xref: /kernel/linux/linux-5.10/fs/xfs/xfs_trans_ail.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * Copyright (c) 2008 Dave Chinner
5 * All Rights Reserved.
6 */
7#include "xfs.h"
8#include "xfs_fs.h"
9#include "xfs_shared.h"
10#include "xfs_format.h"
11#include "xfs_log_format.h"
12#include "xfs_trans_resv.h"
13#include "xfs_mount.h"
14#include "xfs_trans.h"
15#include "xfs_trans_priv.h"
16#include "xfs_trace.h"
17#include "xfs_errortag.h"
18#include "xfs_error.h"
19#include "xfs_log.h"
20
21#ifdef DEBUG
22/*
23 * Check that the list is sorted as it should be.
24 *
25 * Called with the ail lock held, but we don't want to assert fail with it
26 * held otherwise we'll lock everything up and won't be able to debug the
27 * cause. Hence we sample and check the state under the AIL lock and return if
28 * everything is fine, otherwise we drop the lock and run the ASSERT checks.
29 * Asserts may not be fatal, so pick the lock back up and continue onwards.
30 */
31STATIC void
32xfs_ail_check(
33	struct xfs_ail		*ailp,
34	struct xfs_log_item	*lip)
35	__must_hold(&ailp->ail_lock)
36{
37	struct xfs_log_item	*prev_lip;
38	struct xfs_log_item	*next_lip;
39	xfs_lsn_t		prev_lsn = NULLCOMMITLSN;
40	xfs_lsn_t		next_lsn = NULLCOMMITLSN;
41	xfs_lsn_t		lsn;
42	bool			in_ail;
43
44
45	if (list_empty(&ailp->ail_head))
46		return;
47
48	/*
49	 * Sample then check the next and previous entries are valid.
50	 */
51	in_ail = test_bit(XFS_LI_IN_AIL, &lip->li_flags);
52	prev_lip = list_entry(lip->li_ail.prev, struct xfs_log_item, li_ail);
53	if (&prev_lip->li_ail != &ailp->ail_head)
54		prev_lsn = prev_lip->li_lsn;
55	next_lip = list_entry(lip->li_ail.next, struct xfs_log_item, li_ail);
56	if (&next_lip->li_ail != &ailp->ail_head)
57		next_lsn = next_lip->li_lsn;
58	lsn = lip->li_lsn;
59
60	if (in_ail &&
61	    (prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0) &&
62	    (next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0))
63		return;
64
65	spin_unlock(&ailp->ail_lock);
66	ASSERT(in_ail);
67	ASSERT(prev_lsn == NULLCOMMITLSN || XFS_LSN_CMP(prev_lsn, lsn) <= 0);
68	ASSERT(next_lsn == NULLCOMMITLSN || XFS_LSN_CMP(next_lsn, lsn) >= 0);
69	spin_lock(&ailp->ail_lock);
70}
71#else /* !DEBUG */
72#define	xfs_ail_check(a,l)
73#endif /* DEBUG */
74
75/*
76 * Return a pointer to the last item in the AIL.  If the AIL is empty, then
77 * return NULL.
78 */
79static struct xfs_log_item *
80xfs_ail_max(
81	struct xfs_ail  *ailp)
82{
83	if (list_empty(&ailp->ail_head))
84		return NULL;
85
86	return list_entry(ailp->ail_head.prev, struct xfs_log_item, li_ail);
87}
88
89/*
90 * Return a pointer to the item which follows the given item in the AIL.  If
91 * the given item is the last item in the list, then return NULL.
92 */
93static struct xfs_log_item *
94xfs_ail_next(
95	struct xfs_ail		*ailp,
96	struct xfs_log_item	*lip)
97{
98	if (lip->li_ail.next == &ailp->ail_head)
99		return NULL;
100
101	return list_first_entry(&lip->li_ail, struct xfs_log_item, li_ail);
102}
103
104/*
105 * This is called by the log manager code to determine the LSN of the tail of
106 * the log.  This is exactly the LSN of the first item in the AIL.  If the AIL
107 * is empty, then this function returns 0.
108 *
109 * We need the AIL lock in order to get a coherent read of the lsn of the last
110 * item in the AIL.
