xref: /kernel/linux/linux-5.10/include/linux/mtd/mtd.h (revision 8c2ecf20)
1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/*
3 * Copyright © 1999-2010 David Woodhouse <dwmw2@infradead.org> et al.
4 */
5
6#ifndef __MTD_MTD_H__
7#define __MTD_MTD_H__
8
9#include <linux/types.h>
10#include <linux/uio.h>
11#include <linux/list.h>
12#include <linux/notifier.h>
13#include <linux/device.h>
14#include <linux/of.h>
15#include <linux/nvmem-provider.h>
16
17#include <mtd/mtd-abi.h>
18
19#include <asm/div64.h>
20
21#define MTD_FAIL_ADDR_UNKNOWN -1LL
22
23struct mtd_info;
24
25/*
26 * If the erase fails, fail_addr might indicate exactly which block failed. If
27 * fail_addr = MTD_FAIL_ADDR_UNKNOWN, the failure was not at the device level
28 * or was not specific to any particular block.
29 */
30struct erase_info {
31	uint64_t addr;
32	uint64_t len;
33	uint64_t fail_addr;
34};
35
36struct mtd_erase_region_info {
37	uint64_t offset;		/* At which this region starts, from the beginning of the MTD */
38	uint32_t erasesize;		/* For this region */
39	uint32_t numblocks;		/* Number of blocks of erasesize in this region */
40	unsigned long *lockmap;		/* If keeping bitmap of locks */
41};
42
43/**
44 * struct mtd_oob_ops - oob operation operands
45 * @mode:	operation mode
46 *
47 * @len:	number of data bytes to write/read
48 *
49 * @retlen:	number of data bytes written/read
50 *
51 * @ooblen:	number of oob bytes to write/read
52 * @oobretlen:	number of oob bytes written/read
53 * @ooboffs:	offset of oob data in the oob area (only relevant when
54 *		mode = MTD_OPS_PLACE_OOB or MTD_OPS_RAW)
55 * @datbuf:	data buffer - if NULL only oob data are read/written
56 * @oobbuf:	oob data buffer
57 *
58 * Note, some MTD drivers do not allow you to write more than one OOB area at
59 * one go. If you try to do that on such an MTD device, -EINVAL will be
60 * returned. If you want to make your implementation portable on all kind of MTD
61 * devices you should split the write request into several sub-requests when the
62 * request crosses a page boundary.
63 */
64struct mtd_oob_ops {
65	unsigned int	mode;
66	size_t		len;
67	size_t		retlen;
68	size_t		ooblen;
69	size_t		oobretlen;
70	uint32_t	ooboffs;
71	uint8_t		*datbuf;
72	uint8_t		*oobbuf;
73};
74
75#define MTD_MAX_OOBFREE_ENTRIES_LARGE	32
76#define MTD_MAX_ECCPOS_ENTRIES_LARGE	640
77/**
78 * struct mtd_oob_region - oob region definition
79 * @offset: region offset
80 * @length: region length
81 *
82 * This structure describes a region of the OOB area, and is used
83 * to retrieve ECC or free bytes sections.
84 * Each section is defined by an offset within the OOB area and a
85 * length.
86 */
87struct mtd_oob_region {
88	u32 offset;
89	u32 length;
90};
91
92/*
93 * struct mtd_ooblayout_ops - NAND OOB layout operations
94 * @ecc: function returning an ECC region in the OOB area.
95 *	 Should return -ERANGE if %section exceeds the total number of
96 *	 ECC sections.
97 * @free: function returning a free region in the OOB area.
98 *	  Should return -ERANGE if %section exceeds the total number of
99 *	  free sections.
100 */
101struct mtd_ooblayout_ops {
102	int (*ecc)(struct mtd_info *mtd, int section,
103		   struct mtd_oob_region *oobecc);
104	int (*free)(struct mtd_info *mtd, int section,
105		    struct mtd_oob_region *oobfree);
106};
107
108/**
109 * struct mtd_pairing_info - page pairing information
110 *
111 * @pair: pair id
112 * @group: group id
113 *
114 * The term "pair" is used here, even though TLC NANDs might group pages by 3
115 * (3 bits in a single cell). A pair should regroup all pages that are sharing
116 * the same cell. Pairs are then indexed in ascending order.
