18c2ecf20Sopenharmony_ci/* SPDX-License-Identifier: GPL-2.0 */ 28c2ecf20Sopenharmony_ci#ifndef _ASM_GENERIC_DIV64_H 38c2ecf20Sopenharmony_ci#define _ASM_GENERIC_DIV64_H 48c2ecf20Sopenharmony_ci/* 58c2ecf20Sopenharmony_ci * Copyright (C) 2003 Bernardo Innocenti <bernie@develer.com> 68c2ecf20Sopenharmony_ci * Based on former asm-ppc/div64.h and asm-m68knommu/div64.h 78c2ecf20Sopenharmony_ci * 88c2ecf20Sopenharmony_ci * Optimization for constant divisors on 32-bit machines: 98c2ecf20Sopenharmony_ci * Copyright (C) 2006-2015 Nicolas Pitre 108c2ecf20Sopenharmony_ci * 118c2ecf20Sopenharmony_ci * The semantics of do_div() are: 128c2ecf20Sopenharmony_ci * 138c2ecf20Sopenharmony_ci * uint32_t do_div(uint64_t *n, uint32_t base) 148c2ecf20Sopenharmony_ci * { 158c2ecf20Sopenharmony_ci * uint32_t remainder = *n % base; 168c2ecf20Sopenharmony_ci * *n = *n / base; 178c2ecf20Sopenharmony_ci * return remainder; 188c2ecf20Sopenharmony_ci * } 198c2ecf20Sopenharmony_ci * 208c2ecf20Sopenharmony_ci * NOTE: macro parameter n is evaluated multiple times, 218c2ecf20Sopenharmony_ci * beware of side effects! 228c2ecf20Sopenharmony_ci */ 238c2ecf20Sopenharmony_ci 248c2ecf20Sopenharmony_ci#include <linux/types.h> 258c2ecf20Sopenharmony_ci#include <linux/compiler.h> 268c2ecf20Sopenharmony_ci 278c2ecf20Sopenharmony_ci#if BITS_PER_LONG == 64 288c2ecf20Sopenharmony_ci 298c2ecf20Sopenharmony_ci/** 308c2ecf20Sopenharmony_ci * do_div - returns 2 values: calculate remainder and update new dividend 318c2ecf20Sopenharmony_ci * @n: uint64_t dividend (will be updated) 328c2ecf20Sopenharmony_ci * @base: uint32_t divisor 338c2ecf20Sopenharmony_ci * 348c2ecf20Sopenharmony_ci * Summary: 358c2ecf20Sopenharmony_ci * ``uint32_t remainder = n % base;`` 368c2ecf20Sopenharmony_ci * ``n = n / base;`` 378c2ecf20Sopenharmony_ci * 388c2ecf20Sopenharmony_ci * Return: (uint32_t)remainder 398c2ecf20Sopenharmony_ci * 408c2ecf20Sopenharmony_ci * NOTE: macro parameter @n is evaluated multiple times, 418c2ecf20Sopenharmony_ci * beware of side effects! 428c2ecf20Sopenharmony_ci */ 438c2ecf20Sopenharmony_ci# define do_div(n,base) ({ \ 448c2ecf20Sopenharmony_ci uint32_t __base = (base); \ 458c2ecf20Sopenharmony_ci uint32_t __rem; \ 468c2ecf20Sopenharmony_ci __rem = ((uint64_t)(n)) % __base; \ 478c2ecf20Sopenharmony_ci (n) = ((uint64_t)(n)) / __base; \ 488c2ecf20Sopenharmony_ci __rem; \ 498c2ecf20Sopenharmony_ci }) 508c2ecf20Sopenharmony_ci 518c2ecf20Sopenharmony_ci#elif BITS_PER_LONG == 32 528c2ecf20Sopenharmony_ci 538c2ecf20Sopenharmony_ci#include <linux/log2.h> 548c2ecf20Sopenharmony_ci 558c2ecf20Sopenharmony_ci/* 568c2ecf20Sopenharmony_ci * If the divisor happens to be constant, we determine the appropriate 578c2ecf20Sopenharmony_ci * inverse at compile time to turn the division into a few inline 588c2ecf20Sopenharmony_ci * multiplications which ought to be much faster. And yet only if compiling 598c2ecf20Sopenharmony_ci * with a sufficiently recent gcc version to perform proper 64-bit constant 608c2ecf20Sopenharmony_ci * propagation. 