1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6#include "xfs.h" 7#include "xfs_fs.h" 8#include "xfs_shared.h" 9#include "xfs_format.h" 10#include "xfs_log_format.h" 11#include "xfs_trans_resv.h" 12#include "xfs_mount.h" 13#include "xfs_errortag.h" 14#include "xfs_error.h" 15#include "xfs_trans.h" 16#include "xfs_trans_priv.h" 17#include "xfs_log.h" 18#include "xfs_log_priv.h" 19#include "xfs_trace.h" 20#include "xfs_sysfs.h" 21#include "xfs_sb.h" 22#include "xfs_health.h" 23 24kmem_zone_t *xfs_log_ticket_zone; 25 26/* Local miscellaneous function prototypes */ 27STATIC struct xlog * 28xlog_alloc_log( 29 struct xfs_mount *mp, 30 struct xfs_buftarg *log_target, 31 xfs_daddr_t blk_offset, 32 int num_bblks); 33STATIC int 34xlog_space_left( 35 struct xlog *log, 36 atomic64_t *head); 37STATIC void 38xlog_dealloc_log( 39 struct xlog *log); 40 41/* local state machine functions */ 42STATIC void xlog_state_done_syncing( 43 struct xlog_in_core *iclog); 44STATIC int 45xlog_state_get_iclog_space( 46 struct xlog *log, 47 int len, 48 struct xlog_in_core **iclog, 49 struct xlog_ticket *ticket, 50 int *continued_write, 51 int *logoffsetp); 52STATIC void 53xlog_state_switch_iclogs( 54 struct xlog *log, 55 struct xlog_in_core *iclog, 56 int eventual_size); 57STATIC void 58xlog_grant_push_ail( 59 struct xlog *log, 60 int need_bytes); 61STATIC void 62xlog_sync( 63 struct xlog *log, 64 struct xlog_in_core *iclog); 65#if defined(DEBUG) 66STATIC void 67xlog_verify_dest_ptr( 68 struct xlog *log, 69 void *ptr); 70STATIC void 71xlog_verify_grant_tail( 72 struct xlog *log); 73STATIC void 74xlog_verify_iclog( 75 struct xlog *log, 76 struct xlog_in_core *iclog, 77 int count); 78STATIC void 79xlog_verify_tail_lsn( 80 struct xlog *log, 81 struct xlog_in_core *iclog, 82 xfs_lsn_t tail_lsn); 83#else 84#define xlog_verify_dest_ptr(a,b) 85#define xlog_verify_grant_tail(a) 86#define xlog_verify_iclog(a,b,c) 87#define xlog_verify_tail_lsn(a,b,c) 88#endif 89 90STATIC int 91xlog_iclogs_empty( 92 struct xlog *log); 93 94static void 95xlog_grant_sub_space( 96 struct xlog *log, 97 atomic64_t *head, 98 int bytes) 99{ 100 int64_t head_val = atomic64_read(head); 101 int64_t new, old; 102 103 do { 104 int cycle, space; 105 106 xlog_crack_grant_head_val(head_val, &cycle, &space); 107 108 space -= bytes; 109 if (space < 0) { 110 space += log->l_logsize; 111 cycle--; 112 } 113 114 old = head_val; 115 new = xlog_assign_grant_head_val(cycle, space); 116 head_val = atomic64_cmpxchg(head, old, new); 117 } while (head_val != old); 118} 119 120static void 121xlog_grant_add_space( 122 struct xlog *log, 123 atomic64_t *head, 124 int bytes) 125{ 126 int64_t head_val = atomic64_read(head); 127 int64_t new, old; 128 129 do { 130 int tmp; 131 int cycle, space; 132 133 xlog_crack_grant_head_val(head_val, &cycle, &space); 134 135 tmp = log->l_logsize - space; 136 if (tmp > bytes) 137 space += bytes; 138 else { 139 space = bytes - tmp; 140 cycle++; 141 } 142 143 old = head_val; 144 new = xlog_assign_grant_head_val(cycle, space); 145 head_val = atomic64_cmpxchg(head, old, new); 146 } while (head_val != old); 147} 148 149STATIC void 150xlog_grant_head_init( 151 struct xlog_grant_head *head) 152{ 153 xlog_assign_grant_head(&head->grant, 1, 0); 154 INIT_LIST_HEAD(&head->waiters); 155 spin_lock_init(&head->lock); 156} 157 158STATIC void 159xlog_grant_head_wake_all( 160 struct xlog_grant_head *head) 161{ 162 struct xlog_ticket *tic; 163 164 spin_lock(&head->lock); 165 list_for_each_entry(tic, &head->waiters, t_queue) 166 wake_up_process(tic->t_task); 167 spin_unlock(&head->lock); 168} 169 170static inline int 171xlog_ticket_reservation( 172 struct xlog *log, 173 struct xlog_grant_head *head, 174 struct xlog_ticket *tic) 175{ 176 if (head == &log->l_write_head) { 177 ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV); 178 return tic->t_unit_res; 179 } else { 180 if (tic->t_flags & XLOG_TIC_PERM_RESERV) 181 return tic->t_unit_res * tic->t_cnt; 182 else 183 return tic->t_unit_res; 184 } 185} 186 187STATIC bool 188xlog_grant_head_wake( 189 struct xlog *log, 190 struct xlog_grant_head *head, 191 int *free_bytes) 192{ 193 struct xlog_ticket *tic; 194 int need_bytes; 195 bool woken_task = false; 196 197 list_for_each_entry(tic, &head->waiters, t_queue) { 198 199 /* 200 * There is a chance that the size of the CIL checkpoints in 201 * progress at the last AIL push target calculation resulted in 202 * limiting the target to the log head (l_last_sync_lsn) at the 203 * time. This may not reflect where the log head is now as the 204 * CIL checkpoints may have completed. 205 * 206 * Hence when we are woken here, it may be that the head of the 207 * log that has moved rather than the tail. As the tail didn't 208 * move, there still won't be space available for the 209 * reservation we require. However, if the AIL has already 210 * pushed to the target defined by the old log head location, we 211 * will hang here waiting for something else to update the AIL 212 * push target. 213 * 214 * Therefore, if there isn't space to wake the first waiter on 215 * the grant head, we need to push the AIL again to ensure the 216 * target reflects both the current log tail and log head 217 * position before we wait for the tail to move again. 218 */ 219 220 need_bytes = xlog_ticket_reservation(log, head, tic); 221 if (*free_bytes < need_bytes) { 222 if (!woken_task) 223 xlog_grant_push_ail(log, need_bytes); 224 return false; 225 } 226 227 *free_bytes -= need_bytes; 228 trace_xfs_log_grant_wake_up(log, tic); 229 wake_up_process(tic->t_task); 230 woken_task = true; 231 } 232 233 return true; 234} 235 236STATIC int 237xlog_grant_head_wait( 238 struct xlog *log, 239 struct xlog_grant_head *head, 240 struct xlog_ticket *tic, 241 int need_bytes) __releases(&head->lock) 242 __acquires(&head->lock) 243{ 244 list_add_tail(&tic->t_queue, &head->waiters); 245 246 do { 247 if (XLOG_FORCED_SHUTDOWN(log)) 248 goto shutdown; 249 xlog_grant_push_ail(log, need_bytes); 250 251 __set_current_state(TASK_UNINTERRUPTIBLE); 252 spin_unlock(&head->lock); 253 254 XFS_STATS_INC(log->l_mp, xs_sleep_logspace); 255 256 trace_xfs_log_grant_sleep(log, tic); 257 schedule(); 258 trace_xfs_log_grant_wake(log, tic); 259 260 spin_lock(&head->lock); 261 if (XLOG_FORCED_SHUTDOWN(log)) 262 goto shutdown; 263 } while (xlog_space_left(log, &head->grant) < need_bytes); 264 265 list_del_init(&tic->t_queue); 266 return 0; 267shutdown: 268 list_del_init(&tic->t_queue); 269 return -EIO; 270} 271 272/* 273 * Atomically get the log space required for a log ticket. 274 * 275 * Once a ticket gets put onto head->waiters, it will only return after the 276 * needed reservation is satisfied. 277 * 278 * This function is structured so that it has a lock free fast path. This is 279 * necessary because every new transaction reservation will come through this 280 * path. Hence any lock will be globally hot if we take it unconditionally on 281 * every pass. 282 * 283 * As tickets are only ever moved on and off head->waiters under head->lock, we 284 * only need to take that lock if we are going to add the ticket to the queue 285 * and sleep. We can avoid taking the lock if the ticket was never added to 286 * head->waiters because the t_queue list head will be empty and we hold the 287 * only reference to it so it can safely be checked unlocked. 288 */ 289STATIC int 290xlog_grant_head_check( 291 struct xlog *log, 292 struct xlog_grant_head *head, 293 struct xlog_ticket *tic, 294 int *need_bytes) 295{ 296 int free_bytes; 297 int error = 0; 298 299 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 300 301 /* 302 * If there are other waiters on the queue then give them a chance at 303 * logspace before us. Wake up the first waiters, if we do not wake 304 * up all the waiters then go to sleep waiting for more free space, 305 * otherwise try to get some space for this transaction. 306 */ 307 *need_bytes = xlog_ticket_reservation(log, head, tic); 308 free_bytes = xlog_space_left(log, &head->grant); 309 if (!list_empty_careful(&head->waiters)) { 310 spin_lock(&head->lock); 311 if (!xlog_grant_head_wake(log, head, &free_bytes) || 312 free_bytes < *need_bytes) { 313 error = xlog_grant_head_wait(log, head, tic, 314 *need_bytes); 315 } 316 spin_unlock(&head->lock); 317 } else if (free_bytes < *need_bytes) { 318 spin_lock(&head->lock); 319 error = xlog_grant_head_wait(log, head, tic, *need_bytes); 320 spin_unlock(&head->lock); 321 } 322 323 return error; 324} 325 326static void 327xlog_tic_reset_res(xlog_ticket_t *tic) 328{ 329 tic->t_res_num = 0; 330 tic->t_res_arr_sum = 0; 331 tic->t_res_num_ophdrs = 0; 332} 333 334static void 335xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type) 336{ 337 if (tic->t_res_num == XLOG_TIC_LEN_MAX) { 338 /* add to overflow and start again */ 339 tic->t_res_o_flow += tic->t_res_arr_sum; 340 tic->t_res_num = 0; 341 tic->t_res_arr_sum = 0; 342 } 343 344 tic->t_res_arr[tic->t_res_num].r_len = len; 345 tic->t_res_arr[tic->t_res_num].r_type = type; 346 tic->t_res_arr_sum += len; 347 tic->t_res_num++; 348} 349 350bool 351xfs_log_writable( 352 struct xfs_mount *mp) 353{ 354 /* 355 * Never write to the log on norecovery mounts, if the block device is 356 * read-only, or if the filesystem is shutdown. Read-only mounts still 357 * allow internal writes for log recovery and unmount purposes, so don't 358 * restrict that case here. 359 */ 360 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 361 return false; 362 if (xfs_readonly_buftarg(mp->m_log->l_targ)) 363 return false; 364 if (XFS_FORCED_SHUTDOWN(mp)) 365 return false; 366 return true; 367} 368 369/* 370 * Replenish the byte reservation required by moving the grant write head. 371 */ 372int 373xfs_log_regrant( 374 struct xfs_mount *mp, 375 struct xlog_ticket *tic) 376{ 377 struct xlog *log = mp->m_log; 378 int need_bytes; 379 int error = 0; 380 381 if (XLOG_FORCED_SHUTDOWN(log)) 382 return -EIO; 383 384 XFS_STATS_INC(mp, xs_try_logspace); 385 386 /* 387 * This is a new transaction on the ticket, so we need to change the 388 * transaction ID so that the next transaction has a different TID in 389 * the log. Just add one to the existing tid so that we can see chains 390 * of rolling transactions in the log easily. 391 */ 392 tic->t_tid++; 393 394 xlog_grant_push_ail(log, tic->t_unit_res); 395 396 tic->t_curr_res = tic->t_unit_res; 397 xlog_tic_reset_res(tic); 398 399 if (tic->t_cnt > 0) 400 return 0; 401 402 trace_xfs_log_regrant(log, tic); 403 404 error = xlog_grant_head_check(log, &log->l_write_head, tic, 405 &need_bytes); 406 if (error) 407 goto out_error; 408 409 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 410 trace_xfs_log_regrant_exit(log, tic); 411 xlog_verify_grant_tail(log); 412 return 0; 413 414out_error: 415 /* 416 * If we are failing, make sure the ticket doesn't have any current 417 * reservations. We don't want to add this back when the ticket/ 418 * transaction gets cancelled. 419 */ 420 tic->t_curr_res = 0; 421 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 422 return error; 423} 424 425/* 426 * Reserve log space and return a ticket corresponding to the reservation. 427 * 428 * Each reservation is going to reserve extra space for a log record header. 429 * When writes happen to the on-disk log, we don't subtract the length of the 430 * log record header from any reservation. By wasting space in each 431 * reservation, we prevent over allocation problems. 432 */ 433int 434xfs_log_reserve( 435 struct xfs_mount *mp, 436 int unit_bytes, 437 int cnt, 438 struct xlog_ticket **ticp, 439 uint8_t client, 440 bool permanent) 441{ 442 struct xlog *log = mp->m_log; 443 struct xlog_ticket *tic; 444 int need_bytes; 445 int error = 0; 446 447 ASSERT(client == XFS_TRANSACTION || client == XFS_LOG); 448 449 if (XLOG_FORCED_SHUTDOWN(log)) 450 return -EIO; 451 452 XFS_STATS_INC(mp, xs_try_logspace); 453 454 ASSERT(*ticp == NULL); 455 tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent); 456 *ticp = tic; 457 458 xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt 459 : tic->t_unit_res); 460 461 trace_xfs_log_reserve(log, tic); 462 463 error = xlog_grant_head_check(log, &log->l_reserve_head, tic, 464 &need_bytes); 465 if (error) 466 goto out_error; 467 468 xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes); 469 xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes); 470 trace_xfs_log_reserve_exit(log, tic); 471 xlog_verify_grant_tail(log); 472 return 0; 473 474out_error: 475 /* 476 * If we are failing, make sure the ticket doesn't have any current 477 * reservations. We don't want to add this back when the ticket/ 478 * transaction gets cancelled. 479 */ 480 tic->t_curr_res = 0; 481 tic->t_cnt = 0; /* ungrant will give back unit_res * t_cnt. */ 482 return error; 483} 484 485static bool 486__xlog_state_release_iclog( 487 struct xlog *log, 488 struct xlog_in_core *iclog) 489{ 490 lockdep_assert_held(&log->l_icloglock); 491 492 if (iclog->ic_state == XLOG_STATE_WANT_SYNC) { 493 /* update tail before writing to iclog */ 494 xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp); 495 496 iclog->ic_state = XLOG_STATE_SYNCING; 497 iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn); 498 xlog_verify_tail_lsn(log, iclog, tail_lsn); 499 /* cycle incremented when incrementing curr_block */ 500 return true; 501 } 502 503 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 504 return false; 505} 506 507/* 508 * Flush iclog to disk if this is the last reference to the given iclog and the 509 * it is in the WANT_SYNC state. 