117 *
118 * @group is defining the position of a page in a given pair. It can also be
119 * seen as the bit position in the cell: page attached to bit 0 belongs to
120 * group 0, page attached to bit 1 belongs to group 1, etc.
121 *
122 * Example:
123 * The H27UCG8T2BTR-BC datasheet describes the following pairing scheme:
124 *
125 *		group-0		group-1
126 *
127 *  pair-0	page-0		page-4
128 *  pair-1	page-1		page-5
129 *  pair-2	page-2		page-8
130 *  ...
131 *  pair-127	page-251	page-255
132 *
133 *
134 * Note that the "group" and "pair" terms were extracted from Samsung and
135 * Hynix datasheets, and might be referenced under other names in other
136 * datasheets (Micron is describing this concept as "shared pages").
137 */
138struct mtd_pairing_info {
139	int pair;
140	int group;
141};
142
143/**
144 * struct mtd_pairing_scheme - page pairing scheme description
145 *
146 * @ngroups: number of groups. Should be related to the number of bits
147 *	     per cell.
148 * @get_info: converts a write-unit (page number within an erase block) into
149 *	      mtd_pairing information (pair + group). This function should
150 *	      fill the info parameter based on the wunit index or return
151 *	      -EINVAL if the wunit parameter is invalid.
152 * @get_wunit: converts pairing information into a write-unit (page) number.
153 *	       This function should return the wunit index pointed by the
154 *	       pairing information described in the info argument. It should
155 *	       return -EINVAL, if there's no wunit corresponding to the
156 *	       passed pairing information.
157 *
158 * See mtd_pairing_info documentation for a detailed explanation of the
159 * pair and group concepts.
160 *
161 * The mtd_pairing_scheme structure provides a generic solution to represent
162 * NAND page pairing scheme. Instead of exposing two big tables to do the
163 * write-unit <-> (pair + group) conversions, we ask the MTD drivers to
164 * implement the ->get_info() and ->get_wunit() functions.
165 *
166 * MTD users will then be able to query these information by using the
167 * mtd_pairing_info_to_wunit() and mtd_wunit_to_pairing_info() helpers.
168 *
169 * @ngroups is here to help MTD users iterating over all the pages in a
170 * given pair. This value can be retrieved by MTD users using the
171 * mtd_pairing_groups() helper.
172 *
173 * Examples are given in the mtd_pairing_info_to_wunit() and
174 * mtd_wunit_to_pairing_info() documentation.
175 */
176struct mtd_pairing_scheme {
177	int ngroups;
178	int (*get_info)(struct mtd_info *mtd, int wunit,
179			struct mtd_pairing_info *info);
180	int (*get_wunit)(struct mtd_info *mtd,
181			 const struct mtd_pairing_info *info);
182};
183
184struct module;	/* only needed for owner field in mtd_info */
185
186/**
187 * struct mtd_debug_info - debugging information for an MTD device.
188 *
189 * @dfs_dir: direntry object of the MTD device debugfs directory
190 */
191struct mtd_debug_info {
192	struct dentry *dfs_dir;
193
194	const char *partname;
195	const char *partid;
196};
197
198/**
199 * struct mtd_part - MTD partition specific fields
200 *
201 * @node: list node used to add an MTD partition to the parent partition list
202 * @offset: offset of the partition relatively to the parent offset
203 * @size: partition size. Should be equal to mtd->size unless
204 *	  MTD_SLC_ON_MLC_EMULATION is set
205 * @flags: original flags (before the mtdpart logic decided to tweak them based
206 *	   on flash constraints, like eraseblock/pagesize alignment)
207 *
208 * This struct is embedded in mtd_info and contains partition-specific
209 * properties/fields.
