1/* SPDX-License-Identifier: GPL-2.0-or-later */
2/* include/asm-generic/tlb.h
3 *
4 *	Generic TLB shootdown code
5 *
6 * Copyright 2001 Red Hat, Inc.
7 * Based on code from mm/memory.c Copyright Linus Torvalds and others.
8 *
9 * Copyright 2011 Red Hat, Inc., Peter Zijlstra
10 */
11#ifndef _ASM_GENERIC__TLB_H
12#define _ASM_GENERIC__TLB_H
13
14#include <linux/mmu_notifier.h>
15#include <linux/swap.h>
16#include <linux/hugetlb_inline.h>
17#include <asm/tlbflush.h>
18#include <asm/cacheflush.h>
19
20/*
21 * Blindly accessing user memory from NMI context can be dangerous
22 * if we're in the middle of switching the current user task or switching
23 * the loaded mm.
24 */
25#ifndef nmi_uaccess_okay
26# define nmi_uaccess_okay() true
27#endif
28
29#ifdef CONFIG_MMU
30
31/*
32 * Generic MMU-gather implementation.
33 *
34 * The mmu_gather data structure is used by the mm code to implement the
35 * correct and efficient ordering of freeing pages and TLB invalidations.
36 *
37 * This correct ordering is:
38 *
39 *  1) unhook page
40 *  2) TLB invalidate page
41 *  3) free page
42 *
43 * That is, we must never free a page before we have ensured there are no live
44 * translations left to it. Otherwise it might be possible to observe (or
45 * worse, change) the page content after it has been reused.
46 *
47 * The mmu_gather API consists of:
48 *
49 *  - tlb_gather_mmu() / tlb_finish_mmu(); start and finish a mmu_gather
50 *
51 *    Finish in particular will issue a (final) TLB invalidate and free
52 *    all (remaining) queued pages.
53 *
54 *  - tlb_start_vma() / tlb_end_vma(); marks the start / end of a VMA
55 *
56 *    Defaults to flushing at tlb_end_vma() to reset the range; helps when
57 *    there's large holes between the VMAs.
58 *
59 *  - tlb_remove_table()
60 *
61 *    tlb_remove_table() is the basic primitive to free page-table directories
62 *    (__p*_free_tlb()).  In it's most primitive form it is an alias for
63 *    tlb_remove_page() below, for when page directories are pages and have no
64 *    additional constraints.
65 *
66 *    See also MMU_GATHER_TABLE_FREE and MMU_GATHER_RCU_TABLE_FREE.
67 *
68 *  - tlb_remove_page() / __tlb_remove_page()
69 *  - tlb_remove_page_size() / __tlb_remove_page_size()
70 *
71 *    __tlb_remove_page_size() is the basic primitive that queues a page for
72 *    freeing. __tlb_remove_page() assumes PAGE_SIZE. Both will return a
73 *    boolean indicating if the queue is (now) full and a call to
74 *    tlb_flush_mmu() is required.
75 *
76 *    tlb_remove_page() and tlb_remove_page_size() imply the call to
77 *    tlb_flush_mmu() when required and has no return value.
78 *
79 *  - tlb_change_page_size()
80 *
81 *    call before __tlb_remove_page*() to set the current page-size; implies a
82 *    possible tlb_flush_mmu() call.
83 *
84 *  - tlb_flush_mmu() / tlb_flush_mmu_tlbonly()
85 *
86 *    tlb_flush_mmu_tlbonly() - does the TLB invalidate (and resets
87 *                              related state, like the range)
88 *
89 *    tlb_flush_mmu() - in addition to the above TLB invalidate, also frees
90 *			whatever pages are still batched.
91 *
92 *  - mmu_gather::fullmm
93 *
94 *    A flag set by tlb_gather_mmu() to indicate we're going to free
95 *    the entire mm; this allows a number of optimizations.
96 *
97 *    - We can ignore tlb_{start,end}_vma(); because we don't
98 *      care about ranges. Everything will be shot down.
99 *
100 *    - (RISC) architectures that use ASIDs can cycle to a new ASID
101 *      and delay the invalidation until ASID space runs out.