510 */ 511static int 512xlog_state_release_iclog( 513 struct xlog *log, 514 struct xlog_in_core *iclog) 515{ 516 lockdep_assert_held(&log->l_icloglock); 517 518 if (iclog->ic_state == XLOG_STATE_IOERROR) 519 return -EIO; 520 521 if (atomic_dec_and_test(&iclog->ic_refcnt) && 522 __xlog_state_release_iclog(log, iclog)) { 523 spin_unlock(&log->l_icloglock); 524 xlog_sync(log, iclog); 525 spin_lock(&log->l_icloglock); 526 } 527 528 return 0; 529} 530 531void 532xfs_log_release_iclog( 533 struct xlog_in_core *iclog) 534{ 535 struct xlog *log = iclog->ic_log; 536 bool sync = false; 537 538 if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) { 539 if (iclog->ic_state != XLOG_STATE_IOERROR) 540 sync = __xlog_state_release_iclog(log, iclog); 541 spin_unlock(&log->l_icloglock); 542 } 543 544 if (sync) 545 xlog_sync(log, iclog); 546} 547 548/* 549 * Mount a log filesystem 550 * 551 * mp - ubiquitous xfs mount point structure 552 * log_target - buftarg of on-disk log device 553 * blk_offset - Start block # where block size is 512 bytes (BBSIZE) 554 * num_bblocks - Number of BBSIZE blocks in on-disk log 555 * 556 * Return error or zero. 557 */ 558int 559xfs_log_mount( 560 xfs_mount_t *mp, 561 xfs_buftarg_t *log_target, 562 xfs_daddr_t blk_offset, 563 int num_bblks) 564{ 565 bool fatal = xfs_sb_version_hascrc(&mp->m_sb); 566 int error = 0; 567 int min_logfsbs; 568 569 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 570 xfs_notice(mp, "Mounting V%d Filesystem", 571 XFS_SB_VERSION_NUM(&mp->m_sb)); 572 } else { 573 xfs_notice(mp, 574"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.", 575 XFS_SB_VERSION_NUM(&mp->m_sb)); 576 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 577 } 578 579 mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks); 580 if (IS_ERR(mp->m_log)) { 581 error = PTR_ERR(mp->m_log); 582 goto out; 583 } 584 585 /* 586 * Validate the given log space and drop a critical message via syslog 587 * if the log size is too small that would lead to some unexpected 588 * situations in transaction log space reservation stage. 589 * 590 * Note: we can't just reject the mount if the validation fails. This 591 * would mean that people would have to downgrade their kernel just to 592 * remedy the situation as there is no way to grow the log (short of 593 * black magic surgery with xfs_db). 594 * 595 * We can, however, reject mounts for CRC format filesystems, as the 596 * mkfs binary being used to make the filesystem should never create a 597 * filesystem with a log that is too small. 598 */ 599 min_logfsbs = xfs_log_calc_minimum_size(mp); 600 601 if (mp->m_sb.sb_logblocks < min_logfsbs) { 602 xfs_warn(mp, 603 "Log size %d blocks too small, minimum size is %d blocks", 604 mp->m_sb.sb_logblocks, min_logfsbs); 605 error = -EINVAL; 606 } else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) { 607 xfs_warn(mp, 608 "Log size %d blocks too large, maximum size is %lld blocks", 609 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS); 610 error = -EINVAL; 611 } else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) { 612 xfs_warn(mp, 613 "log size %lld bytes too large, maximum size is %lld bytes", 614 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks), 615 XFS_MAX_LOG_BYTES); 616 error = -EINVAL; 617 } else if (mp->m_sb.sb_logsunit > 1 && 618 mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) { 619 xfs_warn(mp, 620 "log stripe unit %u bytes must be a multiple of block size", 621 mp->m_sb.sb_logsunit); 622 error = -EINVAL; 623 fatal = true; 624 } 625 if (error) { 626 /* 627 * Log check errors are always fatal on v5; or whenever bad 628 * metadata leads to a crash. 629 */ 630 if (fatal) { 631 xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!"); 632 ASSERT(0); 633 goto out_free_log; 634 } 635 xfs_crit(mp, "Log size out of supported range."); 636 xfs_crit(mp, 637"Continuing onwards, but if log hangs are experienced then please report this message in the bug report."); 638 } 639 640 /* 641 * Initialize the AIL now we have a log. 642 */ 643 error = xfs_trans_ail_init(mp); 644 if (error) { 645 xfs_warn(mp, "AIL initialisation failed: error %d", error); 646 goto out_free_log; 647 } 648 mp->m_log->l_ailp = mp->m_ail; 649 650 /* 651 * skip log recovery on a norecovery mount. pretend it all 652 * just worked. 653 */ 654 if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) { 655 int readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 656 657 if (readonly) 658 mp->m_flags &= ~XFS_MOUNT_RDONLY; 659 660 error = xlog_recover(mp->m_log); 661 662 if (readonly) 663 mp->m_flags |= XFS_MOUNT_RDONLY; 664 if (error) { 665 xfs_warn(mp, "log mount/recovery failed: error %d", 666 error); 667 xlog_recover_cancel(mp->m_log); 668 goto out_destroy_ail; 669 } 670 } 671 672 error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj, 673 "log"); 674 if (error) 675 goto out_destroy_ail; 676 677 /* Normal transactions can now occur */ 678 mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY; 679 680 /* 681 * Now the log has been fully initialised and we know were our 682 * space grant counters are, we can initialise the permanent ticket 683 * needed for delayed logging to work. 684 */ 685 xlog_cil_init_post_recovery(mp->m_log); 686 687 return 0; 688 689out_destroy_ail: 690 xfs_trans_ail_destroy(mp); 691out_free_log: 692 xlog_dealloc_log(mp->m_log); 693out: 694 return error; 695} 696 697/* 698 * Finish the recovery of the file system. This is separate from the 699 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read 700 * in the root and real-time bitmap inodes between calling xfs_log_mount() and 701 * here. 702 * 703 * If we finish recovery successfully, start the background log work. If we are 704 * not doing recovery, then we have a RO filesystem and we don't need to start 705 * it. 706 */ 707int 708xfs_log_mount_finish( 709 struct xfs_mount *mp) 710{ 711 int error = 0; 712 bool readonly = (mp->m_flags & XFS_MOUNT_RDONLY); 713 bool recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED; 714 715 if (mp->m_flags & XFS_MOUNT_NORECOVERY) { 716 ASSERT(mp->m_flags & XFS_MOUNT_RDONLY); 717 return 0; 718 } else if (readonly) { 719 /* Allow unlinked processing to proceed */ 720 mp->m_flags &= ~XFS_MOUNT_RDONLY; 721 } 722 723 /* 724 * During the second phase of log recovery, we need iget and 725 * iput to behave like they do for an active filesystem. 726 * xfs_fs_drop_inode needs to be able to prevent the deletion 727 * of inodes before we're done replaying log items on those 728 * inodes. Turn it off immediately after recovery finishes 729 * so that we don't leak the quota inodes if subsequent mount 730 * activities fail. 731 * 732 * We let all inodes involved in redo item processing end up on 733 * the LRU instead of being evicted immediately so that if we do 734 * something to an unlinked inode, the irele won't cause 735 * premature truncation and freeing of the inode, which results 736 * in log recovery failure. We have to evict the unreferenced 737 * lru inodes after clearing SB_ACTIVE because we don't 738 * otherwise clean up the lru if there's a subsequent failure in 739 * xfs_mountfs, which leads to us leaking the inodes if nothing 740 * else (e.g. quotacheck) references the inodes before the 741 * mount failure occurs. 742 */ 743 mp->m_super->s_flags |= SB_ACTIVE; 744 error = xlog_recover_finish(mp->m_log); 745 if (!error) 746 xfs_log_work_queue(mp); 747 mp->m_super->s_flags &= ~SB_ACTIVE; 748 evict_inodes(mp->m_super); 749 750 /* 751 * Drain the buffer LRU after log recovery. This is required for v4 752 * filesystems to avoid leaving around buffers with NULL verifier ops, 753 * but we do it unconditionally to make sure we're always in a clean 754 * cache state after mount. 755 * 756 * Don't push in the error case because the AIL may have pending intents 757 * that aren't removed until recovery is cancelled. 758 */ 759 if (!error && recovered) { 760 xfs_log_force(mp, XFS_LOG_SYNC); 761 xfs_ail_push_all_sync(mp->m_ail); 762 } 763 xfs_wait_buftarg(mp->m_ddev_targp); 764 765 if (readonly) 766 mp->m_flags |= XFS_MOUNT_RDONLY; 767 768 /* Make sure the log is dead if we're returning failure. */ 769 ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR)); 770 771 return error; 772} 773 774/* 775 * The mount has failed. Cancel the recovery if it hasn't completed and destroy 776 * the log. 777 */ 778void 779xfs_log_mount_cancel( 780 struct xfs_mount *mp) 781{ 782 xlog_recover_cancel(mp->m_log); 783 xfs_log_unmount(mp); 784} 785 786/* 787 * Wait for the iclog to be written disk, or return an error if the log has been 788 * shut down. 789 */ 790static int 791xlog_wait_on_iclog( 792 struct xlog_in_core *iclog) 793 __releases(iclog->ic_log->l_icloglock) 794{ 795 struct xlog *log = iclog->ic_log; 796 797 if (!XLOG_FORCED_SHUTDOWN(log) && 798 iclog->ic_state != XLOG_STATE_ACTIVE && 799 iclog->ic_state != XLOG_STATE_DIRTY) { 800 XFS_STATS_INC(log->l_mp, xs_log_force_sleep); 801 xlog_wait(&iclog->ic_force_wait, &log->l_icloglock); 802 } else { 803 spin_unlock(&log->l_icloglock); 804 } 805 806 if (XLOG_FORCED_SHUTDOWN(log)) 807 return -EIO; 808 return 0; 809} 810 811/* 812 * Write out an unmount record using the ticket provided. We have to account for 813 * the data space used in the unmount ticket as this write is not done from a 814 * transaction context that has already done the accounting for us. 815 */ 816static int 817xlog_write_unmount_record( 818 struct xlog *log, 819 struct xlog_ticket *ticket, 820 xfs_lsn_t *lsn, 821 uint flags) 822{ 823 struct xfs_unmount_log_format ulf = { 824 .magic = XLOG_UNMOUNT_TYPE, 825 }; 826 struct xfs_log_iovec reg = { 827 .i_addr = &ulf, 828 .i_len = sizeof(ulf), 829 .i_type = XLOG_REG_TYPE_UNMOUNT, 830 }; 831 struct xfs_log_vec vec = { 832 .lv_niovecs = 1, 833 .lv_iovecp = ®, 834 }; 835 836 /* account for space used by record data */ 837 ticket->t_curr_res -= sizeof(ulf); 838 return xlog_write(log, &vec, ticket, lsn, NULL, flags, false); 839} 840 841/* 842 * Mark the filesystem clean by writing an unmount record to the head of the 843 * log. 844 */ 845static void 846xlog_unmount_write( 847 struct xlog *log) 848{ 849 struct xfs_mount *mp = log->l_mp; 850 struct xlog_in_core *iclog; 851 struct xlog_ticket *tic = NULL; 852 xfs_lsn_t lsn; 853 uint flags = XLOG_UNMOUNT_TRANS; 854 int error; 855 856 error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0); 857 if (error) 858 goto out_err; 859 860 error = xlog_write_unmount_record(log, tic, &lsn, flags); 861 /* 862 * At this point, we're umounting anyway, so there's no point in 863 * transitioning log state to IOERROR. Just continue... 864 */ 865out_err: 866 if (error) 867 xfs_alert(mp, "%s: unmount record failed", __func__); 868 869 spin_lock(&log->l_icloglock); 870 iclog = log->l_iclog; 871 atomic_inc(&iclog->ic_refcnt); 872 if (iclog->ic_state == XLOG_STATE_ACTIVE) 873 xlog_state_switch_iclogs(log, iclog, 0); 874 else 875 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 876 iclog->ic_state == XLOG_STATE_IOERROR); 877 error = xlog_state_release_iclog(log, iclog); 878 xlog_wait_on_iclog(iclog); 879 880 if (tic) { 881 trace_xfs_log_umount_write(log, tic); 882 xfs_log_ticket_ungrant(log, tic); 883 } 884} 885 886static void 887xfs_log_unmount_verify_iclog( 888 struct xlog *log) 889{ 890 struct xlog_in_core *iclog = log->l_iclog; 891 892 do { 893 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 894 ASSERT(iclog->ic_offset == 0); 895 } while ((iclog = iclog->ic_next) != log->l_iclog); 896} 897 898/* 899 * Unmount record used to have a string "Unmount filesystem--" in the 900 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE). 901 * We just write the magic number now since that particular field isn't 902 * currently architecture converted and "Unmount" is a bit foo. 903 * As far as I know, there weren't any dependencies on the old behaviour. 904 */ 905static void 906xfs_log_unmount_write( 907 struct xfs_mount *mp) 908{ 909 struct xlog *log = mp->m_log; 910 911 if (!xfs_log_writable(mp)) 912 return; 913 914 xfs_log_force(mp, XFS_LOG_SYNC); 915 916 if (XLOG_FORCED_SHUTDOWN(log)) 917 return; 918 919 /* 920 * If we think the summary counters are bad, avoid writing the unmount 921 * record to force log recovery at next mount, after which the summary 922 * counters will be recalculated. Refer to xlog_check_unmount_rec for 923 * more details. 924 */ 925 if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp, 926 XFS_ERRTAG_FORCE_SUMMARY_RECALC)) { 927 xfs_alert(mp, "%s: will fix summary counters at next mount", 928 __func__); 929 return; 930 } 931 932 xfs_log_unmount_verify_iclog(log); 933 xlog_unmount_write(log); 934} 935 936/* 937 * Empty the log for unmount/freeze. 