210 */
211struct mtd_part {
212	struct list_head node;
213	u64 offset;
214	u64 size;
215	u32 flags;
216};
217
218/**
219 * struct mtd_master - MTD master specific fields
220 *
221 * @partitions_lock: lock protecting accesses to the partition list. Protects
222 *		     not only the master partition list, but also all
223 *		     sub-partitions.
224 * @suspended: et to 1 when the device is suspended, 0 otherwise
225 *
226 * This struct is embedded in mtd_info and contains master-specific
227 * properties/fields. The master is the root MTD device from the MTD partition
228 * point of view.
229 */
230struct mtd_master {
231	struct mutex partitions_lock;
232	unsigned int suspended : 1;
233};
234
235struct mtd_info {
236	u_char type;
237	uint32_t flags;
238	uint64_t size;	 // Total size of the MTD
239
240	/* "Major" erase size for the device. Naïve users may take this
241	 * to be the only erase size available, or may use the more detailed
242	 * information below if they desire
243	 */
244	uint32_t erasesize;
245	/* Minimal writable flash unit size. In case of NOR flash it is 1 (even
246	 * though individual bits can be cleared), in case of NAND flash it is
247	 * one NAND page (or half, or one-fourths of it), in case of ECC-ed NOR
248	 * it is of ECC block size, etc. It is illegal to have writesize = 0.
249	 * Any driver registering a struct mtd_info must ensure a writesize of
250	 * 1 or larger.
251	 */
252	uint32_t writesize;
253
254	/*
255	 * Size of the write buffer used by the MTD. MTD devices having a write
256	 * buffer can write multiple writesize chunks at a time. E.g. while
257	 * writing 4 * writesize bytes to a device with 2 * writesize bytes
258	 * buffer the MTD driver can (but doesn't have to) do 2 writesize
259	 * operations, but not 4. Currently, all NANDs have writebufsize
260	 * equivalent to writesize (NAND page size). Some NOR flashes do have
261	 * writebufsize greater than writesize.
262	 */
263	uint32_t writebufsize;
264
265	uint32_t oobsize;   // Amount of OOB data per block (e.g. 16)
266	uint32_t oobavail;  // Available OOB bytes per block
267
268	/*
269	 * If erasesize is a power of 2 then the shift is stored in
270	 * erasesize_shift otherwise erasesize_shift is zero. Ditto writesize.
271	 */
272	unsigned int erasesize_shift;
273	unsigned int writesize_shift;
274	/* Masks based on erasesize_shift and writesize_shift */
275	unsigned int erasesize_mask;
276	unsigned int writesize_mask;
277
278	/*
279	 * read ops return -EUCLEAN if max number of bitflips corrected on any
280	 * one region comprising an ecc step equals or exceeds this value.
281	 * Settable by driver, else defaults to ecc_strength.  User can override
282	 * in sysfs.  N.B. The meaning of the -EUCLEAN return code has changed;
283	 * see Documentation/ABI/testing/sysfs-class-mtd for more detail.
284	 */
285	unsigned int bitflip_threshold;
286
287	/* Kernel-only stuff starts here. */
288	const char *name;
289	int index;
290
291	/* OOB layout description */
292	const struct mtd_ooblayout_ops *ooblayout;
293
294	/* NAND pairing scheme, only provided for MLC/TLC NANDs */
295	const struct mtd_pairing_scheme *pairing;
296
297	/* the ecc step size. */
298	unsigned int ecc_step_size;
299
300	/* max number of correctible bit errors per ecc step */
301	unsigned int ecc_strength;
302
303	/* Data for variable erase regions. If numeraseregions is zero,
304	 * it means that the whole device has erasesize as given above.
305	 */
306	int numeraseregions;
307	struct mtd_erase_region_info *eraseregions;
308
309	/*
310	 * Do not call via these pointers, use corresponding mtd_*()
311	 * wrappers instead.
