1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6#include "xfs.h" 7#include "xfs_fs.h" 8#include "xfs_shared.h" 9#include "xfs_format.h" 10#include "xfs_log_format.h" 11#include "xfs_trans_resv.h" 12#include "xfs_bit.h" 13#include "xfs_sb.h" 14#include "xfs_mount.h" 15#include "xfs_inode.h" 16#include "xfs_dir2.h" 17#include "xfs_ialloc.h" 18#include "xfs_alloc.h" 19#include "xfs_rtalloc.h" 20#include "xfs_bmap.h" 21#include "xfs_trans.h" 22#include "xfs_trans_priv.h" 23#include "xfs_log.h" 24#include "xfs_error.h" 25#include "xfs_quota.h" 26#include "xfs_fsops.h" 27#include "xfs_icache.h" 28#include "xfs_sysfs.h" 29#include "xfs_rmap_btree.h" 30#include "xfs_refcount_btree.h" 31#include "xfs_reflink.h" 32#include "xfs_extent_busy.h" 33#include "xfs_health.h" 34#include "xfs_trace.h" 35 36static DEFINE_MUTEX(xfs_uuid_table_mutex); 37static int xfs_uuid_table_size; 38static uuid_t *xfs_uuid_table; 39 40void 41xfs_uuid_table_free(void) 42{ 43 if (xfs_uuid_table_size == 0) 44 return; 45 kmem_free(xfs_uuid_table); 46 xfs_uuid_table = NULL; 47 xfs_uuid_table_size = 0; 48} 49 50/* 51 * See if the UUID is unique among mounted XFS filesystems. 52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted. 53 */ 54STATIC int 55xfs_uuid_mount( 56 struct xfs_mount *mp) 57{ 58 uuid_t *uuid = &mp->m_sb.sb_uuid; 59 int hole, i; 60 61 /* Publish UUID in struct super_block */ 62 uuid_copy(&mp->m_super->s_uuid, uuid); 63 64 if (mp->m_flags & XFS_MOUNT_NOUUID) 65 return 0; 66 67 if (uuid_is_null(uuid)) { 68 xfs_warn(mp, "Filesystem has null UUID - can't mount"); 69 return -EINVAL; 70 } 71 72 mutex_lock(&xfs_uuid_table_mutex); 73 for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) { 74 if (uuid_is_null(&xfs_uuid_table[i])) { 75 hole = i; 76 continue; 77 } 78 if (uuid_equal(uuid, &xfs_uuid_table[i])) 79 goto out_duplicate; 80 } 81 82 if (hole < 0) { 83 xfs_uuid_table = krealloc(xfs_uuid_table, 84 (xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table), 85 GFP_KERNEL | __GFP_NOFAIL); 86 hole = xfs_uuid_table_size++; 87 } 88 xfs_uuid_table[hole] = *uuid; 89 mutex_unlock(&xfs_uuid_table_mutex); 90 91 return 0; 92 93 out_duplicate: 94 mutex_unlock(&xfs_uuid_table_mutex); 95 xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid); 96 return -EINVAL; 97} 98 99STATIC void 100xfs_uuid_unmount( 101 struct xfs_mount *mp) 102{ 103 uuid_t *uuid = &mp->m_sb.sb_uuid; 104 int i; 105 106 if (mp->m_flags & XFS_MOUNT_NOUUID) 107 return; 108 109 mutex_lock(&xfs_uuid_table_mutex); 110 for (i = 0; i < xfs_uuid_table_size; i++) { 111 if (uuid_is_null(&xfs_uuid_table[i])) 112 continue; 113 if (!uuid_equal(uuid, &xfs_uuid_table[i])) 114 continue; 115 memset(&xfs_uuid_table[i], 0, sizeof(uuid_t)); 116 break; 117 } 118 ASSERT(i < xfs_uuid_table_size); 119 mutex_unlock(&xfs_uuid_table_mutex); 120} 121 122 123STATIC void 124__xfs_free_perag( 125 struct rcu_head *head) 126{ 127 struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head); 128 129 kmem_free(pag); 130} 131 132/* 133 * Free up the per-ag resources associated with the mount structure. 134 */ 135STATIC void 136xfs_free_perag( 137 xfs_mount_t *mp) 138{ 139 xfs_agnumber_t agno; 140 struct xfs_perag *pag; 141 142 for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) { 143 spin_lock(&mp->m_perag_lock); 144 pag = radix_tree_delete(&mp->m_perag_tree, agno); 145 spin_unlock(&mp->m_perag_lock); 146 ASSERT(pag); 147 XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0); 148 xfs_iunlink_destroy(pag); 149 xfs_buf_hash_destroy(pag); 150 call_rcu(&pag->rcu_head, __xfs_free_perag); 151 } 152} 153 154/* 155 * Check size of device based on the (data/realtime) block count. 156 * Note: this check is used by the growfs code as well as mount. 157 */ 158int 159xfs_sb_validate_fsb_count( 160 xfs_sb_t *sbp, 161 uint64_t nblocks) 162{ 163 ASSERT(PAGE_SHIFT >= sbp->sb_blocklog); 164 ASSERT(sbp->sb_blocklog >= BBSHIFT); 165 166 /* Limited by ULONG_MAX of page cache index */ 167 if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX) 168 return -EFBIG; 169 return 0; 170} 171 172int 173xfs_initialize_perag( 174 xfs_mount_t *mp, 175 xfs_agnumber_t agcount, 176 xfs_agnumber_t *maxagi) 177{ 178 xfs_agnumber_t index; 179 xfs_agnumber_t first_initialised = NULLAGNUMBER; 180 xfs_perag_t *pag; 181 int error = -ENOMEM; 182 183 /* 184 * Walk the current per-ag tree so we don't try to initialise AGs 185 * that already exist (growfs case). Allocate and insert all the 186 * AGs we don't find ready for initialisation. 