618c2ecf20Sopenharmony_ci * 628c2ecf20Sopenharmony_ci * (It is unfortunate that gcc doesn't perform all this internally.) 638c2ecf20Sopenharmony_ci */ 648c2ecf20Sopenharmony_ci 658c2ecf20Sopenharmony_ci#ifndef __div64_const32_is_OK 668c2ecf20Sopenharmony_ci#define __div64_const32_is_OK (__GNUC__ >= 4) 678c2ecf20Sopenharmony_ci#endif 688c2ecf20Sopenharmony_ci 698c2ecf20Sopenharmony_ci#define __div64_const32(n, ___b) \ 708c2ecf20Sopenharmony_ci({ \ 718c2ecf20Sopenharmony_ci /* \ 728c2ecf20Sopenharmony_ci * Multiplication by reciprocal of b: n / b = n * (p / b) / p \ 738c2ecf20Sopenharmony_ci * \ 748c2ecf20Sopenharmony_ci * We rely on the fact that most of this code gets optimized \ 758c2ecf20Sopenharmony_ci * away at compile time due to constant propagation and only \ 768c2ecf20Sopenharmony_ci * a few multiplication instructions should remain. \ 778c2ecf20Sopenharmony_ci * Hence this monstrous macro (static inline doesn't always \ 788c2ecf20Sopenharmony_ci * do the trick here). \ 798c2ecf20Sopenharmony_ci */ \ 808c2ecf20Sopenharmony_ci uint64_t ___res, ___x, ___t, ___m, ___n = (n); \ 818c2ecf20Sopenharmony_ci uint32_t ___p, ___bias; \ 828c2ecf20Sopenharmony_ci \ 838c2ecf20Sopenharmony_ci /* determine MSB of b */ \ 848c2ecf20Sopenharmony_ci ___p = 1 << ilog2(___b); \ 858c2ecf20Sopenharmony_ci \ 868c2ecf20Sopenharmony_ci /* compute m = ((p << 64) + b - 1) / b */ \ 878c2ecf20Sopenharmony_ci ___m = (~0ULL / ___b) * ___p; \ 888c2ecf20Sopenharmony_ci ___m += (((~0ULL % ___b + 1) * ___p) + ___b - 1) / ___b; \ 898c2ecf20Sopenharmony_ci \ 908c2ecf20Sopenharmony_ci /* one less than the dividend with highest result */ \ 918c2ecf20Sopenharmony_ci ___x = ~0ULL / ___b * ___b - 1; \ 928c2ecf20Sopenharmony_ci \ 938c2ecf20Sopenharmony_ci /* test our ___m with res = m * x / (p << 64) */ \ 948c2ecf20Sopenharmony_ci ___res = ((___m & 0xffffffff) * (___x & 0xffffffff)) >> 32; \ 958c2ecf20Sopenharmony_ci ___t = ___res += (___m & 0xffffffff) * (___x >> 32); \ 968c2ecf20Sopenharmony_ci ___res += (___x & 0xffffffff) * (___m >> 32); \ 978c2ecf20Sopenharmony_ci ___t = (___res < ___t) ? (1ULL << 32) : 0; \ 988c2ecf20Sopenharmony_ci ___res = (___res >> 32) + ___t; \ 998c2ecf20Sopenharmony_ci ___res += (___m >> 32) * (___x >> 32); \ 1008c2ecf20Sopenharmony_ci ___res /= ___p; \ 1018c2ecf20Sopenharmony_ci \ 1028c2ecf20Sopenharmony_ci /* Now sanitize and