102 *
103 *  - mmu_gather::need_flush_all
104 *
105 *    A flag that can be set by the arch code if it wants to force
106 *    flush the entire TLB irrespective of the range. For instance
107 *    x86-PAE needs this when changing top-level entries.
108 *
109 * And allows the architecture to provide and implement tlb_flush():
110 *
111 * tlb_flush() may, in addition to the above mentioned mmu_gather fields, make
112 * use of:
113 *
114 *  - mmu_gather::start / mmu_gather::end
115 *
116 *    which provides the range that needs to be flushed to cover the pages to
117 *    be freed.
118 *
119 *  - mmu_gather::freed_tables
120 *
121 *    set when we freed page table pages
122 *
123 *  - tlb_get_unmap_shift() / tlb_get_unmap_size()
124 *
125 *    returns the smallest TLB entry size unmapped in this range.
126 *
127 * If an architecture does not provide tlb_flush() a default implementation
128 * based on flush_tlb_range() will be used, unless MMU_GATHER_NO_RANGE is
129 * specified, in which case we'll default to flush_tlb_mm().
130 *
131 * Additionally there are a few opt-in features:
132 *
133 *  MMU_GATHER_PAGE_SIZE
134 *
135 *  This ensures we call tlb_flush() every time tlb_change_page_size() actually
136 *  changes the size and provides mmu_gather::page_size to tlb_flush().
137 *
138 *  This might be useful if your architecture has size specific TLB
139 *  invalidation instructions.
140 *
141 *  MMU_GATHER_TABLE_FREE
142 *
143 *  This provides tlb_remove_table(), to be used instead of tlb_remove_page()
144 *  for page directores (__p*_free_tlb()).
145 *
146 *  Useful if your architecture has non-page page directories.
147 *
148 *  When used, an architecture is expected to provide __tlb_remove_table()
149 *  which does the actual freeing of these pages.
150 *
151 *  MMU_GATHER_RCU_TABLE_FREE
152 *
153 *  Like MMU_GATHER_TABLE_FREE, and adds semi-RCU semantics to the free (see
154 *  comment below).
155 *
156 *  Useful if your architecture doesn't use IPIs for remote TLB invalidates
157 *  and therefore doesn't naturally serialize with software page-table walkers.
158 *
159 *  MMU_GATHER_NO_RANGE
160 *
161 *  Use this if your architecture lacks an efficient flush_tlb_range().
162 *
163 *  MMU_GATHER_NO_GATHER
164 *
165 *  If the option is set the mmu_gather will not track individual pages for
166 *  delayed page free anymore. A platform that enables the option needs to
167 *  provide its own implementation of the __tlb_remove_page_size() function to
168 *  free pages.
169 *
170 *  This is useful if your architecture already flushes TLB entries in the
171 *  various ptep_get_and_clear() functions.
172 */
173
174#ifdef CONFIG_MMU_GATHER_TABLE_FREE
175
176struct mmu_table_batch {
177#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
178	struct rcu_head		rcu;
179#endif
180	unsigned int		nr;
181	void			*tables[0];
182};
183
184#define MAX_TABLE_BATCH		\
185	((PAGE_SIZE - sizeof(struct mmu_table_batch)) / sizeof(void *))
186
187extern void tlb_remove_table(struct mmu_gather *tlb, void *table);
188
189#else /* !CONFIG_MMU_GATHER_HAVE_TABLE_FREE */
190
191/*
192 * Without MMU_GATHER_TABLE_FREE the architecture is assumed to have page based
193 * page directories and we can use the normal page batching to free them.
194 */
195#define tlb_remove_table(tlb, page) tlb_remove_page((tlb), (page))
196
197#endif /* CONFIG_MMU_GATHER_TABLE_FREE */
198
199#ifdef CONFIG_MMU_GATHER_RCU_TABLE_FREE
200/*
201 * This allows an architecture that does not use the linux page-tables for
202 * hardware to skip the TLBI when freeing page tables.