938 * 939 * To do this, we first need to shut down the background log work so it is not 940 * trying to cover the log as we clean up. We then need to unpin all objects in 941 * the log so we can then flush them out. Once they have completed their IO and 942 * run the callbacks removing themselves from the AIL, we can write the unmount 943 * record. 944 */ 945void 946xfs_log_quiesce( 947 struct xfs_mount *mp) 948{ 949 cancel_delayed_work_sync(&mp->m_log->l_work); 950 xfs_log_force(mp, XFS_LOG_SYNC); 951 952 /* 953 * The superblock buffer is uncached and while xfs_ail_push_all_sync() 954 * will push it, xfs_wait_buftarg() will not wait for it. Further, 955 * xfs_buf_iowait() cannot be used because it was pushed with the 956 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for 957 * the IO to complete. 958 */ 959 xfs_ail_push_all_sync(mp->m_ail); 960 xfs_wait_buftarg(mp->m_ddev_targp); 961 xfs_buf_lock(mp->m_sb_bp); 962 xfs_buf_unlock(mp->m_sb_bp); 963 964 xfs_log_unmount_write(mp); 965} 966 967/* 968 * Shut down and release the AIL and Log. 969 * 970 * During unmount, we need to ensure we flush all the dirty metadata objects 971 * from the AIL so that the log is empty before we write the unmount record to 972 * the log. Once this is done, we can tear down the AIL and the log. 973 */ 974void 975xfs_log_unmount( 976 struct xfs_mount *mp) 977{ 978 xfs_log_quiesce(mp); 979 980 xfs_trans_ail_destroy(mp); 981 982 xfs_sysfs_del(&mp->m_log->l_kobj); 983 984 xlog_dealloc_log(mp->m_log); 985} 986 987void 988xfs_log_item_init( 989 struct xfs_mount *mp, 990 struct xfs_log_item *item, 991 int type, 992 const struct xfs_item_ops *ops) 993{ 994 item->li_mountp = mp; 995 item->li_ailp = mp->m_ail; 996 item->li_type = type; 997 item->li_ops = ops; 998 item->li_lv = NULL; 999 1000 INIT_LIST_HEAD(&item->li_ail); 1001 INIT_LIST_HEAD(&item->li_cil); 1002 INIT_LIST_HEAD(&item->li_bio_list); 1003 INIT_LIST_HEAD(&item->li_trans); 1004} 1005 1006/* 1007 * Wake up processes waiting for log space after we have moved the log tail. 1008 */ 1009void 1010xfs_log_space_wake( 1011 struct xfs_mount *mp) 1012{ 1013 struct xlog *log = mp->m_log; 1014 int free_bytes; 1015 1016 if (XLOG_FORCED_SHUTDOWN(log)) 1017 return; 1018 1019 if (!list_empty_careful(&log->l_write_head.waiters)) { 1020 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1021 1022 spin_lock(&log->l_write_head.lock); 1023 free_bytes = xlog_space_left(log, &log->l_write_head.grant); 1024 xlog_grant_head_wake(log, &log->l_write_head, &free_bytes); 1025 spin_unlock(&log->l_write_head.lock); 1026 } 1027 1028 if (!list_empty_careful(&log->l_reserve_head.waiters)) { 1029 ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY)); 1030 1031 spin_lock(&log->l_reserve_head.lock); 1032 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1033 xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes); 1034 spin_unlock(&log->l_reserve_head.lock); 1035 } 1036} 1037 1038/* 1039 * Determine if we have a transaction that has gone to disk that needs to be 1040 * covered. To begin the transition to the idle state firstly the log needs to 1041 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before 1042 * we start attempting to cover the log. 1043 * 1044 * Only if we are then in a state where covering is needed, the caller is 1045 * informed that dummy transactions are required to move the log into the idle 1046 * state. 1047 * 1048 * If there are any items in the AIl or CIL, then we do not want to attempt to 1049 * cover the log as we may be in a situation where there isn't log space 1050 * available to run a dummy transaction and this can lead to deadlocks when the 1051 * tail of the log is pinned by an item that is modified in the CIL. Hence 1052 * there's no point in running a dummy transaction at this point because we 1053 * can't start trying to idle the log until both the CIL and AIL are empty. 1054 */ 1055static int 1056xfs_log_need_covered(xfs_mount_t *mp) 1057{ 1058 struct xlog *log = mp->m_log; 1059 int needed = 0; 1060 1061 if (!xfs_fs_writable(mp, SB_FREEZE_WRITE)) 1062 return 0; 1063 1064 if (!xlog_cil_empty(log)) 1065 return 0; 1066 1067 spin_lock(&log->l_icloglock); 1068 switch (log->l_covered_state) { 1069 case XLOG_STATE_COVER_DONE: 1070 case XLOG_STATE_COVER_DONE2: 1071 case XLOG_STATE_COVER_IDLE: 1072 break; 1073 case XLOG_STATE_COVER_NEED: 1074 case XLOG_STATE_COVER_NEED2: 1075 if (xfs_ail_min_lsn(log->l_ailp)) 1076 break; 1077 if (!xlog_iclogs_empty(log)) 1078 break; 1079 1080 needed = 1; 1081 if (log->l_covered_state == XLOG_STATE_COVER_NEED) 1082 log->l_covered_state = XLOG_STATE_COVER_DONE; 1083 else 1084 log->l_covered_state = XLOG_STATE_COVER_DONE2; 1085 break; 1086 default: 1087 needed = 1; 1088 break; 1089 } 1090 spin_unlock(&log->l_icloglock); 1091 return needed; 1092} 1093 1094/* 1095 * We may be holding the log iclog lock upon entering this routine. 1096 */ 1097xfs_lsn_t 1098xlog_assign_tail_lsn_locked( 1099 struct xfs_mount *mp) 1100{ 1101 struct xlog *log = mp->m_log; 1102 struct xfs_log_item *lip; 1103 xfs_lsn_t tail_lsn; 1104 1105 assert_spin_locked(&mp->m_ail->ail_lock); 1106 1107 /* 1108 * To make sure we always have a valid LSN for the log tail we keep 1109 * track of the last LSN which was committed in log->l_last_sync_lsn, 1110 * and use that when the AIL was empty. 1111 */ 1112 lip = xfs_ail_min(mp->m_ail); 1113 if (lip) 1114 tail_lsn = lip->li_lsn; 1115 else 1116 tail_lsn = atomic64_read(&log->l_last_sync_lsn); 1117 trace_xfs_log_assign_tail_lsn(log, tail_lsn); 1118 atomic64_set(&log->l_tail_lsn, tail_lsn); 1119 return tail_lsn; 1120} 1121 1122xfs_lsn_t 1123xlog_assign_tail_lsn( 1124 struct xfs_mount *mp) 1125{ 1126 xfs_lsn_t tail_lsn; 1127 1128 spin_lock(&mp->m_ail->ail_lock); 1129 tail_lsn = xlog_assign_tail_lsn_locked(mp); 1130 spin_unlock(&mp->m_ail->ail_lock); 1131 1132 return tail_lsn; 1133} 1134 1135/* 1136 * Return the space in the log between the tail and the head. The head 1137 * is passed in the cycle/bytes formal parms. In the special case where 1138 * the reserve head has wrapped passed the tail, this calculation is no 1139 * longer valid. In this case, just return 0 which means there is no space 1140 * in the log. This works for all places where this function is called 1141 * with the reserve head. Of course, if the write head were to ever 1142 * wrap the tail, we should blow up. Rather than catch this case here, 1143 * we depend on other ASSERTions in other parts of the code. XXXmiken 1144 * 1145 * This code also handles the case where the reservation head is behind 1146 * the tail. The details of this case are described below, but the end 1147 * result is that we return the size of the log as the amount of space left. 1148 */ 1149STATIC int 1150xlog_space_left( 1151 struct xlog *log, 1152 atomic64_t *head) 1153{ 1154 int free_bytes; 1155 int tail_bytes; 1156 int tail_cycle; 1157 int head_cycle; 1158 int head_bytes; 1159 1160 xlog_crack_grant_head(head, &head_cycle, &head_bytes); 1161 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes); 1162 tail_bytes = BBTOB(tail_bytes); 1163 if (tail_cycle == head_cycle && head_bytes >= tail_bytes) 1164 free_bytes = log->l_logsize - (head_bytes - tail_bytes); 1165 else if (tail_cycle + 1 < head_cycle) 1166 return 0; 1167 else if (tail_cycle < head_cycle) { 1168 ASSERT(tail_cycle == (head_cycle - 1)); 1169 free_bytes = tail_bytes - head_bytes; 1170 } else { 1171 /* 1172 * The reservation head is behind the tail. 1173 * In this case we just want to return the size of the 1174 * log as the amount of space left. 1175 */ 1176 xfs_alert(log->l_mp, "xlog_space_left: head behind tail"); 1177 xfs_alert(log->l_mp, 1178 " tail_cycle = %d, tail_bytes = %d", 1179 tail_cycle, tail_bytes); 1180 xfs_alert(log->l_mp, 1181 " GH cycle = %d, GH bytes = %d", 1182 head_cycle, head_bytes); 1183 ASSERT(0); 1184 free_bytes = log->l_logsize; 1185 } 1186 return free_bytes; 1187} 1188 1189 1190static void 1191xlog_ioend_work( 1192 struct work_struct *work) 1193{ 1194 struct xlog_in_core *iclog = 1195 container_of(work, struct xlog_in_core, ic_end_io_work); 1196 struct xlog *log = iclog->ic_log; 1197 int error; 1198 1199 error = blk_status_to_errno(iclog->ic_bio.bi_status); 1200#ifdef DEBUG 1201 /* treat writes with injected CRC errors as failed */ 1202 if (iclog->ic_fail_crc) 1203 error = -EIO; 1204#endif 1205 1206 /* 1207 * Race to shutdown the filesystem if we see an error. 1208 */ 1209 if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) { 1210 xfs_alert(log->l_mp, "log I/O error %d", error); 1211 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1212 } 1213 1214 xlog_state_done_syncing(iclog); 1215 bio_uninit(&iclog->ic_bio); 1216 1217 /* 1218 * Drop the lock to signal that we are done. Nothing references the 1219 * iclog after this, so an unmount waiting on this lock can now tear it 1220 * down safely. As such, it is unsafe to reference the iclog after the 1221 * unlock as we could race with it being freed. 1222 */ 1223 up(&iclog->ic_sema); 1224} 1225 1226/* 1227 * Return size of each in-core log record buffer. 1228 * 1229 * All machines get 8 x 32kB buffers by default, unless tuned otherwise. 1230 * 1231 * If the filesystem blocksize is too large, we may need to choose a 1232 * larger size since the directory code currently logs entire blocks. 1233 */ 1234STATIC void 1235xlog_get_iclog_buffer_size( 1236 struct xfs_mount *mp, 1237 struct xlog *log) 1238{ 1239 if (mp->m_logbufs <= 0) 1240 mp->m_logbufs = XLOG_MAX_ICLOGS; 1241 if (mp->m_logbsize <= 0) 1242 mp->m_logbsize = XLOG_BIG_RECORD_BSIZE; 1243 1244 log->l_iclog_bufs = mp->m_logbufs; 1245 log->l_iclog_size = mp->m_logbsize; 1246 1247 /* 1248 * # headers = size / 32k - one header holds cycles from 32k of data. 1249 */ 1250 log->l_iclog_heads = 1251 DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE); 1252 log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT; 1253} 1254 1255void 1256xfs_log_work_queue( 1257 struct xfs_mount *mp) 1258{ 1259 queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work, 1260 msecs_to_jiffies(xfs_syncd_centisecs * 10)); 1261} 1262 1263/* 1264 * Every sync period we need to unpin all items in the AIL and push them to 1265 * disk. If there is nothing dirty, then we might need to cover the log to 1266 * indicate that the filesystem is idle. 1267 */ 1268static void 1269xfs_log_worker( 1270 struct work_struct *work) 1271{ 1272 struct xlog *log = container_of(to_delayed_work(work), 1273 struct xlog, l_work); 1274 struct xfs_mount *mp = log->l_mp; 1275 1276 /* dgc: errors ignored - not fatal and nowhere to report them */ 1277 if (xfs_log_need_covered(mp)) { 1278 /* 1279 * Dump a transaction into the log that contains no real change. 1280 * This is needed to stamp the current tail LSN into the log 1281 * during the covering operation. 1282 * 1283 * We cannot use an inode here for this - that will push dirty 1284 * state back up into the VFS and then periodic inode flushing 1285 * will prevent log covering from making progress. Hence we 1286 * synchronously log the superblock instead to ensure the 1287 * superblock is immediately unpinned and can be written back. 1288 */ 1289 xfs_sync_sb(mp, true); 1290 } else 1291 xfs_log_force(mp, 0); 1292 1293 /* start pushing all the metadata that is currently dirty */ 1294 xfs_ail_push_all(mp->m_ail); 1295 1296 /* queue us up again */ 1297 xfs_log_work_queue(mp); 1298} 1299 1300/* 1301 * This routine initializes some of the log structure for a given mount point. 1302 * Its primary purpose is to fill in enough, so recovery can occur. However, 1303 * some other stuff may be filled in too. 1304 */ 1305STATIC struct xlog * 1306xlog_alloc_log( 1307 struct xfs_mount *mp, 1308 struct xfs_buftarg *log_target, 1309 xfs_daddr_t blk_offset, 1310 int num_bblks) 1311{ 1312 struct xlog *log; 1313 xlog_rec_header_t *head; 1314 xlog_in_core_t **iclogp; 1315 xlog_in_core_t *iclog, *prev_iclog=NULL; 1316 int i; 1317 int error = -ENOMEM; 1318 uint log2_size = 0; 1319 1320 log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL); 1321 if (!log) { 1322 xfs_warn(mp, "Log allocation failed: No memory!"); 1323 goto out; 1324 } 1325 1326 log->l_mp = mp; 1327 log->l_targ = log_target; 1328 log->l_logsize = BBTOB(num_bblks); 1329 log->l_logBBstart = blk_offset; 1330 log->l_logBBsize = num_bblks; 1331 log->l_covered_state = XLOG_STATE_COVER_IDLE; 1332 log->l_flags |= XLOG_ACTIVE_RECOVERY; 1333 INIT_DELAYED_WORK(&log->l_work, xfs_log_worker); 1334 1335 log->l_prev_block = -1; 1336 /* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */ 1337 xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0); 1338 xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0); 1339 log->l_curr_cycle = 1; /* 0 is bad since this is initial value */ 1340 1341 xlog_grant_head_init(&log->l_reserve_head); 1342 xlog_grant_head_init(&log->l_write_head); 1343 1344 error = -EFSCORRUPTED; 1345 if (xfs_sb_version_hassector(&mp->m_sb)) { 1346 log2_size = mp->m_sb.sb_logsectlog; 1347 if (log2_size < BBSHIFT) { 1348 xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)", 1349 log2_size, BBSHIFT); 1350 goto out_free_log; 1351 } 1352 1353 log2_size -= BBSHIFT; 1354 if (log2_size > mp->m_sectbb_log) { 1355 xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)", 1356 log2_size, mp->m_sectbb_log); 1357 goto out_free_log; 1358 } 1359 1360 /* for larger sector sizes, must have v2 or external log */ 1361 if (log2_size && log->l_logBBstart > 0 && 1362 !xfs_sb_version_haslogv2(&mp->m_sb)) { 1363 xfs_warn(mp, 1364 "log sector size (0x%x) invalid for configuration.", 1365 log2_size); 1366 goto out_free_log; 1367 } 1368 } 1369 log->l_sectBBsize = 1 << log2_size; 1370 1371 xlog_get_iclog_buffer_size(mp, log); 1372 1373 spin_lock_init(&log->l_icloglock); 1374 init_waitqueue_head(&log->l_flush_wait); 1375 1376 iclogp = &log->l_iclog; 1377 /* 1378 * The amount of memory to allocate for the iclog structure is 1379 * rather funky due to the way the structure is defined. It is 1380 * done this way so that we can use different sizes for machines 1381 * with different amounts of memory. See the definition of 1382 * xlog_in_core_t in xfs_log_priv.h for details. 