xref: /kernel/linux/linux-5.10/fs/xfs/xfs_mount.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_inode.h"
16#include "xfs_dir2.h"
17#include "xfs_ialloc.h"
18#include "xfs_alloc.h"
19#include "xfs_rtalloc.h"
20#include "xfs_bmap.h"
21#include "xfs_trans.h"
22#include "xfs_trans_priv.h"
23#include "xfs_log.h"
24#include "xfs_error.h"
25#include "xfs_quota.h"
26#include "xfs_fsops.h"
27#include "xfs_icache.h"
28#include "xfs_sysfs.h"
29#include "xfs_rmap_btree.h"
30#include "xfs_refcount_btree.h"
31#include "xfs_reflink.h"
32#include "xfs_extent_busy.h"
33#include "xfs_health.h"
34#include "xfs_trace.h"
35
36static DEFINE_MUTEX(xfs_uuid_table_mutex);
37static int xfs_uuid_table_size;
38static uuid_t *xfs_uuid_table;
39
40void
41xfs_uuid_table_free(void)
42{
43	if (xfs_uuid_table_size == 0)
44		return;
45	kmem_free(xfs_uuid_table);
46	xfs_uuid_table = NULL;
47	xfs_uuid_table_size = 0;
48}
49
50/*
51 * See if the UUID is unique among mounted XFS filesystems.
52 * Mount fails if UUID is nil or a FS with the same UUID is already mounted.
53 */
54STATIC int
55xfs_uuid_mount(
56	struct xfs_mount	*mp)
57{
58	uuid_t			*uuid = &mp->m_sb.sb_uuid;
59	int			hole, i;
60
61	/* Publish UUID in struct super_block */
62	uuid_copy(&mp->m_super->s_uuid, uuid);
63
64	if (mp->m_flags & XFS_MOUNT_NOUUID)
65		return 0;
66
67	if (uuid_is_null(uuid)) {
68		xfs_warn(mp, "Filesystem has null UUID - can't mount");
69		return -EINVAL;
70	}
71
72	mutex_lock(&xfs_uuid_table_mutex);
73	for (i = 0, hole = -1; i < xfs_uuid_table_size; i++) {
74		if (uuid_is_null(&xfs_uuid_table[i])) {
75			hole = i;
76			continue;
77		}
78		if (uuid_equal(uuid, &xfs_uuid_table[i]))
79			goto out_duplicate;
80	}
81
82	if (hole < 0) {
83		xfs_uuid_table = krealloc(xfs_uuid_table,
84			(xfs_uuid_table_size + 1) * sizeof(*xfs_uuid_table),
85			GFP_KERNEL | __GFP_NOFAIL);
86		hole = xfs_uuid_table_size++;
87	}
88	xfs_uuid_table[hole] = *uuid;
89	mutex_unlock(&xfs_uuid_table_mutex);
90
91	return 0;
92
93 out_duplicate:
94	mutex_unlock(&xfs_uuid_table_mutex);
95	xfs_warn(mp, "Filesystem has duplicate UUID %pU - can't mount", uuid);
96	return -EINVAL;
97}
98
99STATIC void
100xfs_uuid_unmount(
101	struct xfs_mount	*mp)
102{
103	uuid_t			*uuid = &mp->m_sb.sb_uuid;
104	int			i;
105
106	if (mp->m_flags & XFS_MOUNT_NOUUID)
107		return;
108
109	mutex_lock(&xfs_uuid_table_mutex);
110	for (i = 0; i < xfs_uuid_table_size; i++) {
111		if (uuid_is_null(&xfs_uuid_table[i]))
112			continue;
113		if (!uuid_equal(uuid, &xfs_uuid_table[i]))
114			continue;
115		memset(&xfs_uuid_table[i], 0, sizeof(uuid_t));
116		break;
117	}
118	ASSERT(i < xfs_uuid_table_size);
119	mutex_unlock(&xfs_uuid_table_mutex);
120}
121
122
123STATIC void
124__xfs_free_perag(
125	struct rcu_head	*head)
126{
127	struct xfs_perag *pag = container_of(head, struct xfs_perag, rcu_head);
128
129	kmem_free(pag);
130}
131
132/*
133 * Free up the per-ag resources associated with the mount structure.
134 */
135STATIC void
136xfs_free_perag(
137	xfs_mount_t	*mp)
138{
139	xfs_agnumber_t	agno;
140	struct xfs_perag *pag;
141
142	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
143		spin_lock(&mp->m_perag_lock);
144		pag = radix_tree_delete(&mp->m_perag_tree, agno);
145		spin_unlock(&mp->m_perag_lock);
146		ASSERT(pag);
147		XFS_IS_CORRUPT(pag->pag_mount, atomic_read(&pag->pag_ref) != 0);
148		xfs_iunlink_destroy(pag);
149		xfs_buf_hash_destroy(pag);
150		call_rcu(&pag->rcu_head, __xfs_free_perag);
151	}
152}
153
154/*
155 * Check size of device based on the (data/realtime) block count.
156 * Note: this check is used by the growfs code as well as mount.
157 */
158int
159xfs_sb_validate_fsb_count(
160	xfs_sb_t	*sbp,
161	uint64_t	nblocks)
162{
163	ASSERT(PAGE_SHIFT >= sbp->sb_blocklog);
164	ASSERT(sbp->sb_blocklog >= BBSHIFT);
165
166	/* Limited by ULONG_MAX of page cache index */
167	if (nblocks >> (PAGE_SHIFT - sbp->sb_blocklog) > ULONG_MAX)
168		return -EFBIG;
169	return 0;
170}
171
172int
173xfs_initialize_perag(
174	xfs_mount_t	*mp,
175	xfs_agnumber_t	agcount,
176	xfs_agnumber_t	*maxagi)
177{
178	xfs_agnumber_t	index;
179	xfs_agnumber_t	first_initialised = NULLAGNUMBER;
180	xfs_perag_t	*pag;
181	int		error = -ENOMEM;
182
183	/*
184	 * Walk the current per-ag tree so we don't try to initialise AGs
185	 * that already exist (growfs case). Allocate and insert all the
186	 * AGs we don't find ready for initialisation.