187 */ 188 for (index = 0; index < agcount; index++) { 189 pag = xfs_perag_get(mp, index); 190 if (pag) { 191 xfs_perag_put(pag); 192 continue; 193 } 194 195 pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL); 196 if (!pag) { 197 error = -ENOMEM; 198 goto out_unwind_new_pags; 199 } 200 pag->pag_agno = index; 201 pag->pag_mount = mp; 202 spin_lock_init(&pag->pag_ici_lock); 203 INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC); 204 205 error = xfs_buf_hash_init(pag); 206 if (error) 207 goto out_free_pag; 208 init_waitqueue_head(&pag->pagb_wait); 209 spin_lock_init(&pag->pagb_lock); 210 pag->pagb_count = 0; 211 pag->pagb_tree = RB_ROOT; 212 213 error = radix_tree_preload(GFP_NOFS); 214 if (error) 215 goto out_hash_destroy; 216 217 spin_lock(&mp->m_perag_lock); 218 if (radix_tree_insert(&mp->m_perag_tree, index, pag)) { 219 WARN_ON_ONCE(1); 220 spin_unlock(&mp->m_perag_lock); 221 radix_tree_preload_end(); 222 error = -EEXIST; 223 goto out_hash_destroy; 224 } 225 spin_unlock(&mp->m_perag_lock); 226 radix_tree_preload_end(); 227 /* first new pag is fully initialized */ 228 if (first_initialised == NULLAGNUMBER) 229 first_initialised = index; 230 error = xfs_iunlink_init(pag); 231 if (error) 232 goto out_hash_destroy; 233 spin_lock_init(&pag->pag_state_lock); 234 } 235 236 index = xfs_set_inode_alloc(mp, agcount); 237 238 if (maxagi) 239 *maxagi = index; 240 241 mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp); 242 return 0; 243 244out_hash_destroy: 245 xfs_buf_hash_destroy(pag); 246out_free_pag: 247 kmem_free(pag); 248out_unwind_new_pags: 249 /* unwind any prior newly initialized pags */ 250 for (index = first_initialised; index < agcount; index++) { 251 pag = radix_tree_delete(&mp->m_perag_tree, index); 252 if (!pag) 253 break; 254 xfs_buf_hash_destroy(pag); 255 xfs_iunlink_destroy(pag); 256 kmem_free(pag); 257 } 258 return error; 259} 260 261/* 262 * xfs_readsb 263 * 264 * Does the initial read of the superblock. 265 */ 266int 267xfs_readsb( 268 struct xfs_mount *mp, 269 int flags) 270{ 271 unsigned int sector_size; 272 struct xfs_buf *bp; 273 struct xfs_sb *sbp = &mp->m_sb; 274 int error; 275 int loud = !(flags & XFS_MFSI_QUIET); 276 const struct xfs_buf_ops *buf_ops; 277 278 ASSERT(mp->m_sb_bp == NULL); 279 ASSERT(mp->m_ddev_targp != NULL); 280 281 /* 282 * For the initial read, we must guess at the sector 283 * size based on the block device. It's enough to 284 * get the sb_sectsize out of the superblock and 285 * then reread with the proper length. 286 * We don't verify it yet, because it may not be complete. 287 */ 288 sector_size = xfs_getsize_buftarg(mp->m_ddev_targp); 289 buf_ops = NULL; 290 291 /* 292 * Allocate a (locked) buffer to hold the superblock. This will be kept 293 * around at all times to optimize access to the superblock. Therefore, 294 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count 295 * elevated. 296 */ 297reread: 298 error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR, 299 BTOBB(sector_size), XBF_NO_IOACCT, &bp, 300 buf_ops); 301 if (error) { 302 if (loud) 303 xfs_warn(mp, "SB validate failed with error %d.", error); 304 /* bad CRC means corrupted metadata */ 305 if (error == -EFSBADCRC) 306 error = -EFSCORRUPTED; 307 return error; 308 } 309 310 /* 311 * Initialize the mount structure from the superblock. 312 */ 313 xfs_sb_from_disk(sbp, bp->b_addr); 314 315 /* 316 * If we haven't validated the superblock, do so now before we try 317 * to check the sector size and reread the superblock appropriately. 318 */ 319 if (sbp->sb_magicnum != XFS_SB_MAGIC) { 320 if (loud) 321 xfs_warn(mp, "Invalid superblock magic number"); 322 error = -EINVAL; 323 goto release_buf; 324 } 325 326 /* 327 * We must be able to do sector-sized and sector-aligned IO. 328 */ 329 if (sector_size > sbp->sb_sectsize) { 330 if (loud) 331 xfs_warn(mp, "device supports %u byte sectors (not %u)", 332 sector_size, sbp->sb_sectsize); 333 error = -ENOSYS; 334 goto release_buf; 335 } 336 337 if (buf_ops == NULL) { 338 /* 339 * Re-read the superblock so the buffer is correctly sized, 340 * and properly verified. 341 */ 342 xfs_buf_relse(bp); 343 sector_size = sbp->sb_sectsize; 344 buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops; 345 goto reread; 346 } 347 348 xfs_reinit_percpu_counters(mp); 349 350 /* no need to be quiet anymore, so reset the buf ops */ 351 bp->b_ops = &xfs_sb_buf_ops; 352 353 mp->m_sb_bp = bp; 354 xfs_buf_unlock(bp); 355 return 0; 356 357release_buf: 358 xfs_buf_relse(bp); 359 return error; 360} 361 362/* 363 * If the sunit/swidth change would move the precomputed root inode value, we 364 * must reject the ondisk change because repair will stumble over that. 365 * However, we allow the mount to proceed because we never rejected this 366 * combination before. Returns true to update the sb, false otherwise. 367 */ 368static inline int 369xfs_check_new_dalign( 370 struct xfs_mount *mp, 371 int new_dalign, 372 bool *update_sb) 373{ 374 struct xfs_sb *sbp = &mp->m_sb; 375 xfs_ino_t calc_ino; 376 377 calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign); 378 trace_xfs_check_new_dalign(mp, new_dalign, calc_ino); 379 380 if (sbp->sb_rootino == calc_ino) { 381 *update_sb = true; 382 return 0; 383 } 384 385 xfs_warn(mp, 386"Cannot change stripe alignment; would require moving root inode."); 387 388 /* 389 * XXX: Next time we add a new incompat feature, this should start 390 * returning -EINVAL to fail the mount. Until then, spit out a warning 391 * that we're ignoring the administrator's instructions. 