1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2006 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_sb.h"
14#include "xfs_mount.h"
15#include "xfs_defer.h"
16#include "xfs_inode.h"
17#include "xfs_trans.h"
18#include "xfs_log.h"
19#include "xfs_log_priv.h"
20#include "xfs_log_recover.h"
21#include "xfs_trans_priv.h"
22#include "xfs_alloc.h"
23#include "xfs_ialloc.h"
24#include "xfs_trace.h"
25#include "xfs_icache.h"
26#include "xfs_error.h"
27#include "xfs_buf_item.h"
28
29#define BLK_AVG(blk1, blk2)	((blk1+blk2) >> 1)
30
31STATIC int
32xlog_find_zeroed(
33	struct xlog	*,
34	xfs_daddr_t	*);
35STATIC int
36xlog_clear_stale_blocks(
37	struct xlog	*,
38	xfs_lsn_t);
39#if defined(DEBUG)
40STATIC void
41xlog_recover_check_summary(
42	struct xlog *);
43#else
44#define	xlog_recover_check_summary(log)
45#endif
46STATIC int
47xlog_do_recovery_pass(
48        struct xlog *, xfs_daddr_t, xfs_daddr_t, int, xfs_daddr_t *);
49
50/*
51 * Sector aligned buffer routines for buffer create/read/write/access
52 */
53
54/*
55 * Verify the log-relative block number and length in basic blocks are valid for
56 * an operation involving the given XFS log buffer. Returns true if the fields
57 * are valid, false otherwise.
58 */
59static inline bool
60xlog_verify_bno(
61	struct xlog	*log,
62	xfs_daddr_t	blk_no,
63	int		bbcount)
64{
65	if (blk_no < 0 || blk_no >= log->l_logBBsize)
66		return false;
67	if (bbcount <= 0 || (blk_no + bbcount) > log->l_logBBsize)
68		return false;
69	return true;
70}
71
72/*
73 * Allocate a buffer to hold log data.  The buffer needs to be able to map to
74 * a range of nbblks basic blocks at any valid offset within the log.
75 */
76static char *
77xlog_alloc_buffer(
78	struct xlog	*log,
79	int		nbblks)
80{
81	int align_mask = xfs_buftarg_dma_alignment(log->l_targ);
82
83	/*
84	 * Pass log block 0 since we don't have an addr yet, buffer will be
85	 * verified on read.
86	 */
87	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, 0, nbblks))) {
88		xfs_warn(log->l_mp, "Invalid block length (0x%x) for buffer",
89			nbblks);
90		return NULL;
91	}
92
93	/*
94	 * We do log I/O in units of log sectors (a power-of-2 multiple of the
95	 * basic block size), so we round up the requested size to accommodate
96	 * the basic blocks required for complete log sectors.
97	 *
98	 * In addition, the buffer may be used for a non-sector-aligned block
99	 * offset, in which case an I/O of the requested size could extend
100	 * beyond the end of the buffer.  If the requested size is only 1 basic
101	 * block it will never straddle a sector boundary, so this won't be an
102	 * issue.  Nor will this be a problem if the log I/O is done in basic
103	 * blocks (sector size 1).  But otherwise we extend the buffer by one
104	 * extra log sector to ensure there's space to accommodate this
105	 * possibility.
106	 */
107	if (nbblks > 1 && log->l_sectBBsize > 1)
108		nbblks += log->l_sectBBsize;
109	nbblks = round_up(nbblks, log->l_sectBBsize);
110	return kmem_alloc_io(BBTOB(nbblks), align_mask, KM_MAYFAIL | KM_ZERO);
111}
112
113/*
114 * Return the address of the start of the given block number's data
115 * in a log buffer.  The buffer covers a log sector-aligned region.
116 */
117static inline unsigned int
118xlog_align(
119	struct xlog	*log,
120	xfs_daddr_t	blk_no)
121{
122	return BBTOB(blk_no & ((xfs_daddr_t)log->l_sectBBsize - 1));
123}
124
125static int
126xlog_do_io(
127	struct xlog		*log,
128	xfs_daddr_t		blk_no,
129	unsigned int		nbblks,
130	char			*data,
131	unsigned int		op)
132{
133	int			error;
134
135	if (XFS_IS_CORRUPT(log->l_mp, !xlog_verify_bno(log, blk_no, nbblks))) {
136		xfs_warn(log->l_mp,
137			 "Invalid log block/length (0x%llx, 0x%x) for buffer",
138			 blk_no, nbblks);
139		return -EFSCORRUPTED;
140	}
141
142	blk_no = round_down(blk_no, log->l_sectBBsize);
143	nbblks = round_up(nbblks, log->l_sectBBsize);
144	ASSERT(nbblks > 0);
145
146	error = xfs_rw_bdev(log->l_targ->bt_bdev, log->l_logBBstart + blk_no,
147			BBTOB(nbblks), data, op);
148	if (error && !XFS_FORCED_SHUTDOWN(log->l_mp)) {
149		xfs_alert(log->l_mp,
150			  "log recovery %s I/O error at daddr 0x%llx len %d error %d",
151			  op == REQ_OP_WRITE ? "write" : "read",
152			  blk_no, nbblks, error);
153	}
154	return error;
155}
156
157STATIC int
158xlog_bread_noalign(
159	struct xlog	*log,
160	xfs_daddr_t	blk_no,
161	int		nbblks,
162	char		*data)
163{
164	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
165}
166
167STATIC int
168xlog_bread(
169	struct xlog	*log,
170	xfs_daddr_t	blk_no,
171	int		nbblks,
172	char		*data,
173	char		**offset)
174{
175	int		error;
176
177	error = xlog_do_io(log, blk_no, nbblks, data, REQ_OP_READ);
178	if (!error)
179		*offset = data + xlog_align(log, blk_no);
180	return error;
181}
182
183STATIC int
184xlog_bwrite(
185	struct xlog	*log,
186	xfs_daddr_t	blk_no,
187	int		nbblks,
188	char		*data)
189{
190	return xlog_do_io(log, blk_no, nbblks, data, REQ_OP_WRITE);
191}
192
193#ifdef DEBUG
194/*
195 * dump debug superblock and log record information
196 */
197STATIC void
198xlog_header_check_dump(
199	xfs_mount_t		*mp,
200	xlog_rec_header_t	*head)
201{
202	xfs_debug(mp, "%s:  SB : uuid = %pU, fmt = %d",
203		__func__, &mp->m_sb.sb_uuid, XLOG_FMT);
204	xfs_debug(mp, "    log : uuid = %pU, fmt = %d",
205		&head->h_fs_uuid, be32_to_cpu(head->h_fmt));
206}
207#else
208#define xlog_header_check_dump(mp, head)
209#endif
210
211/*
212 * check log record header for recovery
213 */
214STATIC int
215xlog_header_check_recover(
216	xfs_mount_t		*mp,
217	xlog_rec_header_t	*head)
218{
219	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
220
221	/*
222	 * IRIX doesn't write the h_fmt field and leaves it zeroed
223	 * (XLOG_FMT_UNKNOWN). This stops us from trying to recover
224	 * a dirty log created in IRIX.
225	 */
226	if (XFS_IS_CORRUPT(mp, head->h_fmt != cpu_to_be32(XLOG_FMT))) {
227		xfs_warn(mp,
228	"dirty log written in incompatible format - can't recover");
229		xlog_header_check_dump(mp, head);
230		return -EFSCORRUPTED;
231	}
232	if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
233					   &head->h_fs_uuid))) {
234		xfs_warn(mp,
235	"dirty log entry has mismatched uuid - can't recover");
236		xlog_header_check_dump(mp, head);
237		return -EFSCORRUPTED;
238	}
239	return 0;
240}
241
242/*
243 * read the head block of the log and check the header
244 */
245STATIC int
246xlog_header_check_mount(
247	xfs_mount_t		*mp,
248	xlog_rec_header_t	*head)
249{
250	ASSERT(head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM));
251
252	if (uuid_is_null(&head->h_fs_uuid)) {
253		/*
254		 * IRIX doesn't write the h_fs_uuid or h_fmt fields. If
255		 * h_fs_uuid is null, we assume this log was last mounted
256		 * by IRIX and continue.
257		 */
258		xfs_warn(mp, "null uuid in log - IRIX style log");
259	} else if (XFS_IS_CORRUPT(mp, !uuid_equal(&mp->m_sb.sb_uuid,
260						  &head->h_fs_uuid))) {
261		xfs_warn(mp, "log has mismatched uuid - can't recover");
262		xlog_header_check_dump(mp, head);
263		return -EFSCORRUPTED;
264	}
265	return 0;
266}
267
268/*
269 * This routine finds (to an approximation) the first block in the physical
270 * log which contains the given cycle.  It uses a binary search algorithm.
271 * Note that the algorithm can not be perfect because the disk will not
272 * necessarily be perfect.
273 */
274STATIC int
275xlog_find_cycle_start(
276	struct xlog	*log,
277	char		*buffer,
278	xfs_daddr_t	first_blk,
279	xfs_daddr_t	*last_blk,
280	uint		cycle)
281{
282	char		*offset;
283	xfs_daddr_t	mid_blk;
284	xfs_daddr_t	end_blk;
285	uint		mid_cycle;
286	int		error;
287
288	end_blk = *last_blk;
289	mid_blk = BLK_AVG(first_blk, end_blk);
290	while (mid_blk != first_blk && mid_blk != end_blk) {
291		error = xlog_bread(log, mid_blk, 1, buffer, &offset);
292		if (error)
293			return error;
294		mid_cycle = xlog_get_cycle(offset);
295		if (mid_cycle == cycle)
296			end_blk = mid_blk;   /* last_half_cycle == mid_cycle */
297		else
298			first_blk = mid_blk; /* first_half_cycle == mid_cycle */
299		mid_blk = BLK_AVG(first_blk, end_blk);
300	}
301	ASSERT((mid_blk == first_blk && mid_blk+1 == end_blk) ||
302	       (mid_blk == end_blk && mid_blk-1 == first_blk));
303
304	*last_blk = end_blk;
305
306	return 0;
307}
308
309/*
310 * Check that a range of blocks does not contain stop_on_cycle_no.
311 * Fill in *new_blk with the block offset where such a block is
312 * found, or with -1 (an invalid block number) if there is no such
313 * block in the range.  The scan needs to occur from front to back
314 * and the pointer into the region must be updated since a later
315 * routine will need to perform another test.
316 */
317STATIC int
318xlog_find_verify_cycle(
319	struct xlog	*log,
320	xfs_daddr_t	start_blk,
321	int		nbblks,
322	uint		stop_on_cycle_no,
323	xfs_daddr_t	*new_blk)
324{
325	xfs_daddr_t	i, j;
326	uint		cycle;
327	char		*buffer;
328	xfs_daddr_t	bufblks;
329	char		*buf = NULL;
330	int		error = 0;
331
332	/*
333	 * Greedily allocate a buffer big enough to handle the full
334	 * range of basic blocks we'll be examining.  If that fails,
335	 * try a smaller size.  We need to be able to read at least
336	 * a log sector, or we're out of luck.
337	 */
338	bufblks = 1 << ffs(nbblks);
339	while (bufblks > log->l_logBBsize)
340		bufblks >>= 1;
341	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
342		bufblks >>= 1;
343		if (bufblks < log->l_sectBBsize)
344			return -ENOMEM;
345	}
346
347	for (i = start_blk; i < start_blk + nbblks; i += bufblks) {
348		int	bcount;
349
350		bcount = min(bufblks, (start_blk + nbblks - i));
351
352		error = xlog_bread(log, i, bcount, buffer, &buf);
353		if (error)
354			goto out;
355
356		for (j = 0; j < bcount; j++) {
357			cycle = xlog_get_cycle(buf);
358			if (cycle == stop_on_cycle_no) {
359				*new_blk = i+j;
360				goto out;
361			}
362
363			buf += BBSIZE;
364		}
365	}
366
367	*new_blk = -1;
368
369out:
370	kmem_free(buffer);
371	return error;
372}
373
374static inline int
375xlog_logrec_hblks(struct xlog *log, struct xlog_rec_header *rh)
376{
377	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
378		int	h_size = be32_to_cpu(rh->h_size);
379
380		if ((be32_to_cpu(rh->h_version) & XLOG_VERSION_2) &&
381		    h_size > XLOG_HEADER_CYCLE_SIZE)
382			return DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
383	}
384	return 1;
385}
386
387/*
388 * Potentially backup over partial log record write.
389 *
390 * In the typical case, last_blk is the number of the block directly after
391 * a good log record.  Therefore, we subtract one to get the block number
392 * of the last block in the given buffer.  extra_bblks contains the number
393 * of blocks we would have read on a previous read.  This happens when the
394 * last log record is split over the end of the physical log.
395 *
396 * extra_bblks is the number of blocks potentially verified on a previous
397 * call to this routine.
398 */
399STATIC int
400xlog_find_verify_log_record(
401	struct xlog		*log,
402	xfs_daddr_t		start_blk,
403	xfs_daddr_t		*last_blk,
404	int			extra_bblks)
405{
406	xfs_daddr_t		i;
407	char			*buffer;
408	char			*offset = NULL;
409	xlog_rec_header_t	*head = NULL;
410	int			error = 0;
411	int			smallmem = 0;
412	int			num_blks = *last_blk - start_blk;
413	int			xhdrs;
414
415	ASSERT(start_blk != 0 || *last_blk != start_blk);
416
417	buffer = xlog_alloc_buffer(log, num_blks);
418	if (!buffer) {
419		buffer = xlog_alloc_buffer(log, 1);
420		if (!buffer)
421			return -ENOMEM;
422		smallmem = 1;
423	} else {
424		error = xlog_bread(log, start_blk, num_blks, buffer, &offset);
425		if (error)
426			goto out;
427		offset += ((num_blks - 1) << BBSHIFT);
428	}
429
430	for (i = (*last_blk) - 1; i >= 0; i--) {
431		if (i < start_blk) {
432			/* valid log record not found */
433			xfs_warn(log->l_mp,
434		"Log inconsistent (didn't find previous header)");
435			ASSERT(0);
436			error = -EFSCORRUPTED;
437			goto out;
438		}
439
440		if (smallmem) {
441			error = xlog_bread(log, i, 1, buffer, &offset);
442			if (error)
443				goto out;
444		}
445
446		head = (xlog_rec_header_t *)offset;
447
448		if (head->h_magicno == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
449			break;
450
451		if (!smallmem)
452			offset -= BBSIZE;
453	}
454
455	/*
456	 * We hit the beginning of the physical log & still no header.  Return
457	 * to caller.  If caller can handle a return of -1, then this routine
458	 * will be called again for the end of the physical log.
459	 */
460	if (i == -1) {
461		error = 1;
462		goto out;
463	}
464
465	/*
466	 * We have the final block of the good log (the first block
467	 * of the log record _before_ the head. So we check the uuid.
468	 */
469	if ((error = xlog_header_check_mount(log->l_mp, head)))
470		goto out;
471
472	/*
473	 * We may have found a log record header before we expected one.
474	 * last_blk will be the 1st block # with a given cycle #.  We may end
475	 * up reading an entire log record.  In this case, we don't want to
476	 * reset last_blk.  Only when last_blk points in the middle of a log
477	 * record do we update last_blk.
478	 */
479	xhdrs = xlog_logrec_hblks(log, head);
480
481	if (*last_blk - i + extra_bblks !=
482	    BTOBB(be32_to_cpu(head->h_len)) + xhdrs)
483		*last_blk = i;
484
485out:
486	kmem_free(buffer);
487	return error;
488}
489
490/*
491 * Head is defined to be the point of the log where the next log write
492 * could go.  This means that incomplete LR writes at the end are
493 * eliminated when calculating the head.  We aren't guaranteed that previous
494 * LR have complete transactions.  We only know that a cycle number of
495 * current cycle number -1 won't be present in the log if we start writing
496 * from our current block number.
497 *
498 * last_blk contains the block number of the first block with a given
499 * cycle number.
500 *
501 * Return: zero if normal, non-zero if error.