187	 */
188	for (index = 0; index < agcount; index++) {
189		pag = xfs_perag_get(mp, index);
190		if (pag) {
191			xfs_perag_put(pag);
192			continue;
193		}
194
195		pag = kmem_zalloc(sizeof(*pag), KM_MAYFAIL);
196		if (!pag) {
197			error = -ENOMEM;
198			goto out_unwind_new_pags;
199		}
200		pag->pag_agno = index;
201		pag->pag_mount = mp;
202		spin_lock_init(&pag->pag_ici_lock);
203		INIT_RADIX_TREE(&pag->pag_ici_root, GFP_ATOMIC);
204
205		error = xfs_buf_hash_init(pag);
206		if (error)
207			goto out_free_pag;
208		init_waitqueue_head(&pag->pagb_wait);
209		spin_lock_init(&pag->pagb_lock);
210		pag->pagb_count = 0;
211		pag->pagb_tree = RB_ROOT;
212
213		error = radix_tree_preload(GFP_NOFS);
214		if (error)
215			goto out_hash_destroy;
216
217		spin_lock(&mp->m_perag_lock);
218		if (radix_tree_insert(&mp->m_perag_tree, index, pag)) {
219			WARN_ON_ONCE(1);
220			spin_unlock(&mp->m_perag_lock);
221			radix_tree_preload_end();
222			error = -EEXIST;
223			goto out_hash_destroy;
224		}
225		spin_unlock(&mp->m_perag_lock);
226		radix_tree_preload_end();
227		/* first new pag is fully initialized */
228		if (first_initialised == NULLAGNUMBER)
229			first_initialised = index;
230		error = xfs_iunlink_init(pag);
231		if (error)
232			goto out_hash_destroy;
233		spin_lock_init(&pag->pag_state_lock);
234	}
235
236	index = xfs_set_inode_alloc(mp, agcount);
237
238	if (maxagi)
239		*maxagi = index;
240
241	mp->m_ag_prealloc_blocks = xfs_prealloc_blocks(mp);
242	return 0;
243
244out_hash_destroy:
245	xfs_buf_hash_destroy(pag);
246out_free_pag:
247	kmem_free(pag);
248out_unwind_new_pags:
249	/* unwind any prior newly initialized pags */
250	for (index = first_initialised; index < agcount; index++) {
251		pag = radix_tree_delete(&mp->m_perag_tree, index);
252		if (!pag)
253			break;
254		xfs_buf_hash_destroy(pag);
255		xfs_iunlink_destroy(pag);
256		kmem_free(pag);
257	}
258	return error;
259}
260
261/*
262 * xfs_readsb
263 *
264 * Does the initial read of the superblock.
265 */
266int
267xfs_readsb(
268	struct xfs_mount *mp,
269	int		flags)
270{
271	unsigned int	sector_size;
272	struct xfs_buf	*bp;
273	struct xfs_sb	*sbp = &mp->m_sb;
274	int		error;
275	int		loud = !(flags & XFS_MFSI_QUIET);
276	const struct xfs_buf_ops *buf_ops;
277
278	ASSERT(mp->m_sb_bp == NULL);
279	ASSERT(mp->m_ddev_targp != NULL);
280
281	/*
282	 * For the initial read, we must guess at the sector
283	 * size based on the block device.  It's enough to
284	 * get the sb_sectsize out of the superblock and
285	 * then reread with the proper length.
286	 * We don't verify it yet, because it may not be complete.
287	 */
288	sector_size = xfs_getsize_buftarg(mp->m_ddev_targp);
289	buf_ops = NULL;
290
291	/*
292	 * Allocate a (locked) buffer to hold the superblock. This will be kept
293	 * around at all times to optimize access to the superblock. Therefore,
294	 * set XBF_NO_IOACCT to make sure it doesn't hold the buftarg count
295	 * elevated.
296	 */
297reread:
298	error = xfs_buf_read_uncached(mp->m_ddev_targp, XFS_SB_DADDR,
299				      BTOBB(sector_size), XBF_NO_IOACCT, &bp,
300				      buf_ops);
301	if (error) {
302		if (loud)
303			xfs_warn(mp, "SB validate failed with error %d.", error);
304		/* bad CRC means corrupted metadata */
305		if (error == -EFSBADCRC)
306			error = -EFSCORRUPTED;
307		return error;
308	}
309
310	/*
311	 * Initialize the mount structure from the superblock.
312	 */
313	xfs_sb_from_disk(sbp, bp->b_addr);
314
315	/*
316	 * If we haven't validated the superblock, do so now before we try
317	 * to check the sector size and reread the superblock appropriately.
318	 */
319	if (sbp->sb_magicnum != XFS_SB_MAGIC) {
320		if (loud)
321			xfs_warn(mp, "Invalid superblock magic number");
322		error = -EINVAL;
323		goto release_buf;
324	}
325
326	/*
327	 * We must be able to do sector-sized and sector-aligned IO.
328	 */
329	if (sector_size > sbp->sb_sectsize) {
330		if (loud)
331			xfs_warn(mp, "device supports %u byte sectors (not %u)",
332				sector_size, sbp->sb_sectsize);
333		error = -ENOSYS;
334		goto release_buf;
335	}
336
337	if (buf_ops == NULL) {
338		/*
339		 * Re-read the superblock so the buffer is correctly sized,
340		 * and properly verified.
341		 */
342		xfs_buf_relse(bp);
343		sector_size = sbp->sb_sectsize;
344		buf_ops = loud ? &xfs_sb_buf_ops : &xfs_sb_quiet_buf_ops;
345		goto reread;
346	}
347
348	xfs_reinit_percpu_counters(mp);
349
350	/* no need to be quiet anymore, so reset the buf ops */
351	bp->b_ops = &xfs_sb_buf_ops;
352
353	mp->m_sb_bp = bp;
354	xfs_buf_unlock(bp);
355	return 0;
356
357release_buf:
358	xfs_buf_relse(bp);
359	return error;
360}
361
362/*
363 * If the sunit/swidth change would move the precomputed root inode value, we
364 * must reject the ondisk change because repair will stumble over that.
365 * However, we allow the mount to proceed because we never rejected this
366 * combination before.  Returns true to update the sb, false otherwise.