312	 */
313	int (*_erase) (struct mtd_info *mtd, struct erase_info *instr);
314	int (*_point) (struct mtd_info *mtd, loff_t from, size_t len,
315		       size_t *retlen, void **virt, resource_size_t *phys);
316	int (*_unpoint) (struct mtd_info *mtd, loff_t from, size_t len);
317	int (*_read) (struct mtd_info *mtd, loff_t from, size_t len,
318		      size_t *retlen, u_char *buf);
319	int (*_write) (struct mtd_info *mtd, loff_t to, size_t len,
320		       size_t *retlen, const u_char *buf);
321	int (*_panic_write) (struct mtd_info *mtd, loff_t to, size_t len,
322			     size_t *retlen, const u_char *buf);
323	int (*_read_oob) (struct mtd_info *mtd, loff_t from,
324			  struct mtd_oob_ops *ops);
325	int (*_write_oob) (struct mtd_info *mtd, loff_t to,
326			   struct mtd_oob_ops *ops);
327	int (*_get_fact_prot_info) (struct mtd_info *mtd, size_t len,
328				    size_t *retlen, struct otp_info *buf);
329	int (*_read_fact_prot_reg) (struct mtd_info *mtd, loff_t from,
330				    size_t len, size_t *retlen, u_char *buf);
331	int (*_get_user_prot_info) (struct mtd_info *mtd, size_t len,
332				    size_t *retlen, struct otp_info *buf);
333	int (*_read_user_prot_reg) (struct mtd_info *mtd, loff_t from,
334				    size_t len, size_t *retlen, u_char *buf);
335	int (*_write_user_prot_reg) (struct mtd_info *mtd, loff_t to,
336				     size_t len, size_t *retlen, u_char *buf);
337	int (*_lock_user_prot_reg) (struct mtd_info *mtd, loff_t from,
338				    size_t len);
339	int (*_writev) (struct mtd_info *mtd, const struct kvec *vecs,
340			unsigned long count, loff_t to, size_t *retlen);
341	void (*_sync) (struct mtd_info *mtd);
342	int (*_lock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
343	int (*_unlock) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
344	int (*_is_locked) (struct mtd_info *mtd, loff_t ofs, uint64_t len);
345	int (*_block_isreserved) (struct mtd_info *mtd, loff_t ofs);
346	int (*_block_isbad) (struct mtd_info *mtd, loff_t ofs);
347	int (*_block_markbad) (struct mtd_info *mtd, loff_t ofs);
348	int (*_max_bad_blocks) (struct mtd_info *mtd, loff_t ofs, size_t len);
349	int (*_suspend) (struct mtd_info *mtd);
350	void (*_resume) (struct mtd_info *mtd);
351	void (*_reboot) (struct mtd_info *mtd);
352	/*
353	 * If the driver is something smart, like UBI, it may need to maintain
354	 * its own reference counting. The below functions are only for driver.
355	 */
356	int (*_get_device) (struct mtd_info *mtd);
357	void (*_put_device) (struct mtd_info *mtd);
358
359	/*
360	 * flag indicates a panic write, low level drivers can take appropriate
361	 * action if required to ensure writes go through
362	 */
363	bool oops_panic_write;
364
365	struct notifier_block reboot_notifier;  /* default mode before reboot */
366
367	/* ECC status information */
368	struct mtd_ecc_stats ecc_stats;
369	/* Subpage shift (NAND) */
370	int subpage_sft;
371
372	void *priv;
373
374	struct module *owner;
375	struct device dev;
376	int usecount;
377	struct mtd_debug_info dbg;
378	struct nvmem_device *nvmem;
379
380	/*
381	 * Parent device from the MTD partition point of view.
382	 *
383	 * MTD masters do not have any parent, MTD partitions do. The parent
384	 * MTD device can itself be a partition.