111 */
112static xfs_lsn_t
113__xfs_ail_min_lsn(
114	struct xfs_ail		*ailp)
115{
116	struct xfs_log_item	*lip = xfs_ail_min(ailp);
117
118	if (lip)
119		return lip->li_lsn;
120	return 0;
121}
122
123xfs_lsn_t
124xfs_ail_min_lsn(
125	struct xfs_ail		*ailp)
126{
127	xfs_lsn_t		lsn;
128
129	spin_lock(&ailp->ail_lock);
130	lsn = __xfs_ail_min_lsn(ailp);
131	spin_unlock(&ailp->ail_lock);
132
133	return lsn;
134}
135
136/*
137 * Return the maximum lsn held in the AIL, or zero if the AIL is empty.
138 */
139static xfs_lsn_t
140xfs_ail_max_lsn(
141	struct xfs_ail		*ailp)
142{
143	xfs_lsn_t       	lsn = 0;
144	struct xfs_log_item	*lip;
145
146	spin_lock(&ailp->ail_lock);
147	lip = xfs_ail_max(ailp);
148	if (lip)
149		lsn = lip->li_lsn;
150	spin_unlock(&ailp->ail_lock);
151
152	return lsn;
153}
154
155/*
156 * The cursor keeps track of where our current traversal is up to by tracking
157 * the next item in the list for us. However, for this to be safe, removing an
158 * object from the AIL needs to invalidate any cursor that points to it. hence
159 * the traversal cursor needs to be linked to the struct xfs_ail so that
160 * deletion can search all the active cursors for invalidation.
161 */
162STATIC void
163xfs_trans_ail_cursor_init(
164	struct xfs_ail		*ailp,
165	struct xfs_ail_cursor	*cur)
166{
167	cur->item = NULL;
168	list_add_tail(&cur->list, &ailp->ail_cursors);
169}
170
171/*
172 * Get the next item in the traversal and advance the cursor.  If the cursor
173 * was invalidated (indicated by a lip of 1), restart the traversal.
174 */
175struct xfs_log_item *
176xfs_trans_ail_cursor_next(
177	struct xfs_ail		*ailp,
178	struct xfs_ail_cursor	*cur)
179{
180	struct xfs_log_item	*lip = cur->item;
181
182	if ((uintptr_t)lip & 1)
183		lip = xfs_ail_min(ailp);
184	if (lip)
185		cur->item = xfs_ail_next(ailp, lip);
186	return lip;
187}
188
189/*
190 * When the traversal is complete, we need to remove the cursor from the list
191 * of traversing cursors.
192 */
193void
194xfs_trans_ail_cursor_done(
195	struct xfs_ail_cursor	*cur)
196{
197	cur->item = NULL;
198	list_del_init(&cur->list);
199}
200
201/*
202 * Invalidate any cursor that is pointing to this item. This is called when an
203 * item is removed from the AIL. Any cursor pointing to this object is now
204 * invalid and the traversal needs to be terminated so it doesn't reference a
205 * freed object. We set the low bit of the cursor item pointer so we can
206 * distinguish between an invalidation and the end of the list when getting the
207 * next item from the cursor.
208 */
209STATIC void
210xfs_trans_ail_cursor_clear(
211	struct xfs_ail		*ailp,
212	struct xfs_log_item	*lip)
213{
214	struct xfs_ail_cursor	*cur;
215
216	list_for_each_entry(cur, &ailp->ail_cursors, list) {
217		if (cur->item == lip)
218			cur->item = (struct xfs_log_item *)
219					((uintptr_t)cur->item | 1);
220	}
221}
222
223/*
224 * Find the first item in the AIL with the given @lsn by searching in ascending
225 * LSN order and initialise the cursor to point to the next item for a
226 * ascending traversal.  Pass a @lsn of zero to initialise the cursor to the
227 * first item in the AIL. Returns NULL if the list is empty.