367 */
368static inline int
369xfs_check_new_dalign(
370	struct xfs_mount	*mp,
371	int			new_dalign,
372	bool			*update_sb)
373{
374	struct xfs_sb		*sbp = &mp->m_sb;
375	xfs_ino_t		calc_ino;
376
377	calc_ino = xfs_ialloc_calc_rootino(mp, new_dalign);
378	trace_xfs_check_new_dalign(mp, new_dalign, calc_ino);
379
380	if (sbp->sb_rootino == calc_ino) {
381		*update_sb = true;
382		return 0;
383	}
384
385	xfs_warn(mp,
386"Cannot change stripe alignment; would require moving root inode.");
387
388	/*
389	 * XXX: Next time we add a new incompat feature, this should start
390	 * returning -EINVAL to fail the mount.  Until then, spit out a warning
391	 * that we're ignoring the administrator's instructions.
392	 */
393	xfs_warn(mp, "Skipping superblock stripe alignment update.");
394	*update_sb = false;
395	return 0;
396}
397
398/*
399 * If we were provided with new sunit/swidth values as mount options, make sure
400 * that they pass basic alignment and superblock feature checks, and convert
401 * them into the same units (FSB) that everything else expects.  This step
402 * /must/ be done before computing the inode geometry.
403 */
404STATIC int
405xfs_validate_new_dalign(
406	struct xfs_mount	*mp)
407{
408	if (mp->m_dalign == 0)
409		return 0;
410
411	/*
412	 * If stripe unit and stripe width are not multiples
413	 * of the fs blocksize turn off alignment.
414	 */
415	if ((BBTOB(mp->m_dalign) & mp->m_blockmask) ||
416	    (BBTOB(mp->m_swidth) & mp->m_blockmask)) {
417		xfs_warn(mp,
418	"alignment check failed: sunit/swidth vs. blocksize(%d)",
419			mp->m_sb.sb_blocksize);
420		return -EINVAL;
421	} else {
422		/*
423		 * Convert the stripe unit and width to FSBs.
424		 */
425		mp->m_dalign = XFS_BB_TO_FSBT(mp, mp->m_dalign);
426		if (mp->m_dalign && (mp->m_sb.sb_agblocks % mp->m_dalign)) {
427			xfs_warn(mp,
428		"alignment check failed: sunit/swidth vs. agsize(%d)",
429				 mp->m_sb.sb_agblocks);
430			return -EINVAL;
431		} else if (mp->m_dalign) {
432			mp->m_swidth = XFS_BB_TO_FSBT(mp, mp->m_swidth);
433		} else {
434			xfs_warn(mp,
435		"alignment check failed: sunit(%d) less than bsize(%d)",
436				 mp->m_dalign, mp->m_sb.sb_blocksize);
437			return -EINVAL;
438		}
439	}
440
441	if (!xfs_sb_version_hasdalign(&mp->m_sb)) {
442		xfs_warn(mp,
443"cannot change alignment: superblock does not support data alignment");
444		return -EINVAL;
445	}
446
447	return 0;
448}
449
450/* Update alignment values based on mount options and sb values. */
451STATIC int
452xfs_update_alignment(
453	struct xfs_mount	*mp)
454{
455	struct xfs_sb		*sbp = &mp->m_sb;
456
457	if (mp->m_dalign) {
458		bool		update_sb;
459		int		error;
460
461		if (sbp->sb_unit == mp->m_dalign &&
462		    sbp->sb_width == mp->m_swidth)
463			return 0;
464
465		error = xfs_check_new_dalign(mp, mp->m_dalign, &update_sb);
466		if (error || !update_sb)
467			return error;
468
469		sbp->sb_unit = mp->m_dalign;
470		sbp->sb_width = mp->m_swidth;
471		mp->m_update_sb = true;
472	} else if ((mp->m_flags & XFS_MOUNT_NOALIGN) != XFS_MOUNT_NOALIGN &&
473		    xfs_sb_version_hasdalign(&mp->m_sb)) {
474		mp->m_dalign = sbp->sb_unit;
475		mp->m_swidth = sbp->sb_width;
476	}
477
478	return 0;
479}
480
481/*
482 * precalculate the low space thresholds for dynamic speculative preallocation.
483 */
484void
485xfs_set_low_space_thresholds(
486	struct xfs_mount	*mp)
487{
488	int i;
489
490	for (i = 0; i < XFS_LOWSP_MAX; i++) {
491		uint64_t space = mp->m_sb.sb_dblocks;
492
493		do_div(space, 100);
494		mp->m_low_space[i] = space * (i + 1);
495	}
496}
497
498/*
499 * Check that the data (and log if separate) is an ok size.
500 */
501STATIC int
502xfs_check_sizes(
503	struct xfs_mount *mp)
504{
505	struct xfs_buf	*bp;
506	xfs_daddr_t	d;
507	int		error;
508
509	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_dblocks);
510	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_dblocks) {
511		xfs_warn(mp, "filesystem size mismatch detected");
512		return -EFBIG;
513	}
514	error = xfs_buf_read_uncached(mp->m_ddev_targp,
515					d - XFS_FSS_TO_BB(mp, 1),
516					XFS_FSS_TO_BB(mp, 1), 0, &bp, NULL);
517	if (error) {
518		xfs_warn(mp, "last sector read failed");
519		return error;
520	}
521	xfs_buf_relse(bp);
522
523	if (mp->m_logdev_targp == mp->m_ddev_targp)
524		return 0;
525
526	d = (xfs_daddr_t)XFS_FSB_TO_BB(mp, mp->m_sb.sb_logblocks);
527	if (XFS_BB_TO_FSB(mp, d) != mp->m_sb.sb_logblocks) {
528		xfs_warn(mp, "log size mismatch detected");
529		return -EFBIG;
530	}
531	error = xfs_buf_read_uncached(mp->m_logdev_targp,
532					d - XFS_FSB_TO_BB(mp, 1),
533					XFS_FSB_TO_BB(mp, 1), 0, &bp, NULL);
534	if (error) {
535		xfs_warn(mp, "log device read failed");
536		return error;
537	}
538	xfs_buf_relse(bp);
539	return 0;
540}
541
542/*
543 * Clear the quotaflags in memory and in the superblock.