203 */
204#ifndef tlb_needs_table_invalidate
205#define tlb_needs_table_invalidate() (true)
206#endif
207
208void tlb_remove_table_sync_one(void);
209
210#else
211
212#ifdef tlb_needs_table_invalidate
213#error tlb_needs_table_invalidate() requires MMU_GATHER_RCU_TABLE_FREE
214#endif
215
216static inline void tlb_remove_table_sync_one(void) { }
217
218#endif /* CONFIG_MMU_GATHER_RCU_TABLE_FREE */
219
220
221#ifndef CONFIG_MMU_GATHER_NO_GATHER
222/*
223 * If we can't allocate a page to make a big batch of page pointers
224 * to work on, then just handle a few from the on-stack structure.
225 */
226#define MMU_GATHER_BUNDLE	8
227
228struct mmu_gather_batch {
229	struct mmu_gather_batch	*next;
230	unsigned int		nr;
231	unsigned int		max;
232	struct page		*pages[0];
233};
234
235#define MAX_GATHER_BATCH	\
236	((PAGE_SIZE - sizeof(struct mmu_gather_batch)) / sizeof(void *))
237
238/*
239 * Limit the maximum number of mmu_gather batches to reduce a risk of soft
240 * lockups for non-preemptible kernels on huge machines when a lot of memory
241 * is zapped during unmapping.
242 * 10K pages freed at once should be safe even without a preemption point.
243 */
244#define MAX_GATHER_BATCH_COUNT	(10000UL/MAX_GATHER_BATCH)
245
246extern bool __tlb_remove_page_size(struct mmu_gather *tlb, struct page *page,
247				   int page_size);
248#endif
249
250/*
251 * struct mmu_gather is an opaque type used by the mm code for passing around
252 * any data needed by arch specific code for tlb_remove_page.
253 */
254struct mmu_gather {
255	struct mm_struct	*mm;
256
257#ifdef CONFIG_MMU_GATHER_TABLE_FREE
258	struct mmu_table_batch	*batch;
259#endif
260
261	unsigned long		start;
262	unsigned long		end;
263	/*
264	 * we are in the middle of an operation to clear
265	 * a full mm and can make some optimizations
266	 */
267	unsigned int		fullmm : 1;
268
269	/*
270	 * we have performed an operation which
271	 * requires a complete flush of the tlb
272	 */
273	unsigned int		need_flush_all : 1;
274
275	/*
276	 * we have removed page directories
277	 */
278	unsigned int		freed_tables : 1;
279
280	/*
281	 * at which levels have we cleared entries?
282	 */
283	unsigned int		cleared_ptes : 1;
284	unsigned int		cleared_pmds : 1;
285	unsigned int		cleared_puds : 1;
286	unsigned int		cleared_p4ds : 1;
287
288	/*
289	 * tracks VM_EXEC | VM_HUGETLB in tlb_start_vma
290	 */
291	unsigned int		vma_exec : 1;
292	unsigned int		vma_huge : 1;
293
294	unsigned int		batch_count;
295
296#ifndef CONFIG_MMU_GATHER_NO_GATHER
297	struct mmu_gather_batch *active;
298	struct mmu_gather_batch	local;
299	struct page		*__pages[MMU_GATHER_BUNDLE];
300
301#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
302	unsigned int page_size;
303#endif
304#endif
305};
306
307void tlb_flush_mmu(struct mmu_gather *tlb);
308
309static inline void __tlb_adjust_range(struct mmu_gather *tlb,
310				      unsigned long address,
311				      unsigned int range_size)
312{
313	tlb->start = min(tlb->start, address);
314	tlb->end = max(tlb->end, address + range_size);
315}
316
317static inline void __tlb_reset_range(struct mmu_gather *tlb)
318{
319	if (tlb->fullmm) {
320		tlb->start = tlb->end = ~0;
321	} else {
322		tlb->start = TASK_SIZE;
323		tlb->end = 0;
324	}
325	tlb->freed_tables = 0;
326	tlb->cleared_ptes = 0;
327	tlb->cleared_pmds = 0;
328	tlb->cleared_puds = 0;
329	tlb->cleared_p4ds = 0;
330	/*
331	 * Do not reset mmu_gather::vma_* fields here, we do not
332	 * call into tlb_start_vma() again to set them if there is an
333	 * intermediate flush.