502 */
503STATIC int
504xlog_find_head(
505	struct xlog	*log,
506	xfs_daddr_t	*return_head_blk)
507{
508	char		*buffer;
509	char		*offset;
510	xfs_daddr_t	new_blk, first_blk, start_blk, last_blk, head_blk;
511	int		num_scan_bblks;
512	uint		first_half_cycle, last_half_cycle;
513	uint		stop_on_cycle;
514	int		error, log_bbnum = log->l_logBBsize;
515
516	/* Is the end of the log device zeroed? */
517	error = xlog_find_zeroed(log, &first_blk);
518	if (error < 0) {
519		xfs_warn(log->l_mp, "empty log check failed");
520		return error;
521	}
522	if (error == 1) {
523		*return_head_blk = first_blk;
524
525		/* Is the whole lot zeroed? */
526		if (!first_blk) {
527			/* Linux XFS shouldn't generate totally zeroed logs -
528			 * mkfs etc write a dummy unmount record to a fresh
529			 * log so we can store the uuid in there
530			 */
531			xfs_warn(log->l_mp, "totally zeroed log");
532		}
533
534		return 0;
535	}
536
537	first_blk = 0;			/* get cycle # of 1st block */
538	buffer = xlog_alloc_buffer(log, 1);
539	if (!buffer)
540		return -ENOMEM;
541
542	error = xlog_bread(log, 0, 1, buffer, &offset);
543	if (error)
544		goto out_free_buffer;
545
546	first_half_cycle = xlog_get_cycle(offset);
547
548	last_blk = head_blk = log_bbnum - 1;	/* get cycle # of last block */
549	error = xlog_bread(log, last_blk, 1, buffer, &offset);
550	if (error)
551		goto out_free_buffer;
552
553	last_half_cycle = xlog_get_cycle(offset);
554	ASSERT(last_half_cycle != 0);
555
556	/*
557	 * If the 1st half cycle number is equal to the last half cycle number,
558	 * then the entire log is stamped with the same cycle number.  In this
559	 * case, head_blk can't be set to zero (which makes sense).  The below
560	 * math doesn't work out properly with head_blk equal to zero.  Instead,
561	 * we set it to log_bbnum which is an invalid block number, but this
562	 * value makes the math correct.  If head_blk doesn't changed through
563	 * all the tests below, *head_blk is set to zero at the very end rather
564	 * than log_bbnum.  In a sense, log_bbnum and zero are the same block
565	 * in a circular file.
566	 */
567	if (first_half_cycle == last_half_cycle) {
568		/*
569		 * In this case we believe that the entire log should have
570		 * cycle number last_half_cycle.  We need to scan backwards
571		 * from the end verifying that there are no holes still
572		 * containing last_half_cycle - 1.  If we find such a hole,
573		 * then the start of that hole will be the new head.  The
574		 * simple case looks like
575		 *        x | x ... | x - 1 | x
576		 * Another case that fits this picture would be
577		 *        x | x + 1 | x ... | x
578		 * In this case the head really is somewhere at the end of the
579		 * log, as one of the latest writes at the beginning was
580		 * incomplete.
581		 * One more case is
582		 *        x | x + 1 | x ... | x - 1 | x
583		 * This is really the combination of the above two cases, and
584		 * the head has to end up at the start of the x-1 hole at the
585		 * end of the log.
586		 *
587		 * In the 256k log case, we will read from the beginning to the
588		 * end of the log and search for cycle numbers equal to x-1.
589		 * We don't worry about the x+1 blocks that we encounter,
590		 * because we know that they cannot be the head since the log
591		 * started with x.
592		 */
593		head_blk = log_bbnum;
594		stop_on_cycle = last_half_cycle - 1;
595	} else {
596		/*
597		 * In this case we want to find the first block with cycle
598		 * number matching last_half_cycle.  We expect the log to be
599		 * some variation on
600		 *        x + 1 ... | x ... | x
601		 * The first block with cycle number x (last_half_cycle) will
602		 * be where the new head belongs.  First we do a binary search
603		 * for the first occurrence of last_half_cycle.  The binary
604		 * search may not be totally accurate, so then we scan back
605		 * from there looking for occurrences of last_half_cycle before
606		 * us.  If that backwards scan wraps around the beginning of
607		 * the log, then we look for occurrences of last_half_cycle - 1
608		 * at the end of the log.  The cases we're looking for look
609		 * like
610		 *                               v binary search stopped here
611		 *        x + 1 ... | x | x + 1 | x ... | x
612		 *                   ^ but we want to locate this spot
613		 * or
614		 *        <---------> less than scan distance
615		 *        x + 1 ... | x ... | x - 1 | x
616		 *                           ^ we want to locate this spot
617		 */
618		stop_on_cycle = last_half_cycle;
619		error = xlog_find_cycle_start(log, buffer, first_blk, &head_blk,
620				last_half_cycle);
621		if (error)
622			goto out_free_buffer;
623	}
624
625	/*
626	 * Now validate the answer.  Scan back some number of maximum possible
627	 * blocks and make sure each one has the expected cycle number.  The
628	 * maximum is determined by the total possible amount of buffering
629	 * in the in-core log.  The following number can be made tighter if
630	 * we actually look at the block size of the filesystem.
631	 */
632	num_scan_bblks = min_t(int, log_bbnum, XLOG_TOTAL_REC_SHIFT(log));
633	if (head_blk >= num_scan_bblks) {
634		/*
635		 * We are guaranteed that the entire check can be performed
636		 * in one buffer.
637		 */
638		start_blk = head_blk - num_scan_bblks;
639		if ((error = xlog_find_verify_cycle(log,
640						start_blk, num_scan_bblks,
641						stop_on_cycle, &new_blk)))
642			goto out_free_buffer;
643		if (new_blk != -1)
644			head_blk = new_blk;
645	} else {		/* need to read 2 parts of log */
646		/*
647		 * We are going to scan backwards in the log in two parts.
648		 * First we scan the physical end of the log.  In this part
649		 * of the log, we are looking for blocks with cycle number
650		 * last_half_cycle - 1.
651		 * If we find one, then we know that the log starts there, as
652		 * we've found a hole that didn't get written in going around
653		 * the end of the physical log.  The simple case for this is
654		 *        x + 1 ... | x ... | x - 1 | x
655		 *        <---------> less than scan distance
656		 * If all of the blocks at the end of the log have cycle number
657		 * last_half_cycle, then we check the blocks at the start of
658		 * the log looking for occurrences of last_half_cycle.  If we
659		 * find one, then our current estimate for the location of the
660		 * first occurrence of last_half_cycle is wrong and we move
661		 * back to the hole we've found.  This case looks like
662		 *        x + 1 ... | x | x + 1 | x ...
663		 *                               ^ binary search stopped here
664		 * Another case we need to handle that only occurs in 256k
665		 * logs is
666		 *        x + 1 ... | x ... | x+1 | x ...
667		 *                   ^ binary search stops here
668		 * In a 256k log, the scan at the end of the log will see the
669		 * x + 1 blocks.  We need to skip past those since that is
670		 * certainly not the head of the log.  By searching for
671		 * last_half_cycle-1 we accomplish that.
672		 */
673		ASSERT(head_blk <= INT_MAX &&
674			(xfs_daddr_t) num_scan_bblks >= head_blk);
675		start_blk = log_bbnum - (num_scan_bblks - head_blk);
676		if ((error = xlog_find_verify_cycle(log, start_blk,
677					num_scan_bblks - (int)head_blk,
678					(stop_on_cycle - 1), &new_blk)))
679			goto out_free_buffer;
680		if (new_blk != -1) {
681			head_blk = new_blk;
682			goto validate_head;
683		}
684
685		/*
686		 * Scan beginning of log now.  The last part of the physical
687		 * log is good.  This scan needs to verify that it doesn't find
688		 * the last_half_cycle.
689		 */
690		start_blk = 0;
691		ASSERT(head_blk <= INT_MAX);
692		if ((error = xlog_find_verify_cycle(log,
693					start_blk, (int)head_blk,
694					stop_on_cycle, &new_blk)))
695			goto out_free_buffer;
696		if (new_blk != -1)
697			head_blk = new_blk;
698	}
699
700validate_head:
701	/*
702	 * Now we need to make sure head_blk is not pointing to a block in
703	 * the middle of a log record.
704	 */
705	num_scan_bblks = XLOG_REC_SHIFT(log);
706	if (head_blk >= num_scan_bblks) {
707		start_blk = head_blk - num_scan_bblks; /* don't read head_blk */
708
709		/* start ptr at last block ptr before head_blk */
710		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
711		if (error == 1)
712			error = -EIO;
713		if (error)
714			goto out_free_buffer;
715	} else {
716		start_blk = 0;
717		ASSERT(head_blk <= INT_MAX);
718		error = xlog_find_verify_log_record(log, start_blk, &head_blk, 0);
719		if (error < 0)
720			goto out_free_buffer;
721		if (error == 1) {
722			/* We hit the beginning of the log during our search */
723			start_blk = log_bbnum - (num_scan_bblks - head_blk);
724			new_blk = log_bbnum;
725			ASSERT(start_blk <= INT_MAX &&
726				(xfs_daddr_t) log_bbnum-start_blk >= 0);
727			ASSERT(head_blk <= INT_MAX);
728			error = xlog_find_verify_log_record(log, start_blk,
729							&new_blk, (int)head_blk);
730			if (error == 1)
731				error = -EIO;
732			if (error)
733				goto out_free_buffer;
734			if (new_blk != log_bbnum)
735				head_blk = new_blk;
736		} else if (error)
737			goto out_free_buffer;
738	}
739
740	kmem_free(buffer);
741	if (head_blk == log_bbnum)
742		*return_head_blk = 0;
743	else
744		*return_head_blk = head_blk;
745	/*
746	 * When returning here, we have a good block number.  Bad block
747	 * means that during a previous crash, we didn't have a clean break
748	 * from cycle number N to cycle number N-1.  In this case, we need
749	 * to find the first block with cycle number N-1.
750	 */
751	return 0;
752
753out_free_buffer:
754	kmem_free(buffer);
755	if (error)
756		xfs_warn(log->l_mp, "failed to find log head");
757	return error;
758}
759
760/*
761 * Seek backwards in the log for log record headers.
762 *
763 * Given a starting log block, walk backwards until we find the provided number
764 * of records or hit the provided tail block. The return value is the number of
765 * records encountered or a negative error code. The log block and buffer
766 * pointer of the last record seen are returned in rblk and rhead respectively.
767 */
768STATIC int
769xlog_rseek_logrec_hdr(
770	struct xlog		*log,
771	xfs_daddr_t		head_blk,
772	xfs_daddr_t		tail_blk,
773	int			count,
774	char			*buffer,
775	xfs_daddr_t		*rblk,
776	struct xlog_rec_header	**rhead,
777	bool			*wrapped)
778{
779	int			i;
780	int			error;
781	int			found = 0;
782	char			*offset = NULL;
783	xfs_daddr_t		end_blk;
784
785	*wrapped = false;
786
787	/*
788	 * Walk backwards from the head block until we hit the tail or the first
789	 * block in the log.
790	 */
791	end_blk = head_blk > tail_blk ? tail_blk : 0;
792	for (i = (int) head_blk - 1; i >= end_blk; i--) {
793		error = xlog_bread(log, i, 1, buffer, &offset);
794		if (error)
795			goto out_error;
796
797		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
798			*rblk = i;
799			*rhead = (struct xlog_rec_header *) offset;
800			if (++found == count)
801				break;
802		}
803	}
804
805	/*
806	 * If we haven't hit the tail block or the log record header count,
807	 * start looking again from the end of the physical log. Note that
808	 * callers can pass head == tail if the tail is not yet known.
809	 */
810	if (tail_blk >= head_blk && found != count) {
811		for (i = log->l_logBBsize - 1; i >= (int) tail_blk; i--) {
812			error = xlog_bread(log, i, 1, buffer, &offset);
813			if (error)
814				goto out_error;
815
816			if (*(__be32 *)offset ==
817			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
818				*wrapped = true;
819				*rblk = i;
820				*rhead = (struct xlog_rec_header *) offset;
821				if (++found == count)
822					break;
823			}
824		}
825	}
826
827	return found;
828
829out_error:
830	return error;
831}
832
833/*
834 * Seek forward in the log for log record headers.
835 *
836 * Given head and tail blocks, walk forward from the tail block until we find
837 * the provided number of records or hit the head block. The return value is the
838 * number of records encountered or a negative error code. The log block and
839 * buffer pointer of the last record seen are returned in rblk and rhead
840 * respectively.
841 */
842STATIC int
843xlog_seek_logrec_hdr(
844	struct xlog		*log,
845	xfs_daddr_t		head_blk,
846	xfs_daddr_t		tail_blk,
847	int			count,
848	char			*buffer,
849	xfs_daddr_t		*rblk,
850	struct xlog_rec_header	**rhead,
851	bool			*wrapped)
852{
853	int			i;
854	int			error;
855	int			found = 0;
856	char			*offset = NULL;
857	xfs_daddr_t		end_blk;
858
859	*wrapped = false;
860
861	/*
862	 * Walk forward from the tail block until we hit the head or the last
863	 * block in the log.
864	 */
865	end_blk = head_blk > tail_blk ? head_blk : log->l_logBBsize - 1;
866	for (i = (int) tail_blk; i <= end_blk; i++) {
867		error = xlog_bread(log, i, 1, buffer, &offset);
868		if (error)
869			goto out_error;
870
871		if (*(__be32 *) offset == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
872			*rblk = i;
873			*rhead = (struct xlog_rec_header *) offset;
874			if (++found == count)
875				break;
876		}
877	}
878
879	/*
880	 * If we haven't hit the head block or the log record header count,
881	 * start looking again from the start of the physical log.
882	 */
883	if (tail_blk > head_blk && found != count) {
884		for (i = 0; i < (int) head_blk; i++) {
885			error = xlog_bread(log, i, 1, buffer, &offset);
886			if (error)
887				goto out_error;
888
889			if (*(__be32 *)offset ==
890			    cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) {
891				*wrapped = true;
892				*rblk = i;
893				*rhead = (struct xlog_rec_header *) offset;
894				if (++found == count)
895					break;
896			}
897		}
898	}
899
900	return found;
901
902out_error:
903	return error;
904}
905
906/*
907 * Calculate distance from head to tail (i.e., unused space in the log).
908 */
909static inline int
910xlog_tail_distance(
911	struct xlog	*log,
912	xfs_daddr_t	head_blk,
913	xfs_daddr_t	tail_blk)
914{
915	if (head_blk < tail_blk)
916		return tail_blk - head_blk;
917
918	return tail_blk + (log->l_logBBsize - head_blk);
919}
920
921/*
922 * Verify the log tail. This is particularly important when torn or incomplete
923 * writes have been detected near the front of the log and the head has been
924 * walked back accordingly.
925 *
926 * We also have to handle the case where the tail was pinned and the head
927 * blocked behind the tail right before a crash. If the tail had been pushed
928 * immediately prior to the crash and the subsequent checkpoint was only
929 * partially written, it's possible it overwrote the last referenced tail in the
930 * log with garbage. This is not a coherency problem because the tail must have
931 * been pushed before it can be overwritten, but appears as log corruption to
932 * recovery because we have no way to know the tail was updated if the
933 * subsequent checkpoint didn't write successfully.
934 *
935 * Therefore, CRC check the log from tail to head. If a failure occurs and the
936 * offending record is within max iclog bufs from the head, walk the tail
937 * forward and retry until a valid tail is found or corruption is detected out
938 * of the range of a possible overwrite.
939 */
940STATIC int
941xlog_verify_tail(
942	struct xlog		*log,
943	xfs_daddr_t		head_blk,
944	xfs_daddr_t		*tail_blk,
945	int			hsize)
946{
947	struct xlog_rec_header	*thead;
948	char			*buffer;
949	xfs_daddr_t		first_bad;
950	int			error = 0;
951	bool			wrapped;
952	xfs_daddr_t		tmp_tail;
953	xfs_daddr_t		orig_tail = *tail_blk;
954
955	buffer = xlog_alloc_buffer(log, 1);
956	if (!buffer)
957		return -ENOMEM;
958
959	/*
960	 * Make sure the tail points to a record (returns positive count on
961	 * success).