392 */ 393 xfs_warn(mp, "Skipping superblock stripe alignment update."); 394 *update_sb = false; 395 return 0; 396} 397 398/* 399 * If we were provided with new sunit/swidth values as mount options, make sure 400 * that they pass basic alignment and superblock feature checks, and convert 401 * them into the same units (FSB) that everything else expects. This step 402 * /must/ be done before computing the inode geometry. 403 */ 404STATIC int 405xfs_validate_new_dalign( 406 struct xfs_mount *mp) 407{ 408 if (mp->m_dalign == 0) 409 return 0; 410 411 /* 412 * If stripe unit and stripe width are not multiples 413 * of the fs blocksize turn off alignment. 414 */ 415 if ((BBTOB(mp->m_dalign) & mp->m_blockmask) || 416 (BBTOB(mp->m_swidth) & mp->m_blockmask)) { 417 xfs_warn(mp, 418 "alignment check failed: sunit/swidth vs. blocksize(%d)", 419 mp->m_sb.sb_blocksize); 420 return -EINVAL; 421 } else { 422 /* 423 * Convert the stripe unit and width to FSBs. 424 */ 425 mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign); 426 if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) { 427 xfs_warn(mp, 428 "alignment check failed: sunit/swidth vs. agsize(%d)", 429 mp->m_sb.sb_agblocks); 430 return -EINVAL; 431 } else if (mp->m_dalign) { 432 mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth); 433 } else { 434 xfs_warn(mp, 435 "alignment check failed: sunit(%d) less than bsize(%d)", 436 mp->m_dalign, mp->m_sb.sb_blocksize); 437 return -EINVAL; 438 } 439 } 440 441 if (!xfs_sb_version_hasdalign(&mp->m_sb)) { 442 xfs_warn(mp, 443"cannot change alignment: superblock does not support data alignment"); 444 return -EINVAL; 445 } 446 447 return 0; 448} 449 450/* Update alignment values based on mount options and sb values. */ 451STATIC int 452xfs_update_alignment( 453 struct xfs_mount *mp) 454{ 455 struct xfs_sb *sbp = &mp->m_sb; 456 457 if (mp->m_dalign) { 458 bool update_sb; 459 int error; 460 461 if (sbp->sb_unit == mp->m_dalign && 462 sbp->sb_width == mp->m_swidth) 463 return 0; 464 465 error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb); 466 if (error || !update_sb) 467 return error; 468 469 sbp->sb_unit = mp->m_dalign; 470 sbp->sb_width = mp->m_swidth; 471 mp->m_update_sb = true; 472 } else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN && 473 xfs_sb_version_hasdalign(&mp->m_sb)) { 474 mp->m_dalign = sbp->sb_unit; 475 mp->m_swidth = sbp->sb_width; 476 } 477 478 return 0; 479} 480 481/* 482 * precalculate the low space thresholds for dynamic speculative preallocation. 483 */ 484void 485xfs_set_low_space_thresholds( 486 struct xfs_mount *mp) 487{ 488 int i; 489 490 for (i = 0; i < XFS_LOWSP_MAX; i++) { 491 uint64_t space = mp->m_sb.sb_dblocks; 492 493 do_div(space, 100); 494 mp->m_low_space[i] = space * (i + 1); 495 } 496} 497 498/* 499 * Check that the data (and log if separate) is an ok size. 500 */ 501STATIC int 502xfs_check_sizes( 503 struct xfs_mount *mp) 504{ 505 struct xfs_buf *bp; 506 xfs_daddr_t d; 507 int error; 508 509 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks); 510 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) { 511 xfs_warn(mp, "filesystem size mismatch detected"); 512 return -EFBIG; 513 } 514 error = xfs_buf_read_uncached(mp->m_ddev_targp, 515 d - XFS_FSS_TO_BB(mp, 1), 516 XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL); 517 if (error) { 518 xfs_warn(mp, "last sector read failed"); 519 return error; 520 } 521 xfs_buf_relse(bp); 522 523 if (mp->m_logdev_targp == mp->m_ddev_targp) 524 return 0; 525 526 d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks); 527 if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) { 528 xfs_warn(mp, "log size mismatch detected"); 529 return -EFBIG; 530 } 531 error = xfs_buf_read_uncached(mp->m_logdev_targp, 532 d - XFS_FSB_TO_BB(mp, 1), 533 XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL); 534 if (error) { 535 xfs_warn(mp, "log device read failed"); 536 return error; 537 } 538 xfs_buf_relse(bp); 539 return 0; 540} 541 542/* 543 * Clear the quotaflags in memory and in the superblock. 544 */ 545int 546xfs_mount_reset_sbqflags( 547 struct xfs_mount *mp) 548{ 549 mp->m_qflags = 0; 550 551 /* It is OK to look at sb_qflags in the mount path without m_sb_lock. */ 552 if (mp->m_sb.sb_qflags == 0) 553 return 0; 554 spin_lock(&mp->m_sb_lock); 555 mp->m_sb.sb_qflags = 0; 556 spin_unlock(&mp->m_sb_lock); 557 558 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 559 return 0; 560 561 return xfs_sync_sb(mp, false); 562} 563 564uint64_t 565xfs_default_resblks(xfs_mount_t *mp) 566{ 567 uint64_t resblks; 568 569 /* 570 * We default to 5% or 8192 fsbs of space reserved, whichever is 571 * smaller. This is intended to cover concurrent allocation 572 * transactions when we initially hit enospc. These each require a 4 573 * block reservation. Hence by default we cover roughly 2000 concurrent 574 * allocation reservations. 