1383 */ 1384 ASSERT(log->l_iclog_size >= 4096); 1385 for (i = 0; i < log->l_iclog_bufs; i++) { 1386 int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp); 1387 size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) * 1388 sizeof(struct bio_vec); 1389 1390 iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL); 1391 if (!iclog) 1392 goto out_free_iclog; 1393 1394 *iclogp = iclog; 1395 iclog->ic_prev = prev_iclog; 1396 prev_iclog = iclog; 1397 1398 iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask, 1399 KM_MAYFAIL | KM_ZERO); 1400 if (!iclog->ic_data) 1401 goto out_free_iclog; 1402#ifdef DEBUG 1403 log->l_iclog_bak[i] = &iclog->ic_header; 1404#endif 1405 head = &iclog->ic_header; 1406 memset(head, 0, sizeof(xlog_rec_header_t)); 1407 head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM); 1408 head->h_version = cpu_to_be32( 1409 xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1); 1410 head->h_size = cpu_to_be32(log->l_iclog_size); 1411 /* new fields */ 1412 head->h_fmt = cpu_to_be32(XLOG_FMT); 1413 memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t)); 1414 1415 iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize; 1416 iclog->ic_state = XLOG_STATE_ACTIVE; 1417 iclog->ic_log = log; 1418 atomic_set(&iclog->ic_refcnt, 0); 1419 spin_lock_init(&iclog->ic_callback_lock); 1420 INIT_LIST_HEAD(&iclog->ic_callbacks); 1421 iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize; 1422 1423 init_waitqueue_head(&iclog->ic_force_wait); 1424 init_waitqueue_head(&iclog->ic_write_wait); 1425 INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work); 1426 sema_init(&iclog->ic_sema, 1); 1427 1428 iclogp = &iclog->ic_next; 1429 } 1430 *iclogp = log->l_iclog; /* complete ring */ 1431 log->l_iclog->ic_prev = prev_iclog; /* re-write 1st prev ptr */ 1432 1433 log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s", 1434 WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0, 1435 mp->m_super->s_id); 1436 if (!log->l_ioend_workqueue) 1437 goto out_free_iclog; 1438 1439 error = xlog_cil_init(log); 1440 if (error) 1441 goto out_destroy_workqueue; 1442 return log; 1443 1444out_destroy_workqueue: 1445 destroy_workqueue(log->l_ioend_workqueue); 1446out_free_iclog: 1447 for (iclog = log->l_iclog; iclog; iclog = prev_iclog) { 1448 prev_iclog = iclog->ic_next; 1449 kmem_free(iclog->ic_data); 1450 kmem_free(iclog); 1451 if (prev_iclog == log->l_iclog) 1452 break; 1453 } 1454out_free_log: 1455 kmem_free(log); 1456out: 1457 return ERR_PTR(error); 1458} /* xlog_alloc_log */ 1459 1460/* 1461 * Write out the commit record of a transaction associated with the given 1462 * ticket to close off a running log write. Return the lsn of the commit record. 1463 */ 1464int 1465xlog_commit_record( 1466 struct xlog *log, 1467 struct xlog_ticket *ticket, 1468 struct xlog_in_core **iclog, 1469 xfs_lsn_t *lsn) 1470{ 1471 struct xfs_log_iovec reg = { 1472 .i_addr = NULL, 1473 .i_len = 0, 1474 .i_type = XLOG_REG_TYPE_COMMIT, 1475 }; 1476 struct xfs_log_vec vec = { 1477 .lv_niovecs = 1, 1478 .lv_iovecp = ®, 1479 }; 1480 int error; 1481 1482 if (XLOG_FORCED_SHUTDOWN(log)) 1483 return -EIO; 1484 1485 error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS, 1486 false); 1487 if (error) 1488 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1489 return error; 1490} 1491 1492/* 1493 * Compute the LSN that we'd need to push the log tail towards in order to have 1494 * (a) enough on-disk log space to log the number of bytes specified, (b) at 1495 * least 25% of the log space free, and (c) at least 256 blocks free. If the 1496 * log free space already meets all three thresholds, this function returns 1497 * NULLCOMMITLSN. 1498 */ 1499xfs_lsn_t 1500xlog_grant_push_threshold( 1501 struct xlog *log, 1502 int need_bytes) 1503{ 1504 xfs_lsn_t threshold_lsn = 0; 1505 xfs_lsn_t last_sync_lsn; 1506 int free_blocks; 1507 int free_bytes; 1508 int threshold_block; 1509 int threshold_cycle; 1510 int free_threshold; 1511 1512 ASSERT(BTOBB(need_bytes) < log->l_logBBsize); 1513 1514 free_bytes = xlog_space_left(log, &log->l_reserve_head.grant); 1515 free_blocks = BTOBBT(free_bytes); 1516 1517 /* 1518 * Set the threshold for the minimum number of free blocks in the 1519 * log to the maximum of what the caller needs, one quarter of the 1520 * log, and 256 blocks. 1521 */ 1522 free_threshold = BTOBB(need_bytes); 1523 free_threshold = max(free_threshold, (log->l_logBBsize >> 2)); 1524 free_threshold = max(free_threshold, 256); 1525 if (free_blocks >= free_threshold) 1526 return NULLCOMMITLSN; 1527 1528 xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle, 1529 &threshold_block); 1530 threshold_block += free_threshold; 1531 if (threshold_block >= log->l_logBBsize) { 1532 threshold_block -= log->l_logBBsize; 1533 threshold_cycle += 1; 1534 } 1535 threshold_lsn = xlog_assign_lsn(threshold_cycle, 1536 threshold_block); 1537 /* 1538 * Don't pass in an lsn greater than the lsn of the last 1539 * log record known to be on disk. Use a snapshot of the last sync lsn 1540 * so that it doesn't change between the compare and the set. 1541 */ 1542 last_sync_lsn = atomic64_read(&log->l_last_sync_lsn); 1543 if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0) 1544 threshold_lsn = last_sync_lsn; 1545 1546 return threshold_lsn; 1547} 1548 1549/* 1550 * Push the tail of the log if we need to do so to maintain the free log space 1551 * thresholds set out by xlog_grant_push_threshold. We may need to adopt a 1552 * policy which pushes on an lsn which is further along in the log once we 1553 * reach the high water mark. In this manner, we would be creating a low water 1554 * mark. 1555 */ 1556STATIC void 1557xlog_grant_push_ail( 1558 struct xlog *log, 1559 int need_bytes) 1560{ 1561 xfs_lsn_t threshold_lsn; 1562 1563 threshold_lsn = xlog_grant_push_threshold(log, need_bytes); 1564 if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log)) 1565 return; 1566 1567 /* 1568 * Get the transaction layer to kick the dirty buffers out to 1569 * disk asynchronously. No point in trying to do this if 1570 * the filesystem is shutting down. 1571 */ 1572 xfs_ail_push(log->l_ailp, threshold_lsn); 1573} 1574 1575/* 1576 * Stamp cycle number in every block 1577 */ 1578STATIC void 1579xlog_pack_data( 1580 struct xlog *log, 1581 struct xlog_in_core *iclog, 1582 int roundoff) 1583{ 1584 int i, j, k; 1585 int size = iclog->ic_offset + roundoff; 1586 __be32 cycle_lsn; 1587 char *dp; 1588 1589 cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn); 1590 1591 dp = iclog->ic_datap; 1592 for (i = 0; i < BTOBB(size); i++) { 1593 if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) 1594 break; 1595 iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp; 1596 *(__be32 *)dp = cycle_lsn; 1597 dp += BBSIZE; 1598 } 1599 1600 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1601 xlog_in_core_2_t *xhdr = iclog->ic_data; 1602 1603 for ( ; i < BTOBB(size); i++) { 1604 j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1605 k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 1606 xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp; 1607 *(__be32 *)dp = cycle_lsn; 1608 dp += BBSIZE; 1609 } 1610 1611 for (i = 1; i < log->l_iclog_heads; i++) 1612 xhdr[i].hic_xheader.xh_cycle = cycle_lsn; 1613 } 1614} 1615 1616/* 1617 * Calculate the checksum for a log buffer. 1618 * 1619 * This is a little more complicated than it should be because the various 1620 * headers and the actual data are non-contiguous. 1621 */ 1622__le32 1623xlog_cksum( 1624 struct xlog *log, 1625 struct xlog_rec_header *rhead, 1626 char *dp, 1627 int size) 1628{ 1629 uint32_t crc; 1630 1631 /* first generate the crc for the record header ... */ 1632 crc = xfs_start_cksum_update((char *)rhead, 1633 sizeof(struct xlog_rec_header), 1634 offsetof(struct xlog_rec_header, h_crc)); 1635 1636 /* ... then for additional cycle data for v2 logs ... */ 1637 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) { 1638 union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead; 1639 int i; 1640 int xheads; 1641 1642 xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE); 1643 1644 for (i = 1; i < xheads; i++) { 1645 crc = crc32c(crc, &xhdr[i].hic_xheader, 1646 sizeof(struct xlog_rec_ext_header)); 1647 } 1648 } 1649 1650 /* ... and finally for the payload */ 1651 crc = crc32c(crc, dp, size); 1652 1653 return xfs_end_cksum(crc); 1654} 1655 1656static void 1657xlog_bio_end_io( 1658 struct bio *bio) 1659{ 1660 struct xlog_in_core *iclog = bio->bi_private; 1661 1662 queue_work(iclog->ic_log->l_ioend_workqueue, 1663 &iclog->ic_end_io_work); 1664} 1665 1666static int 1667xlog_map_iclog_data( 1668 struct bio *bio, 1669 void *data, 1670 size_t count) 1671{ 1672 do { 1673 struct page *page = kmem_to_page(data); 1674 unsigned int off = offset_in_page(data); 1675 size_t len = min_t(size_t, count, PAGE_SIZE - off); 1676 1677 if (bio_add_page(bio, page, len, off) != len) 1678 return -EIO; 1679 1680 data += len; 1681 count -= len; 1682 } while (count); 1683 1684 return 0; 1685} 1686 1687STATIC void 1688xlog_write_iclog( 1689 struct xlog *log, 1690 struct xlog_in_core *iclog, 1691 uint64_t bno, 1692 unsigned int count, 1693 bool need_flush) 1694{ 1695 ASSERT(bno < log->l_logBBsize); 1696 1697 /* 1698 * We lock the iclogbufs here so that we can serialise against I/O 1699 * completion during unmount. We might be processing a shutdown 1700 * triggered during unmount, and that can occur asynchronously to the 1701 * unmount thread, and hence we need to ensure that completes before 1702 * tearing down the iclogbufs. Hence we need to hold the buffer lock 1703 * across the log IO to archieve that. 1704 */ 1705 down(&iclog->ic_sema); 1706 if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) { 1707 /* 1708 * It would seem logical to return EIO here, but we rely on 1709 * the log state machine to propagate I/O errors instead of 1710 * doing it here. We kick of the state machine and unlock 1711 * the buffer manually, the code needs to be kept in sync 1712 * with the I/O completion path. 1713 */ 1714 xlog_state_done_syncing(iclog); 1715 up(&iclog->ic_sema); 1716 return; 1717 } 1718 1719 bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE)); 1720 bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev); 1721 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno; 1722 iclog->ic_bio.bi_end_io = xlog_bio_end_io; 1723 iclog->ic_bio.bi_private = iclog; 1724 1725 /* 1726 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more 1727 * IOs coming immediately after this one. This prevents the block layer 1728 * writeback throttle from throttling log writes behind background 1729 * metadata writeback and causing priority inversions. 1730 */ 1731 iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC | 1732 REQ_IDLE | REQ_FUA; 1733 if (need_flush) 1734 iclog->ic_bio.bi_opf |= REQ_PREFLUSH; 1735 1736 if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) { 1737 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 1738 return; 1739 } 1740 if (is_vmalloc_addr(iclog->ic_data)) 1741 flush_kernel_vmap_range(iclog->ic_data, count); 1742 1743 /* 1744 * If this log buffer would straddle the end of the log we will have 1745 * to split it up into two bios, so that we can continue at the start. 1746 */ 1747 if (bno + BTOBB(count) > log->l_logBBsize) { 1748 struct bio *split; 1749 1750 split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno, 1751 GFP_NOIO, &fs_bio_set); 1752 bio_chain(split, &iclog->ic_bio); 1753 submit_bio(split); 1754 1755 /* restart at logical offset zero for the remainder */ 1756 iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart; 1757 } 1758 1759 submit_bio(&iclog->ic_bio); 1760} 1761 1762/* 1763 * We need to bump cycle number for the part of the iclog that is 1764 * written to the start of the log. Watch out for the header magic 1765 * number case, though. 