962	 */
963	error = xlog_seek_logrec_hdr(log, head_blk, *tail_blk, 1, buffer,
964			&tmp_tail, &thead, &wrapped);
965	if (error < 0)
966		goto out;
967	if (*tail_blk != tmp_tail)
968		*tail_blk = tmp_tail;
969
970	/*
971	 * Run a CRC check from the tail to the head. We can't just check
972	 * MAX_ICLOGS records past the tail because the tail may point to stale
973	 * blocks cleared during the search for the head/tail. These blocks are
974	 * overwritten with zero-length records and thus record count is not a
975	 * reliable indicator of the iclog state before a crash.
976	 */
977	first_bad = 0;
978	error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
979				      XLOG_RECOVER_CRCPASS, &first_bad);
980	while ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
981		int	tail_distance;
982
983		/*
984		 * Is corruption within range of the head? If so, retry from
985		 * the next record. Otherwise return an error.
986		 */
987		tail_distance = xlog_tail_distance(log, head_blk, first_bad);
988		if (tail_distance > BTOBB(XLOG_MAX_ICLOGS * hsize))
989			break;
990
991		/* skip to the next record; returns positive count on success */
992		error = xlog_seek_logrec_hdr(log, head_blk, first_bad, 2,
993				buffer, &tmp_tail, &thead, &wrapped);
994		if (error < 0)
995			goto out;
996
997		*tail_blk = tmp_tail;
998		first_bad = 0;
999		error = xlog_do_recovery_pass(log, head_blk, *tail_blk,
1000					      XLOG_RECOVER_CRCPASS, &first_bad);
1001	}
1002
1003	if (!error && *tail_blk != orig_tail)
1004		xfs_warn(log->l_mp,
1005		"Tail block (0x%llx) overwrite detected. Updated to 0x%llx",
1006			 orig_tail, *tail_blk);
1007out:
1008	kmem_free(buffer);
1009	return error;
1010}
1011
1012/*
1013 * Detect and trim torn writes from the head of the log.
1014 *
1015 * Storage without sector atomicity guarantees can result in torn writes in the
1016 * log in the event of a crash. Our only means to detect this scenario is via
1017 * CRC verification. While we can't always be certain that CRC verification
1018 * failure is due to a torn write vs. an unrelated corruption, we do know that
1019 * only a certain number (XLOG_MAX_ICLOGS) of log records can be written out at
1020 * one time. Therefore, CRC verify up to XLOG_MAX_ICLOGS records at the head of
1021 * the log and treat failures in this range as torn writes as a matter of
1022 * policy. In the event of CRC failure, the head is walked back to the last good
1023 * record in the log and the tail is updated from that record and verified.
1024 */
1025STATIC int
1026xlog_verify_head(
1027	struct xlog		*log,
1028	xfs_daddr_t		*head_blk,	/* in/out: unverified head */
1029	xfs_daddr_t		*tail_blk,	/* out: tail block */
1030	char			*buffer,
1031	xfs_daddr_t		*rhead_blk,	/* start blk of last record */
1032	struct xlog_rec_header	**rhead,	/* ptr to last record */
1033	bool			*wrapped)	/* last rec. wraps phys. log */
1034{
1035	struct xlog_rec_header	*tmp_rhead;
1036	char			*tmp_buffer;
1037	xfs_daddr_t		first_bad;
1038	xfs_daddr_t		tmp_rhead_blk;
1039	int			found;
1040	int			error;
1041	bool			tmp_wrapped;
1042
1043	/*
1044	 * Check the head of the log for torn writes. Search backwards from the
1045	 * head until we hit the tail or the maximum number of log record I/Os
1046	 * that could have been in flight at one time. Use a temporary buffer so
1047	 * we don't trash the rhead/buffer pointers from the caller.
1048	 */
1049	tmp_buffer = xlog_alloc_buffer(log, 1);
1050	if (!tmp_buffer)
1051		return -ENOMEM;
1052	error = xlog_rseek_logrec_hdr(log, *head_blk, *tail_blk,
1053				      XLOG_MAX_ICLOGS, tmp_buffer,
1054				      &tmp_rhead_blk, &tmp_rhead, &tmp_wrapped);
1055	kmem_free(tmp_buffer);
1056	if (error < 0)
1057		return error;
1058
1059	/*
1060	 * Now run a CRC verification pass over the records starting at the
1061	 * block found above to the current head. If a CRC failure occurs, the
1062	 * log block of the first bad record is saved in first_bad.
1063	 */
1064	error = xlog_do_recovery_pass(log, *head_blk, tmp_rhead_blk,
1065				      XLOG_RECOVER_CRCPASS, &first_bad);
1066	if ((error == -EFSBADCRC || error == -EFSCORRUPTED) && first_bad) {
1067		/*
1068		 * We've hit a potential torn write. Reset the error and warn
1069		 * about it.
1070		 */
1071		error = 0;
1072		xfs_warn(log->l_mp,
1073"Torn write (CRC failure) detected at log block 0x%llx. Truncating head block from 0x%llx.",
1074			 first_bad, *head_blk);
1075
1076		/*
1077		 * Get the header block and buffer pointer for the last good
1078		 * record before the bad record.
1079		 *
1080		 * Note that xlog_find_tail() clears the blocks at the new head
1081		 * (i.e., the records with invalid CRC) if the cycle number
1082		 * matches the current cycle.
1083		 */
1084		found = xlog_rseek_logrec_hdr(log, first_bad, *tail_blk, 1,
1085				buffer, rhead_blk, rhead, wrapped);
1086		if (found < 0)
1087			return found;
1088		if (found == 0)		/* XXX: right thing to do here? */
1089			return -EIO;
1090
1091		/*
1092		 * Reset the head block to the starting block of the first bad
1093		 * log record and set the tail block based on the last good
1094		 * record.
1095		 *
1096		 * Bail out if the updated head/tail match as this indicates
1097		 * possible corruption outside of the acceptable
1098		 * (XLOG_MAX_ICLOGS) range. This is a job for xfs_repair...
1099		 */
1100		*head_blk = first_bad;
1101		*tail_blk = BLOCK_LSN(be64_to_cpu((*rhead)->h_tail_lsn));
1102		if (*head_blk == *tail_blk) {
1103			ASSERT(0);
1104			return 0;
1105		}
1106	}
1107	if (error)
1108		return error;
1109
1110	return xlog_verify_tail(log, *head_blk, tail_blk,
1111				be32_to_cpu((*rhead)->h_size));
1112}
1113
1114/*
1115 * We need to make sure we handle log wrapping properly, so we can't use the
1116 * calculated logbno directly. Make sure it wraps to the correct bno inside the
1117 * log.
1118 *
1119 * The log is limited to 32 bit sizes, so we use the appropriate modulus
1120 * operation here and cast it back to a 64 bit daddr on return.
1121 */
1122static inline xfs_daddr_t
1123xlog_wrap_logbno(
1124	struct xlog		*log,
1125	xfs_daddr_t		bno)
1126{
1127	int			mod;
1128
1129	div_s64_rem(bno, log->l_logBBsize, &mod);
1130	return mod;
1131}
1132
1133/*
1134 * Check whether the head of the log points to an unmount record. In other
1135 * words, determine whether the log is clean. If so, update the in-core state
1136 * appropriately.
1137 */
1138static int
1139xlog_check_unmount_rec(
1140	struct xlog		*log,
1141	xfs_daddr_t		*head_blk,
1142	xfs_daddr_t		*tail_blk,
1143	struct xlog_rec_header	*rhead,
1144	xfs_daddr_t		rhead_blk,
1145	char			*buffer,
1146	bool			*clean)
1147{
1148	struct xlog_op_header	*op_head;
1149	xfs_daddr_t		umount_data_blk;
1150	xfs_daddr_t		after_umount_blk;
1151	int			hblks;
1152	int			error;
1153	char			*offset;
1154
1155	*clean = false;
1156
1157	/*
1158	 * Look for unmount record. If we find it, then we know there was a
1159	 * clean unmount. Since 'i' could be the last block in the physical
1160	 * log, we convert to a log block before comparing to the head_blk.
1161	 *
1162	 * Save the current tail lsn to use to pass to xlog_clear_stale_blocks()
1163	 * below. We won't want to clear the unmount record if there is one, so
1164	 * we pass the lsn of the unmount record rather than the block after it.
1165	 */
1166	hblks = xlog_logrec_hblks(log, rhead);
1167	after_umount_blk = xlog_wrap_logbno(log,
1168			rhead_blk + hblks + BTOBB(be32_to_cpu(rhead->h_len)));
1169
1170	if (*head_blk == after_umount_blk &&
1171	    be32_to_cpu(rhead->h_num_logops) == 1) {
1172		umount_data_blk = xlog_wrap_logbno(log, rhead_blk + hblks);
1173		error = xlog_bread(log, umount_data_blk, 1, buffer, &offset);
1174		if (error)
1175			return error;
1176
1177		op_head = (struct xlog_op_header *)offset;
1178		if (op_head->oh_flags & XLOG_UNMOUNT_TRANS) {
1179			/*
1180			 * Set tail and last sync so that newly written log
1181			 * records will point recovery to after the current
1182			 * unmount record.
1183			 */
1184			xlog_assign_atomic_lsn(&log->l_tail_lsn,
1185					log->l_curr_cycle, after_umount_blk);
1186			xlog_assign_atomic_lsn(&log->l_last_sync_lsn,
1187					log->l_curr_cycle, after_umount_blk);
1188			*tail_blk = after_umount_blk;
1189
1190			*clean = true;
1191		}
1192	}
1193
1194	return 0;
1195}
1196
1197static void
1198xlog_set_state(
1199	struct xlog		*log,
1200	xfs_daddr_t		head_blk,
1201	struct xlog_rec_header	*rhead,
1202	xfs_daddr_t		rhead_blk,
1203	bool			bump_cycle)
1204{
1205	/*
1206	 * Reset log values according to the state of the log when we
1207	 * crashed.  In the case where head_blk == 0, we bump curr_cycle
1208	 * one because the next write starts a new cycle rather than
1209	 * continuing the cycle of the last good log record.  At this
1210	 * point we have guaranteed that all partial log records have been
1211	 * accounted for.  Therefore, we know that the last good log record
1212	 * written was complete and ended exactly on the end boundary
1213	 * of the physical log.
1214	 */
1215	log->l_prev_block = rhead_blk;
1216	log->l_curr_block = (int)head_blk;
1217	log->l_curr_cycle = be32_to_cpu(rhead->h_cycle);
1218	if (bump_cycle)
1219		log->l_curr_cycle++;
1220	atomic64_set(&log->l_tail_lsn, be64_to_cpu(rhead->h_tail_lsn));
1221	atomic64_set(&log->l_last_sync_lsn, be64_to_cpu(rhead->h_lsn));
1222	xlog_assign_grant_head(&log->l_reserve_head.grant, log->l_curr_cycle,
1223					BBTOB(log->l_curr_block));
1224	xlog_assign_grant_head(&log->l_write_head.grant, log->l_curr_cycle,
1225					BBTOB(log->l_curr_block));
1226}
1227
1228/*
1229 * Find the sync block number or the tail of the log.
1230 *
1231 * This will be the block number of the last record to have its
1232 * associated buffers synced to disk.  Every log record header has
1233 * a sync lsn embedded in it.  LSNs hold block numbers, so it is easy
1234 * to get a sync block number.  The only concern is to figure out which
1235 * log record header to believe.
1236 *
1237 * The following algorithm uses the log record header with the largest
1238 * lsn.  The entire log record does not need to be valid.  We only care
1239 * that the header is valid.
1240 *
1241 * We could speed up search by using current head_blk buffer, but it is not
1242 * available.
1243 */
1244STATIC int
1245xlog_find_tail(
1246	struct xlog		*log,
1247	xfs_daddr_t		*head_blk,
1248	xfs_daddr_t		*tail_blk)
1249{
1250	xlog_rec_header_t	*rhead;
1251	char			*offset = NULL;
1252	char			*buffer;
1253	int			error;
1254	xfs_daddr_t		rhead_blk;
1255	xfs_lsn_t		tail_lsn;
1256	bool			wrapped = false;
1257	bool			clean = false;
1258
1259	/*
1260	 * Find previous log record
1261	 */
1262	if ((error = xlog_find_head(log, head_blk)))
1263		return error;
1264	ASSERT(*head_blk < INT_MAX);
1265
1266	buffer = xlog_alloc_buffer(log, 1);
1267	if (!buffer)
1268		return -ENOMEM;
1269	if (*head_blk == 0) {				/* special case */
1270		error = xlog_bread(log, 0, 1, buffer, &offset);
1271		if (error)
1272			goto done;
1273
1274		if (xlog_get_cycle(offset) == 0) {
1275			*tail_blk = 0;
1276			/* leave all other log inited values alone */
1277			goto done;
1278		}
1279	}
1280
1281	/*
1282	 * Search backwards through the log looking for the log record header
1283	 * block. This wraps all the way back around to the head so something is
1284	 * seriously wrong if we can't find it.
1285	 */
1286	error = xlog_rseek_logrec_hdr(log, *head_blk, *head_blk, 1, buffer,
1287				      &rhead_blk, &rhead, &wrapped);
1288	if (error < 0)
1289		goto done;
1290	if (!error) {
1291		xfs_warn(log->l_mp, "%s: couldn't find sync record", __func__);
1292		error = -EFSCORRUPTED;
1293		goto done;
1294	}
1295	*tail_blk = BLOCK_LSN(be64_to_cpu(rhead->h_tail_lsn));
1296
1297	/*
1298	 * Set the log state based on the current head record.
1299	 */
1300	xlog_set_state(log, *head_blk, rhead, rhead_blk, wrapped);
1301	tail_lsn = atomic64_read(&log->l_tail_lsn);
1302
1303	/*
1304	 * Look for an unmount record at the head of the log. This sets the log
1305	 * state to determine whether recovery is necessary.
1306	 */
1307	error = xlog_check_unmount_rec(log, head_blk, tail_blk, rhead,
1308				       rhead_blk, buffer, &clean);
1309	if (error)
1310		goto done;
1311
1312	/*
1313	 * Verify the log head if the log is not clean (e.g., we have anything
1314	 * but an unmount record at the head). This uses CRC verification to
1315	 * detect and trim torn writes. If discovered, CRC failures are
1316	 * considered torn writes and the log head is trimmed accordingly.
1317	 *
1318	 * Note that we can only run CRC verification when the log is dirty
1319	 * because there's no guarantee that the log data behind an unmount
1320	 * record is compatible with the current architecture.
1321	 */
1322	if (!clean) {
1323		xfs_daddr_t	orig_head = *head_blk;
1324
1325		error = xlog_verify_head(log, head_blk, tail_blk, buffer,
1326					 &rhead_blk, &rhead, &wrapped);
1327		if (error)
1328			goto done;
1329
1330		/* update in-core state again if the head changed */
1331		if (*head_blk != orig_head) {
1332			xlog_set_state(log, *head_blk, rhead, rhead_blk,
1333				       wrapped);
1334			tail_lsn = atomic64_read(&log->l_tail_lsn);
1335			error = xlog_check_unmount_rec(log, head_blk, tail_blk,
1336						       rhead, rhead_blk, buffer,
1337						       &clean);
1338			if (error)
1339				goto done;
1340		}
1341	}
1342
1343	/*
1344	 * Note that the unmount was clean. If the unmount was not clean, we
1345	 * need to know this to rebuild the superblock counters from the perag
1346	 * headers if we have a filesystem using non-persistent counters.
1347	 */
1348	if (clean)
1349		log->l_mp->m_flags |= XFS_MOUNT_WAS_CLEAN;
1350
1351	/*
1352	 * Make sure that there are no blocks in front of the head
1353	 * with the same cycle number as the head.  This can happen
1354	 * because we allow multiple outstanding log writes concurrently,
1355	 * and the later writes might make it out before earlier ones.
1356	 *
1357	 * We use the lsn from before modifying it so that we'll never
1358	 * overwrite the unmount record after a clean unmount.
1359	 *
1360	 * Do this only if we are going to recover the filesystem
1361	 *
1362	 * NOTE: This used to say "if (!readonly)"
1363	 * However on Linux, we can & do recover a read-only filesystem.
1364	 * We only skip recovery if NORECOVERY is specified on mount,
1365	 * in which case we would not be here.
1366	 *
1367	 * But... if the -device- itself is readonly, just skip this.