544 */
545int
546xfs_mount_reset_sbqflags(
547	struct xfs_mount	*mp)
548{
549	mp->m_qflags = 0;
550
551	/* It is OK to look at sb_qflags in the mount path without m_sb_lock. */
552	if (mp->m_sb.sb_qflags == 0)
553		return 0;
554	spin_lock(&mp->m_sb_lock);
555	mp->m_sb.sb_qflags = 0;
556	spin_unlock(&mp->m_sb_lock);
557
558	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
559		return 0;
560
561	return xfs_sync_sb(mp, false);
562}
563
564uint64_t
565xfs_default_resblks(xfs_mount_t *mp)
566{
567	uint64_t resblks;
568
569	/*
570	 * We default to 5% or 8192 fsbs of space reserved, whichever is
571	 * smaller.  This is intended to cover concurrent allocation
572	 * transactions when we initially hit enospc. These each require a 4
573	 * block reservation. Hence by default we cover roughly 2000 concurrent
574	 * allocation reservations.
575	 */
576	resblks = mp->m_sb.sb_dblocks;
577	do_div(resblks, 20);
578	resblks = min_t(uint64_t, resblks, 8192);
579	return resblks;
580}
581
582/* Ensure the summary counts are correct. */
583STATIC int
584xfs_check_summary_counts(
585	struct xfs_mount	*mp)
586{
587	/*
588	 * The AG0 superblock verifier rejects in-progress filesystems,
589	 * so we should never see the flag set this far into mounting.
590	 */
591	if (mp->m_sb.sb_inprogress) {
592		xfs_err(mp, "sb_inprogress set after log recovery??");
593		WARN_ON(1);
594		return -EFSCORRUPTED;
595	}
596
597	/*
598	 * Now the log is mounted, we know if it was an unclean shutdown or
599	 * not. If it was, with the first phase of recovery has completed, we
600	 * have consistent AG blocks on disk. We have not recovered EFIs yet,
601	 * but they are recovered transactionally in the second recovery phase
602	 * later.
603	 *
604	 * If the log was clean when we mounted, we can check the summary
605	 * counters.  If any of them are obviously incorrect, we can recompute
606	 * them from the AGF headers in the next step.
607	 */
608	if (XFS_LAST_UNMOUNT_WAS_CLEAN(mp) &&
609	    (mp->m_sb.sb_fdblocks > mp->m_sb.sb_dblocks ||
610	     !xfs_verify_icount(mp, mp->m_sb.sb_icount) ||
611	     mp->m_sb.sb_ifree > mp->m_sb.sb_icount))
612		xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
613
614	/*
615	 * We can safely re-initialise incore superblock counters from the
616	 * per-ag data. These may not be correct if the filesystem was not
617	 * cleanly unmounted, so we waited for recovery to finish before doing
618	 * this.
619	 *
620	 * If the filesystem was cleanly unmounted or the previous check did
621	 * not flag anything weird, then we can trust the values in the
622	 * superblock to be correct and we don't need to do anything here.
623	 * Otherwise, recalculate the summary counters.
624	 */
625	if ((!xfs_sb_version_haslazysbcount(&mp->m_sb) ||
626	     XFS_LAST_UNMOUNT_WAS_CLEAN(mp)) &&
627	    !xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS))
628		return 0;
629
630	return xfs_initialize_perag_data(mp, mp->m_sb.sb_agcount);
631}
632
633/*
634 * Flush and reclaim dirty inodes in preparation for unmount. Inodes and
635 * internal inode structures can be sitting in the CIL and AIL at this point,
636 * so we need to unpin them, write them back and/or reclaim them before unmount
637 * can proceed.
638 *
639 * An inode cluster that has been freed can have its buffer still pinned in
640 * memory because the transaction is still sitting in a iclog. The stale inodes
641 * on that buffer will be pinned to the buffer until the transaction hits the
642 * disk and the callbacks run. Pushing the AIL will skip the stale inodes and
643 * may never see the pinned buffer, so nothing will push out the iclog and
644 * unpin the buffer.
645 *
646 * Hence we need to force the log to unpin everything first. However, log
647 * forces don't wait for the discards they issue to complete, so we have to
648 * explicitly wait for them to complete here as well.
649 *
650 * Then we can tell the world we are unmounting so that error handling knows
651 * that the filesystem is going away and we should error out anything that we
652 * have been retrying in the background.  This will prevent never-ending
653 * retries in AIL pushing from hanging the unmount.
654 *
655 * Finally, we can push the AIL to clean all the remaining dirty objects, then
656 * reclaim the remaining inodes that are still in memory at this point in time.
657 */
658static void
659xfs_unmount_flush_inodes(
660	struct xfs_mount	*mp)
661{
662	xfs_log_force(mp, XFS_LOG_SYNC);
663	xfs_extent_busy_wait_all(mp);
664	flush_workqueue(xfs_discard_wq);
665
666	mp->m_flags |= XFS_MOUNT_UNMOUNTING;
667
668	xfs_ail_push_all_sync(mp->m_ail);
669	cancel_delayed_work_sync(&mp->m_reclaim_work);
670	xfs_reclaim_inodes(mp);
671	xfs_health_unmount(mp);
672}
673
674/*
675 * This function does the following on an initial mount of a file system:
676 *	- reads the superblock from disk and init the mount struct
677 *	- if we're a 32-bit kernel, do a size check on the superblock
678 *		so we don't mount terabyte filesystems
679 *	- init mount struct realtime fields
680 *	- allocate inode hash table for fs
681 *	- init directory manager
682 *	- perform recovery and init the log manager
683 */
684int
685xfs_mountfs(
686	struct xfs_mount	*mp)
687{
688	struct xfs_sb		*sbp = &(mp->m_sb);
689	struct xfs_inode	*rip;
690	struct xfs_ino_geometry	*igeo = M_IGEO(mp);
691	uint64_t		resblks;
692	uint			quotamount = 0;
693	uint			quotaflags = 0;
694	int			error = 0;
695
696	xfs_sb_mount_common(mp, sbp);
697
698	/*
699	 * Check for a mismatched features2 values.  Older kernels read & wrote
700	 * into the wrong sb offset for sb_features2 on some platforms due to
701	 * xfs_sb_t not being 64bit size aligned when sb_features2 was added,
702	 * which made older superblock reading/writing routines swap it as a
703	 * 64-bit value.
704	 *
705	 * For backwards compatibility, we make both slots equal.