1766 */ 1767static void 1768xlog_split_iclog( 1769 struct xlog *log, 1770 void *data, 1771 uint64_t bno, 1772 unsigned int count) 1773{ 1774 unsigned int split_offset = BBTOB(log->l_logBBsize - bno); 1775 unsigned int i; 1776 1777 for (i = split_offset; i < count; i += BBSIZE) { 1778 uint32_t cycle = get_unaligned_be32(data + i); 1779 1780 if (++cycle == XLOG_HEADER_MAGIC_NUM) 1781 cycle++; 1782 put_unaligned_be32(cycle, data + i); 1783 } 1784} 1785 1786static int 1787xlog_calc_iclog_size( 1788 struct xlog *log, 1789 struct xlog_in_core *iclog, 1790 uint32_t *roundoff) 1791{ 1792 uint32_t count_init, count; 1793 bool use_lsunit; 1794 1795 use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 1796 log->l_mp->m_sb.sb_logsunit > 1; 1797 1798 /* Add for LR header */ 1799 count_init = log->l_iclog_hsize + iclog->ic_offset; 1800 1801 /* Round out the log write size */ 1802 if (use_lsunit) { 1803 /* we have a v2 stripe unit to use */ 1804 count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init)); 1805 } else { 1806 count = BBTOB(BTOBB(count_init)); 1807 } 1808 1809 ASSERT(count >= count_init); 1810 *roundoff = count - count_init; 1811 1812 if (use_lsunit) 1813 ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit); 1814 else 1815 ASSERT(*roundoff < BBTOB(1)); 1816 return count; 1817} 1818 1819/* 1820 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous 1821 * fashion. Previously, we should have moved the current iclog 1822 * ptr in the log to point to the next available iclog. This allows further 1823 * write to continue while this code syncs out an iclog ready to go. 1824 * Before an in-core log can be written out, the data section must be scanned 1825 * to save away the 1st word of each BBSIZE block into the header. We replace 1826 * it with the current cycle count. Each BBSIZE block is tagged with the 1827 * cycle count because there in an implicit assumption that drives will 1828 * guarantee that entire 512 byte blocks get written at once. In other words, 1829 * we can't have part of a 512 byte block written and part not written. By 1830 * tagging each block, we will know which blocks are valid when recovering 1831 * after an unclean shutdown. 1832 * 1833 * This routine is single threaded on the iclog. No other thread can be in 1834 * this routine with the same iclog. Changing contents of iclog can there- 1835 * fore be done without grabbing the state machine lock. Updating the global 1836 * log will require grabbing the lock though. 1837 * 1838 * The entire log manager uses a logical block numbering scheme. Only 1839 * xlog_write_iclog knows about the fact that the log may not start with 1840 * block zero on a given device. 1841 */ 1842STATIC void 1843xlog_sync( 1844 struct xlog *log, 1845 struct xlog_in_core *iclog) 1846{ 1847 unsigned int count; /* byte count of bwrite */ 1848 unsigned int roundoff; /* roundoff to BB or stripe */ 1849 uint64_t bno; 1850 unsigned int size; 1851 bool need_flush = true, split = false; 1852 1853 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 1854 1855 count = xlog_calc_iclog_size(log, iclog, &roundoff); 1856 1857 /* move grant heads by roundoff in sync */ 1858 xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff); 1859 xlog_grant_add_space(log, &log->l_write_head.grant, roundoff); 1860 1861 /* put cycle number in every block */ 1862 xlog_pack_data(log, iclog, roundoff); 1863 1864 /* real byte length */ 1865 size = iclog->ic_offset; 1866 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) 1867 size += roundoff; 1868 iclog->ic_header.h_len = cpu_to_be32(size); 1869 1870 XFS_STATS_INC(log->l_mp, xs_log_writes); 1871 XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count)); 1872 1873 bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn)); 1874 1875 /* Do we need to split this write into 2 parts? */ 1876 if (bno + BTOBB(count) > log->l_logBBsize) { 1877 xlog_split_iclog(log, &iclog->ic_header, bno, count); 1878 split = true; 1879 } 1880 1881 /* calculcate the checksum */ 1882 iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header, 1883 iclog->ic_datap, size); 1884 /* 1885 * Intentionally corrupt the log record CRC based on the error injection 1886 * frequency, if defined. This facilitates testing log recovery in the 1887 * event of torn writes. Hence, set the IOABORT state to abort the log 1888 * write on I/O completion and shutdown the fs. The subsequent mount 1889 * detects the bad CRC and attempts to recover. 1890 */ 1891#ifdef DEBUG 1892 if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) { 1893 iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA); 1894 iclog->ic_fail_crc = true; 1895 xfs_warn(log->l_mp, 1896 "Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.", 1897 be64_to_cpu(iclog->ic_header.h_lsn)); 1898 } 1899#endif 1900 1901 /* 1902 * Flush the data device before flushing the log to make sure all meta 1903 * data written back from the AIL actually made it to disk before 1904 * stamping the new log tail LSN into the log buffer. For an external 1905 * log we need to issue the flush explicitly, and unfortunately 1906 * synchronously here; for an internal log we can simply use the block 1907 * layer state machine for preflushes. 1908 */ 1909 if (log->l_targ != log->l_mp->m_ddev_targp || split) { 1910 xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp); 1911 need_flush = false; 1912 } 1913 1914 xlog_verify_iclog(log, iclog, count); 1915 xlog_write_iclog(log, iclog, bno, count, need_flush); 1916} 1917 1918/* 1919 * Deallocate a log structure 1920 */ 1921STATIC void 1922xlog_dealloc_log( 1923 struct xlog *log) 1924{ 1925 xlog_in_core_t *iclog, *next_iclog; 1926 int i; 1927 1928 xlog_cil_destroy(log); 1929 1930 /* 1931 * Cycle all the iclogbuf locks to make sure all log IO completion 1932 * is done before we tear down these buffers. 1933 */ 1934 iclog = log->l_iclog; 1935 for (i = 0; i < log->l_iclog_bufs; i++) { 1936 down(&iclog->ic_sema); 1937 up(&iclog->ic_sema); 1938 iclog = iclog->ic_next; 1939 } 1940 1941 iclog = log->l_iclog; 1942 for (i = 0; i < log->l_iclog_bufs; i++) { 1943 next_iclog = iclog->ic_next; 1944 kmem_free(iclog->ic_data); 1945 kmem_free(iclog); 1946 iclog = next_iclog; 1947 } 1948 1949 log->l_mp->m_log = NULL; 1950 destroy_workqueue(log->l_ioend_workqueue); 1951 kmem_free(log); 1952} 1953 1954/* 1955 * Update counters atomically now that memcpy is done. 1956 */ 1957static inline void 1958xlog_state_finish_copy( 1959 struct xlog *log, 1960 struct xlog_in_core *iclog, 1961 int record_cnt, 1962 int copy_bytes) 1963{ 1964 lockdep_assert_held(&log->l_icloglock); 1965 1966 be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt); 1967 iclog->ic_offset += copy_bytes; 1968} 1969 1970/* 1971 * print out info relating to regions written which consume 1972 * the reservation 1973 */ 1974void 1975xlog_print_tic_res( 1976 struct xfs_mount *mp, 1977 struct xlog_ticket *ticket) 1978{ 1979 uint i; 1980 uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t); 1981 1982 /* match with XLOG_REG_TYPE_* in xfs_log.h */ 1983#define REG_TYPE_STR(type, str) [XLOG_REG_TYPE_##type] = str 1984 static char *res_type_str[] = { 1985 REG_TYPE_STR(BFORMAT, "bformat"), 1986 REG_TYPE_STR(BCHUNK, "bchunk"), 1987 REG_TYPE_STR(EFI_FORMAT, "efi_format"), 1988 REG_TYPE_STR(EFD_FORMAT, "efd_format"), 1989 REG_TYPE_STR(IFORMAT, "iformat"), 1990 REG_TYPE_STR(ICORE, "icore"), 1991 REG_TYPE_STR(IEXT, "iext"), 1992 REG_TYPE_STR(IBROOT, "ibroot"), 1993 REG_TYPE_STR(ILOCAL, "ilocal"), 1994 REG_TYPE_STR(IATTR_EXT, "iattr_ext"), 1995 REG_TYPE_STR(IATTR_BROOT, "iattr_broot"), 1996 REG_TYPE_STR(IATTR_LOCAL, "iattr_local"), 1997 REG_TYPE_STR(QFORMAT, "qformat"), 1998 REG_TYPE_STR(DQUOT, "dquot"), 1999 REG_TYPE_STR(QUOTAOFF, "quotaoff"), 2000 REG_TYPE_STR(LRHEADER, "LR header"), 2001 REG_TYPE_STR(UNMOUNT, "unmount"), 2002 REG_TYPE_STR(COMMIT, "commit"), 2003 REG_TYPE_STR(TRANSHDR, "trans header"), 2004 REG_TYPE_STR(ICREATE, "inode create"), 2005 REG_TYPE_STR(RUI_FORMAT, "rui_format"), 2006 REG_TYPE_STR(RUD_FORMAT, "rud_format"), 2007 REG_TYPE_STR(CUI_FORMAT, "cui_format"), 2008 REG_TYPE_STR(CUD_FORMAT, "cud_format"), 2009 REG_TYPE_STR(BUI_FORMAT, "bui_format"), 2010 REG_TYPE_STR(BUD_FORMAT, "bud_format"), 2011 }; 2012 BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1); 2013#undef REG_TYPE_STR 2014 2015 xfs_warn(mp, "ticket reservation summary:"); 2016 xfs_warn(mp, " unit res = %d bytes", 2017 ticket->t_unit_res); 2018 xfs_warn(mp, " current res = %d bytes", 2019 ticket->t_curr_res); 2020 xfs_warn(mp, " total reg = %u bytes (o/flow = %u bytes)", 2021 ticket->t_res_arr_sum, ticket->t_res_o_flow); 2022 xfs_warn(mp, " ophdrs = %u (ophdr space = %u bytes)", 2023 ticket->t_res_num_ophdrs, ophdr_spc); 2024 xfs_warn(mp, " ophdr + reg = %u bytes", 2025 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc); 2026 xfs_warn(mp, " num regions = %u", 2027 ticket->t_res_num); 2028 2029 for (i = 0; i < ticket->t_res_num; i++) { 2030 uint r_type = ticket->t_res_arr[i].r_type; 2031 xfs_warn(mp, "region[%u]: %s - %u bytes", i, 2032 ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ? 2033 "bad-rtype" : res_type_str[r_type]), 2034 ticket->t_res_arr[i].r_len); 2035 } 2036} 2037 2038/* 2039 * Print a summary of the transaction. 2040 */ 2041void 2042xlog_print_trans( 2043 struct xfs_trans *tp) 2044{ 2045 struct xfs_mount *mp = tp->t_mountp; 2046 struct xfs_log_item *lip; 2047 2048 /* dump core transaction and ticket info */ 2049 xfs_warn(mp, "transaction summary:"); 2050 xfs_warn(mp, " log res = %d", tp->t_log_res); 2051 xfs_warn(mp, " log count = %d", tp->t_log_count); 2052 xfs_warn(mp, " flags = 0x%x", tp->t_flags); 2053 2054 xlog_print_tic_res(mp, tp->t_ticket); 2055 2056 /* dump each log item */ 2057 list_for_each_entry(lip, &tp->t_items, li_trans) { 2058 struct xfs_log_vec *lv = lip->li_lv; 2059 struct xfs_log_iovec *vec; 2060 int i; 2061 2062 xfs_warn(mp, "log item: "); 2063 xfs_warn(mp, " type = 0x%x", lip->li_type); 2064 xfs_warn(mp, " flags = 0x%lx", lip->li_flags); 2065 if (!lv) 2066 continue; 2067 xfs_warn(mp, " niovecs = %d", lv->lv_niovecs); 2068 xfs_warn(mp, " size = %d", lv->lv_size); 2069 xfs_warn(mp, " bytes = %d", lv->lv_bytes); 2070 xfs_warn(mp, " buf len = %d", lv->lv_buf_len); 2071 2072 /* dump each iovec for the log item */ 2073 vec = lv->lv_iovecp; 2074 for (i = 0; i < lv->lv_niovecs; i++) { 2075 int dumplen = min(vec->i_len, 32); 2076 2077 xfs_warn(mp, " iovec[%d]", i); 2078 xfs_warn(mp, " type = 0x%x", vec->i_type); 2079 xfs_warn(mp, " len = %d", vec->i_len); 2080 xfs_warn(mp, " first %d bytes of iovec[%d]:", dumplen, i); 2081 xfs_hex_dump(vec->i_addr, dumplen); 2082 2083 vec++; 2084 } 2085 } 2086} 2087 2088/* 2089 * Calculate the potential space needed by the log vector. We may need a start 2090 * record, and each region gets its own struct xlog_op_header and may need to be 2091 * double word aligned. 2092 */ 2093static int 2094xlog_write_calc_vec_length( 2095 struct xlog_ticket *ticket, 2096 struct xfs_log_vec *log_vector, 2097 bool need_start_rec) 2098{ 2099 struct xfs_log_vec *lv; 2100 int headers = need_start_rec ? 1 : 0; 2101 int len = 0; 2102 int i; 2103 2104 for (lv = log_vector; lv; lv = lv->lv_next) { 2105 /* we don't write ordered log vectors */ 2106 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) 2107 continue; 2108 2109 headers += lv->lv_niovecs; 2110 2111 for (i = 0; i < lv->lv_niovecs; i++) { 2112 struct xfs_log_iovec *vecp = &lv->lv_iovecp[i]; 2113 2114 len += vecp->i_len; 2115 xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type); 2116 } 2117 } 2118 2119 ticket->t_res_num_ophdrs += headers; 2120 len += headers * sizeof(struct xlog_op_header); 2121 2122 return len; 2123} 2124 2125static void 2126xlog_write_start_rec( 2127 struct xlog_op_header *ophdr, 2128 struct xlog_ticket *ticket) 2129{ 2130 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2131 ophdr->oh_clientid = ticket->t_clientid; 2132 ophdr->oh_len = 0; 2133 ophdr->oh_flags = XLOG_START_TRANS; 2134 ophdr->oh_res2 = 0; 2135} 2136 2137static xlog_op_header_t * 2138xlog_write_setup_ophdr( 2139 struct xlog *log, 2140 struct xlog_op_header *ophdr, 2141 struct xlog_ticket *ticket, 2142 uint flags) 2143{ 2144 ophdr->oh_tid = cpu_to_be32(ticket->t_tid); 2145 ophdr->oh_clientid = ticket->t_clientid; 2146 ophdr->oh_res2 = 0; 2147 2148 /* are we copying a commit or unmount record? */ 2149 ophdr->oh_flags = flags; 2150 2151 /* 2152 * We've seen logs corrupted with bad transaction client ids. This 2153 * makes sure that XFS doesn't generate them on. Turn this into an EIO 2154 * and shut down the filesystem. 2155 */ 2156 switch (ophdr->oh_clientid) { 2157 case XFS_TRANSACTION: 2158 case XFS_VOLUME: 2159 case XFS_LOG: 2160 break; 2161 default: 2162 xfs_warn(log->l_mp, 2163 "Bad XFS transaction clientid 0x%x in ticket "PTR_FMT, 2164 ophdr->oh_clientid, ticket); 2165 return NULL; 2166 } 2167 2168 return ophdr; 2169} 2170 2171/* 2172 * Set up the parameters of the region copy into the log. This has 2173 * to handle region write split across multiple log buffers - this 2174 * state is kept external to this function so that this code can 2175 * be written in an obvious, self documenting manner. 