228 */
229struct xfs_log_item *
230xfs_trans_ail_cursor_first(
231	struct xfs_ail		*ailp,
232	struct xfs_ail_cursor	*cur,
233	xfs_lsn_t		lsn)
234{
235	struct xfs_log_item	*lip;
236
237	xfs_trans_ail_cursor_init(ailp, cur);
238
239	if (lsn == 0) {
240		lip = xfs_ail_min(ailp);
241		goto out;
242	}
243
244	list_for_each_entry(lip, &ailp->ail_head, li_ail) {
245		if (XFS_LSN_CMP(lip->li_lsn, lsn) >= 0)
246			goto out;
247	}
248	return NULL;
249
250out:
251	if (lip)
252		cur->item = xfs_ail_next(ailp, lip);
253	return lip;
254}
255
256static struct xfs_log_item *
257__xfs_trans_ail_cursor_last(
258	struct xfs_ail		*ailp,
259	xfs_lsn_t		lsn)
260{
261	struct xfs_log_item	*lip;
262
263	list_for_each_entry_reverse(lip, &ailp->ail_head, li_ail) {
264		if (XFS_LSN_CMP(lip->li_lsn, lsn) <= 0)
265			return lip;
266	}
267	return NULL;
268}
269
270/*
271 * Find the last item in the AIL with the given @lsn by searching in descending
272 * LSN order and initialise the cursor to point to that item.  If there is no
273 * item with the value of @lsn, then it sets the cursor to the last item with an
274 * LSN lower than @lsn.  Returns NULL if the list is empty.
275 */
276struct xfs_log_item *
277xfs_trans_ail_cursor_last(
278	struct xfs_ail		*ailp,
279	struct xfs_ail_cursor	*cur,
280	xfs_lsn_t		lsn)
281{
282	xfs_trans_ail_cursor_init(ailp, cur);
283	cur->item = __xfs_trans_ail_cursor_last(ailp, lsn);
284	return cur->item;
285}
286
287/*
288 * Splice the log item list into the AIL at the given LSN. We splice to the
289 * tail of the given LSN to maintain insert order for push traversals. The
290 * cursor is optional, allowing repeated updates to the same LSN to avoid
291 * repeated traversals.  This should not be called with an empty list.
292 */
293static void
294xfs_ail_splice(
295	struct xfs_ail		*ailp,
296	struct xfs_ail_cursor	*cur,
297	struct list_head	*list,
298	xfs_lsn_t		lsn)
299{
300	struct xfs_log_item	*lip;
301
302	ASSERT(!list_empty(list));
303
304	/*
305	 * Use the cursor to determine the insertion point if one is
306	 * provided.  If not, or if the one we got is not valid,
307	 * find the place in the AIL where the items belong.
308	 */
309	lip = cur ? cur->item : NULL;
310	if (!lip || (uintptr_t)lip & 1)
311		lip = __xfs_trans_ail_cursor_last(ailp, lsn);
312
313	/*
314	 * If a cursor is provided, we know we're processing the AIL
315	 * in lsn order, and future items to be spliced in will
316	 * follow the last one being inserted now.  Update the
317	 * cursor to point to that last item, now while we have a
318	 * reliable pointer to it.
319	 */
320	if (cur)
321		cur->item = list_entry(list->prev, struct xfs_log_item, li_ail);
322
323	/*
324	 * Finally perform the splice.  Unless the AIL was empty,
325	 * lip points to the item in the AIL _after_ which the new
326	 * items should go.  If lip is null the AIL was empty, so
327	 * the new items go at the head of the AIL.
328	 */
329	if (lip)
330		list_splice(list, &lip->li_ail);
331	else
332		list_splice(list, &ailp->ail_head);
333}
334
335/*
336 * Delete the given item from the AIL.  Return a pointer to the item.
337 */
338static void
339xfs_ail_delete(
340	struct xfs_ail		*ailp,
341	struct xfs_log_item	*lip)
342{
343	xfs_ail_check(ailp, lip);
344	list_del(&lip->li_ail);
345	xfs_trans_ail_cursor_clear(ailp, lip);
346}
347
348/*
349 * Requeue a failed buffer for writeback.
350 *
351 * We clear the log item failed state here as well, but we have to be careful
352 * about reference counts because the only active reference counts on the buffer
353 * may be the failed log items. Hence if we clear the log item failed state
354 * before queuing the buffer for IO we can release all active references to
355 * the buffer and free it, leading to use after free problems in
356 * xfs_buf_delwri_queue. It makes no difference to the buffer or log items which
357 * order we process them in - the buffer is locked, and we own the buffer list
358 * so nothing on them is going to change while we are performing this action.