575 */ 576 resblks = mp->m_sb.sb_dblocks; 577 do_div(resblks, 20); 578 resblks = min_t(uint64_t, resblks, 8192); 579 return resblks; 580} 581 582/* Ensure the summary counts are correct. */ 583STATIC int 584xfs_check_summary_counts( 585 struct xfs_mount *mp) 586{ 587 /* 588 * The AG0 superblock verifier rejects in-progress filesystems, 589 * so we should never see the flag set this far into mounting. 590 */ 591 if (mp->m_sb.sb_inprogress) { 592 xfs_err(mp, "sb_inprogress set after log recovery??"); 593 WARN_ON(1); 594 return -EFSCORRUPTED; 595 } 596 597 /* 598 * Now the log is mounted, we know if it was an unclean shutdown or 599 * not. If it was, with the first phase of recovery has completed, we 600 * have consistent AG blocks on disk. We have not recovered EFIs yet, 601 * but they are recovered transactionally in the second recovery phase 602 * later. 603 * 604 * If the log was clean when we mounted, we can check the summary 605 * counters. If any of them are obviously incorrect, we can recompute 606 * them from the AGF headers in the next step. 607 */ 608 if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) && 609 (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks || 610 !xfs_verify_icount(mp, mp->m_sb.sb_icount) || 611 mp->m_sb.sb_ifree > mp->m_sb.sb_icount)) 612 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 613 614 /* 615 * We can safely re-initialise incore superblock counters from the 616 * per-ag data. These may not be correct if the filesystem was not 617 * cleanly unmounted, so we waited for recovery to finish before doing 618 * this. 619 * 620 * If the filesystem was cleanly unmounted or the previous check did 621 * not flag anything weird, then we can trust the values in the 622 * superblock to be correct and we don't need to do anything here. 623 * Otherwise, recalculate the summary counters. 624 */ 625 if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) || 626 XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) && 627 !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS)) 628 return 0; 629 630 return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount); 631} 632 633/* 634 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and 635 * internal inode structures can be sitting in the CIL and AIL at this point, 636 * so we need to unpin them, write them back and/or reclaim them before unmount 637 * can proceed. 638 * 639 * An inode cluster that has been freed can have its buffer still pinned in 640 * memory because the transaction is still sitting in a iclog. The stale inodes 641 * on that buffer will be pinned to the buffer until the transaction hits the 642 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and 643 * may never see the pinned buffer, so nothing will push out the iclog and 644 * unpin the buffer. 645 * 646 * Hence we need to force the log to unpin everything first. However, log 647 * forces don't wait for the discards they issue to complete, so we have to 648 * explicitly wait for them to complete here as well. 649 * 650 * Then we can tell the world we are unmounting so that error handling knows 651 * that the filesystem is going away and we should error out anything that we 652 * have been retrying in the background. This will prevent never-ending 653 * retries in AIL pushing from hanging the unmount. 654 * 655 * Finally, we can push the AIL to clean all the remaining dirty objects, then 656 * reclaim the remaining inodes that are still in memory at this point in time. 657 */ 658static void 659xfs_unmount_flush_inodes( 660 struct xfs_mount *mp) 661{ 662 xfs_log_force(mp, XFS_LOG_SYNC); 663 xfs_extent_busy_wait_all(mp); 664 flush_workqueue(xfs_discard_wq); 665 666 mp->m_flags |= XFS_MOUNT_UNMOUNTING; 667 668 xfs_ail_push_all_sync(mp->m_ail); 669 cancel_delayed_work_sync(&mp->m_reclaim_work); 670 xfs_reclaim_inodes(mp); 671 xfs_health_unmount(mp); 672} 673 674/* 675 * This function does the following on an initial mount of a file system: 676 * - reads the superblock from disk and init the mount struct 677 * - if we're a 32-bit kernel, do a size check on the superblock 678 * so we don't mount terabyte filesystems 679 * - init mount struct realtime fields 680 * - allocate inode hash table for fs 681 * - init directory manager 682 * - perform recovery and init the log manager 683 */ 684int 685xfs_mountfs( 686 struct xfs_mount *mp) 687{ 688 struct xfs_sb *sbp = &(mp->m_sb); 689 struct xfs_inode *rip; 690 struct xfs_ino_geometry *igeo = M_IGEO(mp); 691 uint64_t resblks; 692 uint quotamount = 0; 693 uint quotaflags = 0; 694 int error = 0; 695 696 xfs_sb_mount_common(mp, sbp); 697 698 /* 699 * Check for a mismatched features2 values. Older kernels read & wrote 700 * into the wrong sb offset for sb_features2 on some platforms due to 701 * xfs_sb_t not being 64bit size aligned when sb_features2 was added, 702 * which made older superblock reading/writing routines swap it as a 703 * 64-bit value. 