706	 *
707	 * If we detect a mismatched field, we OR the set bits into the existing
708	 * features2 field in case it has already been modified; we don't want
709	 * to lose any features.  We then update the bad location with the ORed
710	 * value so that older kernels will see any features2 flags. The
711	 * superblock writeback code ensures the new sb_features2 is copied to
712	 * sb_bad_features2 before it is logged or written to disk.
713	 */
714	if (xfs_sb_has_mismatched_features2(sbp)) {
715		xfs_warn(mp, "correcting sb_features alignment problem");
716		sbp->sb_features2 |= sbp->sb_bad_features2;
717		mp->m_update_sb = true;
718
719		/*
720		 * Re-check for ATTR2 in case it was found in bad_features2
721		 * slot.
722		 */
723		if (xfs_sb_version_hasattr2(&mp->m_sb) &&
724		   !(mp->m_flags & XFS_MOUNT_NOATTR2))
725			mp->m_flags |= XFS_MOUNT_ATTR2;
726	}
727
728	if (xfs_sb_version_hasattr2(&mp->m_sb) &&
729	   (mp->m_flags & XFS_MOUNT_NOATTR2)) {
730		xfs_sb_version_removeattr2(&mp->m_sb);
731		mp->m_update_sb = true;
732
733		/* update sb_versionnum for the clearing of the morebits */
734		if (!sbp->sb_features2)
735			mp->m_update_sb = true;
736	}
737
738	/* always use v2 inodes by default now */
739	if (!(mp->m_sb.sb_versionnum & XFS_SB_VERSION_NLINKBIT)) {
740		mp->m_sb.sb_versionnum |= XFS_SB_VERSION_NLINKBIT;
741		mp->m_update_sb = true;
742	}
743
744	/*
745	 * If we were given new sunit/swidth options, do some basic validation
746	 * checks and convert the incore dalign and swidth values to the
747	 * same units (FSB) that everything else uses.  This /must/ happen
748	 * before computing the inode geometry.
749	 */
750	error = xfs_validate_new_dalign(mp);
751	if (error)
752		goto out;
753
754	xfs_alloc_compute_maxlevels(mp);
755	xfs_bmap_compute_maxlevels(mp, XFS_DATA_FORK);
756	xfs_bmap_compute_maxlevels(mp, XFS_ATTR_FORK);
757	xfs_ialloc_setup_geometry(mp);
758	xfs_rmapbt_compute_maxlevels(mp);
759	xfs_refcountbt_compute_maxlevels(mp);
760
761	/*
762	 * Check if sb_agblocks is aligned at stripe boundary.  If sb_agblocks
763	 * is NOT aligned turn off m_dalign since allocator alignment is within
764	 * an ag, therefore ag has to be aligned at stripe boundary.  Note that
765	 * we must compute the free space and rmap btree geometry before doing
766	 * this.
767	 */
768	error = xfs_update_alignment(mp);
769	if (error)
770		goto out;
771
772	/* enable fail_at_unmount as default */
773	mp->m_fail_unmount = true;
774
775	error = xfs_sysfs_init(&mp->m_kobj, &xfs_mp_ktype,
776			       NULL, mp->m_super->s_id);
777	if (error)
778		goto out;
779
780	error = xfs_sysfs_init(&mp->m_stats.xs_kobj, &xfs_stats_ktype,
781			       &mp->m_kobj, "stats");
782	if (error)
783		goto out_remove_sysfs;
784
785	error = xfs_error_sysfs_init(mp);
786	if (error)
787		goto out_del_stats;
788
789	error = xfs_errortag_init(mp);
790	if (error)
791		goto out_remove_error_sysfs;
792
793	error = xfs_uuid_mount(mp);
794	if (error)
795		goto out_remove_errortag;
796
797	/*
798	 * Update the preferred write size based on the information from the
799	 * on-disk superblock.
800	 */
801	mp->m_allocsize_log =
802		max_t(uint32_t, sbp->sb_blocklog, mp->m_allocsize_log);
803	mp->m_allocsize_blocks = 1U << (mp->m_allocsize_log - sbp->sb_blocklog);
804
805	/* set the low space thresholds for dynamic preallocation */
806	xfs_set_low_space_thresholds(mp);
807
808	/*
809	 * If enabled, sparse inode chunk alignment is expected to match the
810	 * cluster size. Full inode chunk alignment must match the chunk size,
811	 * but that is checked on sb read verification...
812	 */
813	if (xfs_sb_version_hassparseinodes(&mp->m_sb) &&
814	    mp->m_sb.sb_spino_align !=
815			XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw)) {
816		xfs_warn(mp,
817	"Sparse inode block alignment (%u) must match cluster size (%llu).",
818			 mp->m_sb.sb_spino_align,
819			 XFS_B_TO_FSBT(mp, igeo->inode_cluster_size_raw));
820		error = -EINVAL;
821		goto out_remove_uuid;
822	}
823
824	/*
825	 * Check that the data (and log if separate) is an ok size.
826	 */
827	error = xfs_check_sizes(mp);
828	if (error)
829		goto out_remove_uuid;
830
831	/*
832	 * Initialize realtime fields in the mount structure
833	 */
834	error = xfs_rtmount_init(mp);
835	if (error) {
836		xfs_warn(mp, "RT mount failed");
837		goto out_remove_uuid;
838	}
839
840	/*
841	 *  Copies the low order bits of the timestamp and the randomly
842	 *  set "sequence" number out of a UUID.
843	 */
844	mp->m_fixedfsid[0] =
845		(get_unaligned_be16(&sbp->sb_uuid.b[8]) << 16) |
846		 get_unaligned_be16(&sbp->sb_uuid.b[4]);
847	mp->m_fixedfsid[1] = get_unaligned_be32(&sbp->sb_uuid.b[0]);
848
849	error = xfs_da_mount(mp);
850	if (error) {
851		xfs_warn(mp, "Failed dir/attr init: %d", error);
852		goto out_remove_uuid;
853	}
854
855	/*
856	 * Initialize the precomputed transaction reservations values.
857	 */
858	xfs_trans_init(mp);
859
860	/*
861	 * Allocate and initialize the per-ag data.