359 *
360 * Hence we can safely queue the buffer for IO before we clear the failed log
361 * item state, therefore  always having an active reference to the buffer and
362 * avoiding the transient zero-reference state that leads to use-after-free.
363 */
364static inline int
365xfsaild_resubmit_item(
366	struct xfs_log_item	*lip,
367	struct list_head	*buffer_list)
368{
369	struct xfs_buf		*bp = lip->li_buf;
370
371	if (!xfs_buf_trylock(bp))
372		return XFS_ITEM_LOCKED;
373
374	if (!xfs_buf_delwri_queue(bp, buffer_list)) {
375		xfs_buf_unlock(bp);
376		return XFS_ITEM_FLUSHING;
377	}
378
379	/* protected by ail_lock */
380	list_for_each_entry(lip, &bp->b_li_list, li_bio_list) {
381		if (bp->b_flags & _XBF_INODES)
382			clear_bit(XFS_LI_FAILED, &lip->li_flags);
383		else
384			xfs_clear_li_failed(lip);
385	}
386
387	xfs_buf_unlock(bp);
388	return XFS_ITEM_SUCCESS;
389}
390
391static inline uint
392xfsaild_push_item(
393	struct xfs_ail		*ailp,
394	struct xfs_log_item	*lip)
395{
396	/*
397	 * If log item pinning is enabled, skip the push and track the item as
398	 * pinned. This can help induce head-behind-tail conditions.
399	 */
400	if (XFS_TEST_ERROR(false, ailp->ail_mount, XFS_ERRTAG_LOG_ITEM_PIN))
401		return XFS_ITEM_PINNED;
402
403	/*
404	 * Consider the item pinned if a push callback is not defined so the
405	 * caller will force the log. This should only happen for intent items
406	 * as they are unpinned once the associated done item is committed to
407	 * the on-disk log.
408	 */
409	if (!lip->li_ops->iop_push)
410		return XFS_ITEM_PINNED;
411	if (test_bit(XFS_LI_FAILED, &lip->li_flags))
412		return xfsaild_resubmit_item(lip, &ailp->ail_buf_list);
413	return lip->li_ops->iop_push(lip, &ailp->ail_buf_list);
414}
415
416static long
417xfsaild_push(
418	struct xfs_ail		*ailp)
419{
420	xfs_mount_t		*mp = ailp->ail_mount;
421	struct xfs_ail_cursor	cur;
422	struct xfs_log_item	*lip;
423	xfs_lsn_t		lsn;
424	xfs_lsn_t		target;
425	long			tout;
426	int			stuck = 0;
427	int			flushing = 0;
428	int			count = 0;
429
430	/*
431	 * If we encountered pinned items or did not finish writing out all
432	 * buffers the last time we ran, force the log first and wait for it
433	 * before pushing again.
434	 */
435	if (ailp->ail_log_flush && ailp->ail_last_pushed_lsn == 0 &&
436	    (!list_empty_careful(&ailp->ail_buf_list) ||
437	     xfs_ail_min_lsn(ailp))) {
438		ailp->ail_log_flush = 0;
439
440		XFS_STATS_INC(mp, xs_push_ail_flush);
441		xfs_log_force(mp, XFS_LOG_SYNC);
442	}
443
444	spin_lock(&ailp->ail_lock);
445
446	/* barrier matches the ail_target update in xfs_ail_push() */
447	smp_rmb();
448	target = ailp->ail_target;
449	ailp->ail_target_prev = target;
450
451	/* we're done if the AIL is empty or our push has reached the end */
452	lip = xfs_trans_ail_cursor_first(ailp, &cur, ailp->ail_last_pushed_lsn);
453	if (!lip)
454		goto out_done;
455
456	XFS_STATS_INC(mp, xs_push_ail);
457
458	lsn = lip->li_lsn;
459	while ((XFS_LSN_CMP(lip->li_lsn, target) <= 0)) {
460		int	lock_result;
461
462		/*
463		 * Note that iop_push may unlock and reacquire the AIL lock.  We
464		 * rely on the AIL cursor implementation to be able to deal with
465		 * the dropped lock.