385	 */
386	struct mtd_info *parent;
387
388	/* List of partitions attached to this MTD device */
389	struct list_head partitions;
390
391	struct mtd_part part;
392	struct mtd_master master;
393};
394
395static inline struct mtd_info *mtd_get_master(struct mtd_info *mtd)
396{
397	while (mtd->parent)
398		mtd = mtd->parent;
399
400	return mtd;
401}
402
403static inline u64 mtd_get_master_ofs(struct mtd_info *mtd, u64 ofs)
404{
405	while (mtd->parent) {
406		ofs += mtd->part.offset;
407		mtd = mtd->parent;
408	}
409
410	return ofs;
411}
412
413static inline bool mtd_is_partition(const struct mtd_info *mtd)
414{
415	return mtd->parent;
416}
417
418static inline bool mtd_has_partitions(const struct mtd_info *mtd)
419{
420	return !list_empty(&mtd->partitions);
421}
422
423int mtd_ooblayout_ecc(struct mtd_info *mtd, int section,
424		      struct mtd_oob_region *oobecc);
425int mtd_ooblayout_find_eccregion(struct mtd_info *mtd, int eccbyte,
426				 int *section,
427				 struct mtd_oob_region *oobregion);
428int mtd_ooblayout_get_eccbytes(struct mtd_info *mtd, u8 *eccbuf,
429			       const u8 *oobbuf, int start, int nbytes);
430int mtd_ooblayout_set_eccbytes(struct mtd_info *mtd, const u8 *eccbuf,
431			       u8 *oobbuf, int start, int nbytes);
432int mtd_ooblayout_free(struct mtd_info *mtd, int section,
433		       struct mtd_oob_region *oobfree);
434int mtd_ooblayout_get_databytes(struct mtd_info *mtd, u8 *databuf,
435				const u8 *oobbuf, int start, int nbytes);
436int mtd_ooblayout_set_databytes(struct mtd_info *mtd, const u8 *databuf,
437				u8 *oobbuf, int start, int nbytes);
438int mtd_ooblayout_count_freebytes(struct mtd_info *mtd);
439int mtd_ooblayout_count_eccbytes(struct mtd_info *mtd);
440
441static inline void mtd_set_ooblayout(struct mtd_info *mtd,
442				     const struct mtd_ooblayout_ops *ooblayout)
443{
444	mtd->ooblayout = ooblayout;
445}
446
447static inline void mtd_set_pairing_scheme(struct mtd_info *mtd,
448				const struct mtd_pairing_scheme *pairing)
449{
450	mtd->pairing = pairing;
451}
452
453static inline void mtd_set_of_node(struct mtd_info *mtd,
454				   struct device_node *np)
455{
456	mtd->dev.of_node = np;
457	if (!mtd->name)
458		of_property_read_string(np, "label", &mtd->name);
459}
460
461static inline struct device_node *mtd_get_of_node(struct mtd_info *mtd)
462{
463	return dev_of_node(&mtd->dev);
464}
465
466static inline u32 mtd_oobavail(struct mtd_info *mtd, struct mtd_oob_ops *ops)
467{
468	return ops->mode == MTD_OPS_AUTO_OOB ? mtd->oobavail : mtd->oobsize;
469}
470
471static inline int mtd_max_bad_blocks(struct mtd_info *mtd,
472				     loff_t ofs, size_t len)
473{
474	struct mtd_info *master = mtd_get_master(mtd);
475
476	if (!master->_max_bad_blocks)
477		return -ENOTSUPP;
478
479	if (mtd->size < (len + ofs) || ofs < 0)
480		return -EINVAL;
481
482	return master->_max_bad_blocks(master, mtd_get_master_ofs(mtd, ofs),
483				       len);
484}
485
486int mtd_wunit_to_pairing_info(struct mtd_info *mtd, int wunit,
487			      struct mtd_pairing_info *info);
488int mtd_pairing_info_to_wunit(struct mtd_info *mtd,
489			      const struct mtd_pairing_info *info);
490int mtd_pairing_groups(struct mtd_info *mtd);
491int mtd_erase(struct mtd_info *mtd, struct erase_info *instr);
492int mtd_point(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
493	      void **virt, resource_size_t *phys);