optimize what we've got. */ \ 1038c2ecf20Sopenharmony_ci if (~0ULL % (___b / (___b & -___b)) == 0) { \ 1048c2ecf20Sopenharmony_ci /* special case, can be simplified to ... */ \ 1058c2ecf20Sopenharmony_ci ___n /= (___b & -___b); \ 1068c2ecf20Sopenharmony_ci ___m = ~0ULL / (___b / (___b & -___b)); \ 1078c2ecf20Sopenharmony_ci ___p = 1; \ 1088c2ecf20Sopenharmony_ci ___bias = 1; \ 1098c2ecf20Sopenharmony_ci } else if (___res != ___x / ___b) { \ 1108c2ecf20Sopenharmony_ci /* \ 1118c2ecf20Sopenharmony_ci * We can't get away without a bias to compensate \ 1128c2ecf20Sopenharmony_ci * for bit truncation errors. To avoid it we'd need an \ 1138c2ecf20Sopenharmony_ci * additional bit to represent m which would overflow \ 1148c2ecf20Sopenharmony_ci * a 64-bit variable. \ 1158c2ecf20Sopenharmony_ci * \ 1168c2ecf20Sopenharmony_ci * Instead we do m = p / b and n / b = (n * m + m) / p. \ 1178c2ecf20Sopenharmony_ci */ \ 1188c2ecf20Sopenharmony_ci ___bias = 1; \ 1198c2ecf20Sopenharmony_ci /* Compute m = (p << 64) / b */ \ 1208c2ecf20Sopenharmony_ci ___m = (~0ULL / ___b) * ___p; \ 1218c2ecf20Sopenharmony_ci ___m += ((~0ULL % ___b + 1) * ___p) / ___b; \ 1228c2ecf20Sopenharmony_ci } else { \ 1238c2ecf20Sopenharmony_ci /* \ 1248c2ecf20Sopenharmony_ci * Reduce m / p, and try to clear bit 31 of m when \ 1258c2ecf20Sopenharmony_ci * possible, otherwise that'll need extra overflow \ 1268c2ecf20Sopenharmony_ci * handling later. \ 1278c2ecf20Sopenharmony_ci */ \ 1288c2ecf20Sopenharmony_ci uint32_t ___bits = -(___m & -___m); \ 1298c2ecf20Sopenharmony_ci ___bits |= ___m >> 32; \ 1308c2ecf20Sopenharmony_ci ___bits = (~___bits) << 1; \ 1318c2ecf20Sopenharmony_ci /* \ 1328c2ecf20Sopenharmony_ci * If ___bits == 0 then setting bit 31 is unavoidable. \ 1338c2ecf20Sopenharmony_ci * Simply apply the maximum possible reduction in that \ 1348c2ecf20Sopenharmony_ci * case. Otherwise the MSB of ___bits indicates the \ 1358c2ecf20Sopenharmony_ci * best reduction we should apply. \ 1368c2ecf20Sopenharmony_ci */ \ 1378c2ecf20Sopenharmony_ci if (!___bits) { \ 1388c2ecf20Sopenharmony_ci ___p /= (___m & -___m); \ 1398c2ecf20Sopenharmony_ci ___m /= (___m & -___m); \ 1408c2ecf20Sopenharmony_ci } else { \ 1418c2ecf20Sopenharmony_ci ___p >>= ilog2(___bits); \ 1428c2ecf20Sopenharmony_ci ___m >>= ilog2(___bits); \ 1438c2ecf20Sopenharmony_ci } \ 1448c2ecf20Sopenharmony_ci /* No bias needed. */ \ 1458c2ecf20Sopenharmony_ci ___bias = 0; \ 1468c2ecf20Sopenharmony_ci } \ 1478c2ecf20Sopenharmony_ci \ 1488c2ecf20Sopenharmony_ci /* \ 1498c2ecf20Sopenharmony_ci * Now we have a combination of 2 conditions: \ 1508c2ecf20Sopenharmony_ci * \ 1518c2ecf20Sopenharmony_ci * 1) whether or not we need to apply a bias, and \ 1528c2ecf20Sopenharmony_ci * \ 1538c2ecf20Sopenharmony_ci * 2) whether or not there might be an overflow in the cross \ 1548c2ecf20Sopenharmony_ci * product determined by (___m & ((1 << 63) | (1 << 31))). \ 1558c2ecf20Sopenharmony_ci * \ 1568c2ecf20Sopenharmony_ci * Select the best way to do (m_bias + m * n) / (1 << 64). \ 1578c2ecf20Sopenharmony_ci * From now on there will be actual runtime code generated. \ 1588c2ecf20Sopenharmony_ci */ \ 1598c2ecf20Sopenharmony_ci ___res = __arch_xprod_64(___m, ___n, ___bias); \ 1608c2ecf20Sopenharmony_ci \ 1618c2ecf20Sopenharmony_ci ___res /= ___p; \ 1628c2ecf20Sopenharmony_ci}) 1638c2ecf20Sopenharmony_ci 1648c2ecf20Sopenharmony_ci#ifndef __arch_xprod_64 1658c2ecf20Sopenharmony_ci/* 1668c2ecf20Sopenharmony_ci * Default C implementation for __arch_xprod_64() 1678c2ecf20Sopenharmony_ci * 1688c2ecf20Sopenharmony_ci * Prototype: uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) 1698c2ecf20Sopenharmony_ci * Semantic: retval = ((bias ? m : 0) + m * n) >> 64 1708c2ecf20Sopenharmony_ci * 1718c2ecf20Sopenharmony_ci * The product is a 128-bit value, scaled down to 64 bits. 1728c2ecf20Sopenharmony_ci * Assuming constant propagation to optimize away unused conditional code. 1738c2ecf20Sopenharmony_ci * Architectures may provide their own optimized assembly implementation. 1748c2ecf20Sopenharmony_ci */ 1758c2ecf20Sopenharmony_cistatic inline uint64_t __arch_xprod_64(const uint64_t m, uint64_t n, bool bias) 1768c2ecf20Sopenharmony_ci{ 1778c2ecf20Sopenharmony_ci uint32_t m_lo = m; 1788c2ecf20Sopenharmony_ci uint32_t m_hi = m >> 32; 1798c2ecf20Sopenharmony_ci uint32_t n_lo = n; 1808c2ecf20Sopenharmony_ci uint32_t n_hi = n >> 32; 1818c2ecf20Sopenharmony_ci uint64_t res; 1828c2ecf20Sopenharmony_ci uint32_t res_lo, res_hi, tmp; 1838c2ecf20Sopenharmony_ci 1848c2ecf20Sopenharmony_ci if (!bias) { 1858c2ecf20Sopenharmony_ci res = ((uint64_t)m_lo * n_lo) >> 32; 1868c2ecf20Sopenharmony_ci } else if (!(m & ((1ULL << 63) | (1ULL << 31)))) { 1878c2ecf20Sopenharmony_ci /* there can't be any overflow here */ 1888c2ecf20Sopenharmony_ci res = (m + (uint64_t)m_lo * n_lo) >> 32; 1898c2ecf20Sopenharmony_ci } else { 1908c2ecf20Sopenharmony_ci res = m + (uint64_t)m_lo * n_lo; 1918c2ecf20Sopenharmony_ci res_lo = res >> 32; 1928c2ecf20Sopenharmony_ci res_hi = (res_lo < m_hi); 1938c2ecf20Sopenharmony_ci res = res_lo | ((uint64_t)res_hi << 32); 1948c2ecf20Sopenharmony_ci } 1958c2ecf20Sopenharmony_ci 1968c2ecf20Sopenharmony_ci if (!