466		 */
467		lock_result = xfsaild_push_item(ailp, lip);
468		switch (lock_result) {
469		case XFS_ITEM_SUCCESS:
470			XFS_STATS_INC(mp, xs_push_ail_success);
471			trace_xfs_ail_push(lip);
472
473			ailp->ail_last_pushed_lsn = lsn;
474			break;
475
476		case XFS_ITEM_FLUSHING:
477			/*
478			 * The item or its backing buffer is already being
479			 * flushed.  The typical reason for that is that an
480			 * inode buffer is locked because we already pushed the
481			 * updates to it as part of inode clustering.
482			 *
483			 * We do not want to stop flushing just because lots
484			 * of items are already being flushed, but we need to
485			 * re-try the flushing relatively soon if most of the
486			 * AIL is being flushed.
487			 */
488			XFS_STATS_INC(mp, xs_push_ail_flushing);
489			trace_xfs_ail_flushing(lip);
490
491			flushing++;
492			ailp->ail_last_pushed_lsn = lsn;
493			break;
494
495		case XFS_ITEM_PINNED:
496			XFS_STATS_INC(mp, xs_push_ail_pinned);
497			trace_xfs_ail_pinned(lip);
498
499			stuck++;
500			ailp->ail_log_flush++;
501			break;
502		case XFS_ITEM_LOCKED:
503			XFS_STATS_INC(mp, xs_push_ail_locked);
504			trace_xfs_ail_locked(lip);
505
506			stuck++;
507			break;
508		default:
509			ASSERT(0);
510			break;
511		}
512
513		count++;
514
515		/*
516		 * Are there too many items we can't do anything with?
517		 *
518		 * If we are skipping too many items because we can't flush
519		 * them or they are already being flushed, we back off and
520		 * given them time to complete whatever operation is being
521		 * done. i.e. remove pressure from the AIL while we can't make
522		 * progress so traversals don't slow down further inserts and
523		 * removals to/from the AIL.
524		 *
525		 * The value of 100 is an arbitrary magic number based on
526		 * observation.
527		 */
528		if (stuck > 100)
529			break;
530
531		lip = xfs_trans_ail_cursor_next(ailp, &cur);
532		if (lip == NULL)
533			break;
534		lsn = lip->li_lsn;
535	}
536
537out_done:
538	xfs_trans_ail_cursor_done(&cur);
539	spin_unlock(&ailp->ail_lock);
540
541	if (xfs_buf_delwri_submit_nowait(&ailp->ail_buf_list))
542		ailp->ail_log_flush++;
543
544	if (!count || XFS_LSN_CMP(lsn, target) >= 0) {
545		/*
546		 * We reached the target or the AIL is empty, so wait a bit
547		 * longer for I/O to complete and remove pushed items from the
548		 * AIL before we start the next scan from the start of the AIL.
549		 */
550		tout = 50;
551		ailp->ail_last_pushed_lsn = 0;
552	} else if (((stuck + flushing) * 100) / count > 90) {
553		/*
554		 * Either there is a lot of contention on the AIL or we are
555		 * stuck due to operations in progress. "Stuck" in this case
556		 * is defined as >90% of the items we tried to push were stuck.
557		 *
558		 * Backoff a bit more to allow some I/O to complete before
559		 * restarting from the start of the AIL. This prevents us from
560		 * spinning on the same items, and if they are pinned will all
561		 * the restart to issue a log force to unpin the stuck items.
562		 */
563		tout = 20;
564		ailp->ail_last_pushed_lsn = 0;
565	} else {
566		/*
567		 * Assume we have more work to do in a short while.