334	 */
335}
336
337#ifdef CONFIG_MMU_GATHER_NO_RANGE
338
339#if defined(tlb_flush) || defined(tlb_start_vma) || defined(tlb_end_vma)
340#error MMU_GATHER_NO_RANGE relies on default tlb_flush(), tlb_start_vma() and tlb_end_vma()
341#endif
342
343/*
344 * When an architecture does not have efficient means of range flushing TLBs
345 * there is no point in doing intermediate flushes on tlb_end_vma() to keep the
346 * range small. We equally don't have to worry about page granularity or other
347 * things.
348 *
349 * All we need to do is issue a full flush for any !0 range.
350 */
351static inline void tlb_flush(struct mmu_gather *tlb)
352{
353	if (tlb->end)
354		flush_tlb_mm(tlb->mm);
355}
356
357static inline void
358tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
359
360#define tlb_end_vma tlb_end_vma
361static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
362
363#else /* CONFIG_MMU_GATHER_NO_RANGE */
364
365#ifndef tlb_flush
366
367#if defined(tlb_start_vma) || defined(tlb_end_vma)
368#error Default tlb_flush() relies on default tlb_start_vma() and tlb_end_vma()
369#endif
370
371/*
372 * When an architecture does not provide its own tlb_flush() implementation
373 * but does have a reasonably efficient flush_vma_range() implementation
374 * use that.
375 */
376static inline void tlb_flush(struct mmu_gather *tlb)
377{
378	if (tlb->fullmm || tlb->need_flush_all) {
379		flush_tlb_mm(tlb->mm);
380	} else if (tlb->end) {
381		struct vm_area_struct vma = {
382			.vm_mm = tlb->mm,
383			.vm_flags = (tlb->vma_exec ? VM_EXEC    : 0) |
384				    (tlb->vma_huge ? VM_HUGETLB : 0),
385		};
386
387		flush_tlb_range(&vma, tlb->start, tlb->end);
388	}
389}
390
391static inline void
392tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma)
393{
394	/*
395	 * flush_tlb_range() implementations that look at VM_HUGETLB (tile,
396	 * mips-4k) flush only large pages.
397	 *
398	 * flush_tlb_range() implementations that flush I-TLB also flush D-TLB
399	 * (tile, xtensa, arm), so it's ok to just add VM_EXEC to an existing
400	 * range.
401	 *
402	 * We rely on tlb_end_vma() to issue a flush, such that when we reset
403	 * these values the batch is empty.
404	 */
405	tlb->vma_huge = is_vm_hugetlb_page(vma);
406	tlb->vma_exec = !!(vma->vm_flags & VM_EXEC);
407}
408
409#else
410
411static inline void
412tlb_update_vma_flags(struct mmu_gather *tlb, struct vm_area_struct *vma) { }
413
414#endif
415
416#endif /* CONFIG_MMU_GATHER_NO_RANGE */
417
418static inline void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
419{
420	/*
421	 * Anything calling __tlb_adjust_range() also sets at least one of
422	 * these bits.
423	 */
424	if (!(tlb->freed_tables || tlb->cleared_ptes || tlb->cleared_pmds ||
425	      tlb->cleared_puds || tlb->cleared_p4ds))
426		return;
427
428	tlb_flush(tlb);
429	mmu_notifier_invalidate_range(tlb->mm, tlb->start, tlb->end);
430	__tlb_reset_range(tlb);
431}
432
433static inline void tlb_remove_page_size(struct mmu_gather *tlb,
434					struct page *page, int page_size)
435{
436	if (__tlb_remove_page_size(tlb, page, page_size))
437		tlb_flush_mmu(tlb);
438}
439
440static inline bool __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
441{
442	return __tlb_remove_page_size(tlb, page, PAGE_SIZE);
443}
444
445/* tlb_remove_page
446 *	Similar to __tlb_remove_page but will call tlb_flush_mmu() itself when
447 *	required.