862	 */
863	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
864	if (error) {
865		xfs_warn(mp, "Failed per-ag init: %d", error);
866		goto out_free_dir;
867	}
868
869	if (XFS_IS_CORRUPT(mp, !sbp->sb_logblocks)) {
870		xfs_warn(mp, "no log defined");
871		error = -EFSCORRUPTED;
872		goto out_free_perag;
873	}
874
875	/*
876	 * Log's mount-time initialization. The first part of recovery can place
877	 * some items on the AIL, to be handled when recovery is finished or
878	 * cancelled.
879	 */
880	error = xfs_log_mount(mp, mp->m_logdev_targp,
881			      XFS_FSB_TO_DADDR(mp, sbp->sb_logstart),
882			      XFS_FSB_TO_BB(mp, sbp->sb_logblocks));
883	if (error) {
884		xfs_warn(mp, "log mount failed");
885		goto out_fail_wait;
886	}
887
888	/* Make sure the summary counts are ok. */
889	error = xfs_check_summary_counts(mp);
890	if (error)
891		goto out_log_dealloc;
892
893	/*
894	 * Get and sanity-check the root inode.
895	 * Save the pointer to it in the mount structure.
896	 */
897	error = xfs_iget(mp, NULL, sbp->sb_rootino, XFS_IGET_UNTRUSTED,
898			 XFS_ILOCK_EXCL, &rip);
899	if (error) {
900		xfs_warn(mp,
901			"Failed to read root inode 0x%llx, error %d",
902			sbp->sb_rootino, -error);
903		goto out_log_dealloc;
904	}
905
906	ASSERT(rip != NULL);
907
908	if (XFS_IS_CORRUPT(mp, !S_ISDIR(VFS_I(rip)->i_mode))) {
909		xfs_warn(mp, "corrupted root inode %llu: not a directory",
910			(unsigned long long)rip->i_ino);
911		xfs_iunlock(rip, XFS_ILOCK_EXCL);
912		error = -EFSCORRUPTED;
913		goto out_rele_rip;
914	}
915	mp->m_rootip = rip;	/* save it */
916
917	xfs_iunlock(rip, XFS_ILOCK_EXCL);
918
919	/*
920	 * Initialize realtime inode pointers in the mount structure
921	 */
922	error = xfs_rtmount_inodes(mp);
923	if (error) {
924		/*
925		 * Free up the root inode.
926		 */
927		xfs_warn(mp, "failed to read RT inodes");
928		goto out_rele_rip;
929	}
930
931	/*
932	 * If this is a read-only mount defer the superblock updates until
933	 * the next remount into writeable mode.  Otherwise we would never
934	 * perform the update e.g. for the root filesystem.
935	 */
936	if (mp->m_update_sb && !(mp->m_flags & XFS_MOUNT_RDONLY)) {
937		error = xfs_sync_sb(mp, false);
938		if (error) {
939			xfs_warn(mp, "failed to write sb changes");
940			goto out_rtunmount;
941		}
942	}
943
944	/*
945	 * Initialise the XFS quota management subsystem for this mount
946	 */
947	if (XFS_IS_QUOTA_RUNNING(mp)) {
948		error = xfs_qm_newmount(mp, &quotamount, &quotaflags);
949		if (error)
950			goto out_rtunmount;
951	} else {
952		ASSERT(!XFS_IS_QUOTA_ON(mp));
953
954		/*
955		 * If a file system had quotas running earlier, but decided to
956		 * mount without -o uquota/pquota/gquota options, revoke the
957		 * quotachecked license.
958		 */
959		if (mp->m_sb.sb_qflags & XFS_ALL_QUOTA_ACCT) {
960			xfs_notice(mp, "resetting quota flags");
961			error = xfs_mount_reset_sbqflags(mp);
962			if (error)
963				goto out_rtunmount;
964		}
965	}
966
967	/*
968	 * Finish recovering the file system.  This part needed to be delayed
969	 * until after the root and real-time bitmap inodes were consistently
970	 * read in.  Temporarily create per-AG space reservations for metadata
971	 * btree shape changes because space freeing transactions (for inode
972	 * inactivation) require the per-AG reservation in lieu of reserving
973	 * blocks.
974	 */
975	error = xfs_fs_reserve_ag_blocks(mp);
976	if (error && error == -ENOSPC)
977		xfs_warn(mp,
978	"ENOSPC reserving per-AG metadata pool, log recovery may fail.");
979	error = xfs_log_mount_finish(mp);
980	xfs_fs_unreserve_ag_blocks(mp);
981	if (error) {
982		xfs_warn(mp, "log mount finish failed");
983		goto out_rtunmount;
984	}
985
986	/*
987	 * Now the log is fully replayed, we can transition to full read-only
988	 * mode for read-only mounts. This will sync all the metadata and clean
989	 * the log so that the recovery we just performed does not have to be
990	 * replayed again on the next mount.
991	 *
992	 * We use the same quiesce mechanism as the rw->ro remount, as they are
993	 * semantically identical operations.
994	 */
995	if ((mp->m_flags & (XFS_MOUNT_RDONLY|XFS_MOUNT_NORECOVERY)) ==
996							XFS_MOUNT_RDONLY) {
997		xfs_quiesce_attr(mp);
998	}
999
1000	/*
1001	 * Complete the quota initialisation, post-log-replay component.
1002	 */
1003	if (quotamount) {
1004		ASSERT(mp->m_qflags == 0);
1005		mp->m_qflags = quotaflags;
1006
1007		xfs_qm_mount_quotas(mp);
1008	}
1009
1010	/*
1011	 * Now we are mounted, reserve a small amount of unused space for
1012	 * privileged transactions. This is needed so that transaction
1013	 * space required for critical operations can dip into this pool
1014	 * when at ENOSPC. This is needed for operations like create with
1015	 * attr, unwritten extent conversion at ENOSPC, etc. Data allocations
1016	 * are not allowed to use this reserved space.
1017	 *
1018	 * This may drive us straight to ENOSPC on mount, but that implies
1019	 * we were already there on the last unmount. Warn if this occurs.