568		 */
569		tout = 10;
570	}
571
572	return tout;
573}
574
575static int
576xfsaild(
577	void		*data)
578{
579	struct xfs_ail	*ailp = data;
580	long		tout = 0;	/* milliseconds */
581	unsigned int	noreclaim_flag;
582
583	noreclaim_flag = memalloc_noreclaim_save();
584	set_freezable();
585
586	while (1) {
587		if (tout && tout <= 20)
588			set_current_state(TASK_KILLABLE);
589		else
590			set_current_state(TASK_INTERRUPTIBLE);
591
592		/*
593		 * Check kthread_should_stop() after we set the task state to
594		 * guarantee that we either see the stop bit and exit or the
595		 * task state is reset to runnable such that it's not scheduled
596		 * out indefinitely and detects the stop bit at next iteration.
597		 * A memory barrier is included in above task state set to
598		 * serialize again kthread_stop().
599		 */
600		if (kthread_should_stop()) {
601			__set_current_state(TASK_RUNNING);
602
603			/*
604			 * The caller forces out the AIL before stopping the
605			 * thread in the common case, which means the delwri
606			 * queue is drained. In the shutdown case, the queue may
607			 * still hold relogged buffers that haven't been
608			 * submitted because they were pinned since added to the
609			 * queue.
610			 *
611			 * Log I/O error processing stales the underlying buffer
612			 * and clears the delwri state, expecting the buf to be
613			 * removed on the next submission attempt. That won't
614			 * happen if we're shutting down, so this is the last
615			 * opportunity to release such buffers from the queue.
616			 */
617			ASSERT(list_empty(&ailp->ail_buf_list) ||
618			       XFS_FORCED_SHUTDOWN(ailp->ail_mount));
619			xfs_buf_delwri_cancel(&ailp->ail_buf_list);
620			break;
621		}
622
623		spin_lock(&ailp->ail_lock);
624
625		/*
626		 * Idle if the AIL is empty and we are not racing with a target
627		 * update. We check the AIL after we set the task to a sleep
628		 * state to guarantee that we either catch an ail_target update
629		 * or that a wake_up resets the state to TASK_RUNNING.
630		 * Otherwise, we run the risk of sleeping indefinitely.
631		 *
632		 * The barrier matches the ail_target update in xfs_ail_push().
633		 */
634		smp_rmb();
635		if (!xfs_ail_min(ailp) &&
636		    ailp->ail_target == ailp->ail_target_prev &&
637		    list_empty(&ailp->ail_buf_list)) {
638			spin_unlock(&ailp->ail_lock);
639			freezable_schedule();
640			tout = 0;
641			continue;
642		}
643		spin_unlock(&ailp->ail_lock);
644
645		if (tout)
646			freezable_schedule_timeout(msecs_to_jiffies(tout));
647
648		__set_current_state(TASK_RUNNING);
649
650		try_to_freeze();
651
652		tout = xfsaild_push(ailp);
653	}
654
655	memalloc_noreclaim_restore(noreclaim_flag);
656	return 0;
657}
658
659/*
660 * This routine is called to move the tail of the AIL forward.  It does this by
661 * trying to flush items in the AIL whose lsns are below the given
662 * threshold_lsn.
663 *
664 * The push is run asynchronously in a workqueue, which means the caller needs
665 * to handle waiting on the async flush for space to become available.
666 * We don't want to interrupt any push that is in progress, hence we only queue
667 * work if we set the pushing bit appropriately.
668 *
669 * We do this unlocked - we only need to know whether there is anything in the
670 * AIL at the time we are called. We don't need to access the contents of
671 * any of the objects, so the lock is not needed.
672 */
673void
674xfs_ail_push(
675	struct xfs_ail		*ailp,
676	xfs_lsn_t		threshold_lsn)
677{
678	struct xfs_log_item	*lip;
679
680	lip = xfs_ail_min(ailp);
681	if (!lip || XFS_FORCED_SHUTDOWN(ailp->ail_mount) ||
682	    XFS_LSN_CMP(threshold_lsn, ailp->ail_target) <= 0)
683		return;
684
685	/*
686	 * Ensure that the new target is noticed in push code before it clears
687	 * the XFS_AIL_PUSHING_BIT.