2176 */ 2177static int 2178xlog_write_setup_copy( 2179 struct xlog_ticket *ticket, 2180 struct xlog_op_header *ophdr, 2181 int space_available, 2182 int space_required, 2183 int *copy_off, 2184 int *copy_len, 2185 int *last_was_partial_copy, 2186 int *bytes_consumed) 2187{ 2188 int still_to_copy; 2189 2190 still_to_copy = space_required - *bytes_consumed; 2191 *copy_off = *bytes_consumed; 2192 2193 if (still_to_copy <= space_available) { 2194 /* write of region completes here */ 2195 *copy_len = still_to_copy; 2196 ophdr->oh_len = cpu_to_be32(*copy_len); 2197 if (*last_was_partial_copy) 2198 ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS); 2199 *last_was_partial_copy = 0; 2200 *bytes_consumed = 0; 2201 return 0; 2202 } 2203 2204 /* partial write of region, needs extra log op header reservation */ 2205 *copy_len = space_available; 2206 ophdr->oh_len = cpu_to_be32(*copy_len); 2207 ophdr->oh_flags |= XLOG_CONTINUE_TRANS; 2208 if (*last_was_partial_copy) 2209 ophdr->oh_flags |= XLOG_WAS_CONT_TRANS; 2210 *bytes_consumed += *copy_len; 2211 (*last_was_partial_copy)++; 2212 2213 /* account for new log op header */ 2214 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2215 ticket->t_res_num_ophdrs++; 2216 2217 return sizeof(struct xlog_op_header); 2218} 2219 2220static int 2221xlog_write_copy_finish( 2222 struct xlog *log, 2223 struct xlog_in_core *iclog, 2224 uint flags, 2225 int *record_cnt, 2226 int *data_cnt, 2227 int *partial_copy, 2228 int *partial_copy_len, 2229 int log_offset, 2230 struct xlog_in_core **commit_iclog) 2231{ 2232 int error; 2233 2234 if (*partial_copy) { 2235 /* 2236 * This iclog has already been marked WANT_SYNC by 2237 * xlog_state_get_iclog_space. 2238 */ 2239 spin_lock(&log->l_icloglock); 2240 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2241 *record_cnt = 0; 2242 *data_cnt = 0; 2243 goto release_iclog; 2244 } 2245 2246 *partial_copy = 0; 2247 *partial_copy_len = 0; 2248 2249 if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) { 2250 /* no more space in this iclog - push it. */ 2251 spin_lock(&log->l_icloglock); 2252 xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt); 2253 *record_cnt = 0; 2254 *data_cnt = 0; 2255 2256 if (iclog->ic_state == XLOG_STATE_ACTIVE) 2257 xlog_state_switch_iclogs(log, iclog, 0); 2258 else 2259 ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC || 2260 iclog->ic_state == XLOG_STATE_IOERROR); 2261 if (!commit_iclog) 2262 goto release_iclog; 2263 spin_unlock(&log->l_icloglock); 2264 ASSERT(flags & XLOG_COMMIT_TRANS); 2265 *commit_iclog = iclog; 2266 } 2267 2268 return 0; 2269 2270release_iclog: 2271 error = xlog_state_release_iclog(log, iclog); 2272 spin_unlock(&log->l_icloglock); 2273 return error; 2274} 2275 2276/* 2277 * Write some region out to in-core log 2278 * 2279 * This will be called when writing externally provided regions or when 2280 * writing out a commit record for a given transaction. 2281 * 2282 * General algorithm: 2283 * 1. Find total length of this write. This may include adding to the 2284 * lengths passed in. 2285 * 2. Check whether we violate the tickets reservation. 2286 * 3. While writing to this iclog 2287 * A. Reserve as much space in this iclog as can get 2288 * B. If this is first write, save away start lsn 2289 * C. While writing this region: 2290 * 1. If first write of transaction, write start record 2291 * 2. Write log operation header (header per region) 2292 * 3. Find out if we can fit entire region into this iclog 2293 * 4. Potentially, verify destination memcpy ptr 2294 * 5. Memcpy (partial) region 2295 * 6. If partial copy, release iclog; otherwise, continue 2296 * copying more regions into current iclog 2297 * 4. Mark want sync bit (in simulation mode) 2298 * 5. Release iclog for potential flush to on-disk log. 2299 * 2300 * ERRORS: 2301 * 1. Panic if reservation is overrun. This should never happen since 2302 * reservation amounts are generated internal to the filesystem. 2303 * NOTES: 2304 * 1. Tickets are single threaded data structures. 2305 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the 2306 * syncing routine. When a single log_write region needs to span 2307 * multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set 2308 * on all log operation writes which don't contain the end of the 2309 * region. The XLOG_END_TRANS bit is used for the in-core log 2310 * operation which contains the end of the continued log_write region. 2311 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog, 2312 * we don't really know exactly how much space will be used. As a result, 2313 * we don't update ic_offset until the end when we know exactly how many 2314 * bytes have been written out. 2315 */ 2316int 2317xlog_write( 2318 struct xlog *log, 2319 struct xfs_log_vec *log_vector, 2320 struct xlog_ticket *ticket, 2321 xfs_lsn_t *start_lsn, 2322 struct xlog_in_core **commit_iclog, 2323 uint flags, 2324 bool need_start_rec) 2325{ 2326 struct xlog_in_core *iclog = NULL; 2327 struct xfs_log_vec *lv = log_vector; 2328 struct xfs_log_iovec *vecp = lv->lv_iovecp; 2329 int index = 0; 2330 int len; 2331 int partial_copy = 0; 2332 int partial_copy_len = 0; 2333 int contwr = 0; 2334 int record_cnt = 0; 2335 int data_cnt = 0; 2336 int error = 0; 2337 2338 /* 2339 * If this is a commit or unmount transaction, we don't need a start 2340 * record to be written. We do, however, have to account for the 2341 * commit or unmount header that gets written. Hence we always have 2342 * to account for an extra xlog_op_header here. 2343 */ 2344 ticket->t_curr_res -= sizeof(struct xlog_op_header); 2345 if (ticket->t_curr_res < 0) { 2346 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 2347 "ctx ticket reservation ran out. Need to up reservation"); 2348 xlog_print_tic_res(log->l_mp, ticket); 2349 xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR); 2350 } 2351 2352 len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec); 2353 *start_lsn = 0; 2354 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2355 void *ptr; 2356 int log_offset; 2357 2358 error = xlog_state_get_iclog_space(log, len, &iclog, ticket, 2359 &contwr, &log_offset); 2360 if (error) 2361 return error; 2362 2363 ASSERT(log_offset <= iclog->ic_size - 1); 2364 ptr = iclog->ic_datap + log_offset; 2365 2366 /* start_lsn is the first lsn written to. That's all we need. */ 2367 if (!*start_lsn) 2368 *start_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2369 2370 /* 2371 * This loop writes out as many regions as can fit in the amount 2372 * of space which was allocated by xlog_state_get_iclog_space(). 2373 */ 2374 while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) { 2375 struct xfs_log_iovec *reg; 2376 struct xlog_op_header *ophdr; 2377 int copy_len; 2378 int copy_off; 2379 bool ordered = false; 2380 2381 /* ordered log vectors have no regions to write */ 2382 if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) { 2383 ASSERT(lv->lv_niovecs == 0); 2384 ordered = true; 2385 goto next_lv; 2386 } 2387 2388 reg = &vecp[index]; 2389 ASSERT(reg->i_len % sizeof(int32_t) == 0); 2390 ASSERT((unsigned long)ptr % sizeof(int32_t) == 0); 2391 2392 /* 2393 * Before we start formatting log vectors, we need to 2394 * write a start record. Only do this for the first 2395 * iclog we write to. 2396 */ 2397 if (need_start_rec) { 2398 xlog_write_start_rec(ptr, ticket); 2399 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2400 sizeof(struct xlog_op_header)); 2401 } 2402 2403 ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags); 2404 if (!ophdr) 2405 return -EIO; 2406 2407 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2408 sizeof(struct xlog_op_header)); 2409 2410 len += xlog_write_setup_copy(ticket, ophdr, 2411 iclog->ic_size-log_offset, 2412 reg->i_len, 2413 ©_off, ©_len, 2414 &partial_copy, 2415 &partial_copy_len); 2416 xlog_verify_dest_ptr(log, ptr); 2417 2418 /* 2419 * Copy region. 2420 * 2421 * Unmount records just log an opheader, so can have 2422 * empty payloads with no data region to copy. Hence we 2423 * only copy the payload if the vector says it has data 2424 * to copy. 2425 */ 2426 ASSERT(copy_len >= 0); 2427 if (copy_len > 0) { 2428 memcpy(ptr, reg->i_addr + copy_off, copy_len); 2429 xlog_write_adv_cnt(&ptr, &len, &log_offset, 2430 copy_len); 2431 } 2432 copy_len += sizeof(struct xlog_op_header); 2433 record_cnt++; 2434 if (need_start_rec) { 2435 copy_len += sizeof(struct xlog_op_header); 2436 record_cnt++; 2437 need_start_rec = false; 2438 } 2439 data_cnt += contwr ? copy_len : 0; 2440 2441 error = xlog_write_copy_finish(log, iclog, flags, 2442 &record_cnt, &data_cnt, 2443 &partial_copy, 2444 &partial_copy_len, 2445 log_offset, 2446 commit_iclog); 2447 if (error) 2448 return error; 2449 2450 /* 2451 * if we had a partial copy, we need to get more iclog 2452 * space but we don't want to increment the region 2453 * index because there is still more is this region to 2454 * write. 2455 * 2456 * If we completed writing this region, and we flushed 2457 * the iclog (indicated by resetting of the record 2458 * count), then we also need to get more log space. If 2459 * this was the last record, though, we are done and 2460 * can just return. 2461 */ 2462 if (partial_copy) 2463 break; 2464 2465 if (++index == lv->lv_niovecs) { 2466next_lv: 2467 lv = lv->lv_next; 2468 index = 0; 2469 if (lv) 2470 vecp = lv->lv_iovecp; 2471 } 2472 if (record_cnt == 0 && !ordered) { 2473 if (!lv) 2474 return 0; 2475 break; 2476 } 2477 } 2478 } 2479 2480 ASSERT(len == 0); 2481 2482 spin_lock(&log->l_icloglock); 2483 xlog_state_finish_copy(log, iclog, record_cnt, data_cnt); 2484 if (commit_iclog) { 2485 ASSERT(flags & XLOG_COMMIT_TRANS); 2486 *commit_iclog = iclog; 2487 } else { 2488 error = xlog_state_release_iclog(log, iclog); 2489 } 2490 spin_unlock(&log->l_icloglock); 2491 2492 return error; 2493} 2494 2495static void 2496xlog_state_activate_iclog( 2497 struct xlog_in_core *iclog, 2498 int *iclogs_changed) 2499{ 2500 ASSERT(list_empty_careful(&iclog->ic_callbacks)); 2501 2502 /* 2503 * If the number of ops in this iclog indicate it just contains the 2504 * dummy transaction, we can change state into IDLE (the second time 2505 * around). Otherwise we should change the state into NEED a dummy. 2506 * We don't need to cover the dummy. 2507 */ 2508 if (*iclogs_changed == 0 && 2509 iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) { 2510 *iclogs_changed = 1; 2511 } else { 2512 /* 2513 * We have two dirty iclogs so start over. This could also be 2514 * num of ops indicating this is not the dummy going out. 2515 */ 2516 *iclogs_changed = 2; 2517 } 2518 2519 iclog->ic_state = XLOG_STATE_ACTIVE; 2520 iclog->ic_offset = 0; 2521 iclog->ic_header.h_num_logops = 0; 2522 memset(iclog->ic_header.h_cycle_data, 0, 2523 sizeof(iclog->ic_header.h_cycle_data)); 2524 iclog->ic_header.h_lsn = 0; 2525} 2526 2527/* 2528 * Loop through all iclogs and mark all iclogs currently marked DIRTY as 2529 * ACTIVE after iclog I/O has completed. 2530 */ 2531static void 2532xlog_state_activate_iclogs( 2533 struct xlog *log, 2534 int *iclogs_changed) 2535{ 2536 struct xlog_in_core *iclog = log->l_iclog; 2537 2538 do { 2539 if (iclog->ic_state == XLOG_STATE_DIRTY) 2540 xlog_state_activate_iclog(iclog, iclogs_changed); 2541 /* 2542 * The ordering of marking iclogs ACTIVE must be maintained, so 2543 * an iclog doesn't become ACTIVE beyond one that is SYNCING. 2544 */ 2545 else if (iclog->ic_state != XLOG_STATE_ACTIVE) 2546 break; 2547 } while ((iclog = iclog->ic_next) != log->l_iclog); 2548} 2549 2550static int 2551xlog_covered_state( 2552 int prev_state, 2553 int iclogs_changed) 2554{ 2555 /* 2556 * We usually go to NEED. But we go to NEED2 if the changed indicates we 2557 * are done writing the dummy record. If we are done with the second 2558 * dummy recored (DONE2), then we go to IDLE. 2559 */ 2560 switch (prev_state) { 2561 case XLOG_STATE_COVER_IDLE: 2562 case XLOG_STATE_COVER_NEED: 2563 case XLOG_STATE_COVER_NEED2: 2564 break; 2565 case XLOG_STATE_COVER_DONE: 2566 if (iclogs_changed == 1) 2567 return XLOG_STATE_COVER_NEED2; 2568 break; 2569 case XLOG_STATE_COVER_DONE2: 2570 if (iclogs_changed == 1) 2571 return XLOG_STATE_COVER_IDLE; 2572 break; 2573 default: 2574 ASSERT(0); 2575 } 2576 2577 return XLOG_STATE_COVER_NEED; 2578} 2579 2580STATIC void 2581xlog_state_clean_iclog( 2582 struct xlog *log, 2583 struct xlog_in_core *dirty_iclog) 2584{ 2585 int iclogs_changed = 0; 2586 2587 dirty_iclog->ic_state = XLOG_STATE_DIRTY; 2588 2589 xlog_state_activate_iclogs(log, &iclogs_changed); 2590 wake_up_all(&dirty_iclog->ic_force_wait); 2591 2592 if (iclogs_changed) { 2593 log->l_covered_state = xlog_covered_state(log->l_covered_state, 2594 iclogs_changed); 2595 } 2596} 2597 2598STATIC xfs_lsn_t 2599xlog_get_lowest_lsn( 2600 struct xlog *log) 2601{ 2602 struct xlog_in_core *iclog = log->l_iclog; 2603 xfs_lsn_t lowest_lsn = 0, lsn; 2604 2605 do { 2606 if (iclog->ic_state == XLOG_STATE_ACTIVE || 2607 iclog->ic_state == XLOG_STATE_DIRTY) 2608 continue; 2609 2610 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2611 if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0) 2612 lowest_lsn = lsn; 2613 } while ((iclog = iclog->ic_next) != log->l_iclog); 2614 2615 return lowest_lsn; 2616} 2617 2618/* 2619 * Completion of a iclog IO does not imply that a transaction has completed, as 2620 * transactions can be large enough to span many iclogs. We cannot change the 2621 * tail of the log half way through a transaction as this may be the only 2622 * transaction in the log and moving the tail to point to the middle of it 2623 * will prevent recovery from finding the start of the transaction. Hence we 2624 * should only update the last_sync_lsn if this iclog contains transaction 2625 * completion callbacks on it. 2626 * 2627 * We have to do this before we drop the icloglock to ensure we are the only one 2628 * that can update it. 2629 * 2630 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick 2631 * the reservation grant head pushing. This is due to the fact that the push 2632 * target is bound by the current last_sync_lsn value. Hence if we have a large 2633 * amount of log space bound up in this committing transaction then the 2634 * last_sync_lsn value may be the limiting factor preventing tail pushing from 2635 * freeing space in the log. Hence once we've updated the last_sync_lsn we 2636 * should push the AIL to ensure the push target (and hence the grant head) is 2637 * no longer bound by the old log head location and can move forwards and make 2638 * progress again. 