1368	 * We can't recover this device anyway, so it won't matter.
1369	 */
1370	if (!xfs_readonly_buftarg(log->l_targ))
1371		error = xlog_clear_stale_blocks(log, tail_lsn);
1372
1373done:
1374	kmem_free(buffer);
1375
1376	if (error)
1377		xfs_warn(log->l_mp, "failed to locate log tail");
1378	return error;
1379}
1380
1381/*
1382 * Is the log zeroed at all?
1383 *
1384 * The last binary search should be changed to perform an X block read
1385 * once X becomes small enough.  You can then search linearly through
1386 * the X blocks.  This will cut down on the number of reads we need to do.
1387 *
1388 * If the log is partially zeroed, this routine will pass back the blkno
1389 * of the first block with cycle number 0.  It won't have a complete LR
1390 * preceding it.
1391 *
1392 * Return:
1393 *	0  => the log is completely written to
1394 *	1 => use *blk_no as the first block of the log
1395 *	<0 => error has occurred
1396 */
1397STATIC int
1398xlog_find_zeroed(
1399	struct xlog	*log,
1400	xfs_daddr_t	*blk_no)
1401{
1402	char		*buffer;
1403	char		*offset;
1404	uint	        first_cycle, last_cycle;
1405	xfs_daddr_t	new_blk, last_blk, start_blk;
1406	xfs_daddr_t     num_scan_bblks;
1407	int	        error, log_bbnum = log->l_logBBsize;
1408
1409	*blk_no = 0;
1410
1411	/* check totally zeroed log */
1412	buffer = xlog_alloc_buffer(log, 1);
1413	if (!buffer)
1414		return -ENOMEM;
1415	error = xlog_bread(log, 0, 1, buffer, &offset);
1416	if (error)
1417		goto out_free_buffer;
1418
1419	first_cycle = xlog_get_cycle(offset);
1420	if (first_cycle == 0) {		/* completely zeroed log */
1421		*blk_no = 0;
1422		kmem_free(buffer);
1423		return 1;
1424	}
1425
1426	/* check partially zeroed log */
1427	error = xlog_bread(log, log_bbnum-1, 1, buffer, &offset);
1428	if (error)
1429		goto out_free_buffer;
1430
1431	last_cycle = xlog_get_cycle(offset);
1432	if (last_cycle != 0) {		/* log completely written to */
1433		kmem_free(buffer);
1434		return 0;
1435	}
1436
1437	/* we have a partially zeroed log */
1438	last_blk = log_bbnum-1;
1439	error = xlog_find_cycle_start(log, buffer, 0, &last_blk, 0);
1440	if (error)
1441		goto out_free_buffer;
1442
1443	/*
1444	 * Validate the answer.  Because there is no way to guarantee that
1445	 * the entire log is made up of log records which are the same size,
1446	 * we scan over the defined maximum blocks.  At this point, the maximum
1447	 * is not chosen to mean anything special.   XXXmiken
1448	 */
1449	num_scan_bblks = XLOG_TOTAL_REC_SHIFT(log);
1450	ASSERT(num_scan_bblks <= INT_MAX);
1451
1452	if (last_blk < num_scan_bblks)
1453		num_scan_bblks = last_blk;
1454	start_blk = last_blk - num_scan_bblks;
1455
1456	/*
1457	 * We search for any instances of cycle number 0 that occur before
1458	 * our current estimate of the head.  What we're trying to detect is
1459	 *        1 ... | 0 | 1 | 0...
1460	 *                       ^ binary search ends here
1461	 */
1462	if ((error = xlog_find_verify_cycle(log, start_blk,
1463					 (int)num_scan_bblks, 0, &new_blk)))
1464		goto out_free_buffer;
1465	if (new_blk != -1)
1466		last_blk = new_blk;
1467
1468	/*
1469	 * Potentially backup over partial log record write.  We don't need
1470	 * to search the end of the log because we know it is zero.
1471	 */
1472	error = xlog_find_verify_log_record(log, start_blk, &last_blk, 0);
1473	if (error == 1)
1474		error = -EIO;
1475	if (error)
1476		goto out_free_buffer;
1477
1478	*blk_no = last_blk;
1479out_free_buffer:
1480	kmem_free(buffer);
1481	if (error)
1482		return error;
1483	return 1;
1484}
1485
1486/*
1487 * These are simple subroutines used by xlog_clear_stale_blocks() below
1488 * to initialize a buffer full of empty log record headers and write
1489 * them into the log.
1490 */
1491STATIC void
1492xlog_add_record(
1493	struct xlog		*log,
1494	char			*buf,
1495	int			cycle,
1496	int			block,
1497	int			tail_cycle,
1498	int			tail_block)
1499{
1500	xlog_rec_header_t	*recp = (xlog_rec_header_t *)buf;
1501
1502	memset(buf, 0, BBSIZE);
1503	recp->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1504	recp->h_cycle = cpu_to_be32(cycle);
1505	recp->h_version = cpu_to_be32(
1506			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1507	recp->h_lsn = cpu_to_be64(xlog_assign_lsn(cycle, block));
1508	recp->h_tail_lsn = cpu_to_be64(xlog_assign_lsn(tail_cycle, tail_block));
1509	recp->h_fmt = cpu_to_be32(XLOG_FMT);
1510	memcpy(&recp->h_fs_uuid, &log->l_mp->m_sb.sb_uuid, sizeof(uuid_t));
1511}
1512
1513STATIC int
1514xlog_write_log_records(
1515	struct xlog	*log,
1516	int		cycle,
1517	int		start_block,
1518	int		blocks,
1519	int		tail_cycle,
1520	int		tail_block)
1521{
1522	char		*offset;
1523	char		*buffer;
1524	int		balign, ealign;
1525	int		sectbb = log->l_sectBBsize;
1526	int		end_block = start_block + blocks;
1527	int		bufblks;
1528	int		error = 0;
1529	int		i, j = 0;
1530
1531	/*
1532	 * Greedily allocate a buffer big enough to handle the full
1533	 * range of basic blocks to be written.  If that fails, try
1534	 * a smaller size.  We need to be able to write at least a
1535	 * log sector, or we're out of luck.
1536	 */
1537	bufblks = 1 << ffs(blocks);
1538	while (bufblks > log->l_logBBsize)
1539		bufblks >>= 1;
1540	while (!(buffer = xlog_alloc_buffer(log, bufblks))) {
1541		bufblks >>= 1;
1542		if (bufblks < sectbb)
1543			return -ENOMEM;
1544	}
1545
1546	/* We may need to do a read at the start to fill in part of
1547	 * the buffer in the starting sector not covered by the first
1548	 * write below.
1549	 */
1550	balign = round_down(start_block, sectbb);
1551	if (balign != start_block) {
1552		error = xlog_bread_noalign(log, start_block, 1, buffer);
1553		if (error)
1554			goto out_free_buffer;
1555
1556		j = start_block - balign;
1557	}
1558
1559	for (i = start_block; i < end_block; i += bufblks) {
1560		int		bcount, endcount;
1561
1562		bcount = min(bufblks, end_block - start_block);
1563		endcount = bcount - j;
1564
1565		/* We may need to do a read at the end to fill in part of
1566		 * the buffer in the final sector not covered by the write.
1567		 * If this is the same sector as the above read, skip it.
1568		 */
1569		ealign = round_down(end_block, sectbb);
1570		if (j == 0 && (start_block + endcount > ealign)) {
1571			error = xlog_bread_noalign(log, ealign, sectbb,
1572					buffer + BBTOB(ealign - start_block));
1573			if (error)
1574				break;
1575
1576		}
1577
1578		offset = buffer + xlog_align(log, start_block);
1579		for (; j < endcount; j++) {
1580			xlog_add_record(log, offset, cycle, i+j,
1581					tail_cycle, tail_block);
1582			offset += BBSIZE;
1583		}
1584		error = xlog_bwrite(log, start_block, endcount, buffer);
1585		if (error)
1586			break;
1587		start_block += endcount;
1588		j = 0;
1589	}
1590
1591out_free_buffer:
1592	kmem_free(buffer);
1593	return error;
1594}
1595
1596/*
1597 * This routine is called to blow away any incomplete log writes out
1598 * in front of the log head.  We do this so that we won't become confused
1599 * if we come up, write only a little bit more, and then crash again.
1600 * If we leave the partial log records out there, this situation could
1601 * cause us to think those partial writes are valid blocks since they
1602 * have the current cycle number.  We get rid of them by overwriting them
1603 * with empty log records with the old cycle number rather than the
1604 * current one.
1605 *
1606 * The tail lsn is passed in rather than taken from
1607 * the log so that we will not write over the unmount record after a
1608 * clean unmount in a 512 block log.  Doing so would leave the log without
1609 * any valid log records in it until a new one was written.  If we crashed
1610 * during that time we would not be able to recover.
1611 */
1612STATIC int
1613xlog_clear_stale_blocks(
1614	struct xlog	*log,
1615	xfs_lsn_t	tail_lsn)
1616{
1617	int		tail_cycle, head_cycle;
1618	int		tail_block, head_block;
1619	int		tail_distance, max_distance;
1620	int		distance;
1621	int		error;
1622
1623	tail_cycle = CYCLE_LSN(tail_lsn);
1624	tail_block = BLOCK_LSN(tail_lsn);
1625	head_cycle = log->l_curr_cycle;
1626	head_block = log->l_curr_block;
1627
1628	/*
1629	 * Figure out the distance between the new head of the log
1630	 * and the tail.  We want to write over any blocks beyond the
1631	 * head that we may have written just before the crash, but
1632	 * we don't want to overwrite the tail of the log.
1633	 */
1634	if (head_cycle == tail_cycle) {
1635		/*
1636		 * The tail is behind the head in the physical log,
1637		 * so the distance from the head to the tail is the
1638		 * distance from the head to the end of the log plus
1639		 * the distance from the beginning of the log to the
1640		 * tail.
1641		 */
1642		if (XFS_IS_CORRUPT(log->l_mp,
1643				   head_block < tail_block ||
1644				   head_block >= log->l_logBBsize))
1645			return -EFSCORRUPTED;
1646		tail_distance = tail_block + (log->l_logBBsize - head_block);
1647	} else {
1648		/*
1649		 * The head is behind the tail in the physical log,
1650		 * so the distance from the head to the tail is just
1651		 * the tail block minus the head block.
1652		 */
1653		if (XFS_IS_CORRUPT(log->l_mp,
1654				   head_block >= tail_block ||
1655				   head_cycle != tail_cycle + 1))
1656			return -EFSCORRUPTED;
1657		tail_distance = tail_block - head_block;
1658	}
1659
1660	/*
1661	 * If the head is right up against the tail, we can't clear
1662	 * anything.
1663	 */
1664	if (tail_distance <= 0) {
1665		ASSERT(tail_distance == 0);
1666		return 0;
1667	}
1668
1669	max_distance = XLOG_TOTAL_REC_SHIFT(log);
1670	/*
1671	 * Take the smaller of the maximum amount of outstanding I/O
1672	 * we could have and the distance to the tail to clear out.
1673	 * We take the smaller so that we don't overwrite the tail and
1674	 * we don't waste all day writing from the head to the tail
1675	 * for no reason.
1676	 */
1677	max_distance = min(max_distance, tail_distance);
1678
1679	if ((head_block + max_distance) <= log->l_logBBsize) {
1680		/*
1681		 * We can stomp all the blocks we need to without
1682		 * wrapping around the end of the log.  Just do it
1683		 * in a single write.  Use the cycle number of the
1684		 * current cycle minus one so that the log will look like:
1685		 *     n ... | n - 1 ...
1686		 */
1687		error = xlog_write_log_records(log, (head_cycle - 1),
1688				head_block, max_distance, tail_cycle,
1689				tail_block);
1690		if (error)
1691			return error;
1692	} else {
1693		/*
1694		 * We need to wrap around the end of the physical log in
1695		 * order to clear all the blocks.  Do it in two separate
1696		 * I/Os.  The first write should be from the head to the
1697		 * end of the physical log, and it should use the current
1698		 * cycle number minus one just like above.
1699		 */
1700		distance = log->l_logBBsize - head_block;
1701		error = xlog_write_log_records(log, (head_cycle - 1),
1702				head_block, distance, tail_cycle,
1703				tail_block);
1704
1705		if (error)
1706			return error;
1707
1708		/*
1709		 * Now write the blocks at the start of the physical log.
1710		 * This writes the remainder of the blocks we want to clear.
1711		 * It uses the current cycle number since we're now on the
1712		 * same cycle as the head so that we get:
1713		 *    n ... n ... | n - 1 ...
1714		 *    ^^^^^ blocks we're writing
1715		 */
1716		distance = max_distance - (log->l_logBBsize - head_block);
1717		error = xlog_write_log_records(log, head_cycle, 0, distance,
1718				tail_cycle, tail_block);
1719		if (error)
1720			return error;
1721	}
1722
1723	return 0;
1724}
1725
1726/*
1727 * Release the recovered intent item in the AIL that matches the given intent
1728 * type and intent id.
1729 */
1730void
1731xlog_recover_release_intent(
1732	struct xlog		*log,
1733	unsigned short		intent_type,
1734	uint64_t		intent_id)
1735{
1736	struct xfs_ail_cursor	cur;
1737	struct xfs_log_item	*lip;
1738	struct xfs_ail		*ailp = log->l_ailp;
1739
1740	spin_lock(&ailp->ail_lock);
1741	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0); lip != NULL;
1742	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
1743		if (lip->li_type != intent_type)
1744			continue;
1745		if (!lip->li_ops->iop_match(lip, intent_id))
1746			continue;
1747
1748		spin_unlock(&ailp->ail_lock);
1749		lip->li_ops->iop_release(lip);
1750		spin_lock(&ailp->ail_lock);
1751		break;
1752	}
1753
1754	xfs_trans_ail_cursor_done(&cur);
1755	spin_unlock(&ailp->ail_lock);
1756}
1757
1758/******************************************************************************
1759 *
1760 *		Log recover routines
1761 *
1762 ******************************************************************************
1763 */
1764static const struct xlog_recover_item_ops *xlog_recover_item_ops[] = {
1765	&xlog_buf_item_ops,
1766	&xlog_inode_item_ops,
1767	&xlog_dquot_item_ops,
1768	&xlog_quotaoff_item_ops,
1769	&xlog_icreate_item_ops,
1770	&xlog_efi_item_ops,
1771	&xlog_efd_item_ops,
1772	&xlog_rui_item_ops,
1773	&xlog_rud_item_ops,
1774	&xlog_cui_item_ops,
1775	&xlog_cud_item_ops,
1776	&xlog_bui_item_ops,
1777	&xlog_bud_item_ops,
1778};
1779
1780static const struct xlog_recover_item_ops *
1781xlog_find_item_ops(
1782	struct xlog_recover_item		*item)
1783{
1784	unsigned int				i;
1785
1786	for (i = 0; i < ARRAY_SIZE(xlog_recover_item_ops); i++)
1787		if (ITEM_TYPE(item) == xlog_recover_item_ops[i]->item_type)
1788			return xlog_recover_item_ops[i];
1789
1790	return NULL;
1791}
1792
1793/*
1794 * Sort the log items in the transaction.
1795 *
1796 * The ordering constraints are defined by the inode allocation and unlink
1797 * behaviour. The rules are:
1798 *
1799 *	1. Every item is only logged once in a given transaction. Hence it
1800 *	   represents the last logged state of the item. Hence ordering is
1801 *	   dependent on the order in which operations need to be performed so
1802 *	   required initial conditions are always met.
1803 *
1804 *	2. Cancelled buffers are recorded in pass 1 in a separate table and
1805 *	   there's nothing to replay from them so we can simply cull them
1806 *	   from the transaction. However, we can't do that until after we've
1807 *	   replayed all the other items because they may be dependent on the
1808 *	   cancelled buffer and replaying the cancelled buffer can remove it
1809 *	   form the cancelled buffer table. Hence they have tobe done last.
1810 *
1811 *	3. Inode allocation buffers must be replayed before inode items that
1812 *	   read the buffer and replay changes into it. For filesystems using the
1813 *	   ICREATE transactions, this means XFS_LI_ICREATE objects need to get
1814 *	   treated the same as inode allocation buffers as they create and
1815 *	   initialise the buffers directly.