494int mtd_unpoint(struct mtd_info *mtd, loff_t from, size_t len);
495unsigned long mtd_get_unmapped_area(struct mtd_info *mtd, unsigned long len,
496				    unsigned long offset, unsigned long flags);
497int mtd_read(struct mtd_info *mtd, loff_t from, size_t len, size_t *retlen,
498	     u_char *buf);
499int mtd_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
500	      const u_char *buf);
501int mtd_panic_write(struct mtd_info *mtd, loff_t to, size_t len, size_t *retlen,
502		    const u_char *buf);
503
504int mtd_read_oob(struct mtd_info *mtd, loff_t from, struct mtd_oob_ops *ops);
505int mtd_write_oob(struct mtd_info *mtd, loff_t to, struct mtd_oob_ops *ops);
506
507int mtd_get_fact_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
508			   struct otp_info *buf);
509int mtd_read_fact_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
510			   size_t *retlen, u_char *buf);
511int mtd_get_user_prot_info(struct mtd_info *mtd, size_t len, size_t *retlen,
512			   struct otp_info *buf);
513int mtd_read_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len,
514			   size_t *retlen, u_char *buf);
515int mtd_write_user_prot_reg(struct mtd_info *mtd, loff_t to, size_t len,
516			    size_t *retlen, u_char *buf);
517int mtd_lock_user_prot_reg(struct mtd_info *mtd, loff_t from, size_t len);
518
519int mtd_writev(struct mtd_info *mtd, const struct kvec *vecs,
520	       unsigned long count, loff_t to, size_t *retlen);
521
522static inline void mtd_sync(struct mtd_info *mtd)
523{
524	struct mtd_info *master = mtd_get_master(mtd);
525
526	if (master->_sync)
527		master->_sync(master);
528}
529
530int mtd_lock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
531int mtd_unlock(struct mtd_info *mtd, loff_t ofs, uint64_t len);
532int mtd_is_locked(struct mtd_info *mtd, loff_t ofs, uint64_t len);
533int mtd_block_isreserved(struct mtd_info *mtd, loff_t ofs);
534int mtd_block_isbad(struct mtd_info *mtd, loff_t ofs);
535int mtd_block_markbad(struct mtd_info *mtd, loff_t ofs);
536
537static inline int mtd_suspend(struct mtd_info *mtd)
538{
539	struct mtd_info *master = mtd_get_master(mtd);
540	int ret;
541
542	if (master->master.suspended)
543		return 0;
544
545	ret = master->_suspend ? master->_suspend(master) : 0;
546	if (ret)
547		return ret;
548
549	master->master.suspended = 1;
550	return 0;
551}
552
553static inline void mtd_resume(struct mtd_info *mtd)
554{
555	struct mtd_info *master = mtd_get_master(mtd);
556
557	if (!master->master.suspended)
558		return;
559
560	if (master->_resume)
561		master->_resume(master);
562
563	master->master.suspended = 0;
564}
565
566static inline uint32_t mtd_div_by_eb(uint64_t sz, struct mtd_info *mtd)
567{
568	if (mtd->erasesize_shift)
569		return sz >> mtd->erasesize_shift;
570	do_div(sz, mtd->erasesize);
571	return sz;
572}
573
574static inline uint32_t mtd_mod_by_eb(uint64_t sz, struct mtd_info *mtd)
575{
576	if (mtd->erasesize_shift)
577		return sz & mtd->erasesize_mask;
578	return do_div(sz, mtd->erasesize);
579}
580
581/**
582 * mtd_align_erase_req - Adjust an erase request to align things on eraseblock
583 *			 boundaries.
584 * @mtd: the MTD device this erase request applies on
585 * @req: the erase request to adjust
586 *
587 * This function will adjust @req->addr and @req->len to align them on
588 * @mtd->erasesize. Of course we expect @mtd->erasesize to be != 0.