704 * 705 * For backwards compatibility, we make both slots equal. 706 * 707 * If we detect a mismatched field, we OR the set bits into the existing 708 * features2 field in case it has already been modified; we don't want 709 * to lose any features. We then update the bad location with the ORed 710 * value so that older kernels will see any features2 flags. The 711 * superblock writeback code ensures the new sb_features2 is copied to 712 * sb_bad_features2 before it is logged or written to disk. 713 */ 714 if (xfs_sb_has_mismatched_features2(sbp)) { 715 xfs_warn(mp, "correcting sb_features alignment problem"); 716 sbp->sb_features2 |= sbp->sb_bad_features2; 717 mp->m_update_sb = true; 718 719 /* 720 * Re-check for ATTR2 in case it was found in bad_features2 721 * slot. 722 */ 723 if (xfs_sb_version_hasattr2(&mp->m_sb) && 724 !(mp->m_flags & XFS_MOUNT_NOATTR2)) 725 mp->m_flags |= XFS_MOUNT_ATTR2; 726 } 727 728 if (xfs_sb_version_hasattr2(&mp->m_sb) && 729 (mp->m_flags & XFS_MOUNT_NOATTR2)) { 730 xfs_sb_version_removeattr2(&mp->m_sb); 731 mp->m_update_sb = true; 732 733 /* update sb_versionnum for the clearing of the morebits */ 734 if (!sbp->sb_features2) 735 mp->m_update_sb = true; 736 } 737 738 /* always use v2 inodes by default now */ 739 if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) { 740 mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT; 741 mp->m_update_sb = true; 742 } 743 744 /* 745 * If we were given new sunit/swidth options, do some basic validation 746 * checks and convert the incore dalign and swidth values to the 747 * same units (FSB) that everything else uses. This /must/ happen 748 * before computing the inode geometry. 749 */ 750 error = xfs_validate_new_dalign(mp); 751 if (error) 752 goto out; 753 754 xfs_alloc_compute_maxlevels(mp); 755 xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK); 756 xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK); 757 xfs_ialloc_setup_geometry(mp); 758 xfs_rmapbt_compute_maxlevels(mp); 759 xfs_refcountbt_compute_maxlevels(mp); 760 761 /* 762 * Check if sb_agblocks is aligned at stripe boundary. If sb_agblocks 763 * is NOT aligned turn off m_dalign since allocator alignment is within 764 * an ag, therefore ag has to be aligned at stripe boundary. Note that 765 * we must compute the free space and rmap btree geometry before doing 766 * this. 767 */ 768 error = xfs_update_alignment(mp); 769 if (error) 770 goto out; 771 772 /* enable fail_at_unmount as default */ 773 mp->m_fail_unmount = true; 774 775 error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype, 776 NULL, mp->m_super->s_id); 777 if (error) 778 goto out; 779 780 error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype, 781 &mp->m_kobj, "stats"); 782 if (error) 783 goto out_remove_sysfs; 784 785 error = xfs_error_sysfs_init(mp); 786 if (error) 787 goto out_del_stats; 788 789 error = xfs_errortag_init(mp); 790 if (error) 791 goto out_remove_error_sysfs; 792 793 error = xfs_uuid_mount(mp); 794 if (error) 795 goto out_remove_errortag; 796 797 /* 798 * Update the preferred write size based on the information from the 799 * on-disk superblock. 800 */ 801 mp->m_allocsize_log = 802 max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log); 803 mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog); 804 805 /* set the low space thresholds for dynamic preallocation */ 806 xfs_set_low_space_thresholds(mp); 807 808 /* 809 * If enabled, sparse inode chunk alignment is expected to match the 810 * cluster size. Full inode chunk alignment must match the chunk size, 811 * but that is checked on sb read verification... 812 */ 813 if (xfs_sb_version_hassparseinodes(&mp->m_sb) && 814 mp->m_sb.sb_spino_align != 815 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) { 816 xfs_warn(mp, 817 "Sparse inode block alignment (%u) must match cluster size (%llu).", 818 mp->m_sb.sb_spino_align, 819 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)); 820 error = -EINVAL; 821 goto out_remove_uuid; 822 } 823 824 /* 825 * Check that the data (and log if separate) is an ok size. 826 */ 827 error = xfs_check_sizes(mp); 828 if (error) 829 goto out_remove_uuid; 830 831 /* 832 * Initialize realtime fields in the mount structure 833 */ 834 error = xfs_rtmount_init(mp); 835 if (error) { 836 xfs_warn(mp, "RT mount failed"); 837 goto out_remove_uuid; 838 } 839 840 /* 841 * Copies the low order bits of the timestamp and the randomly 842 * set "sequence" number out of a UUID. 843 */ 844 mp->m_fixedfsid[0] = 845 (get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) | 846 get_unaligned_be16(&sbp->sb_uuid.b[4]); 847 mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]); 848 849 error = xfs_da_mount(mp); 850 if (error) { 851 xfs_warn(mp, "Failed dir/attr init: %d", error); 852 goto out_remove_uuid; 853 } 854 855 /* 856 * Initialize the precomputed transaction reservations values. 