1816 *
1817 *	4. Inode unlink buffers must be replayed after inode items are replayed.
1818 *	   This ensures that inodes are completely flushed to the inode buffer
1819 *	   in a "free" state before we remove the unlinked inode list pointer.
1820 *
1821 * Hence the ordering needs to be inode allocation buffers first, inode items
1822 * second, inode unlink buffers third and cancelled buffers last.
1823 *
1824 * But there's a problem with that - we can't tell an inode allocation buffer
1825 * apart from a regular buffer, so we can't separate them. We can, however,
1826 * tell an inode unlink buffer from the others, and so we can separate them out
1827 * from all the other buffers and move them to last.
1828 *
1829 * Hence, 4 lists, in order from head to tail:
1830 *	- buffer_list for all buffers except cancelled/inode unlink buffers
1831 *	- item_list for all non-buffer items
1832 *	- inode_buffer_list for inode unlink buffers
1833 *	- cancel_list for the cancelled buffers
1834 *
1835 * Note that we add objects to the tail of the lists so that first-to-last
1836 * ordering is preserved within the lists. Adding objects to the head of the
1837 * list means when we traverse from the head we walk them in last-to-first
1838 * order. For cancelled buffers and inode unlink buffers this doesn't matter,
1839 * but for all other items there may be specific ordering that we need to
1840 * preserve.
1841 */
1842STATIC int
1843xlog_recover_reorder_trans(
1844	struct xlog		*log,
1845	struct xlog_recover	*trans,
1846	int			pass)
1847{
1848	struct xlog_recover_item *item, *n;
1849	int			error = 0;
1850	LIST_HEAD(sort_list);
1851	LIST_HEAD(cancel_list);
1852	LIST_HEAD(buffer_list);
1853	LIST_HEAD(inode_buffer_list);
1854	LIST_HEAD(item_list);
1855
1856	list_splice_init(&trans->r_itemq, &sort_list);
1857	list_for_each_entry_safe(item, n, &sort_list, ri_list) {
1858		enum xlog_recover_reorder	fate = XLOG_REORDER_ITEM_LIST;
1859
1860		item->ri_ops = xlog_find_item_ops(item);
1861		if (!item->ri_ops) {
1862			xfs_warn(log->l_mp,
1863				"%s: unrecognized type of log operation (%d)",
1864				__func__, ITEM_TYPE(item));
1865			ASSERT(0);
1866			/*
1867			 * return the remaining items back to the transaction
1868			 * item list so they can be freed in caller.
1869			 */
1870			if (!list_empty(&sort_list))
1871				list_splice_init(&sort_list, &trans->r_itemq);
1872			error = -EFSCORRUPTED;
1873			break;
1874		}
1875
1876		if (item->ri_ops->reorder)
1877			fate = item->ri_ops->reorder(item);
1878
1879		switch (fate) {
1880		case XLOG_REORDER_BUFFER_LIST:
1881			list_move_tail(&item->ri_list, &buffer_list);
1882			break;
1883		case XLOG_REORDER_CANCEL_LIST:
1884			trace_xfs_log_recover_item_reorder_head(log,
1885					trans, item, pass);
1886			list_move(&item->ri_list, &cancel_list);
1887			break;
1888		case XLOG_REORDER_INODE_BUFFER_LIST:
1889			list_move(&item->ri_list, &inode_buffer_list);
1890			break;
1891		case XLOG_REORDER_ITEM_LIST:
1892			trace_xfs_log_recover_item_reorder_tail(log,
1893							trans, item, pass);
1894			list_move_tail(&item->ri_list, &item_list);
1895			break;
1896		}
1897	}
1898
1899	ASSERT(list_empty(&sort_list));
1900	if (!list_empty(&buffer_list))
1901		list_splice(&buffer_list, &trans->r_itemq);
1902	if (!list_empty(&item_list))
1903		list_splice_tail(&item_list, &trans->r_itemq);
1904	if (!list_empty(&inode_buffer_list))
1905		list_splice_tail(&inode_buffer_list, &trans->r_itemq);
1906	if (!list_empty(&cancel_list))
1907		list_splice_tail(&cancel_list, &trans->r_itemq);
1908	return error;
1909}
1910
1911void
1912xlog_buf_readahead(
1913	struct xlog		*log,
1914	xfs_daddr_t		blkno,
1915	uint			len,
1916	const struct xfs_buf_ops *ops)
1917{
1918	if (!xlog_is_buffer_cancelled(log, blkno, len))
1919		xfs_buf_readahead(log->l_mp->m_ddev_targp, blkno, len, ops);
1920}
1921
1922STATIC int
1923xlog_recover_items_pass2(
1924	struct xlog                     *log,
1925	struct xlog_recover             *trans,
1926	struct list_head                *buffer_list,
1927	struct list_head                *item_list)
1928{
1929	struct xlog_recover_item	*item;
1930	int				error = 0;
1931
1932	list_for_each_entry(item, item_list, ri_list) {
1933		trace_xfs_log_recover_item_recover(log, trans, item,
1934				XLOG_RECOVER_PASS2);
1935
1936		if (item->ri_ops->commit_pass2)
1937			error = item->ri_ops->commit_pass2(log, buffer_list,
1938					item, trans->r_lsn);
1939		if (error)
1940			return error;
1941	}
1942
1943	return error;
1944}
1945
1946/*
1947 * Perform the transaction.
1948 *
1949 * If the transaction modifies a buffer or inode, do it now.  Otherwise,
1950 * EFIs and EFDs get queued up by adding entries into the AIL for them.
1951 */
1952STATIC int
1953xlog_recover_commit_trans(
1954	struct xlog		*log,
1955	struct xlog_recover	*trans,
1956	int			pass,
1957	struct list_head	*buffer_list)
1958{
1959	int				error = 0;
1960	int				items_queued = 0;
1961	struct xlog_recover_item	*item;
1962	struct xlog_recover_item	*next;
1963	LIST_HEAD			(ra_list);
1964	LIST_HEAD			(done_list);
1965
1966	#define XLOG_RECOVER_COMMIT_QUEUE_MAX 100
1967
1968	hlist_del_init(&trans->r_list);
1969
1970	error = xlog_recover_reorder_trans(log, trans, pass);
1971	if (error)
1972		return error;
1973
1974	list_for_each_entry_safe(item, next, &trans->r_itemq, ri_list) {
1975		trace_xfs_log_recover_item_recover(log, trans, item, pass);
1976
1977		switch (pass) {
1978		case XLOG_RECOVER_PASS1:
1979			if (item->ri_ops->commit_pass1)
1980				error = item->ri_ops->commit_pass1(log, item);
1981			break;
1982		case XLOG_RECOVER_PASS2:
1983			if (item->ri_ops->ra_pass2)
1984				item->ri_ops->ra_pass2(log, item);
1985			list_move_tail(&item->ri_list, &ra_list);
1986			items_queued++;
1987			if (items_queued >= XLOG_RECOVER_COMMIT_QUEUE_MAX) {
1988				error = xlog_recover_items_pass2(log, trans,
1989						buffer_list, &ra_list);
1990				list_splice_tail_init(&ra_list, &done_list);
1991				items_queued = 0;
1992			}
1993
1994			break;
1995		default:
1996			ASSERT(0);
1997		}
1998
1999		if (error)
2000			goto out;
2001	}
2002
2003out:
2004	if (!list_empty(&ra_list)) {
2005		if (!error)
2006			error = xlog_recover_items_pass2(log, trans,
2007					buffer_list, &ra_list);
2008		list_splice_tail_init(&ra_list, &done_list);
2009	}
2010
2011	if (!list_empty(&done_list))
2012		list_splice_init(&done_list, &trans->r_itemq);
2013
2014	return error;
2015}
2016
2017STATIC void
2018xlog_recover_add_item(
2019	struct list_head	*head)
2020{
2021	struct xlog_recover_item *item;
2022
2023	item = kmem_zalloc(sizeof(struct xlog_recover_item), 0);
2024	INIT_LIST_HEAD(&item->ri_list);
2025	list_add_tail(&item->ri_list, head);
2026}
2027
2028STATIC int
2029xlog_recover_add_to_cont_trans(
2030	struct xlog		*log,
2031	struct xlog_recover	*trans,
2032	char			*dp,
2033	int			len)
2034{
2035	struct xlog_recover_item *item;
2036	char			*ptr, *old_ptr;
2037	int			old_len;
2038
2039	/*
2040	 * If the transaction is empty, the header was split across this and the
2041	 * previous record. Copy the rest of the header.
2042	 */
2043	if (list_empty(&trans->r_itemq)) {
2044		ASSERT(len <= sizeof(struct xfs_trans_header));
2045		if (len > sizeof(struct xfs_trans_header)) {
2046			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2047			return -EFSCORRUPTED;
2048		}
2049
2050		xlog_recover_add_item(&trans->r_itemq);
2051		ptr = (char *)&trans->r_theader +
2052				sizeof(struct xfs_trans_header) - len;
2053		memcpy(ptr, dp, len);
2054		return 0;
2055	}
2056
2057	/* take the tail entry */
2058	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2059			  ri_list);
2060
2061	old_ptr = item->ri_buf[item->ri_cnt-1].i_addr;
2062	old_len = item->ri_buf[item->ri_cnt-1].i_len;
2063
2064	ptr = kvrealloc(old_ptr, old_len, len + old_len, GFP_KERNEL);
2065	if (!ptr)
2066		return -ENOMEM;
2067	memcpy(&ptr[old_len], dp, len);
2068	item->ri_buf[item->ri_cnt-1].i_len += len;
2069	item->ri_buf[item->ri_cnt-1].i_addr = ptr;
2070	trace_xfs_log_recover_item_add_cont(log, trans, item, 0);
2071	return 0;
2072}
2073
2074/*
2075 * The next region to add is the start of a new region.  It could be
2076 * a whole region or it could be the first part of a new region.  Because
2077 * of this, the assumption here is that the type and size fields of all
2078 * format structures fit into the first 32 bits of the structure.
2079 *
2080 * This works because all regions must be 32 bit aligned.  Therefore, we
2081 * either have both fields or we have neither field.  In the case we have
2082 * neither field, the data part of the region is zero length.  We only have
2083 * a log_op_header and can throw away the header since a new one will appear
2084 * later.  If we have at least 4 bytes, then we can determine how many regions
2085 * will appear in the current log item.
2086 */
2087STATIC int
2088xlog_recover_add_to_trans(
2089	struct xlog		*log,
2090	struct xlog_recover	*trans,
2091	char			*dp,
2092	int			len)
2093{
2094	struct xfs_inode_log_format	*in_f;			/* any will do */
2095	struct xlog_recover_item *item;
2096	char			*ptr;
2097
2098	if (!len)
2099		return 0;
2100	if (list_empty(&trans->r_itemq)) {
2101		/* we need to catch log corruptions here */
2102		if (*(uint *)dp != XFS_TRANS_HEADER_MAGIC) {
2103			xfs_warn(log->l_mp, "%s: bad header magic number",
2104				__func__);
2105			ASSERT(0);
2106			return -EFSCORRUPTED;
2107		}
2108
2109		if (len > sizeof(struct xfs_trans_header)) {
2110			xfs_warn(log->l_mp, "%s: bad header length", __func__);
2111			ASSERT(0);
2112			return -EFSCORRUPTED;
2113		}
2114
2115		/*
2116		 * The transaction header can be arbitrarily split across op
2117		 * records. If we don't have the whole thing here, copy what we
2118		 * do have and handle the rest in the next record.
2119		 */
2120		if (len == sizeof(struct xfs_trans_header))
2121			xlog_recover_add_item(&trans->r_itemq);
2122		memcpy(&trans->r_theader, dp, len);
2123		return 0;
2124	}
2125
2126	ptr = kmem_alloc(len, 0);
2127	memcpy(ptr, dp, len);
2128	in_f = (struct xfs_inode_log_format *)ptr;
2129
2130	/* take the tail entry */
2131	item = list_entry(trans->r_itemq.prev, struct xlog_recover_item,
2132			  ri_list);
2133	if (item->ri_total != 0 &&
2134	     item->ri_total == item->ri_cnt) {
2135		/* tail item is in use, get a new one */
2136		xlog_recover_add_item(&trans->r_itemq);
2137		item = list_entry(trans->r_itemq.prev,
2138					struct xlog_recover_item, ri_list);
2139	}
2140
2141	if (item->ri_total == 0) {		/* first region to be added */
2142		if (in_f->ilf_size == 0 ||
2143		    in_f->ilf_size > XLOG_MAX_REGIONS_IN_ITEM) {
2144			xfs_warn(log->l_mp,
2145		"bad number of regions (%d) in inode log format",
2146				  in_f->ilf_size);
2147			ASSERT(0);
2148			kmem_free(ptr);
2149			return -EFSCORRUPTED;
2150		}
2151
2152		item->ri_total = in_f->ilf_size;
2153		item->ri_buf =
2154			kmem_zalloc(item->ri_total * sizeof(xfs_log_iovec_t),
2155				    0);
2156	}
2157
2158	if (item->ri_total <= item->ri_cnt) {
2159		xfs_warn(log->l_mp,
2160	"log item region count (%d) overflowed size (%d)",
2161				item->ri_cnt, item->ri_total);
2162		ASSERT(0);
2163		kmem_free(ptr);
2164		return -EFSCORRUPTED;
2165	}
2166
2167	/* Description region is ri_buf[0] */
2168	item->ri_buf[item->ri_cnt].i_addr = ptr;
2169	item->ri_buf[item->ri_cnt].i_len  = len;
2170	item->ri_cnt++;
2171	trace_xfs_log_recover_item_add(log, trans, item, 0);
2172	return 0;
2173}
2174
2175/*
2176 * Free up any resources allocated by the transaction
2177 *
2178 * Remember that EFIs, EFDs, and IUNLINKs are handled later.
2179 */
2180STATIC void
2181xlog_recover_free_trans(
2182	struct xlog_recover	*trans)
2183{
2184	struct xlog_recover_item *item, *n;
2185	int			i;
2186
2187	hlist_del_init(&trans->r_list);
2188
2189	list_for_each_entry_safe(item, n, &trans->r_itemq, ri_list) {
2190		/* Free the regions in the item. */
2191		list_del(&item->ri_list);
2192		for (i = 0; i < item->ri_cnt; i++)
2193			kmem_free(item->ri_buf[i].i_addr);
2194		/* Free the item itself */
2195		kmem_free(item->ri_buf);
2196		kmem_free(item);
2197	}
2198	/* Free the transaction recover structure */
2199	kmem_free(trans);
2200}
2201
2202/*
2203 * On error or completion, trans is freed.
2204 */
2205STATIC int
2206xlog_recovery_process_trans(
2207	struct xlog		*log,
2208	struct xlog_recover	*trans,
2209	char			*dp,
2210	unsigned int		len,
2211	unsigned int		flags,
2212	int			pass,
2213	struct list_head	*buffer_list)
2214{
2215	int			error = 0;
2216	bool			freeit = false;
2217
2218	/* mask off ophdr transaction container flags */
2219	flags &= ~XLOG_END_TRANS;
2220	if (flags & XLOG_WAS_CONT_TRANS)
2221		flags &= ~XLOG_CONTINUE_TRANS;
2222
2223	/*
2224	 * Callees must not free the trans structure. We'll decide if we need to
2225	 * free it or not based on the operation being done and it's result.
2226	 */
2227	switch (flags) {
2228	/* expected flag values */
2229	case 0:
2230	case XLOG_CONTINUE_TRANS:
2231		error = xlog_recover_add_to_trans(log, trans, dp, len);
2232		break;
2233	case XLOG_WAS_CONT_TRANS:
2234		error = xlog_recover_add_to_cont_trans(log, trans, dp, len);
2235		break;
2236	case XLOG_COMMIT_TRANS:
2237		error = xlog_recover_commit_trans(log, trans, pass,
2238						  buffer_list);
2239		/* success or fail, we are now done with this transaction. */
2240		freeit = true;
2241		break;
2242
2243	/* unexpected flag values */
2244	case XLOG_UNMOUNT_TRANS:
2245		/* just skip trans */
2246		xfs_warn(log->l_mp, "%s: Unmount LR", __func__);
2247		freeit = true;
2248		break;
2249	case XLOG_START_TRANS:
2250	default:
2251		xfs_warn(log->l_mp, "%s: bad flag 0x%x", __func__, flags);
2252		ASSERT(0);
2253		error = -EFSCORRUPTED;
2254		break;
2255	}
2256	if (error || freeit)
2257		xlog_recover_free_trans(trans);
2258	return error;
2259}
2260
2261/*
2262 * Lookup the transaction recovery structure associated with the ID in the
2263 * current ophdr. If the transaction doesn't exist and the start flag is set in
2264 * the ophdr, then allocate a new transaction for future ID matches to find.