688	 */
689	smp_wmb();
690	xfs_trans_ail_copy_lsn(ailp, &ailp->ail_target, &threshold_lsn);
691	smp_wmb();
692
693	wake_up_process(ailp->ail_task);
694}
695
696/*
697 * Push out all items in the AIL immediately
698 */
699void
700xfs_ail_push_all(
701	struct xfs_ail  *ailp)
702{
703	xfs_lsn_t       threshold_lsn = xfs_ail_max_lsn(ailp);
704
705	if (threshold_lsn)
706		xfs_ail_push(ailp, threshold_lsn);
707}
708
709/*
710 * Push out all items in the AIL immediately and wait until the AIL is empty.
711 */
712void
713xfs_ail_push_all_sync(
714	struct xfs_ail  *ailp)
715{
716	struct xfs_log_item	*lip;
717	DEFINE_WAIT(wait);
718
719	spin_lock(&ailp->ail_lock);
720	while ((lip = xfs_ail_max(ailp)) != NULL) {
721		prepare_to_wait(&ailp->ail_empty, &wait, TASK_UNINTERRUPTIBLE);
722		ailp->ail_target = lip->li_lsn;
723		wake_up_process(ailp->ail_task);
724		spin_unlock(&ailp->ail_lock);
725		schedule();
726		spin_lock(&ailp->ail_lock);
727	}
728	spin_unlock(&ailp->ail_lock);
729
730	finish_wait(&ailp->ail_empty, &wait);
731}
732
733void
734xfs_ail_update_finish(
735	struct xfs_ail		*ailp,
736	xfs_lsn_t		old_lsn) __releases(ailp->ail_lock)
737{
738	struct xfs_mount	*mp = ailp->ail_mount;
739
740	/* if the tail lsn hasn't changed, don't do updates or wakeups. */
741	if (!old_lsn || old_lsn == __xfs_ail_min_lsn(ailp)) {
742		spin_unlock(&ailp->ail_lock);
743		return;
744	}
745
746	if (!XFS_FORCED_SHUTDOWN(mp))
747		xlog_assign_tail_lsn_locked(mp);
748
749	if (list_empty(&ailp->ail_head))
750		wake_up_all(&ailp->ail_empty);
751	spin_unlock(&ailp->ail_lock);
752	xfs_log_space_wake(mp);
753}
754
755/*
756 * xfs_trans_ail_update - bulk AIL insertion operation.
757 *
758 * @xfs_trans_ail_update takes an array of log items that all need to be
759 * positioned at the same LSN in the AIL. If an item is not in the AIL, it will
760 * be added.  Otherwise, it will be repositioned  by removing it and re-adding
761 * it to the AIL. If we move the first item in the AIL, update the log tail to
762 * match the new minimum LSN in the AIL.
763 *
764 * This function takes the AIL lock once to execute the update operations on
765 * all the items in the array, and as such should not be called with the AIL
766 * lock held. As a result, once we have the AIL lock, we need to check each log
767 * item LSN to confirm it needs to be moved forward in the AIL.
768 *
769 * To optimise the insert operation, we delete all the items from the AIL in
770 * the first pass, moving them into a temporary list, then splice the temporary
771 * list into the correct position in the AIL. This avoids needing to do an
772 * insert operation on every item.
773 *
774 * This function must be called with the AIL lock held.  The lock is dropped
775 * before returning.
776 */
777void
778xfs_trans_ail_update_bulk(
779	struct xfs_ail		*ailp,
780	struct xfs_ail_cursor	*cur,
781	struct xfs_log_item	**log_items,
782	int			nr_items,
783	xfs_lsn_t		lsn) __releases(ailp->ail_lock)
784{
785	struct xfs_log_item	*mlip;
786	xfs_lsn_t		tail_lsn = 0;
787	int			i;
788	LIST_HEAD(tmp);
789
790	ASSERT(nr_items > 0);		/* Not required, but true. */
791	mlip = xfs_ail_min(ailp);
792
793	for (i = 0; i < nr_items; i++) {
794		struct xfs_log_item *lip = log_items[i];
795		if (test_and_set_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
796			/* check if we really need to move the item */
797			if (XFS_LSN_CMP(lsn, lip->li_lsn) <= 0)
798				continue;
799
800			trace_xfs_ail_move(lip, lip->li_lsn, lsn);
801			if (mlip == lip && !tail_lsn)
802				tail_lsn = lip->li_lsn;
803
804			xfs_ail_delete(ailp, lip);
805		} else {
806			trace_xfs_ail_insert(lip, 0, lsn);
807		}
808		lip->li_lsn = lsn;
809		list_add(&lip->li_ail, &tmp);
810	}
811
812	if (!list_empty(&tmp))
813		xfs_ail_splice(ailp, cur, &tmp, lsn);
814
815	xfs_ail_update_finish(ailp, tail_lsn);
816}
817
818/* Insert a log item into the AIL. */
819void
820xfs_trans_ail_insert(
821	struct xfs_ail		*ailp,
822	struct xfs_log_item	*lip,
823	xfs_lsn_t		lsn)
824{
825	spin_lock(&ailp->ail_lock);
826	xfs_trans_ail_update_bulk(ailp, NULL, &lip, 1, lsn);
827}
828
829/*
830 * Delete one log item from the AIL.