1020	 */
1021	if (!(mp->m_flags & XFS_MOUNT_RDONLY)) {
1022		resblks = xfs_default_resblks(mp);
1023		error = xfs_reserve_blocks(mp, &resblks, NULL);
1024		if (error)
1025			xfs_warn(mp,
1026	"Unable to allocate reserve blocks. Continuing without reserve pool.");
1027
1028		/* Recover any CoW blocks that never got remapped. */
1029		error = xfs_reflink_recover_cow(mp);
1030		if (error) {
1031			xfs_err(mp,
1032	"Error %d recovering leftover CoW allocations.", error);
1033			xfs_force_shutdown(mp, SHUTDOWN_CORRUPT_INCORE);
1034			goto out_quota;
1035		}
1036
1037		/* Reserve AG blocks for future btree expansion. */
1038		error = xfs_fs_reserve_ag_blocks(mp);
1039		if (error && error != -ENOSPC)
1040			goto out_agresv;
1041	}
1042
1043	return 0;
1044
1045 out_agresv:
1046	xfs_fs_unreserve_ag_blocks(mp);
1047 out_quota:
1048	xfs_qm_unmount_quotas(mp);
1049 out_rtunmount:
1050	xfs_rtunmount_inodes(mp);
1051 out_rele_rip:
1052	xfs_irele(rip);
1053	/* Clean out dquots that might be in memory after quotacheck. */
1054	xfs_qm_unmount(mp);
1055	/*
1056	 * Flush all inode reclamation work and flush the log.
1057	 * We have to do this /after/ rtunmount and qm_unmount because those
1058	 * two will have scheduled delayed reclaim for the rt/quota inodes.
1059	 *
1060	 * This is slightly different from the unmountfs call sequence
1061	 * because we could be tearing down a partially set up mount.  In
1062	 * particular, if log_mount_finish fails we bail out without calling
1063	 * qm_unmount_quotas and therefore rely on qm_unmount to release the
1064	 * quota inodes.
1065	 */
1066	xfs_unmount_flush_inodes(mp);
1067 out_log_dealloc:
1068	xfs_log_mount_cancel(mp);
1069 out_fail_wait:
1070	if (mp->m_logdev_targp && mp->m_logdev_targp != mp->m_ddev_targp)
1071		xfs_wait_buftarg(mp->m_logdev_targp);
1072	xfs_wait_buftarg(mp->m_ddev_targp);
1073 out_free_perag:
1074	xfs_free_perag(mp);
1075 out_free_dir:
1076	xfs_da_unmount(mp);
1077 out_remove_uuid:
1078	xfs_uuid_unmount(mp);
1079 out_remove_errortag:
1080	xfs_errortag_del(mp);
1081 out_remove_error_sysfs:
1082	xfs_error_sysfs_del(mp);
1083 out_del_stats:
1084	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1085 out_remove_sysfs:
1086	xfs_sysfs_del(&mp->m_kobj);
1087 out:
1088	return error;
1089}
1090
1091/*
1092 * This flushes out the inodes,dquots and the superblock, unmounts the
1093 * log and makes sure that incore structures are freed.
1094 */
1095void
1096xfs_unmountfs(
1097	struct xfs_mount	*mp)
1098{
1099	uint64_t		resblks;
1100	int			error;
1101
1102	xfs_stop_block_reaping(mp);
1103	xfs_fs_unreserve_ag_blocks(mp);
1104	xfs_qm_unmount_quotas(mp);
1105	xfs_rtunmount_inodes(mp);
1106	xfs_irele(mp->m_rootip);
1107
1108	xfs_unmount_flush_inodes(mp);
1109
1110	xfs_qm_unmount(mp);
1111
1112	/*
1113	 * Unreserve any blocks we have so that when we unmount we don't account
1114	 * the reserved free space as used. This is really only necessary for
1115	 * lazy superblock counting because it trusts the incore superblock
1116	 * counters to be absolutely correct on clean unmount.
1117	 *
1118	 * We don't bother correcting this elsewhere for lazy superblock
1119	 * counting because on mount of an unclean filesystem we reconstruct the
1120	 * correct counter value and this is irrelevant.
1121	 *
1122	 * For non-lazy counter filesystems, this doesn't matter at all because
1123	 * we only every apply deltas to the superblock and hence the incore
1124	 * value does not matter....
1125	 */
1126	resblks = 0;
1127	error = xfs_reserve_blocks(mp, &resblks, NULL);
1128	if (error)
1129		xfs_warn(mp, "Unable to free reserved block pool. "
1130				"Freespace may not be correct on next mount.");
1131
1132	error = xfs_log_sbcount(mp);
1133	if (error)
1134		xfs_warn(mp, "Unable to update superblock counters. "
1135				"Freespace may not be correct on next mount.");
1136
1137
1138	xfs_log_unmount(mp);
1139	xfs_da_unmount(mp);
1140	xfs_uuid_unmount(mp);
1141
1142#if defined(DEBUG)
1143	xfs_errortag_clearall(mp);
1144#endif
1145	xfs_free_perag(mp);
1146
1147	xfs_errortag_del(mp);
1148	xfs_error_sysfs_del(mp);
1149	xfs_sysfs_del(&mp->m_stats.xs_kobj);
1150	xfs_sysfs_del(&mp->m_kobj);
1151}
1152
1153/*
1154 * Determine whether modifications can proceed. The caller specifies the minimum
1155 * freeze level for which modifications should not be allowed. This allows
1156 * certain operations to proceed while the freeze sequence is in progress, if
1157 * necessary.
1158 */
1159bool
1160xfs_fs_writable(
1161	struct xfs_mount	*mp,
1162	int			level)
1163{
1164	ASSERT(level > SB_UNFROZEN);
1165	if ((mp->m_super->s_writers.frozen >= level) ||
1166	    XFS_FORCED_SHUTDOWN(mp) || (mp->m_flags & XFS_MOUNT_RDONLY))
1167		return false;
1168
1169	return true;
1170}
1171
1172/*
1173 * xfs_log_sbcount
1174 *
1175 * Sync the superblock counters to disk.
1176 *
1177 * Note this code can be called during the process of freezing, so we use the
1178 * transaction allocator that does not block when the transaction subsystem is
1179 * in its frozen state.
1180 */
1181int
1182xfs_log_sbcount(xfs_mount_t *mp)
1183{
1184	if (!xfs_log_writable(mp))
1185		return 0;
1186
1187	/*
1188	 * we don't need to do this if we are updating the superblock
1189	 * counters on every modification.