2265 * Either way, return what we found during the lookup - an existing transaction
2266 * or nothing.
2267 */
2268STATIC struct xlog_recover *
2269xlog_recover_ophdr_to_trans(
2270	struct hlist_head	rhash[],
2271	struct xlog_rec_header	*rhead,
2272	struct xlog_op_header	*ohead)
2273{
2274	struct xlog_recover	*trans;
2275	xlog_tid_t		tid;
2276	struct hlist_head	*rhp;
2277
2278	tid = be32_to_cpu(ohead->oh_tid);
2279	rhp = &rhash[XLOG_RHASH(tid)];
2280	hlist_for_each_entry(trans, rhp, r_list) {
2281		if (trans->r_log_tid == tid)
2282			return trans;
2283	}
2284
2285	/*
2286	 * skip over non-start transaction headers - we could be
2287	 * processing slack space before the next transaction starts
2288	 */
2289	if (!(ohead->oh_flags & XLOG_START_TRANS))
2290		return NULL;
2291
2292	ASSERT(be32_to_cpu(ohead->oh_len) == 0);
2293
2294	/*
2295	 * This is a new transaction so allocate a new recovery container to
2296	 * hold the recovery ops that will follow.
2297	 */
2298	trans = kmem_zalloc(sizeof(struct xlog_recover), 0);
2299	trans->r_log_tid = tid;
2300	trans->r_lsn = be64_to_cpu(rhead->h_lsn);
2301	INIT_LIST_HEAD(&trans->r_itemq);
2302	INIT_HLIST_NODE(&trans->r_list);
2303	hlist_add_head(&trans->r_list, rhp);
2304
2305	/*
2306	 * Nothing more to do for this ophdr. Items to be added to this new
2307	 * transaction will be in subsequent ophdr containers.
2308	 */
2309	return NULL;
2310}
2311
2312STATIC int
2313xlog_recover_process_ophdr(
2314	struct xlog		*log,
2315	struct hlist_head	rhash[],
2316	struct xlog_rec_header	*rhead,
2317	struct xlog_op_header	*ohead,
2318	char			*dp,
2319	char			*end,
2320	int			pass,
2321	struct list_head	*buffer_list)
2322{
2323	struct xlog_recover	*trans;
2324	unsigned int		len;
2325	int			error;
2326
2327	/* Do we understand who wrote this op? */
2328	if (ohead->oh_clientid != XFS_TRANSACTION &&
2329	    ohead->oh_clientid != XFS_LOG) {
2330		xfs_warn(log->l_mp, "%s: bad clientid 0x%x",
2331			__func__, ohead->oh_clientid);
2332		ASSERT(0);
2333		return -EFSCORRUPTED;
2334	}
2335
2336	/*
2337	 * Check the ophdr contains all the data it is supposed to contain.
2338	 */
2339	len = be32_to_cpu(ohead->oh_len);
2340	if (dp + len > end) {
2341		xfs_warn(log->l_mp, "%s: bad length 0x%x", __func__, len);
2342		WARN_ON(1);
2343		return -EFSCORRUPTED;
2344	}
2345
2346	trans = xlog_recover_ophdr_to_trans(rhash, rhead, ohead);
2347	if (!trans) {
2348		/* nothing to do, so skip over this ophdr */
2349		return 0;
2350	}
2351
2352	/*
2353	 * The recovered buffer queue is drained only once we know that all
2354	 * recovery items for the current LSN have been processed. This is
2355	 * required because:
2356	 *
2357	 * - Buffer write submission updates the metadata LSN of the buffer.
2358	 * - Log recovery skips items with a metadata LSN >= the current LSN of
2359	 *   the recovery item.
2360	 * - Separate recovery items against the same metadata buffer can share
2361	 *   a current LSN. I.e., consider that the LSN of a recovery item is
2362	 *   defined as the starting LSN of the first record in which its
2363	 *   transaction appears, that a record can hold multiple transactions,
2364	 *   and/or that a transaction can span multiple records.
2365	 *
2366	 * In other words, we are allowed to submit a buffer from log recovery
2367	 * once per current LSN. Otherwise, we may incorrectly skip recovery
2368	 * items and cause corruption.
2369	 *
2370	 * We don't know up front whether buffers are updated multiple times per
2371	 * LSN. Therefore, track the current LSN of each commit log record as it
2372	 * is processed and drain the queue when it changes. Use commit records
2373	 * because they are ordered correctly by the logging code.
2374	 */
2375	if (log->l_recovery_lsn != trans->r_lsn &&
2376	    ohead->oh_flags & XLOG_COMMIT_TRANS) {
2377		error = xfs_buf_delwri_submit(buffer_list);
2378		if (error)
2379			return error;
2380		log->l_recovery_lsn = trans->r_lsn;
2381	}
2382
2383	return xlog_recovery_process_trans(log, trans, dp, len,
2384					   ohead->oh_flags, pass, buffer_list);
2385}
2386
2387/*
2388 * There are two valid states of the r_state field.  0 indicates that the
2389 * transaction structure is in a normal state.  We have either seen the
2390 * start of the transaction or the last operation we added was not a partial
2391 * operation.  If the last operation we added to the transaction was a
2392 * partial operation, we need to mark r_state with XLOG_WAS_CONT_TRANS.
2393 *
2394 * NOTE: skip LRs with 0 data length.
2395 */
2396STATIC int
2397xlog_recover_process_data(
2398	struct xlog		*log,
2399	struct hlist_head	rhash[],
2400	struct xlog_rec_header	*rhead,
2401	char			*dp,
2402	int			pass,
2403	struct list_head	*buffer_list)
2404{
2405	struct xlog_op_header	*ohead;
2406	char			*end;
2407	int			num_logops;
2408	int			error;
2409
2410	end = dp + be32_to_cpu(rhead->h_len);
2411	num_logops = be32_to_cpu(rhead->h_num_logops);
2412
2413	/* check the log format matches our own - else we can't recover */
2414	if (xlog_header_check_recover(log->l_mp, rhead))
2415		return -EIO;
2416
2417	trace_xfs_log_recover_record(log, rhead, pass);
2418	while ((dp < end) && num_logops) {
2419
2420		ohead = (struct xlog_op_header *)dp;
2421		dp += sizeof(*ohead);
2422		ASSERT(dp <= end);
2423
2424		/* errors will abort recovery */
2425		error = xlog_recover_process_ophdr(log, rhash, rhead, ohead,
2426						   dp, end, pass, buffer_list);
2427		if (error)
2428			return error;
2429
2430		dp += be32_to_cpu(ohead->oh_len);
2431		num_logops--;
2432	}
2433	return 0;
2434}
2435
2436/* Take all the collected deferred ops and finish them in order. */
2437static int
2438xlog_finish_defer_ops(
2439	struct xfs_mount	*mp,
2440	struct list_head	*capture_list)
2441{
2442	struct xfs_defer_capture *dfc, *next;
2443	struct xfs_trans	*tp;
2444	struct xfs_inode	*ip;
2445	int			error = 0;
2446
2447	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2448		struct xfs_trans_res	resv;
2449
2450		/*
2451		 * Create a new transaction reservation from the captured
2452		 * information.  Set logcount to 1 to force the new transaction
2453		 * to regrant every roll so that we can make forward progress
2454		 * in recovery no matter how full the log might be.
2455		 */
2456		resv.tr_logres = dfc->dfc_logres;
2457		resv.tr_logcount = 1;
2458		resv.tr_logflags = XFS_TRANS_PERM_LOG_RES;
2459
2460		error = xfs_trans_alloc(mp, &resv, dfc->dfc_blkres,
2461				dfc->dfc_rtxres, XFS_TRANS_RESERVE, &tp);
2462		if (error) {
2463			xfs_force_shutdown(mp, SHUTDOWN_LOG_IO_ERROR);
2464			return error;
2465		}
2466
2467		/*
2468		 * Transfer to this new transaction all the dfops we captured
2469		 * from recovering a single intent item.
2470		 */
2471		list_del_init(&dfc->dfc_list);
2472		xfs_defer_ops_continue(dfc, tp, &ip);
2473
2474		error = xfs_trans_commit(tp);
2475		if (ip) {
2476			xfs_iunlock(ip, XFS_ILOCK_EXCL);
2477			xfs_irele(ip);
2478		}
2479		if (error)
2480			return error;
2481	}
2482
2483	ASSERT(list_empty(capture_list));
2484	return 0;
2485}
2486
2487/* Release all the captured defer ops and capture structures in this list. */
2488static void
2489xlog_abort_defer_ops(
2490	struct xfs_mount		*mp,
2491	struct list_head		*capture_list)
2492{
2493	struct xfs_defer_capture	*dfc;
2494	struct xfs_defer_capture	*next;
2495
2496	list_for_each_entry_safe(dfc, next, capture_list, dfc_list) {
2497		list_del_init(&dfc->dfc_list);
2498		xfs_defer_ops_release(mp, dfc);
2499	}
2500}
2501/*
2502 * When this is called, all of the log intent items which did not have
2503 * corresponding log done items should be in the AIL.  What we do now
2504 * is update the data structures associated with each one.
2505 *
2506 * Since we process the log intent items in normal transactions, they
2507 * will be removed at some point after the commit.  This prevents us
2508 * from just walking down the list processing each one.  We'll use a
2509 * flag in the intent item to skip those that we've already processed
2510 * and use the AIL iteration mechanism's generation count to try to
2511 * speed this up at least a bit.
2512 *
2513 * When we start, we know that the intents are the only things in the
2514 * AIL.  As we process them, however, other items are added to the
2515 * AIL.
2516 */
2517STATIC int
2518xlog_recover_process_intents(
2519	struct xlog		*log)
2520{
2521	LIST_HEAD(capture_list);
2522	struct xfs_ail_cursor	cur;
2523	struct xfs_log_item	*lip;
2524	struct xfs_ail		*ailp;
2525	int			error = 0;
2526#if defined(DEBUG) || defined(XFS_WARN)
2527	xfs_lsn_t		last_lsn;
2528#endif
2529
2530	ailp = log->l_ailp;
2531	spin_lock(&ailp->ail_lock);
2532#if defined(DEBUG) || defined(XFS_WARN)
2533	last_lsn = xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block);
2534#endif
2535	for (lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2536	     lip != NULL;
2537	     lip = xfs_trans_ail_cursor_next(ailp, &cur)) {
2538		/*
2539		 * We're done when we see something other than an intent.
2540		 * There should be no intents left in the AIL now.
2541		 */
2542		if (!xlog_item_is_intent(lip)) {
2543#ifdef DEBUG
2544			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2545				ASSERT(!xlog_item_is_intent(lip));
2546#endif
2547			break;
2548		}
2549
2550		/*
2551		 * We should never see a redo item with a LSN higher than
2552		 * the last transaction we found in the log at the start
2553		 * of recovery.
2554		 */
2555		ASSERT(XFS_LSN_CMP(last_lsn, lip->li_lsn) >= 0);
2556
2557		/*
2558		 * NOTE: If your intent processing routine can create more
2559		 * deferred ops, you /must/ attach them to the capture list in
2560		 * the recover routine or else those subsequent intents will be
2561		 * replayed in the wrong order!
2562		 */
2563		spin_unlock(&ailp->ail_lock);
2564		error = lip->li_ops->iop_recover(lip, &capture_list);
2565		spin_lock(&ailp->ail_lock);
2566		if (error)
2567			break;
2568	}
2569
2570	xfs_trans_ail_cursor_done(&cur);
2571	spin_unlock(&ailp->ail_lock);
2572	if (error)
2573		goto err;
2574
2575	error = xlog_finish_defer_ops(log->l_mp, &capture_list);
2576	if (error)
2577		goto err;
2578
2579	return 0;
2580err:
2581	xlog_abort_defer_ops(log->l_mp, &capture_list);
2582	return error;
2583}
2584
2585/*
2586 * A cancel occurs when the mount has failed and we're bailing out.
2587 * Release all pending log intent items so they don't pin the AIL.
2588 */
2589STATIC void
2590xlog_recover_cancel_intents(
2591	struct xlog		*log)
2592{
2593	struct xfs_log_item	*lip;
2594	struct xfs_ail_cursor	cur;
2595	struct xfs_ail		*ailp;
2596
2597	ailp = log->l_ailp;
2598	spin_lock(&ailp->ail_lock);
2599	lip = xfs_trans_ail_cursor_first(ailp, &cur, 0);
2600	while (lip != NULL) {
2601		/*
2602		 * We're done when we see something other than an intent.
2603		 * There should be no intents left in the AIL now.
2604		 */
2605		if (!xlog_item_is_intent(lip)) {
2606#ifdef DEBUG
2607			for (; lip; lip = xfs_trans_ail_cursor_next(ailp, &cur))
2608				ASSERT(!xlog_item_is_intent(lip));
2609#endif
2610			break;
2611		}
2612
2613		spin_unlock(&ailp->ail_lock);
2614		lip->li_ops->iop_release(lip);
2615		spin_lock(&ailp->ail_lock);
2616		lip = xfs_trans_ail_cursor_next(ailp, &cur);
2617	}
2618
2619	xfs_trans_ail_cursor_done(&cur);
2620	spin_unlock(&ailp->ail_lock);
2621}
2622
2623/*
2624 * This routine performs a transaction to null out a bad inode pointer
2625 * in an agi unlinked inode hash bucket.
2626 */
2627STATIC void
2628xlog_recover_clear_agi_bucket(
2629	xfs_mount_t	*mp,
2630	xfs_agnumber_t	agno,
2631	int		bucket)
2632{
2633	xfs_trans_t	*tp;
2634	xfs_agi_t	*agi;
2635	xfs_buf_t	*agibp;
2636	int		offset;
2637	int		error;
2638
2639	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_clearagi, 0, 0, 0, &tp);
2640	if (error)
2641		goto out_error;
2642
2643	error = xfs_read_agi(mp, tp, agno, &agibp);
2644	if (error)
2645		goto out_abort;
2646
2647	agi = agibp->b_addr;
2648	agi->agi_unlinked[bucket] = cpu_to_be32(NULLAGINO);
2649	offset = offsetof(xfs_agi_t, agi_unlinked) +
2650		 (sizeof(xfs_agino_t) * bucket);
2651	xfs_trans_log_buf(tp, agibp, offset,
2652			  (offset + sizeof(xfs_agino_t) - 1));
2653
2654	error = xfs_trans_commit(tp);
2655	if (error)
2656		goto out_error;
2657	return;
2658
2659out_abort:
2660	xfs_trans_cancel(tp);
2661out_error:
2662	xfs_warn(mp, "%s: failed to clear agi %d. Continuing.", __func__, agno);
2663	return;
2664}
2665
2666STATIC xfs_agino_t
2667xlog_recover_process_one_iunlink(
2668	struct xfs_mount		*mp,
2669	xfs_agnumber_t			agno,
2670	xfs_agino_t			agino,
2671	int				bucket)
2672{
2673	struct xfs_buf			*ibp;
2674	struct xfs_dinode		*dip;
2675	struct xfs_inode		*ip;
2676	xfs_ino_t			ino;
2677	int				error;
2678
2679	ino = XFS_AGINO_TO_INO(mp, agno, agino);
2680	error = xfs_iget(mp, NULL, ino, 0, 0, &ip);
2681	if (error)
2682		goto fail;
2683
2684	/*
2685	 * Get the on disk inode to find the next inode in the bucket.