857 */ 858 xfs_trans_init(mp); 859 860 /* 861 * Allocate and initialize the per-ag data. 862 */ 863 error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi); 864 if (error) { 865 xfs_warn(mp, "Failed per-ag init: %d", error); 866 goto out_free_dir; 867 } 868 869 if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) { 870 xfs_warn(mp, "no log defined"); 871 error = -EFSCORRUPTED; 872 goto out_free_perag; 873 } 874 875 /* 876 * Log's mount-time initialization. The first part of recovery can place 877 * some items on the AIL, to be handled when recovery is finished or 878 * cancelled. 879 */ 880 error = xfs_log_mount(mp, mp->m_logdev_targp, 881 XFS_FSB_TO_DADDR(mp, sbp->sb_logstart), 882 XFS_FSB_TO_BB(mp, sbp->sb_logblocks)); 883 if (error) { 884 xfs_warn(mp, "log mount failed"); 885 goto out_fail_wait; 886 } 887 888 /* Make sure the summary counts are ok. */ 889 error = xfs_check_summary_counts(mp); 890 if (error) 891 goto out_log_dealloc; 892 893 /* 894 * Get and sanity-check the root inode. 895 * Save the pointer to it in the mount structure. 896 */ 897 error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED, 898 XFS_ILOCK_EXCL, &rip); 899 if (error) { 900 xfs_warn(mp, 901 "Failed to read root inode 0x%llx, error %d", 902 sbp->sb_rootino, -error); 903 goto out_log_dealloc; 904 } 905 906 ASSERT(rip != NULL); 907 908 if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) { 909 xfs_warn(mp, "corrupted root inode %llu: not a directory", 910 (unsigned long long)rip->i_ino); 911 xfs_iunlock(rip, XFS_ILOCK_EXCL); 912 error = -EFSCORRUPTED; 913 goto out_rele_rip; 914 } 915 mp->m_rootip = rip; /* save it */ 916 917 xfs_iunlock(rip, XFS_ILOCK_EXCL); 918 919 /* 920 * Initialize realtime inode pointers in the mount structure 921 */ 922 error = xfs_rtmount_inodes(mp); 923 if (error) { 924 /* 925 * Free up the root inode. 926 */ 927 xfs_warn(mp, "failed to read RT inodes"); 928 goto out_rele_rip; 929 } 930 931 /* 932 * If this is a read-only mount defer the superblock updates until 933 * the next remount into writeable mode. Otherwise we would never 934 * perform the update e.g. for the root filesystem. 935 */ 936 if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) { 937 error = xfs_sync_sb(mp, false); 938 if (error) { 939 xfs_warn(mp, "failed to write sb changes"); 940 goto out_rtunmount; 941 } 942 } 943 944 /* 945 * Initialise the XFS quota management subsystem for this mount 946 */ 947 if (XFS_IS_QUOTA_RUNNING(mp)) { 948 error = xfs_qm_newmount(mp, "amount, "aflags); 949 if (error) 950 goto out_rtunmount; 951 } else { 952 ASSERT(!XFS_IS_QUOTA_ON(mp)); 953 954 /* 955 * If a file system had quotas running earlier, but decided to 956 * mount without -o uquota/pquota/gquota options, revoke the 957 * quotachecked license. 958 */ 959 if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) { 960 xfs_notice(mp, "resetting quota flags"); 961 error = xfs_mount_reset_sbqflags(mp); 962 if (error) 963 goto out_rtunmount; 964 } 965 } 966 967 /* 968 * Finish recovering the file system. This part needed to be delayed 969 * until after the root and real-time bitmap inodes were consistently 970 * read in. Temporarily create per-AG space reservations for metadata 971 * btree shape changes because space freeing transactions (for inode 972 * inactivation) require the per-AG reservation in lieu of reserving 973 * blocks. 974 */ 975 error = xfs_fs_reserve_ag_blocks(mp); 976 if (error && error == -ENOSPC) 977 xfs_warn(mp, 978 "ENOSPC reserving per-AG metadata pool, log recovery may fail."); 979 error = xfs_log_mount_finish(mp); 980 xfs_fs_unreserve_ag_blocks(mp); 981 if (error) { 982 xfs_warn(mp, "log mount finish failed"); 983 goto out_rtunmount; 984 } 985 986 /* 987 * Now the log is fully replayed, we can transition to full read-only 988 * mode for read-only mounts. This will sync all the metadata and clean 989 * the log so that the recovery we just performed does not have to be 990 * replayed again on the next mount. 991 * 992 * We use the same quiesce mechanism as the rw->ro remount, as they are 993 * semantically identical operations. 994 */ 995 if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) == 996 XFS_MOUNT_RDONLY) { 997 xfs_quiesce_attr(mp); 998 } 999 1000 /* 1001 * Complete the quota initialisation, post-log-replay component. 1002 */ 1003 if (quotamount) { 1004 ASSERT(mp->m_qflags == 0); 1005 mp->m_qflags = quotaflags; 1006 1007 xfs_qm_mount_quotas(mp); 1008 } 1009 1010 /* 1011 * Now we are mounted, reserve a small amount of unused space for 1012 * privileged transactions. This is needed so that transaction 1013 * space required for critical operations can dip into this pool 1014 * when at ENOSPC. This is needed for operations like create with 1015 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations 1016 * are not allowed to use this reserved space. 1017 * 1018 * This may drive us straight to ENOSPC on mount, but that implies 1019 * we were already there on the last unmount. Warn if this occurs. 1020 */ 1021 if (!