589 */
590static inline void mtd_align_erase_req(struct mtd_info *mtd,
591				       struct erase_info *req)
592{
593	u32 mod;
594
595	if (WARN_ON(!mtd->erasesize))
596		return;
597
598	mod = mtd_mod_by_eb(req->addr, mtd);
599	if (mod) {
600		req->addr -= mod;
601		req->len += mod;
602	}
603
604	mod = mtd_mod_by_eb(req->addr + req->len, mtd);
605	if (mod)
606		req->len += mtd->erasesize - mod;
607}
608
609static inline uint32_t mtd_div_by_ws(uint64_t sz, struct mtd_info *mtd)
610{
611	if (mtd->writesize_shift)
612		return sz >> mtd->writesize_shift;
613	do_div(sz, mtd->writesize);
614	return sz;
615}
616
617static inline uint32_t mtd_mod_by_ws(uint64_t sz, struct mtd_info *mtd)
618{
619	if (mtd->writesize_shift)
620		return sz & mtd->writesize_mask;
621	return do_div(sz, mtd->writesize);
622}
623
624static inline int mtd_wunit_per_eb(struct mtd_info *mtd)
625{
626	struct mtd_info *master = mtd_get_master(mtd);
627
628	return master->erasesize / mtd->writesize;
629}
630
631static inline int mtd_offset_to_wunit(struct mtd_info *mtd, loff_t offs)
632{
633	return mtd_div_by_ws(mtd_mod_by_eb(offs, mtd), mtd);
634}
635
636static inline loff_t mtd_wunit_to_offset(struct mtd_info *mtd, loff_t base,
637					 int wunit)
638{
639	return base + (wunit * mtd->writesize);
640}
641
642
643static inline int mtd_has_oob(const struct mtd_info *mtd)
644{
645	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
646
647	return master->_read_oob && master->_write_oob;
648}
649
650static inline int mtd_type_is_nand(const struct mtd_info *mtd)
651{
652	return mtd->type == MTD_NANDFLASH || mtd->type == MTD_MLCNANDFLASH;
653}
654
655static inline int mtd_can_have_bb(const struct mtd_info *mtd)
656{
657	struct mtd_info *master = mtd_get_master((struct mtd_info *)mtd);
658
659	return !!master->_block_isbad;
660}
661
662	/* Kernel-side ioctl definitions */
663
664struct mtd_partition;
665struct mtd_part_parser_data;
666
667extern int mtd_device_parse_register(struct mtd_info *mtd,
668				     const char * const *part_probe_types,
669				     struct mtd_part_parser_data *parser_data,
670				     const struct mtd_partition *defparts,
671				     int defnr_parts);
672#define mtd_device_register(master, parts, nr_parts)	\
673	mtd_device_parse_register(master, NULL, NULL, parts, nr_parts)
674extern int mtd_device_unregister(struct mtd_info *master);
675extern struct mtd_info *get_mtd_device(struct mtd_info *mtd, int num);
676extern int __get_mtd_device(struct mtd_info *mtd);
677extern void __put_mtd_device(struct mtd_info *mtd);
678extern struct mtd_info *get_mtd_device_nm(const char *name);
679extern void put_mtd_device(struct mtd_info *mtd);
680
681
682struct mtd_notifier {
683	void (*add)(struct mtd_info *mtd);
684	void (*remove)(struct mtd_info *mtd);
685	struct list_head list;
686};
687
688
689extern void register_mtd_user (struct mtd_notifier *new);
690extern int unregister_mtd_user (struct mtd_notifier *old);
691void *mtd_kmalloc_up_to(const struct mtd_info *mtd, size_t *size);
692
693static inline int mtd_is_bitflip(int err) {
694	return err == -EUCLEAN;
695}
696
697static inline int mtd_is_eccerr(int err) {
698	return err == -EBADMSG;
699}
700
701static inline int mtd_is_bitflip_or_eccerr(int err) {
702	return mtd_is_bitflip(err) || mtd_is_eccerr(err);
703}
704
705unsigned mtd_mmap_capabilities(struct mtd_info *mtd);
706
707#endif /* __MTD_MTD_H__ */
708