2686	 */
2687	error = xfs_imap_to_bp(mp, NULL, &ip->i_imap, &dip, &ibp, 0);
2688	if (error)
2689		goto fail_iput;
2690
2691	xfs_iflags_clear(ip, XFS_IRECOVERY);
2692	ASSERT(VFS_I(ip)->i_nlink == 0);
2693	ASSERT(VFS_I(ip)->i_mode != 0);
2694
2695	/* setup for the next pass */
2696	agino = be32_to_cpu(dip->di_next_unlinked);
2697	xfs_buf_relse(ibp);
2698
2699	/*
2700	 * Prevent any DMAPI event from being sent when the reference on
2701	 * the inode is dropped.
2702	 */
2703	ip->i_d.di_dmevmask = 0;
2704
2705	xfs_irele(ip);
2706	return agino;
2707
2708 fail_iput:
2709	xfs_irele(ip);
2710 fail:
2711	/*
2712	 * We can't read in the inode this bucket points to, or this inode
2713	 * is messed up.  Just ditch this bucket of inodes.  We will lose
2714	 * some inodes and space, but at least we won't hang.
2715	 *
2716	 * Call xlog_recover_clear_agi_bucket() to perform a transaction to
2717	 * clear the inode pointer in the bucket.
2718	 */
2719	xlog_recover_clear_agi_bucket(mp, agno, bucket);
2720	return NULLAGINO;
2721}
2722
2723/*
2724 * Recover AGI unlinked lists
2725 *
2726 * This is called during recovery to process any inodes which we unlinked but
2727 * not freed when the system crashed.  These inodes will be on the lists in the
2728 * AGI blocks. What we do here is scan all the AGIs and fully truncate and free
2729 * any inodes found on the lists. Each inode is removed from the lists when it
2730 * has been fully truncated and is freed. The freeing of the inode and its
2731 * removal from the list must be atomic.
2732 *
2733 * If everything we touch in the agi processing loop is already in memory, this
2734 * loop can hold the cpu for a long time. It runs without lock contention,
2735 * memory allocation contention, the need wait for IO, etc, and so will run
2736 * until we either run out of inodes to process, run low on memory or we run out
2737 * of log space.
2738 *
2739 * This behaviour is bad for latency on single CPU and non-preemptible kernels,
2740 * and can prevent other filesytem work (such as CIL pushes) from running. This
2741 * can lead to deadlocks if the recovery process runs out of log reservation
2742 * space. Hence we need to yield the CPU when there is other kernel work
2743 * scheduled on this CPU to ensure other scheduled work can run without undue
2744 * latency.
2745 */
2746STATIC void
2747xlog_recover_process_iunlinks(
2748	struct xlog	*log)
2749{
2750	xfs_mount_t	*mp;
2751	xfs_agnumber_t	agno;
2752	xfs_agi_t	*agi;
2753	xfs_buf_t	*agibp;
2754	xfs_agino_t	agino;
2755	int		bucket;
2756	int		error;
2757
2758	mp = log->l_mp;
2759
2760	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
2761		/*
2762		 * Find the agi for this ag.
2763		 */
2764		error = xfs_read_agi(mp, NULL, agno, &agibp);
2765		if (error) {
2766			/*
2767			 * AGI is b0rked. Don't process it.
2768			 *
2769			 * We should probably mark the filesystem as corrupt
2770			 * after we've recovered all the ag's we can....
2771			 */
2772			continue;
2773		}
2774		/*
2775		 * Unlock the buffer so that it can be acquired in the normal
2776		 * course of the transaction to truncate and free each inode.
2777		 * Because we are not racing with anyone else here for the AGI
2778		 * buffer, we don't even need to hold it locked to read the
2779		 * initial unlinked bucket entries out of the buffer. We keep
2780		 * buffer reference though, so that it stays pinned in memory
2781		 * while we need the buffer.
2782		 */
2783		agi = agibp->b_addr;
2784		xfs_buf_unlock(agibp);
2785
2786		for (bucket = 0; bucket < XFS_AGI_UNLINKED_BUCKETS; bucket++) {
2787			agino = be32_to_cpu(agi->agi_unlinked[bucket]);
2788			while (agino != NULLAGINO) {
2789				agino = xlog_recover_process_one_iunlink(mp,
2790							agno, agino, bucket);
2791				cond_resched();
2792			}
2793		}
2794		xfs_buf_rele(agibp);
2795	}
2796}
2797
2798STATIC void
2799xlog_unpack_data(
2800	struct xlog_rec_header	*rhead,
2801	char			*dp,
2802	struct xlog		*log)
2803{
2804	int			i, j, k;
2805
2806	for (i = 0; i < BTOBB(be32_to_cpu(rhead->h_len)) &&
2807		  i < (XLOG_HEADER_CYCLE_SIZE / BBSIZE); i++) {
2808		*(__be32 *)dp = *(__be32 *)&rhead->h_cycle_data[i];
2809		dp += BBSIZE;
2810	}
2811
2812	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2813		xlog_in_core_2_t *xhdr = (xlog_in_core_2_t *)rhead;
2814		for ( ; i < BTOBB(be32_to_cpu(rhead->h_len)); i++) {
2815			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2816			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
2817			*(__be32 *)dp = xhdr[j].hic_xheader.xh_cycle_data[k];
2818			dp += BBSIZE;
2819		}
2820	}
2821}
2822
2823/*
2824 * CRC check, unpack and process a log record.
2825 */
2826STATIC int
2827xlog_recover_process(
2828	struct xlog		*log,
2829	struct hlist_head	rhash[],
2830	struct xlog_rec_header	*rhead,
2831	char			*dp,
2832	int			pass,
2833	struct list_head	*buffer_list)
2834{
2835	__le32			old_crc = rhead->h_crc;
2836	__le32			crc;
2837
2838	crc = xlog_cksum(log, rhead, dp, be32_to_cpu(rhead->h_len));
2839
2840	/*
2841	 * Nothing else to do if this is a CRC verification pass. Just return
2842	 * if this a record with a non-zero crc. Unfortunately, mkfs always
2843	 * sets old_crc to 0 so we must consider this valid even on v5 supers.
2844	 * Otherwise, return EFSBADCRC on failure so the callers up the stack
2845	 * know precisely what failed.
2846	 */
2847	if (pass == XLOG_RECOVER_CRCPASS) {
2848		if (old_crc && crc != old_crc)
2849			return -EFSBADCRC;
2850		return 0;
2851	}
2852
2853	/*
2854	 * We're in the normal recovery path. Issue a warning if and only if the
2855	 * CRC in the header is non-zero. This is an advisory warning and the
2856	 * zero CRC check prevents warnings from being emitted when upgrading
2857	 * the kernel from one that does not add CRCs by default.
2858	 */
2859	if (crc != old_crc) {
2860		if (old_crc || xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2861			xfs_alert(log->l_mp,
2862		"log record CRC mismatch: found 0x%x, expected 0x%x.",
2863					le32_to_cpu(old_crc),
2864					le32_to_cpu(crc));
2865			xfs_hex_dump(dp, 32);
2866		}
2867
2868		/*
2869		 * If the filesystem is CRC enabled, this mismatch becomes a
2870		 * fatal log corruption failure.
2871		 */
2872		if (xfs_sb_version_hascrc(&log->l_mp->m_sb)) {
2873			XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, log->l_mp);
2874			return -EFSCORRUPTED;
2875		}
2876	}
2877
2878	xlog_unpack_data(rhead, dp, log);
2879
2880	return xlog_recover_process_data(log, rhash, rhead, dp, pass,
2881					 buffer_list);
2882}
2883
2884STATIC int
2885xlog_valid_rec_header(
2886	struct xlog		*log,
2887	struct xlog_rec_header	*rhead,
2888	xfs_daddr_t		blkno,
2889	int			bufsize)
2890{
2891	int			hlen;
2892
2893	if (XFS_IS_CORRUPT(log->l_mp,
2894			   rhead->h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)))
2895		return -EFSCORRUPTED;
2896	if (XFS_IS_CORRUPT(log->l_mp,
2897			   (!rhead->h_version ||
2898			   (be32_to_cpu(rhead->h_version) &
2899			    (~XLOG_VERSION_OKBITS))))) {
2900		xfs_warn(log->l_mp, "%s: unrecognised log version (%d).",
2901			__func__, be32_to_cpu(rhead->h_version));
2902		return -EFSCORRUPTED;
2903	}
2904
2905	/*
2906	 * LR body must have data (or it wouldn't have been written)
2907	 * and h_len must not be greater than LR buffer size.
2908	 */
2909	hlen = be32_to_cpu(rhead->h_len);
2910	if (XFS_IS_CORRUPT(log->l_mp, hlen <= 0 || hlen > bufsize))
2911		return -EFSCORRUPTED;
2912
2913	if (XFS_IS_CORRUPT(log->l_mp,
2914			   blkno > log->l_logBBsize || blkno > INT_MAX))
2915		return -EFSCORRUPTED;
2916	return 0;
2917}
2918
2919/*
2920 * Read the log from tail to head and process the log records found.
2921 * Handle the two cases where the tail and head are in the same cycle
2922 * and where the active portion of the log wraps around the end of
2923 * the physical log separately.  The pass parameter is passed through
2924 * to the routines called to process the data and is not looked at
2925 * here.
2926 */
2927STATIC int
2928xlog_do_recovery_pass(
2929	struct xlog		*log,
2930	xfs_daddr_t		head_blk,
2931	xfs_daddr_t		tail_blk,
2932	int			pass,
2933	xfs_daddr_t		*first_bad)	/* out: first bad log rec */
2934{
2935	xlog_rec_header_t	*rhead;
2936	xfs_daddr_t		blk_no, rblk_no;
2937	xfs_daddr_t		rhead_blk;
2938	char			*offset;
2939	char			*hbp, *dbp;
2940	int			error = 0, h_size, h_len;
2941	int			error2 = 0;
2942	int			bblks, split_bblks;
2943	int			hblks = 1, split_hblks, wrapped_hblks;
2944	int			i;
2945	struct hlist_head	rhash[XLOG_RHASH_SIZE];
2946	LIST_HEAD		(buffer_list);
2947
2948	ASSERT(head_blk != tail_blk);
2949	blk_no = rhead_blk = tail_blk;
2950
2951	for (i = 0; i < XLOG_RHASH_SIZE; i++)
2952		INIT_HLIST_HEAD(&rhash[i]);
2953
2954	/*
2955	 * Read the header of the tail block and get the iclog buffer size from
2956	 * h_size.  Use this to tell how many sectors make up the log header.
2957	 */
2958	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
2959		/*
2960		 * When using variable length iclogs, read first sector of
2961		 * iclog header and extract the header size from it.  Get a
2962		 * new hbp that is the correct size.
2963		 */
2964		hbp = xlog_alloc_buffer(log, 1);
2965		if (!hbp)
2966			return -ENOMEM;
2967
2968		error = xlog_bread(log, tail_blk, 1, hbp, &offset);
2969		if (error)
2970			goto bread_err1;
2971
2972		rhead = (xlog_rec_header_t *)offset;
2973
2974		/*
2975		 * xfsprogs has a bug where record length is based on lsunit but
2976		 * h_size (iclog size) is hardcoded to 32k. Now that we
2977		 * unconditionally CRC verify the unmount record, this means the
2978		 * log buffer can be too small for the record and cause an
2979		 * overrun.
2980		 *
2981		 * Detect this condition here. Use lsunit for the buffer size as
2982		 * long as this looks like the mkfs case. Otherwise, return an
2983		 * error to avoid a buffer overrun.
2984		 */
2985		h_size = be32_to_cpu(rhead->h_size);
2986		h_len = be32_to_cpu(rhead->h_len);
2987		if (h_len > h_size && h_len <= log->l_mp->m_logbsize &&
2988		    rhead->h_num_logops == cpu_to_be32(1)) {
2989			xfs_warn(log->l_mp,
2990		"invalid iclog size (%d bytes), using lsunit (%d bytes)",
2991				 h_size, log->l_mp->m_logbsize);
2992			h_size = log->l_mp->m_logbsize;
2993		}
2994
2995		error = xlog_valid_rec_header(log, rhead, tail_blk, h_size);
2996		if (error)
2997			goto bread_err1;
2998
2999		/*
3000		 * This open codes xlog_logrec_hblks so that we can reuse the
3001		 * fixed up h_size value calculated above.  Without that we'd
3002		 * still allocate the buffer based on the incorrect on-disk
3003		 * size.
3004		 */
3005		if (h_size > XLOG_HEADER_CYCLE_SIZE &&
3006		    (rhead->h_version & cpu_to_be32(XLOG_VERSION_2))) {
3007			hblks = DIV_ROUND_UP(h_size, XLOG_HEADER_CYCLE_SIZE);
3008			if (hblks > 1) {
3009				kmem_free(hbp);
3010				hbp = xlog_alloc_buffer(log, hblks);
3011			}
3012		}
3013	} else {
3014		ASSERT(log->l_sectBBsize == 1);
3015		hbp = xlog_alloc_buffer(log, 1);
3016		h_size = XLOG_BIG_RECORD_BSIZE;
3017	}
3018
3019	if (!hbp)
3020		return -ENOMEM;
3021	dbp = xlog_alloc_buffer(log, BTOBB(h_size));
3022	if (!dbp) {
3023		kmem_free(hbp);
3024		return -ENOMEM;
3025	}
3026
3027	memset(rhash, 0, sizeof(rhash));
3028	if (tail_blk > head_blk) {
3029		/*
3030		 * Perform recovery around the end of the physical log.
3031		 * When the head is not on the same cycle number as the tail,
3032		 * we can't do a sequential recovery.
3033		 */
3034		while (blk_no < log->l_logBBsize) {
3035			/*
3036			 * Check for header wrapping around physical end-of-log
3037			 */
3038			offset = hbp;
3039			split_hblks = 0;
3040			wrapped_hblks = 0;
3041			if (blk_no + hblks <= log->l_logBBsize) {
3042				/* Read header in one read */
3043				error = xlog_bread(log, blk_no, hblks, hbp,
3044						   &offset);
3045				if (error)
3046					goto bread_err2;
3047			} else {
3048				/* This LR is split across physical log end */
3049				if (blk_no != log->l_logBBsize) {
3050					/* some data before physical log end */
3051					ASSERT(blk_no <= INT_MAX);
3052					split_hblks = log->l_logBBsize - (int)blk_no;
3053					ASSERT(split_hblks > 0);
3054					error = xlog_bread(log, blk_no,
3055							   split_hblks, hbp,
3056							   &offset);
3057					if (error)
3058						goto bread_err2;
3059				}
3060
3061				/*
3062				 * Note: this black magic still works with
3063				 * large sector sizes (non-512) only because:
3064				 * - we increased the buffer size originally
3065				 *   by 1 sector giving us enough extra space
3066				 *   for the second read;
3067				 * - the log start is guaranteed to be sector
3068				 *   aligned;
3069				 * - we read the log end (LR header start)
3070				 *   _first_, then the log start (LR header end)
3071				 *   - order is important.
3072				 */
3073				wrapped_hblks = hblks - split_hblks;
3074				error = xlog_bread_noalign(log, 0,
3075						wrapped_hblks,
3076						offset + BBTOB(split_hblks));
3077				if (error)
3078					goto bread_err2;
3079			}
3080			rhead = (xlog_rec_header_t *)offset;
3081			error = xlog_valid_rec_header(log, rhead,
3082					split_hblks ? blk_no : 0, h_size);
3083			if (error)
3084				goto bread_err2;
3085
3086			bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3087			blk_no += hblks;
3088
3089			/*
3090			 * Read the log record data in multiple reads if it
3091			 * wraps around the end of the log. Note that if the
3092			 * header already wrapped, blk_no could point past the
3093			 * end of the log. The record data is contiguous in
3094			 * that case.