448 */
449static inline void tlb_remove_page(struct mmu_gather *tlb, struct page *page)
450{
451	return tlb_remove_page_size(tlb, page, PAGE_SIZE);
452}
453
454static inline void tlb_change_page_size(struct mmu_gather *tlb,
455						     unsigned int page_size)
456{
457#ifdef CONFIG_MMU_GATHER_PAGE_SIZE
458	if (tlb->page_size && tlb->page_size != page_size) {
459		if (!tlb->fullmm && !tlb->need_flush_all)
460			tlb_flush_mmu(tlb);
461	}
462
463	tlb->page_size = page_size;
464#endif
465}
466
467static inline unsigned long tlb_get_unmap_shift(struct mmu_gather *tlb)
468{
469	if (tlb->cleared_ptes)
470		return PAGE_SHIFT;
471	if (tlb->cleared_pmds)
472		return PMD_SHIFT;
473	if (tlb->cleared_puds)
474		return PUD_SHIFT;
475	if (tlb->cleared_p4ds)
476		return P4D_SHIFT;
477
478	return PAGE_SHIFT;
479}
480
481static inline unsigned long tlb_get_unmap_size(struct mmu_gather *tlb)
482{
483	return 1UL << tlb_get_unmap_shift(tlb);
484}
485
486/*
487 * In the case of tlb vma handling, we can optimise these away in the
488 * case where we're doing a full MM flush.  When we're doing a munmap,
489 * the vmas are adjusted to only cover the region to be torn down.
490 */
491#ifndef tlb_start_vma
492static inline void tlb_start_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
493{
494	if (tlb->fullmm)
495		return;
496
497	tlb_update_vma_flags(tlb, vma);
498	flush_cache_range(vma, vma->vm_start, vma->vm_end);
499}
500#endif
501
502#ifndef tlb_end_vma
503static inline void tlb_end_vma(struct mmu_gather *tlb, struct vm_area_struct *vma)
504{
505	if (tlb->fullmm)
506		return;
507
508	/*
509	 * Do a TLB flush and reset the range at VMA boundaries; this avoids
510	 * the ranges growing with the unused space between consecutive VMAs,
511	 * but also the mmu_gather::vma_* flags from tlb_start_vma() rely on
512	 * this.
513	 */
514	tlb_flush_mmu_tlbonly(tlb);
515}
516#endif
517
518/*
519 * tlb_flush_{pte|pmd|pud|p4d}_range() adjust the tlb->start and tlb->end,
520 * and set corresponding cleared_*.
521 */
522static inline void tlb_flush_pte_range(struct mmu_gather *tlb,
523				     unsigned long address, unsigned long size)
524{
525	__tlb_adjust_range(tlb, address, size);
526	tlb->cleared_ptes = 1;
527}
528
529static inline void tlb_flush_pmd_range(struct mmu_gather *tlb,
530				     unsigned long address, unsigned long size)
531{
532	__tlb_adjust_range(tlb, address, size);
533	tlb->cleared_pmds = 1;
534}
535
536static inline void tlb_flush_pud_range(struct mmu_gather *tlb,
537				     unsigned long address, unsigned long size)
538{
539	__tlb_adjust_range(tlb, address, size);
540	tlb->cleared_puds = 1;
541}
542
543static inline void tlb_flush_p4d_range(struct mmu_gather *tlb,
544				     unsigned long address, unsigned long size)
545{
546	__tlb_adjust_range(tlb, address, size);
547	tlb->cleared_p4ds = 1;
548}
549
550#ifndef __tlb_remove_tlb_entry
551#define __tlb_remove_tlb_entry(tlb, ptep, address) do { } while (0)
552#endif
553
554/**
555 * tlb_remove_tlb_entry - remember a pte unmapping for later tlb invalidation.
556 *
557 * Record the fact that pte's were really unmapped by updating the range,
558 * so we can later optimise away the tlb invalidate.   This helps when
559 * userspace is unmapping already-unmapped pages, which happens quite a lot.
560 */
561#define tlb_remove_tlb_entry(tlb, ptep, address)		\
562	do {							\
563		tlb_flush_pte_range(tlb, address, PAGE_SIZE);	\
564		__tlb_remove_tlb_entry(tlb, ptep, address);	\
565	} while (0)
566
567#define tlb_remove_huge_tlb_entry(h, tlb, ptep, address)	\
568	do {							\
569		unsigned long _sz = huge_page_size(h);		\
570		if (_sz >= P4D_SIZE)				\
571			tlb_flush_p4d_range(tlb, address, _sz);	\
572		else if (_sz >= PUD_SIZE)			\
573			tlb_flush_pud_range(tlb, address, _sz);	\
574		else if (_sz >= PMD_SIZE)			\
575			tlb_flush_pmd_range(tlb, address, _sz);	\
576		else						\
577			tlb_flush_pte_range(tlb, address, _sz);	\
578		__tlb_remove_tlb_entry(tlb, ptep, address);	\
579	} while (0)
580
581/**
582 * tlb_remove_pmd_tlb_entry - remember a pmd mapping for later tlb invalidation
583 * This is a nop so far, because only x86 needs it.