831 *
832 * If this item was at the tail of the AIL, return the LSN of the log item so
833 * that we can use it to check if the LSN of the tail of the log has moved
834 * when finishing up the AIL delete process in xfs_ail_update_finish().
835 */
836xfs_lsn_t
837xfs_ail_delete_one(
838	struct xfs_ail		*ailp,
839	struct xfs_log_item	*lip)
840{
841	struct xfs_log_item	*mlip = xfs_ail_min(ailp);
842	xfs_lsn_t		lsn = lip->li_lsn;
843
844	trace_xfs_ail_delete(lip, mlip->li_lsn, lip->li_lsn);
845	xfs_ail_delete(ailp, lip);
846	clear_bit(XFS_LI_IN_AIL, &lip->li_flags);
847	lip->li_lsn = 0;
848
849	if (mlip == lip)
850		return lsn;
851	return 0;
852}
853
854void
855xfs_trans_ail_delete(
856	struct xfs_log_item	*lip,
857	int			shutdown_type)
858{
859	struct xfs_ail		*ailp = lip->li_ailp;
860	struct xfs_mount	*mp = ailp->ail_mount;
861	xfs_lsn_t		tail_lsn;
862
863	spin_lock(&ailp->ail_lock);
864	if (!test_bit(XFS_LI_IN_AIL, &lip->li_flags)) {
865		spin_unlock(&ailp->ail_lock);
866		if (shutdown_type && !XFS_FORCED_SHUTDOWN(mp)) {
867			xfs_alert_tag(mp, XFS_PTAG_AILDELETE,
868	"%s: attempting to delete a log item that is not in the AIL",
869					__func__);
870			xfs_force_shutdown(mp, shutdown_type);
871		}
872		return;
873	}
874
875	/* xfs_ail_update_finish() drops the AIL lock */
876	xfs_clear_li_failed(lip);
877	tail_lsn = xfs_ail_delete_one(ailp, lip);
878	xfs_ail_update_finish(ailp, tail_lsn);
879}
880
881int
882xfs_trans_ail_init(
883	xfs_mount_t	*mp)
884{
885	struct xfs_ail	*ailp;
886
887	ailp = kmem_zalloc(sizeof(struct xfs_ail), KM_MAYFAIL);
888	if (!ailp)
889		return -ENOMEM;
890
891	ailp->ail_mount = mp;
892	INIT_LIST_HEAD(&ailp->ail_head);
893	INIT_LIST_HEAD(&ailp->ail_cursors);
894	spin_lock_init(&ailp->ail_lock);
895	INIT_LIST_HEAD(&ailp->ail_buf_list);
896	init_waitqueue_head(&ailp->ail_empty);
897
898	ailp->ail_task = kthread_run(xfsaild, ailp, "xfsaild/%s",
899			ailp->ail_mount->m_super->s_id);
900	if (IS_ERR(ailp->ail_task))
901		goto out_free_ailp;
902
903	mp->m_ail = ailp;
904	return 0;
905
906out_free_ailp:
907	kmem_free(ailp);
908	return -ENOMEM;
909}
910
911void
912xfs_trans_ail_destroy(
913	xfs_mount_t	*mp)
914{
915	struct xfs_ail	*ailp = mp->m_ail;
916
917	kthread_stop(ailp->ail_task);
918	kmem_free(ailp);
919}
920