3095			 */
3096			if (blk_no + bblks <= log->l_logBBsize ||
3097			    blk_no >= log->l_logBBsize) {
3098				rblk_no = xlog_wrap_logbno(log, blk_no);
3099				error = xlog_bread(log, rblk_no, bblks, dbp,
3100						   &offset);
3101				if (error)
3102					goto bread_err2;
3103			} else {
3104				/* This log record is split across the
3105				 * physical end of log */
3106				offset = dbp;
3107				split_bblks = 0;
3108				if (blk_no != log->l_logBBsize) {
3109					/* some data is before the physical
3110					 * end of log */
3111					ASSERT(!wrapped_hblks);
3112					ASSERT(blk_no <= INT_MAX);
3113					split_bblks =
3114						log->l_logBBsize - (int)blk_no;
3115					ASSERT(split_bblks > 0);
3116					error = xlog_bread(log, blk_no,
3117							split_bblks, dbp,
3118							&offset);
3119					if (error)
3120						goto bread_err2;
3121				}
3122
3123				/*
3124				 * Note: this black magic still works with
3125				 * large sector sizes (non-512) only because:
3126				 * - we increased the buffer size originally
3127				 *   by 1 sector giving us enough extra space
3128				 *   for the second read;
3129				 * - the log start is guaranteed to be sector
3130				 *   aligned;
3131				 * - we read the log end (LR header start)
3132				 *   _first_, then the log start (LR header end)
3133				 *   - order is important.
3134				 */
3135				error = xlog_bread_noalign(log, 0,
3136						bblks - split_bblks,
3137						offset + BBTOB(split_bblks));
3138				if (error)
3139					goto bread_err2;
3140			}
3141
3142			error = xlog_recover_process(log, rhash, rhead, offset,
3143						     pass, &buffer_list);
3144			if (error)
3145				goto bread_err2;
3146
3147			blk_no += bblks;
3148			rhead_blk = blk_no;
3149		}
3150
3151		ASSERT(blk_no >= log->l_logBBsize);
3152		blk_no -= log->l_logBBsize;
3153		rhead_blk = blk_no;
3154	}
3155
3156	/* read first part of physical log */
3157	while (blk_no < head_blk) {
3158		error = xlog_bread(log, blk_no, hblks, hbp, &offset);
3159		if (error)
3160			goto bread_err2;
3161
3162		rhead = (xlog_rec_header_t *)offset;
3163		error = xlog_valid_rec_header(log, rhead, blk_no, h_size);
3164		if (error)
3165			goto bread_err2;
3166
3167		/* blocks in data section */
3168		bblks = (int)BTOBB(be32_to_cpu(rhead->h_len));
3169		error = xlog_bread(log, blk_no+hblks, bblks, dbp,
3170				   &offset);
3171		if (error)
3172			goto bread_err2;
3173
3174		error = xlog_recover_process(log, rhash, rhead, offset, pass,
3175					     &buffer_list);
3176		if (error)
3177			goto bread_err2;
3178
3179		blk_no += bblks + hblks;
3180		rhead_blk = blk_no;
3181	}
3182
3183 bread_err2:
3184	kmem_free(dbp);
3185 bread_err1:
3186	kmem_free(hbp);
3187
3188	/*
3189	 * Submit buffers that have been added from the last record processed,
3190	 * regardless of error status.
3191	 */
3192	if (!list_empty(&buffer_list))
3193		error2 = xfs_buf_delwri_submit(&buffer_list);
3194
3195	if (error && first_bad)
3196		*first_bad = rhead_blk;
3197
3198	/*
3199	 * Transactions are freed at commit time but transactions without commit
3200	 * records on disk are never committed. Free any that may be left in the
3201	 * hash table.
3202	 */
3203	for (i = 0; i < XLOG_RHASH_SIZE; i++) {
3204		struct hlist_node	*tmp;
3205		struct xlog_recover	*trans;
3206
3207		hlist_for_each_entry_safe(trans, tmp, &rhash[i], r_list)
3208			xlog_recover_free_trans(trans);
3209	}
3210
3211	return error ? error : error2;
3212}
3213
3214/*
3215 * Do the recovery of the log.  We actually do this in two phases.
3216 * The two passes are necessary in order to implement the function
3217 * of cancelling a record written into the log.  The first pass
3218 * determines those things which have been cancelled, and the
3219 * second pass replays log items normally except for those which
3220 * have been cancelled.  The handling of the replay and cancellations
3221 * takes place in the log item type specific routines.
3222 *
3223 * The table of items which have cancel records in the log is allocated
3224 * and freed at this level, since only here do we know when all of
3225 * the log recovery has been completed.
3226 */
3227STATIC int
3228xlog_do_log_recovery(
3229	struct xlog	*log,
3230	xfs_daddr_t	head_blk,
3231	xfs_daddr_t	tail_blk)
3232{
3233	int		error, i;
3234
3235	ASSERT(head_blk != tail_blk);
3236
3237	/*
3238	 * First do a pass to find all of the cancelled buf log items.
3239	 * Store them in the buf_cancel_table for use in the second pass.
3240	 */
3241	log->l_buf_cancel_table = kmem_zalloc(XLOG_BC_TABLE_SIZE *
3242						 sizeof(struct list_head),
3243						 0);
3244	for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3245		INIT_LIST_HEAD(&log->l_buf_cancel_table[i]);
3246
3247	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3248				      XLOG_RECOVER_PASS1, NULL);
3249	if (error != 0) {
3250		kmem_free(log->l_buf_cancel_table);
3251		log->l_buf_cancel_table = NULL;
3252		return error;
3253	}
3254	/*
3255	 * Then do a second pass to actually recover the items in the log.
3256	 * When it is complete free the table of buf cancel items.
3257	 */
3258	error = xlog_do_recovery_pass(log, head_blk, tail_blk,
3259				      XLOG_RECOVER_PASS2, NULL);
3260#ifdef DEBUG
3261	if (!error) {
3262		int	i;
3263
3264		for (i = 0; i < XLOG_BC_TABLE_SIZE; i++)
3265			ASSERT(list_empty(&log->l_buf_cancel_table[i]));
3266	}
3267#endif	/* DEBUG */
3268
3269	kmem_free(log->l_buf_cancel_table);
3270	log->l_buf_cancel_table = NULL;
3271
3272	return error;
3273}
3274
3275/*
3276 * Do the actual recovery
3277 */
3278STATIC int
3279xlog_do_recover(
3280	struct xlog		*log,
3281	xfs_daddr_t		head_blk,
3282	xfs_daddr_t		tail_blk)
3283{
3284	struct xfs_mount	*mp = log->l_mp;
3285	struct xfs_buf		*bp = mp->m_sb_bp;
3286	struct xfs_sb		*sbp = &mp->m_sb;
3287	int			error;
3288
3289	trace_xfs_log_recover(log, head_blk, tail_blk);
3290
3291	/*
3292	 * First replay the images in the log.
3293	 */
3294	error = xlog_do_log_recovery(log, head_blk, tail_blk);
3295	if (error)
3296		return error;
3297
3298	/*
3299	 * If IO errors happened during recovery, bail out.
3300	 */
3301	if (XFS_FORCED_SHUTDOWN(mp))
3302		return -EIO;
3303
3304	/*
3305	 * We now update the tail_lsn since much of the recovery has completed
3306	 * and there may be space available to use.  If there were no extent
3307	 * or iunlinks, we can free up the entire log and set the tail_lsn to
3308	 * be the last_sync_lsn.  This was set in xlog_find_tail to be the
3309	 * lsn of the last known good LR on disk.  If there are extent frees
3310	 * or iunlinks they will have some entries in the AIL; so we look at
3311	 * the AIL to determine how to set the tail_lsn.
3312	 */
3313	xlog_assign_tail_lsn(mp);
3314
3315	/*
3316	 * Now that we've finished replaying all buffer and inode updates,
3317	 * re-read the superblock and reverify it.
3318	 */
3319	xfs_buf_lock(bp);
3320	xfs_buf_hold(bp);
3321	error = _xfs_buf_read(bp, XBF_READ);
3322	if (error) {
3323		if (!XFS_FORCED_SHUTDOWN(mp)) {
3324			xfs_buf_ioerror_alert(bp, __this_address);
3325			ASSERT(0);
3326		}
3327		xfs_buf_relse(bp);
3328		return error;
3329	}
3330
3331	/* Convert superblock from on-disk format */
3332	xfs_sb_from_disk(sbp, bp->b_addr);
3333	xfs_buf_relse(bp);
3334
3335	/* re-initialise in-core superblock and geometry structures */
3336	xfs_reinit_percpu_counters(mp);
3337	error = xfs_initialize_perag(mp, sbp->sb_agcount, &mp->m_maxagi);
3338	if (error) {
3339		xfs_warn(mp, "Failed post-recovery per-ag init: %d", error);
3340		return error;
3341	}
3342	mp->m_alloc_set_aside = xfs_alloc_set_aside(mp);
3343
3344	xlog_recover_check_summary(log);
3345
3346	/* Normal transactions can now occur */
3347	log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
3348	return 0;
3349}
3350
3351/*
3352 * Perform recovery and re-initialize some log variables in xlog_find_tail.
3353 *
3354 * Return error or zero.
3355 */
3356int
3357xlog_recover(
3358	struct xlog	*log)
3359{
3360	xfs_daddr_t	head_blk, tail_blk;
3361	int		error;
3362
3363	/* find the tail of the log */
3364	error = xlog_find_tail(log, &head_blk, &tail_blk);
3365	if (error)
3366		return error;
3367
3368	/*
3369	 * The superblock was read before the log was available and thus the LSN
3370	 * could not be verified. Check the superblock LSN against the current
3371	 * LSN now that it's known.
3372	 */
3373	if (xfs_sb_version_hascrc(&log->l_mp->m_sb) &&
3374	    !xfs_log_check_lsn(log->l_mp, log->l_mp->m_sb.sb_lsn))
3375		return -EINVAL;
3376
3377	if (tail_blk != head_blk) {
3378		/* There used to be a comment here:
3379		 *
3380		 * disallow recovery on read-only mounts.  note -- mount
3381		 * checks for ENOSPC and turns it into an intelligent
3382		 * error message.
3383		 * ...but this is no longer true.  Now, unless you specify
3384		 * NORECOVERY (in which case this function would never be
3385		 * called), we just go ahead and recover.  We do this all
3386		 * under the vfs layer, so we can get away with it unless
3387		 * the device itself is read-only, in which case we fail.
3388		 */
3389		if ((error = xfs_dev_is_read_only(log->l_mp, "recovery"))) {
3390			return error;
3391		}
3392
3393		/*
3394		 * Version 5 superblock log feature mask validation. We know the
3395		 * log is dirty so check if there are any unknown log features
3396		 * in what we need to recover. If there are unknown features
3397		 * (e.g. unsupported transactions, then simply reject the
3398		 * attempt at recovery before touching anything.
3399		 */
3400		if (XFS_SB_VERSION_NUM(&log->l_mp->m_sb) == XFS_SB_VERSION_5 &&
3401		    xfs_sb_has_incompat_log_feature(&log->l_mp->m_sb,
3402					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN)) {
3403			xfs_warn(log->l_mp,
3404"Superblock has unknown incompatible log features (0x%x) enabled.",
3405				(log->l_mp->m_sb.sb_features_log_incompat &
3406					XFS_SB_FEAT_INCOMPAT_LOG_UNKNOWN));
3407			xfs_warn(log->l_mp,
3408"The log can not be fully and/or safely recovered by this kernel.");
3409			xfs_warn(log->l_mp,
3410"Please recover the log on a kernel that supports the unknown features.");
3411			return -EINVAL;
3412		}
3413
3414		/*
3415		 * Delay log recovery if the debug hook is set. This is debug
3416		 * instrumention to coordinate simulation of I/O failures with
3417		 * log recovery.
3418		 */
3419		if (xfs_globals.log_recovery_delay) {
3420			xfs_notice(log->l_mp,
3421				"Delaying log recovery for %d seconds.",
3422				xfs_globals.log_recovery_delay);
3423			msleep(xfs_globals.log_recovery_delay * 1000);
3424		}
3425
3426		xfs_notice(log->l_mp, "Starting recovery (logdev: %s)",
3427				log->l_mp->m_logname ? log->l_mp->m_logname
3428						     : "internal");
3429
3430		error = xlog_do_recover(log, head_blk, tail_blk);
3431		log->l_flags |= XLOG_RECOVERY_NEEDED;
3432	}
3433	return error;
3434}
3435
3436/*
3437 * In the first part of recovery we replay inodes and buffers and build
3438 * up the list of extent free items which need to be processed.  Here
3439 * we process the extent free items and clean up the on disk unlinked
3440 * inode lists.  This is separated from the first part of recovery so
3441 * that the root and real-time bitmap inodes can be read in from disk in
3442 * between the two stages.  This is necessary so that we can free space
3443 * in the real-time portion of the file system.
3444 */
3445int
3446xlog_recover_finish(
3447	struct xlog	*log)
3448{
3449	/*
3450	 * Now we're ready to do the transactions needed for the
3451	 * rest of recovery.  Start with completing all the extent
3452	 * free intent records and then process the unlinked inode
3453	 * lists.  At this point, we essentially run in normal mode
3454	 * except that we're still performing recovery actions
3455	 * rather than accepting new requests.
3456	 */
3457	if (log->l_flags & XLOG_RECOVERY_NEEDED) {
3458		int	error;
3459		error = xlog_recover_process_intents(log);
3460		if (error) {
3461			/*
3462			 * Cancel all the unprocessed intent items now so that
3463			 * we don't leave them pinned in the AIL.  This can
3464			 * cause the AIL to livelock on the pinned item if
3465			 * anyone tries to push the AIL (inode reclaim does
3466			 * this) before we get around to xfs_log_mount_cancel.
3467			 */
3468			xlog_recover_cancel_intents(log);
3469			xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
3470			xfs_alert(log->l_mp, "Failed to recover intents");
3471			return error;
3472		}
3473
3474		/*
3475		 * Sync the log to get all the intents out of the AIL.
3476		 * This isn't absolutely necessary, but it helps in
3477		 * case the unlink transactions would have problems
3478		 * pushing the intents out of the way.
3479		 */
3480		xfs_log_force(log->l_mp, XFS_LOG_SYNC);
3481
3482		xlog_recover_process_iunlinks(log);
3483
3484		xlog_recover_check_summary(log);
3485
3486		xfs_notice(log->l_mp, "Ending recovery (logdev: %s)",
3487				log->l_mp->m_logname ? log->l_mp->m_logname
3488						     : "internal");
3489		log->l_flags &= ~XLOG_RECOVERY_NEEDED;
3490	} else {
3491		xfs_info(log->l_mp, "Ending clean mount");
3492	}
3493	return 0;
3494}
3495
3496void
3497xlog_recover_cancel(
3498	struct xlog	*log)
3499{
3500	if (log->l_flags & XLOG_RECOVERY_NEEDED)
3501		xlog_recover_cancel_intents(log);
3502}
3503
3504#if defined(DEBUG)
3505/*
3506 * Read all of the agf and agi counters and check that they
3507 * are consistent with the superblock counters.
3508 */
3509STATIC void
3510xlog_recover_check_summary(
3511	struct xlog	*log)
3512{
3513	xfs_mount_t	*mp;
3514	xfs_buf_t	*agfbp;
3515	xfs_buf_t	*agibp;
3516	xfs_agnumber_t	agno;
3517	uint64_t	freeblks;
3518	uint64_t	itotal;
3519	uint64_t	ifree;
3520	int		error;
3521
3522	mp = log->l_mp;
3523
3524	freeblks = 0LL;
3525	itotal = 0LL;
3526	ifree = 0LL;
3527	for (agno = 0; agno < mp->m_sb.sb_agcount; agno++) {
3528		error = xfs_read_agf(mp, NULL, agno, 0, &agfbp);
3529		if (error) {
3530			xfs_alert(mp, "%s agf read failed agno %d error %d",
3531						__func__, agno, error);
3532		} else {
3533			struct xfs_agf	*agfp = agfbp->b_addr;
3534
3535			freeblks += be32_to_cpu(agfp->agf_freeblks) +
3536				    be32_to_cpu(agfp->agf_flcount);
3537			xfs_buf_relse(agfbp);
3538		}
3539
3540		error = xfs_read_agi(mp, NULL, agno, &agibp);
3541		if (error) {
3542			xfs_alert(mp, "%s agi read failed agno %d error %d",
3543						__func__, agno, error);
3544		} else {
3545			struct xfs_agi	*agi = agibp->b_addr;
3546
3547			itotal += be32_to_cpu(agi->agi_count);
3548			ifree += be32_to_cpu(agi->agi_freecount);
3549			xfs_buf_relse(agibp);
3550		}
3551	}
3552}
3553#endif /* DEBUG */
3554