1190	 */
1191	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1192		return 0;
1193
1194	return xfs_sync_sb(mp, true);
1195}
1196
1197/*
1198 * Deltas for the block count can vary from 1 to very large, but lock contention
1199 * only occurs on frequent small block count updates such as in the delayed
1200 * allocation path for buffered writes (page a time updates). Hence we set
1201 * a large batch count (1024) to minimise global counter updates except when
1202 * we get near to ENOSPC and we have to be very accurate with our updates.
1203 */
1204#define XFS_FDBLOCKS_BATCH	1024
1205int
1206xfs_mod_fdblocks(
1207	struct xfs_mount	*mp,
1208	int64_t			delta,
1209	bool			rsvd)
1210{
1211	int64_t			lcounter;
1212	long long		res_used;
1213	s32			batch;
1214
1215	if (delta > 0) {
1216		/*
1217		 * If the reserve pool is depleted, put blocks back into it
1218		 * first. Most of the time the pool is full.
1219		 */
1220		if (likely(mp->m_resblks == mp->m_resblks_avail)) {
1221			percpu_counter_add(&mp->m_fdblocks, delta);
1222			return 0;
1223		}
1224
1225		spin_lock(&mp->m_sb_lock);
1226		res_used = (long long)(mp->m_resblks - mp->m_resblks_avail);
1227
1228		if (res_used > delta) {
1229			mp->m_resblks_avail += delta;
1230		} else {
1231			delta -= res_used;
1232			mp->m_resblks_avail = mp->m_resblks;
1233			percpu_counter_add(&mp->m_fdblocks, delta);
1234		}
1235		spin_unlock(&mp->m_sb_lock);
1236		return 0;
1237	}
1238
1239	/*
1240	 * Taking blocks away, need to be more accurate the closer we
1241	 * are to zero.
1242	 *
1243	 * If the counter has a value of less than 2 * max batch size,
1244	 * then make everything serialise as we are real close to
1245	 * ENOSPC.
1246	 */
1247	if (__percpu_counter_compare(&mp->m_fdblocks, 2 * XFS_FDBLOCKS_BATCH,
1248				     XFS_FDBLOCKS_BATCH) < 0)
1249		batch = 1;
1250	else
1251		batch = XFS_FDBLOCKS_BATCH;
1252
1253	percpu_counter_add_batch(&mp->m_fdblocks, delta, batch);
1254	if (__percpu_counter_compare(&mp->m_fdblocks, mp->m_alloc_set_aside,
1255				     XFS_FDBLOCKS_BATCH) >= 0) {
1256		/* we had space! */
1257		return 0;
1258	}
1259
1260	/*
1261	 * lock up the sb for dipping into reserves before releasing the space
1262	 * that took us to ENOSPC.
1263	 */
1264	spin_lock(&mp->m_sb_lock);
1265	percpu_counter_add(&mp->m_fdblocks, -delta);
1266	if (!rsvd)
1267		goto fdblocks_enospc;
1268
1269	lcounter = (long long)mp->m_resblks_avail + delta;
1270	if (lcounter >= 0) {
1271		mp->m_resblks_avail = lcounter;
1272		spin_unlock(&mp->m_sb_lock);
1273		return 0;
1274	}
1275	xfs_warn_once(mp,
1276"Reserve blocks depleted! Consider increasing reserve pool size.");
1277
1278fdblocks_enospc:
1279	spin_unlock(&mp->m_sb_lock);
1280	return -ENOSPC;
1281}
1282
1283int
1284xfs_mod_frextents(
1285	struct xfs_mount	*mp,
1286	int64_t			delta)
1287{
1288	int64_t			lcounter;
1289	int			ret = 0;
1290
1291	spin_lock(&mp->m_sb_lock);
1292	lcounter = mp->m_sb.sb_frextents + delta;
1293	if (lcounter < 0)
1294		ret = -ENOSPC;
1295	else
1296		mp->m_sb.sb_frextents = lcounter;
1297	spin_unlock(&mp->m_sb_lock);
1298	return ret;
1299}
1300
1301/*
1302 * Used to free the superblock along various error paths.
1303 */
1304void
1305xfs_freesb(
1306	struct xfs_mount	*mp)
1307{
1308	struct xfs_buf		*bp = mp->m_sb_bp;
1309
1310	xfs_buf_lock(bp);
1311	mp->m_sb_bp = NULL;
1312	xfs_buf_relse(bp);
1313}
1314
1315/*
1316 * If the underlying (data/log/rt) device is readonly, there are some
1317 * operations that cannot proceed.
1318 */
1319int
1320xfs_dev_is_read_only(
1321	struct xfs_mount	*mp,
1322	char			*message)
1323{
1324	if (xfs_readonly_buftarg(mp->m_ddev_targp) ||
1325	    xfs_readonly_buftarg(mp->m_logdev_targp) ||
1326	    (mp->m_rtdev_targp && xfs_readonly_buftarg(mp->m_rtdev_targp))) {
1327		xfs_notice(mp, "%s required on read-only device.", message);
1328		xfs_notice(mp, "write access unavailable, cannot proceed.");
1329		return -EROFS;
1330	}
1331	return 0;
1332}
1333
1334/* Force the summary counters to be recalculated at next mount. */
1335void
1336xfs_force_summary_recalc(
1337	struct xfs_mount	*mp)
1338{
1339	if (!xfs_sb_version_haslazysbcount(&mp->m_sb))
1340		return;
1341
1342	xfs_fs_mark_sick(mp, XFS_SICK_FS_COUNTERS);
1343}
1344
1345/*
1346 * Update the in-core delayed block counter.
1347 *
1348 * We prefer to update the counter without having to take a spinlock for every
1349 * counter update (i.e. batching).  Each change to delayed allocation
1350 * reservations can change can easily exceed the default percpu counter
1351 * batching, so we use a larger batch factor here.
1352 *
1353 * Note that we don't currently have any callers requiring fast summation
1354 * (e.g. percpu_counter_read) so we can use a big batch value here.
1355 */
1356#define XFS_DELALLOC_BATCH	(4096)
1357void
1358xfs_mod_delalloc(
1359	struct xfs_mount	*mp,
1360	int64_t			delta)
1361{
1362	percpu_counter_add_batch(&mp->m_delalloc_blks, delta,
1363			XFS_DELALLOC_BATCH);
1364}
1365