2639 */ 2640static void 2641xlog_state_set_callback( 2642 struct xlog *log, 2643 struct xlog_in_core *iclog, 2644 xfs_lsn_t header_lsn) 2645{ 2646 iclog->ic_state = XLOG_STATE_CALLBACK; 2647 2648 ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn), 2649 header_lsn) <= 0); 2650 2651 if (list_empty_careful(&iclog->ic_callbacks)) 2652 return; 2653 2654 atomic64_set(&log->l_last_sync_lsn, header_lsn); 2655 xlog_grant_push_ail(log, 0); 2656} 2657 2658/* 2659 * Return true if we need to stop processing, false to continue to the next 2660 * iclog. The caller will need to run callbacks if the iclog is returned in the 2661 * XLOG_STATE_CALLBACK state. 2662 */ 2663static bool 2664xlog_state_iodone_process_iclog( 2665 struct xlog *log, 2666 struct xlog_in_core *iclog, 2667 bool *ioerror) 2668{ 2669 xfs_lsn_t lowest_lsn; 2670 xfs_lsn_t header_lsn; 2671 2672 switch (iclog->ic_state) { 2673 case XLOG_STATE_ACTIVE: 2674 case XLOG_STATE_DIRTY: 2675 /* 2676 * Skip all iclogs in the ACTIVE & DIRTY states: 2677 */ 2678 return false; 2679 case XLOG_STATE_IOERROR: 2680 /* 2681 * Between marking a filesystem SHUTDOWN and stopping the log, 2682 * we do flush all iclogs to disk (if there wasn't a log I/O 2683 * error). So, we do want things to go smoothly in case of just 2684 * a SHUTDOWN w/o a LOG_IO_ERROR. 2685 */ 2686 *ioerror = true; 2687 return false; 2688 case XLOG_STATE_DONE_SYNC: 2689 /* 2690 * Now that we have an iclog that is in the DONE_SYNC state, do 2691 * one more check here to see if we have chased our tail around. 2692 * If this is not the lowest lsn iclog, then we will leave it 2693 * for another completion to process. 2694 */ 2695 header_lsn = be64_to_cpu(iclog->ic_header.h_lsn); 2696 lowest_lsn = xlog_get_lowest_lsn(log); 2697 if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0) 2698 return false; 2699 xlog_state_set_callback(log, iclog, header_lsn); 2700 return false; 2701 default: 2702 /* 2703 * Can only perform callbacks in order. Since this iclog is not 2704 * in the DONE_SYNC state, we skip the rest and just try to 2705 * clean up. 2706 */ 2707 return true; 2708 } 2709} 2710 2711/* 2712 * Keep processing entries in the iclog callback list until we come around and 2713 * it is empty. We need to atomically see that the list is empty and change the 2714 * state to DIRTY so that we don't miss any more callbacks being added. 2715 * 2716 * This function is called with the icloglock held and returns with it held. We 2717 * drop it while running callbacks, however, as holding it over thousands of 2718 * callbacks is unnecessary and causes excessive contention if we do. 2719 */ 2720static void 2721xlog_state_do_iclog_callbacks( 2722 struct xlog *log, 2723 struct xlog_in_core *iclog) 2724 __releases(&log->l_icloglock) 2725 __acquires(&log->l_icloglock) 2726{ 2727 spin_unlock(&log->l_icloglock); 2728 spin_lock(&iclog->ic_callback_lock); 2729 while (!list_empty(&iclog->ic_callbacks)) { 2730 LIST_HEAD(tmp); 2731 2732 list_splice_init(&iclog->ic_callbacks, &tmp); 2733 2734 spin_unlock(&iclog->ic_callback_lock); 2735 xlog_cil_process_committed(&tmp); 2736 spin_lock(&iclog->ic_callback_lock); 2737 } 2738 2739 /* 2740 * Pick up the icloglock while still holding the callback lock so we 2741 * serialise against anyone trying to add more callbacks to this iclog 2742 * now we've finished processing. 2743 */ 2744 spin_lock(&log->l_icloglock); 2745 spin_unlock(&iclog->ic_callback_lock); 2746} 2747 2748STATIC void 2749xlog_state_do_callback( 2750 struct xlog *log) 2751{ 2752 struct xlog_in_core *iclog; 2753 struct xlog_in_core *first_iclog; 2754 bool cycled_icloglock; 2755 bool ioerror; 2756 int flushcnt = 0; 2757 int repeats = 0; 2758 2759 spin_lock(&log->l_icloglock); 2760 do { 2761 /* 2762 * Scan all iclogs starting with the one pointed to by the 2763 * log. Reset this starting point each time the log is 2764 * unlocked (during callbacks). 2765 * 2766 * Keep looping through iclogs until one full pass is made 2767 * without running any callbacks. 2768 */ 2769 first_iclog = log->l_iclog; 2770 iclog = log->l_iclog; 2771 cycled_icloglock = false; 2772 ioerror = false; 2773 repeats++; 2774 2775 do { 2776 if (xlog_state_iodone_process_iclog(log, iclog, 2777 &ioerror)) 2778 break; 2779 2780 if (iclog->ic_state != XLOG_STATE_CALLBACK && 2781 iclog->ic_state != XLOG_STATE_IOERROR) { 2782 iclog = iclog->ic_next; 2783 continue; 2784 } 2785 2786 /* 2787 * Running callbacks will drop the icloglock which means 2788 * we'll have to run at least one more complete loop. 2789 */ 2790 cycled_icloglock = true; 2791 xlog_state_do_iclog_callbacks(log, iclog); 2792 if (XLOG_FORCED_SHUTDOWN(log)) 2793 wake_up_all(&iclog->ic_force_wait); 2794 else 2795 xlog_state_clean_iclog(log, iclog); 2796 iclog = iclog->ic_next; 2797 } while (first_iclog != iclog); 2798 2799 if (repeats > 5000) { 2800 flushcnt += repeats; 2801 repeats = 0; 2802 xfs_warn(log->l_mp, 2803 "%s: possible infinite loop (%d iterations)", 2804 __func__, flushcnt); 2805 } 2806 } while (!ioerror && cycled_icloglock); 2807 2808 if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE || 2809 log->l_iclog->ic_state == XLOG_STATE_IOERROR) 2810 wake_up_all(&log->l_flush_wait); 2811 2812 spin_unlock(&log->l_icloglock); 2813} 2814 2815 2816/* 2817 * Finish transitioning this iclog to the dirty state. 2818 * 2819 * Make sure that we completely execute this routine only when this is 2820 * the last call to the iclog. There is a good chance that iclog flushes, 2821 * when we reach the end of the physical log, get turned into 2 separate 2822 * calls to bwrite. Hence, one iclog flush could generate two calls to this 2823 * routine. By using the reference count bwritecnt, we guarantee that only 2824 * the second completion goes through. 2825 * 2826 * Callbacks could take time, so they are done outside the scope of the 2827 * global state machine log lock. 2828 */ 2829STATIC void 2830xlog_state_done_syncing( 2831 struct xlog_in_core *iclog) 2832{ 2833 struct xlog *log = iclog->ic_log; 2834 2835 spin_lock(&log->l_icloglock); 2836 ASSERT(atomic_read(&iclog->ic_refcnt) == 0); 2837 2838 /* 2839 * If we got an error, either on the first buffer, or in the case of 2840 * split log writes, on the second, we shut down the file system and 2841 * no iclogs should ever be attempted to be written to disk again. 2842 */ 2843 if (!XLOG_FORCED_SHUTDOWN(log)) { 2844 ASSERT(iclog->ic_state == XLOG_STATE_SYNCING); 2845 iclog->ic_state = XLOG_STATE_DONE_SYNC; 2846 } 2847 2848 /* 2849 * Someone could be sleeping prior to writing out the next 2850 * iclog buffer, we wake them all, one will get to do the 2851 * I/O, the others get to wait for the result. 2852 */ 2853 wake_up_all(&iclog->ic_write_wait); 2854 spin_unlock(&log->l_icloglock); 2855 xlog_state_do_callback(log); 2856} 2857 2858/* 2859 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must 2860 * sleep. We wait on the flush queue on the head iclog as that should be 2861 * the first iclog to complete flushing. Hence if all iclogs are syncing, 2862 * we will wait here and all new writes will sleep until a sync completes. 2863 * 2864 * The in-core logs are used in a circular fashion. They are not used 2865 * out-of-order even when an iclog past the head is free. 2866 * 2867 * return: 2868 * * log_offset where xlog_write() can start writing into the in-core 2869 * log's data space. 2870 * * in-core log pointer to which xlog_write() should write. 2871 * * boolean indicating this is a continued write to an in-core log. 2872 * If this is the last write, then the in-core log's offset field 2873 * needs to be incremented, depending on the amount of data which 2874 * is copied. 2875 */ 2876STATIC int 2877xlog_state_get_iclog_space( 2878 struct xlog *log, 2879 int len, 2880 struct xlog_in_core **iclogp, 2881 struct xlog_ticket *ticket, 2882 int *continued_write, 2883 int *logoffsetp) 2884{ 2885 int log_offset; 2886 xlog_rec_header_t *head; 2887 xlog_in_core_t *iclog; 2888 2889restart: 2890 spin_lock(&log->l_icloglock); 2891 if (XLOG_FORCED_SHUTDOWN(log)) { 2892 spin_unlock(&log->l_icloglock); 2893 return -EIO; 2894 } 2895 2896 iclog = log->l_iclog; 2897 if (iclog->ic_state != XLOG_STATE_ACTIVE) { 2898 XFS_STATS_INC(log->l_mp, xs_log_noiclogs); 2899 2900 /* Wait for log writes to have flushed */ 2901 xlog_wait(&log->l_flush_wait, &log->l_icloglock); 2902 goto restart; 2903 } 2904 2905 head = &iclog->ic_header; 2906 2907 atomic_inc(&iclog->ic_refcnt); /* prevents sync */ 2908 log_offset = iclog->ic_offset; 2909 2910 /* On the 1st write to an iclog, figure out lsn. This works 2911 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are 2912 * committing to. If the offset is set, that's how many blocks 2913 * must be written. 2914 */ 2915 if (log_offset == 0) { 2916 ticket->t_curr_res -= log->l_iclog_hsize; 2917 xlog_tic_add_region(ticket, 2918 log->l_iclog_hsize, 2919 XLOG_REG_TYPE_LRHEADER); 2920 head->h_cycle = cpu_to_be32(log->l_curr_cycle); 2921 head->h_lsn = cpu_to_be64( 2922 xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block)); 2923 ASSERT(log->l_curr_block >= 0); 2924 } 2925 2926 /* If there is enough room to write everything, then do it. Otherwise, 2927 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC 2928 * bit is on, so this will get flushed out. Don't update ic_offset 2929 * until you know exactly how many bytes get copied. Therefore, wait 2930 * until later to update ic_offset. 2931 * 2932 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's 2933 * can fit into remaining data section. 2934 */ 2935 if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) { 2936 int error = 0; 2937 2938 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2939 2940 /* 2941 * If we are the only one writing to this iclog, sync it to 2942 * disk. We need to do an atomic compare and decrement here to 2943 * avoid racing with concurrent atomic_dec_and_lock() calls in 2944 * xlog_state_release_iclog() when there is more than one 2945 * reference to the iclog. 2946 */ 2947 if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1)) 2948 error = xlog_state_release_iclog(log, iclog); 2949 spin_unlock(&log->l_icloglock); 2950 if (error) 2951 return error; 2952 goto restart; 2953 } 2954 2955 /* Do we have enough room to write the full amount in the remainder 2956 * of this iclog? Or must we continue a write on the next iclog and 2957 * mark this iclog as completely taken? In the case where we switch 2958 * iclogs (to mark it taken), this particular iclog will release/sync 2959 * to disk in xlog_write(). 2960 */ 2961 if (len <= iclog->ic_size - iclog->ic_offset) { 2962 *continued_write = 0; 2963 iclog->ic_offset += len; 2964 } else { 2965 *continued_write = 1; 2966 xlog_state_switch_iclogs(log, iclog, iclog->ic_size); 2967 } 2968 *iclogp = iclog; 2969 2970 ASSERT(iclog->ic_offset <= iclog->ic_size); 2971 spin_unlock(&log->l_icloglock); 2972 2973 *logoffsetp = log_offset; 2974 return 0; 2975} 2976 2977/* 2978 * The first cnt-1 times a ticket goes through here we don't need to move the 2979 * grant write head because the permanent reservation has reserved cnt times the 2980 * unit amount. Release part of current permanent unit reservation and reset 2981 * current reservation to be one units worth. Also move grant reservation head 2982 * forward. 2983 */ 2984void 2985xfs_log_ticket_regrant( 2986 struct xlog *log, 2987 struct xlog_ticket *ticket) 2988{ 2989 trace_xfs_log_ticket_regrant(log, ticket); 2990 2991 if (ticket->t_cnt > 0) 2992 ticket->t_cnt--; 2993 2994 xlog_grant_sub_space(log, &log->l_reserve_head.grant, 2995 ticket->t_curr_res); 2996 xlog_grant_sub_space(log, &log->l_write_head.grant, 2997 ticket->t_curr_res); 2998 ticket->t_curr_res = ticket->t_unit_res; 2999 xlog_tic_reset_res(ticket); 3000 3001 trace_xfs_log_ticket_regrant_sub(log, ticket); 3002 3003 /* just return if we still have some of the pre-reserved space */ 3004 if (!ticket->t_cnt) { 3005 xlog_grant_add_space(log, &log->l_reserve_head.grant, 3006 ticket->t_unit_res); 3007 trace_xfs_log_ticket_regrant_exit(log, ticket); 3008 3009 ticket->t_curr_res = ticket->t_unit_res; 3010 xlog_tic_reset_res(ticket); 3011 } 3012 3013 xfs_log_ticket_put(ticket); 3014} 3015 3016/* 3017 * Give back the space left from a reservation. 