(mp->m_flags & XFS_MOUNT_RDONLY)) { 1022 resblks = xfs_default_resblks(mp); 1023 error = xfs_reserve_blocks(mp, &resblks, NULL); 1024 if (error) 1025 xfs_warn(mp, 1026 "Unable to allocate reserve blocks. Continuing without reserve pool."); 1027 1028 /* Recover any CoW blocks that never got remapped. */ 1029 error = xfs_reflink_recover_cow(mp); 1030 if (error) { 1031 xfs_err(mp, 1032 "Error %d recovering leftover CoW allocations.", error); 1033 xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE); 1034 goto out_quota; 1035 } 1036 1037 /* Reserve AG blocks for future btree expansion. */ 1038 error = xfs_fs_reserve_ag_blocks(mp); 1039 if (error && error != -ENOSPC) 1040 goto out_agresv; 1041 } 1042 1043 return 0; 1044 1045 out_agresv: 1046 xfs_fs_unreserve_ag_blocks(mp); 1047 out_quota: 1048 xfs_qm_unmount_quotas(mp); 1049 out_rtunmount: 1050 xfs_rtunmount_inodes(mp); 1051 out_rele_rip: 1052 xfs_irele(rip); 1053 /* Clean out dquots that might be in memory after quotacheck. */ 1054 xfs_qm_unmount(mp); 1055 /* 1056 * Flush all inode reclamation work and flush the log. 1057 * We have to do this /after/ rtunmount and qm_unmount because those 1058 * two will have scheduled delayed reclaim for the rt/quota inodes. 1059 * 1060 * This is slightly different from the unmountfs call sequence 1061 * because we could be tearing down a partially set up mount. In 1062 * particular, if log_mount_finish fails we bail out without calling 1063 * qm_unmount_quotas and therefore rely on qm_unmount to release the 1064 * quota inodes. 1065 */ 1066 xfs_unmount_flush_inodes(mp); 1067 out_log_dealloc: 1068 xfs_log_mount_cancel(mp); 1069 out_fail_wait: 1070 if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp) 1071 xfs_wait_buftarg(mp->m_logdev_targp); 1072 xfs_wait_buftarg(mp->m_ddev_targp); 1073 out_free_perag: 1074 xfs_free_perag(mp); 1075 out_free_dir: 1076 xfs_da_unmount(mp); 1077 out_remove_uuid: 1078 xfs_uuid_unmount(mp); 1079 out_remove_errortag: 1080 xfs_errortag_del(mp); 1081 out_remove_error_sysfs: 1082 xfs_error_sysfs_del(mp); 1083 out_del_stats: 1084 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1085 out_remove_sysfs: 1086 xfs_sysfs_del(&mp->m_kobj); 1087 out: 1088 return error; 1089} 1090 1091/* 1092 * This flushes out the inodes,dquots and the superblock, unmounts the 1093 * log and makes sure that incore structures are freed. 1094 */ 1095void 1096xfs_unmountfs( 1097 struct xfs_mount *mp) 1098{ 1099 uint64_t resblks; 1100 int error; 1101 1102 xfs_stop_block_reaping(mp); 1103 xfs_fs_unreserve_ag_blocks(mp); 1104 xfs_qm_unmount_quotas(mp); 1105 xfs_rtunmount_inodes(mp); 1106 xfs_irele(mp->m_rootip); 1107 1108 xfs_unmount_flush_inodes(mp); 1109 1110 xfs_qm_unmount(mp); 1111 1112 /* 1113 * Unreserve any blocks we have so that when we unmount we don't account 1114 * the reserved free space as used. This is really only necessary for 1115 * lazy superblock counting because it trusts the incore superblock 1116 * counters to be absolutely correct on clean unmount. 1117 * 1118 * We don't bother correcting this elsewhere for lazy superblock 1119 * counting because on mount of an unclean filesystem we reconstruct the 1120 * correct counter value and this is irrelevant. 1121 * 1122 * For non-lazy counter filesystems, this doesn't matter at all because 1123 * we only every apply deltas to the superblock and hence the incore 1124 * value does not matter.... 1125 */ 1126 resblks = 0; 1127 error = xfs_reserve_blocks(mp, &resblks, NULL); 1128 if (error) 1129 xfs_warn(mp, "Unable to free reserved block pool. " 1130 "Freespace may not be correct on next mount."); 1131 1132 error = xfs_log_sbcount(mp); 1133 if (error) 1134 xfs_warn(mp, "Unable to update superblock counters. " 1135 "Freespace may not be correct on next mount."); 1136 1137 1138 xfs_log_unmount(mp); 1139 xfs_da_unmount(mp); 1140 xfs_uuid_unmount(mp); 1141 1142#if defined(DEBUG) 1143 xfs_errortag_clearall(mp); 1144#endif 1145 xfs_free_perag(mp); 1146 1147 xfs_errortag_del(mp); 1148 xfs_error_sysfs_del(mp); 1149 xfs_sysfs_del(&mp->m_stats.xs_kobj); 1150 xfs_sysfs_del(&mp->m_kobj); 1151} 1152 1153/* 1154 * Determine whether modifications can proceed. The caller specifies the minimum 1155 * freeze level for which modifications should not be allowed. This allows 1156 * certain operations to proceed while the freeze sequence is in progress, if 1157 * necessary. 1158 */ 1159bool 1160xfs_fs_writable( 1161 struct xfs_mount *mp, 1162 int level) 1163{ 1164 ASSERT(level > SB_UNFROZEN); 1165 if ((mp->m_super->s_writers.frozen >= level) || 1166 XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY)) 1167 return false; 1168 1169 return true; 1170} 1171 1172/* 1173 * xfs_log_sbcount 1174 * 1175 * Sync the superblock counters to disk. 1176 * 1177 * Note this code can be called during the process of freezing, so we use the 1178 * transaction allocator that does not block when the transaction subsystem is 1179 * in its frozen state. 