584 */
585#ifndef __tlb_remove_pmd_tlb_entry
586#define __tlb_remove_pmd_tlb_entry(tlb, pmdp, address) do {} while (0)
587#endif
588
589#define tlb_remove_pmd_tlb_entry(tlb, pmdp, address)			\
590	do {								\
591		tlb_flush_pmd_range(tlb, address, HPAGE_PMD_SIZE);	\
592		__tlb_remove_pmd_tlb_entry(tlb, pmdp, address);		\
593	} while (0)
594
595/**
596 * tlb_remove_pud_tlb_entry - remember a pud mapping for later tlb
597 * invalidation. This is a nop so far, because only x86 needs it.
598 */
599#ifndef __tlb_remove_pud_tlb_entry
600#define __tlb_remove_pud_tlb_entry(tlb, pudp, address) do {} while (0)
601#endif
602
603#define tlb_remove_pud_tlb_entry(tlb, pudp, address)			\
604	do {								\
605		tlb_flush_pud_range(tlb, address, HPAGE_PUD_SIZE);	\
606		__tlb_remove_pud_tlb_entry(tlb, pudp, address);		\
607	} while (0)
608
609/*
610 * For things like page tables caches (ie caching addresses "inside" the
611 * page tables, like x86 does), for legacy reasons, flushing an
612 * individual page had better flush the page table caches behind it. This
613 * is definitely how x86 works, for example. And if you have an
614 * architected non-legacy page table cache (which I'm not aware of
615 * anybody actually doing), you're going to have some architecturally
616 * explicit flushing for that, likely *separate* from a regular TLB entry
617 * flush, and thus you'd need more than just some range expansion..
618 *
619 * So if we ever find an architecture
620 * that would want something that odd, I think it is up to that
621 * architecture to do its own odd thing, not cause pain for others
622 * http://lkml.kernel.org/r/CA+55aFzBggoXtNXQeng5d_mRoDnaMBE5Y+URs+PHR67nUpMtaw@mail.gmail.com
623 *
624 * For now w.r.t page table cache, mark the range_size as PAGE_SIZE
625 */
626
627#ifndef pte_free_tlb
628#define pte_free_tlb(tlb, ptep, address)			\
629	do {							\
630		tlb_flush_pmd_range(tlb, address, PAGE_SIZE);	\
631		tlb->freed_tables = 1;				\
632		__pte_free_tlb(tlb, ptep, address);		\
633	} while (0)
634#endif
635
636#ifndef pmd_free_tlb
637#define pmd_free_tlb(tlb, pmdp, address)			\
638	do {							\
639		tlb_flush_pud_range(tlb, address, PAGE_SIZE);	\
640		tlb->freed_tables = 1;				\
641		__pmd_free_tlb(tlb, pmdp, address);		\
642	} while (0)
643#endif
644
645#ifndef pud_free_tlb
646#define pud_free_tlb(tlb, pudp, address)			\
647	do {							\
648		tlb_flush_p4d_range(tlb, address, PAGE_SIZE);	\
649		tlb->freed_tables = 1;				\
650		__pud_free_tlb(tlb, pudp, address);		\
651	} while (0)
652#endif
653
654#ifndef p4d_free_tlb
655#define p4d_free_tlb(tlb, pudp, address)			\
656	do {							\
657		__tlb_adjust_range(tlb, address, PAGE_SIZE);	\
658		tlb->freed_tables = 1;				\
659		__p4d_free_tlb(tlb, pudp, address);		\
660	} while (0)
661#endif
662
663#endif /* CONFIG_MMU */
664
665#endif /* _ASM_GENERIC__TLB_H */
666