440 441static inline void mtd_set_ooblayout(struct mtd_info *mtd, 442 const struct mtd_ooblayout_ops *ooblayout) 443{ 444 mtd->ooblayout = ooblayout; 445} 446 447static inline void mtd_set_pairing_scheme(struct mtd_info *mtd, 448 const struct mtd_pairing_scheme *pairing) 449{ 450 mtd->pairing = pairing; 451} 452 453static inline void mtd_set_of_node(struct mtd_info *mtd, 454 struct device_node *np) 455{ 456 mtd->dev.of_node = np; 457 if (!mtd->name) 458 of_property_read_string(np, "label", &mtd->name); 459} 460 461static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd) 462{ 463 return dev_of_node(&mtd->dev); 464} 465 466static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops) 467{ 468 return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize; 469} 470 471static inline int mtd_max_bad_blocks(struct mtd_info *mtd, 472 loff_t ofs, size_t len) 473{ 474 struct mtd_info *master = mtd_get_master(mtd); 475 476 if (!master->_max_bad_blocks) 477 return -ENOTSUPP; 478 479 if (mtd->size < (len + ofs) || ofs < 0) 480 return -EINVAL; 481 482 return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs), 483 len); 484} 485 486int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit, 487 struct mtd_pairing_info *info); 488int mtd_pairing_info_to_wunit(struct mtd_info *mtd, 489 const struct mtd_pairing_info *info); 490int mtd_pairing_groups(struct mtd_info *mtd); 491int mtd_erase(struct mtd_info *mtd, struct erase_info *instr); 492int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 493 void **virt, resource_size_t *phys); 494int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len); 495unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len, 496 unsigned long offset, unsigned long flags); 497int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen, 498 u_char *buf); 499int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 500 const u_char *buf); 501int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen, 502 const u_char *buf); 503 504int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops); 505int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops); 506 507int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 508 struct otp_info *buf); 509int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 510 size_t *retlen, u_char *buf); 511int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen, 512 struct otp_info *buf); 513int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len, 514 size_t *retlen, u_char *buf); 515int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len, 516 size_t *retlen, u_char *buf); 517int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len); 518 519int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs, 520 unsigned long count, loff_t to, size_t *retlen); 521 522static inline void mtd_sync(struct mtd_info *mtd) 523{ 524 struct mtd_info *master = mtd_get_master(mtd); 525 526 if (master->_sync) 527 master->_sync(master); 528} 529 530int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 531int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len); 532int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len); 533int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs); 534int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs); 535int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs); 536 537static inline int mtd_suspend(struct mtd_info *mtd) 538{ 539 struct mtd_info *master = mtd_get_master(mtd); 540 int ret; 541 542 if (master->master.suspended) 543 return 0; 544 545 ret = master->_suspend ? master->_suspend(master) : 0; 546 if (ret) 547 return ret; 548 549 master->master.suspended = 1; 550 return 0; 551} 552 553static inline void mtd_resume(struct mtd_info *mtd) 554{ 555 struct mtd_info *master = mtd_get_master(mtd); 556 557 if (!master->master.suspended) 558 return; 559 560 if (master->_resume) 561 master->_resume(master); 562 563 master->master.suspended = 0; 564} 565 566static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd) 567{ 568 if (mtd->erasesize_shift) 569 return sz >> mtd->erasesize_shift; 570 do_div(sz, mtd->erasesize); 571 return sz; 572} 573 574static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd) 575{ 576 if (mtd->erasesize_shift) 577 return sz & mtd->erasesize_mask; 578 return do_div(sz, mtd->erasesize); 579} 580 581/** 582 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock 583 * boundaries. 584 * @mtd: the MTD device this erase request applies on 585 * @req: the erase request to adjust 586 * 587 * This function will adjust @req->addr and @req->len to align them on 588 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0. 589 */ 590static inline void mtd_align_erase_req(struct mtd_info *mtd, 591 struct erase_info *req) 592{ 593 u32 mod; 594 595 if (WARN_ON(!mtd->erasesize)) 596 return; 597 598 mod = mtd_mod_by_eb(req->addr, mtd); 599 if (mod) { 600 req->addr -= mod; 601 req->len += mod; 602 } 603 604 mod = mtd_mod_by_eb(req->addr + req->len, mtd); 605 if (mod) 606 req->len += mtd->erasesize - mod; 607} 608 609static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd) 610{ 611 if (mtd->writesize_shift) 612 return sz >> mtd->writesize_shift; 613 do_div(sz, mtd->writesize); 614 return sz; 615} 616 617static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd) 618{ 619 if (mtd->writesize_shift) 620 return sz & mtd->writesize_mask; 621 return do_div(sz, mtd->writesize); 622} 623 624static inline int mtd_wunit_per_eb(struct mtd_info *mtd) 625{ 626 struct mtd_info *master = mtd_get_master(mtd); 627 628 return master->erasesize / mtd->writesize; 629} 630 631static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs) 632{ 633 return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd); 634} 635 636static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base, 637 int wunit) 638{ 639 return base + (wunit * mtd->writesize); 640} 641 642 643static inline int mtd_has_oob(const struct mtd_info *mtd) 644{ 645 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 646 647 return master->_read_oob && master->_write_oob; 648} 649 650static inline int mtd_type_is_nand(const struct mtd_info *mtd) 651{ 652 return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH; 653} 654 655static inline int mtd_can_have_bb(const struct mtd_info *mtd) 656{ 657 struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd); 658 659 return !!master->_block_isbad; 660} 661 662 /* Kernel-side ioctl definitions */ 663 664struct mtd_partition; 665struct mtd_part_parser_data; 666 667extern int mtd_device_parse_register(struct mtd_info *mtd, 668 const char * const *part_probe_types, 669 struct mtd_part_parser_data *parser_data, 670 const struct mtd_partition *defparts, 671 int defnr_parts); 672#define mtd_device_register(master, parts, nr_parts) \ 673 mtd_device_parse_register(master, NULL, NULL, parts, nr_parts) 674extern int mtd_device_unregister(struct mtd_info *master); 675extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num); 676extern int __get_mtd_device(struct mtd_info *mtd); 677extern void __put_mtd_device(struct mtd_info *mtd); 678extern struct mtd_info *get_mtd_device_nm(const char *name); 679extern void put_mtd_device(struct mtd_info *mtd); 680 681 682struct mtd_notifier { 683 void (*add)(struct mtd_info *mtd); 684 void (*remove)(struct mtd_info *mtd); 685 struct list_head list; 686}; 687 688 689extern void register_mtd_user (struct mtd_notifier *new); 690extern int unregister_mtd_user (struct mtd_notifier *old); 691void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size); 692 693static inline int mtd_is_bitflip(int err) { 694 return err == -EUCLEAN; 695} 696 697static inline int mtd_is_eccerr(int err) { 698 return err == -EBADMSG; 699} 700 701static inline int mtd_is_bitflip_or_eccerr(int err) { 702 return mtd_is_bitflip(err) || mtd_is_eccerr(err); 703} 704 705unsigned mtd_mmap_capabilities(struct mtd_info *mtd); 706 707#endif /* __MTD_MTD_H__ */ 708