1180 */ 1181int 1182xfs_log_sbcount(xfs_mount_t *mp) 1183{ 1184 if (!xfs_log_writable(mp)) 1185 return 0; 1186 1187 /* 1188 * we don't need to do this if we are updating the superblock 1189 * counters on every modification. 1190 */ 1191 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1192 return 0; 1193 1194 return xfs_sync_sb(mp, true); 1195} 1196 1197/* 1198 * Deltas for the block count can vary from 1 to very large, but lock contention 1199 * only occurs on frequent small block count updates such as in the delayed 1200 * allocation path for buffered writes (page a time updates). Hence we set 1201 * a large batch count (1024) to minimise global counter updates except when 1202 * we get near to ENOSPC and we have to be very accurate with our updates. 1203 */ 1204#define XFS_FDBLOCKS_BATCH 1024 1205int 1206xfs_mod_fdblocks( 1207 struct xfs_mount *mp, 1208 int64_t delta, 1209 bool rsvd) 1210{ 1211 int64_t lcounter; 1212 long long res_used; 1213 s32 batch; 1214 1215 if (delta > 0) { 1216 /* 1217 * If the reserve pool is depleted, put blocks back into it 1218 * first. Most of the time the pool is full. 1219 */ 1220 if (likely(mp->m_resblks == mp->m_resblks_avail)) { 1221 percpu_counter_add(&mp->m_fdblocks, delta); 1222 return 0; 1223 } 1224 1225 spin_lock(&mp->m_sb_lock); 1226 res_used = (long long)(mp->m_resblks - mp->m_resblks_avail); 1227 1228 if (res_used > delta) { 1229 mp->m_resblks_avail += delta; 1230 } else { 1231 delta -= res_used; 1232 mp->m_resblks_avail = mp->m_resblks; 1233 percpu_counter_add(&mp->m_fdblocks, delta); 1234 } 1235 spin_unlock(&mp->m_sb_lock); 1236 return 0; 1237 } 1238 1239 /* 1240 * Taking blocks away, need to be more accurate the closer we 1241 * are to zero. 1242 * 1243 * If the counter has a value of less than 2 * max batch size, 1244 * then make everything serialise as we are real close to 1245 * ENOSPC. 1246 */ 1247 if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH, 1248 XFS_FDBLOCKS_BATCH) < 0) 1249 batch = 1; 1250 else 1251 batch = XFS_FDBLOCKS_BATCH; 1252 1253 percpu_counter_add_batch(&mp->m_fdblocks, delta, batch); 1254 if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside, 1255 XFS_FDBLOCKS_BATCH) >= 0) { 1256 /* we had space! */ 1257 return 0; 1258 } 1259 1260 /* 1261 * lock up the sb for dipping into reserves before releasing the space 1262 * that took us to ENOSPC. 1263 */ 1264 spin_lock(&mp->m_sb_lock); 1265 percpu_counter_add(&mp->m_fdblocks, -delta); 1266 if (!rsvd) 1267 goto fdblocks_enospc; 1268 1269 lcounter = (long long)mp->m_resblks_avail + delta; 1270 if (lcounter >= 0) { 1271 mp->m_resblks_avail = lcounter; 1272 spin_unlock(&mp->m_sb_lock); 1273 return 0; 1274 } 1275 xfs_warn_once(mp, 1276"Reserve blocks depleted! Consider increasing reserve pool size."); 1277 1278fdblocks_enospc: 1279 spin_unlock(&mp->m_sb_lock); 1280 return -ENOSPC; 1281} 1282 1283int 1284xfs_mod_frextents( 1285 struct xfs_mount *mp, 1286 int64_t delta) 1287{ 1288 int64_t lcounter; 1289 int ret = 0; 1290 1291 spin_lock(&mp->m_sb_lock); 1292 lcounter = mp->m_sb.sb_frextents + delta; 1293 if (lcounter < 0) 1294 ret = -ENOSPC; 1295 else 1296 mp->m_sb.sb_frextents = lcounter; 1297 spin_unlock(&mp->m_sb_lock); 1298 return ret; 1299} 1300 1301/* 1302 * Used to free the superblock along various error paths. 1303 */ 1304void 1305xfs_freesb( 1306 struct xfs_mount *mp) 1307{ 1308 struct xfs_buf *bp = mp->m_sb_bp; 1309 1310 xfs_buf_lock(bp); 1311 mp->m_sb_bp = NULL; 1312 xfs_buf_relse(bp); 1313} 1314 1315/* 1316 * If the underlying (data/log/rt) device is readonly, there are some 1317 * operations that cannot proceed. 1318 */ 1319int 1320xfs_dev_is_read_only( 1321 struct xfs_mount *mp, 1322 char *message) 1323{ 1324 if (xfs_readonly_buftarg(mp->m_ddev_targp) || 1325 xfs_readonly_buftarg(mp->m_logdev_targp) || 1326 (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) { 1327 xfs_notice(mp, "%s required on read-only device.", message); 1328 xfs_notice(mp, "write access unavailable, cannot proceed."); 1329 return -EROFS; 1330 } 1331 return 0; 1332} 1333 1334/* Force the summary counters to be recalculated at next mount. */ 1335void 1336xfs_force_summary_recalc( 1337 struct xfs_mount *mp) 1338{ 1339 if (!xfs_sb_version_haslazysbcount(&mp->m_sb)) 1340 return; 1341 1342 xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS); 1343} 1344 1345/* 1346 * Update the in-core delayed block counter. 1347 * 1348 * We prefer to update the counter without having to take a spinlock for every 1349 * counter update (i.e. batching). Each change to delayed allocation 1350 * reservations can change can easily exceed the default percpu counter 1351 * batching, so we use a larger batch factor here. 1352 * 1353 * Note that we don't currently have any callers requiring fast summation 1354 * (e.g. percpu_counter_read) so we can use a big batch value here. 1355 */ 1356#define XFS_DELALLOC_BATCH (4096) 1357void 1358xfs_mod_delalloc( 1359 struct xfs_mount *mp, 1360 int64_t delta) 1361{ 1362 percpu_counter_add_batch(&mp->m_delalloc_blks, delta, 1363 XFS_DELALLOC_BATCH); 1364} 1365