(m & ((1ULL << 63) | (1ULL << 31)))) { 1978c2ecf20Sopenharmony_ci /* there can't be any overflow here */ 1988c2ecf20Sopenharmony_ci res += (uint64_t)m_lo * n_hi; 1998c2ecf20Sopenharmony_ci res += (uint64_t)m_hi * n_lo; 2008c2ecf20Sopenharmony_ci res >>= 32; 2018c2ecf20Sopenharmony_ci } else { 2028c2ecf20Sopenharmony_ci res += (uint64_t)m_lo * n_hi; 2038c2ecf20Sopenharmony_ci tmp = res >> 32; 2048c2ecf20Sopenharmony_ci res += (uint64_t)m_hi * n_lo; 2058c2ecf20Sopenharmony_ci res_lo = res >> 32; 2068c2ecf20Sopenharmony_ci res_hi = (res_lo < tmp); 2078c2ecf20Sopenharmony_ci res = res_lo | ((uint64_t)res_hi << 32); 2088c2ecf20Sopenharmony_ci } 2098c2ecf20Sopenharmony_ci 2108c2ecf20Sopenharmony_ci res += (uint64_t)m_hi * n_hi; 2118c2ecf20Sopenharmony_ci 2128c2ecf20Sopenharmony_ci return res; 2138c2ecf20Sopenharmony_ci} 2148c2ecf20Sopenharmony_ci#endif 2158c2ecf20Sopenharmony_ci 2168c2ecf20Sopenharmony_ci#ifndef __div64_32 2178c2ecf20Sopenharmony_ciextern uint32_t __div64_32(uint64_t *dividend, uint32_t divisor); 2188c2ecf20Sopenharmony_ci#endif 2198c2ecf20Sopenharmony_ci 2208c2ecf20Sopenharmony_ci/* The unnecessary pointer compare is there 2218c2ecf20Sopenharmony_ci * to check for type safety (n must be 64bit) 2228c2ecf20Sopenharmony_ci */ 2238c2ecf20Sopenharmony_ci# define do_div(n,base) ({ \ 2248c2ecf20Sopenharmony_ci uint32_t __base = (base); \ 2258c2ecf20Sopenharmony_ci uint32_t __rem; \ 2268c2ecf20Sopenharmony_ci (void)(((typeof((n)) *)0) == ((uint64_t *)0)); \ 2278c2ecf20Sopenharmony_ci if (__builtin_constant_p(__base) && \ 2288c2ecf20Sopenharmony_ci is_power_of_2(__base)) { \ 2298c2ecf20Sopenharmony_ci __rem = (n) & (__base - 1); \ 2308c2ecf20Sopenharmony_ci (n) >>= ilog2(__base); \ 2318c2ecf20Sopenharmony_ci } else if (__div64_const32_is_OK && \ 2328c2ecf20Sopenharmony_ci __builtin_constant_p(__base) && \ 2338c2ecf20Sopenharmony_ci __base != 0) { \ 2348c2ecf20Sopenharmony_ci uint32_t __res_lo, __n_lo = (n); \ 2358c2ecf20Sopenharmony_ci (n) = __div64_const32(n, __base); \ 2368c2ecf20Sopenharmony_ci /* the remainder can be computed with 32-bit regs */ \ 2378c2ecf20Sopenharmony_ci __res_lo = (n); \ 2388c2ecf20Sopenharmony_ci __rem = __n_lo - __res_lo * __base; \ 2398c2ecf20Sopenharmony_ci } else if (likely(((n) >> 32) == 0)) { \ 2408c2ecf20Sopenharmony_ci __rem = (uint32_t)(n) % __base; \ 2418c2ecf20Sopenharmony_ci (n) = (uint32_t)(n) / __base; \ 2428c2ecf20Sopenharmony_ci } else \ 2438c2ecf20Sopenharmony_ci __rem = __div64_32(&(n), __base); \ 2448c2ecf20Sopenharmony_ci __rem; \ 2458c2ecf20Sopenharmony_ci }) 2468c2ecf20Sopenharmony_ci 2478c2ecf20Sopenharmony_ci#else /* BITS_PER_LONG == ?? */ 2488c2ecf20Sopenharmony_ci 2498c2ecf20Sopenharmony_ci# error do_div() does not yet support the C64 2508c2ecf20Sopenharmony_ci 2518c2ecf20Sopenharmony_ci#endif /* BITS_PER_LONG */ 2528c2ecf20Sopenharmony_ci 2538c2ecf20Sopenharmony_ci#endif /* _ASM_GENERIC_DIV64_H */ 254