3018 * 3019 * All the information we need to make a correct determination of space left 3020 * is present. For non-permanent reservations, things are quite easy. The 3021 * count should have been decremented to zero. We only need to deal with the 3022 * space remaining in the current reservation part of the ticket. If the 3023 * ticket contains a permanent reservation, there may be left over space which 3024 * needs to be released. A count of N means that N-1 refills of the current 3025 * reservation can be done before we need to ask for more space. The first 3026 * one goes to fill up the first current reservation. Once we run out of 3027 * space, the count will stay at zero and the only space remaining will be 3028 * in the current reservation field. 3029 */ 3030void 3031xfs_log_ticket_ungrant( 3032 struct xlog *log, 3033 struct xlog_ticket *ticket) 3034{ 3035 int bytes; 3036 3037 trace_xfs_log_ticket_ungrant(log, ticket); 3038 3039 if (ticket->t_cnt > 0) 3040 ticket->t_cnt--; 3041 3042 trace_xfs_log_ticket_ungrant_sub(log, ticket); 3043 3044 /* 3045 * If this is a permanent reservation ticket, we may be able to free 3046 * up more space based on the remaining count. 3047 */ 3048 bytes = ticket->t_curr_res; 3049 if (ticket->t_cnt > 0) { 3050 ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV); 3051 bytes += ticket->t_unit_res*ticket->t_cnt; 3052 } 3053 3054 xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes); 3055 xlog_grant_sub_space(log, &log->l_write_head.grant, bytes); 3056 3057 trace_xfs_log_ticket_ungrant_exit(log, ticket); 3058 3059 xfs_log_space_wake(log->l_mp); 3060 xfs_log_ticket_put(ticket); 3061} 3062 3063/* 3064 * This routine will mark the current iclog in the ring as WANT_SYNC and move 3065 * the current iclog pointer to the next iclog in the ring. 3066 */ 3067STATIC void 3068xlog_state_switch_iclogs( 3069 struct xlog *log, 3070 struct xlog_in_core *iclog, 3071 int eventual_size) 3072{ 3073 ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE); 3074 assert_spin_locked(&log->l_icloglock); 3075 3076 if (!eventual_size) 3077 eventual_size = iclog->ic_offset; 3078 iclog->ic_state = XLOG_STATE_WANT_SYNC; 3079 iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block); 3080 log->l_prev_block = log->l_curr_block; 3081 log->l_prev_cycle = log->l_curr_cycle; 3082 3083 /* roll log?: ic_offset changed later */ 3084 log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize); 3085 3086 /* Round up to next log-sunit */ 3087 if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) && 3088 log->l_mp->m_sb.sb_logsunit > 1) { 3089 uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit); 3090 log->l_curr_block = roundup(log->l_curr_block, sunit_bb); 3091 } 3092 3093 if (log->l_curr_block >= log->l_logBBsize) { 3094 /* 3095 * Rewind the current block before the cycle is bumped to make 3096 * sure that the combined LSN never transiently moves forward 3097 * when the log wraps to the next cycle. This is to support the 3098 * unlocked sample of these fields from xlog_valid_lsn(). Most 3099 * other cases should acquire l_icloglock. 3100 */ 3101 log->l_curr_block -= log->l_logBBsize; 3102 ASSERT(log->l_curr_block >= 0); 3103 smp_wmb(); 3104 log->l_curr_cycle++; 3105 if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM) 3106 log->l_curr_cycle++; 3107 } 3108 ASSERT(iclog == log->l_iclog); 3109 log->l_iclog = iclog->ic_next; 3110} 3111 3112/* 3113 * Write out all data in the in-core log as of this exact moment in time. 3114 * 3115 * Data may be written to the in-core log during this call. However, 3116 * we don't guarantee this data will be written out. A change from past 3117 * implementation means this routine will *not* write out zero length LRs. 3118 * 3119 * Basically, we try and perform an intelligent scan of the in-core logs. 3120 * If we determine there is no flushable data, we just return. There is no 3121 * flushable data if: 3122 * 3123 * 1. the current iclog is active and has no data; the previous iclog 3124 * is in the active or dirty state. 3125 * 2. the current iclog is drity, and the previous iclog is in the 3126 * active or dirty state. 3127 * 3128 * We may sleep if: 3129 * 3130 * 1. the current iclog is not in the active nor dirty state. 3131 * 2. the current iclog dirty, and the previous iclog is not in the 3132 * active nor dirty state. 3133 * 3. the current iclog is active, and there is another thread writing 3134 * to this particular iclog. 3135 * 4. a) the current iclog is active and has no other writers 3136 * b) when we return from flushing out this iclog, it is still 3137 * not in the active nor dirty state. 3138 */ 3139int 3140xfs_log_force( 3141 struct xfs_mount *mp, 3142 uint flags) 3143{ 3144 struct xlog *log = mp->m_log; 3145 struct xlog_in_core *iclog; 3146 xfs_lsn_t lsn; 3147 3148 XFS_STATS_INC(mp, xs_log_force); 3149 trace_xfs_log_force(mp, 0, _RET_IP_); 3150 3151 xlog_cil_force(log); 3152 3153 spin_lock(&log->l_icloglock); 3154 iclog = log->l_iclog; 3155 if (iclog->ic_state == XLOG_STATE_IOERROR) 3156 goto out_error; 3157 3158 if (iclog->ic_state == XLOG_STATE_DIRTY || 3159 (iclog->ic_state == XLOG_STATE_ACTIVE && 3160 atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) { 3161 /* 3162 * If the head is dirty or (active and empty), then we need to 3163 * look at the previous iclog. 3164 * 3165 * If the previous iclog is active or dirty we are done. There 3166 * is nothing to sync out. Otherwise, we attach ourselves to the 3167 * previous iclog and go to sleep. 3168 */ 3169 iclog = iclog->ic_prev; 3170 } else if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3171 if (atomic_read(&iclog->ic_refcnt) == 0) { 3172 /* 3173 * We are the only one with access to this iclog. 3174 * 3175 * Flush it out now. There should be a roundoff of zero 3176 * to show that someone has already taken care of the 3177 * roundoff from the previous sync. 3178 */ 3179 atomic_inc(&iclog->ic_refcnt); 3180 lsn = be64_to_cpu(iclog->ic_header.h_lsn); 3181 xlog_state_switch_iclogs(log, iclog, 0); 3182 if (xlog_state_release_iclog(log, iclog)) 3183 goto out_error; 3184 3185 if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) 3186 goto out_unlock; 3187 } else { 3188 /* 3189 * Someone else is writing to this iclog. 3190 * 3191 * Use its call to flush out the data. However, the 3192 * other thread may not force out this LR, so we mark 3193 * it WANT_SYNC. 3194 */ 3195 xlog_state_switch_iclogs(log, iclog, 0); 3196 } 3197 } else { 3198 /* 3199 * If the head iclog is not active nor dirty, we just attach 3200 * ourselves to the head and go to sleep if necessary. 3201 */ 3202 ; 3203 } 3204 3205 if (flags & XFS_LOG_SYNC) 3206 return xlog_wait_on_iclog(iclog); 3207out_unlock: 3208 spin_unlock(&log->l_icloglock); 3209 return 0; 3210out_error: 3211 spin_unlock(&log->l_icloglock); 3212 return -EIO; 3213} 3214 3215static int 3216xlog_force_lsn( 3217 struct xlog *log, 3218 xfs_lsn_t lsn, 3219 uint flags, 3220 int *log_flushed, 3221 bool already_slept) 3222{ 3223 struct xlog_in_core *iclog; 3224 3225 spin_lock(&log->l_icloglock); 3226 iclog = log->l_iclog; 3227 if (iclog->ic_state == XLOG_STATE_IOERROR) 3228 goto out_error; 3229 3230 while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) { 3231 iclog = iclog->ic_next; 3232 if (iclog == log->l_iclog) 3233 goto out_unlock; 3234 } 3235 3236 if (iclog->ic_state == XLOG_STATE_ACTIVE) { 3237 /* 3238 * We sleep here if we haven't already slept (e.g. this is the 3239 * first time we've looked at the correct iclog buf) and the 3240 * buffer before us is going to be sync'ed. The reason for this 3241 * is that if we are doing sync transactions here, by waiting 3242 * for the previous I/O to complete, we can allow a few more 3243 * transactions into this iclog before we close it down. 3244 * 3245 * Otherwise, we mark the buffer WANT_SYNC, and bump up the 3246 * refcnt so we can release the log (which drops the ref count). 3247 * The state switch keeps new transaction commits from using 3248 * this buffer. When the current commits finish writing into 3249 * the buffer, the refcount will drop to zero and the buffer 3250 * will go out then. 3251 */ 3252 if (!already_slept && 3253 (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC || 3254 iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) { 3255 xlog_wait(&iclog->ic_prev->ic_write_wait, 3256 &log->l_icloglock); 3257 return -EAGAIN; 3258 } 3259 atomic_inc(&iclog->ic_refcnt); 3260 xlog_state_switch_iclogs(log, iclog, 0); 3261 if (xlog_state_release_iclog(log, iclog)) 3262 goto out_error; 3263 if (log_flushed) 3264 *log_flushed = 1; 3265 } 3266 3267 if (flags & XFS_LOG_SYNC) 3268 return xlog_wait_on_iclog(iclog); 3269out_unlock: 3270 spin_unlock(&log->l_icloglock); 3271 return 0; 3272out_error: 3273 spin_unlock(&log->l_icloglock); 3274 return -EIO; 3275} 3276 3277/* 3278 * Force the in-core log to disk for a specific LSN. 3279 * 3280 * Find in-core log with lsn. 3281 * If it is in the DIRTY state, just return. 3282 * If it is in the ACTIVE state, move the in-core log into the WANT_SYNC 3283 * state and go to sleep or return. 3284 * If it is in any other state, go to sleep or return. 3285 * 3286 * Synchronous forces are implemented with a wait queue. All callers trying 3287 * to force a given lsn to disk must wait on the queue attached to the 3288 * specific in-core log. When given in-core log finally completes its write 3289 * to disk, that thread will wake up all threads waiting on the queue. 3290 */ 3291int 3292xfs_log_force_seq( 3293 struct xfs_mount *mp, 3294 xfs_csn_t seq, 3295 uint flags, 3296 int *log_flushed) 3297{ 3298 struct xlog *log = mp->m_log; 3299 xfs_lsn_t lsn; 3300 int ret; 3301 ASSERT(seq != 0); 3302 3303 XFS_STATS_INC(mp, xs_log_force); 3304 trace_xfs_log_force(mp, seq, _RET_IP_); 3305 3306 lsn = xlog_cil_force_seq(log, seq); 3307 if (lsn == NULLCOMMITLSN) 3308 return 0; 3309 3310 ret = xlog_force_lsn(log, lsn, flags, log_flushed, false); 3311 if (ret == -EAGAIN) { 3312 XFS_STATS_INC(mp, xs_log_force_sleep); 3313 ret = xlog_force_lsn(log, lsn, flags, log_flushed, true); 3314 } 3315 return ret; 3316} 3317 3318/* 3319 * Free a used ticket when its refcount falls to zero. 3320 */ 3321void 3322xfs_log_ticket_put( 3323 xlog_ticket_t *ticket) 3324{ 3325 ASSERT(atomic_read(&ticket->t_ref) > 0); 3326 if (atomic_dec_and_test(&ticket->t_ref)) 3327 kmem_cache_free(xfs_log_ticket_zone, ticket); 3328} 3329 3330xlog_ticket_t * 3331xfs_log_ticket_get( 3332 xlog_ticket_t *ticket) 3333{ 3334 ASSERT(atomic_read(&ticket->t_ref) > 0); 3335 atomic_inc(&ticket->t_ref); 3336 return ticket; 3337} 3338 3339/* 3340 * Figure out the total log space unit (in bytes) that would be 3341 * required for a log ticket. 3342 */ 3343int 3344xfs_log_calc_unit_res( 3345 struct xfs_mount *mp, 3346 int unit_bytes) 3347{ 3348 struct xlog *log = mp->m_log; 3349 int iclog_space; 3350 uint num_headers; 3351 3352 /* 3353 * Permanent reservations have up to 'cnt'-1 active log operations 3354 * in the log. A unit in this case is the amount of space for one 3355 * of these log operations. Normal reservations have a cnt of 1 3356 * and their unit amount is the total amount of space required. 3357 * 3358 * The following lines of code account for non-transaction data 3359 * which occupy space in the on-disk log. 3360 * 3361 * Normal form of a transaction is: 3362 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph> 3363 * and then there are LR hdrs, split-recs and roundoff at end of syncs. 3364 * 3365 * We need to account for all the leadup data and trailer data 3366 * around the transaction data. 3367 * And then we need to account for the worst case in terms of using 3368 * more space. 3369 * The worst case will happen if: 3370 * - the placement of the transaction happens to be such that the 3371 * roundoff is at its maximum 3372 * - the transaction data is synced before the commit record is synced 3373 * i.e. <transaction-data><roundoff> | <commit-rec><roundoff> 3374 * Therefore the commit record is in its own Log Record. 3375 * This can happen as the commit record is called with its 3376 * own region to xlog_write(). 3377 * This then means that in the worst case, roundoff can happen for 3378 * the commit-rec as well. 3379 * The commit-rec is smaller than padding in this scenario and so it is 3380 * not added separately. 3381 */ 3382 3383 /* for trans header */ 3384 unit_bytes += sizeof(xlog_op_header_t); 3385 unit_bytes += sizeof(xfs_trans_header_t); 3386 3387 /* for start-rec */ 3388 unit_bytes += sizeof(xlog_op_header_t); 3389 3390 /* 3391 * for LR headers - the space for data in an iclog is the size minus 3392 * the space used for the headers. If we use the iclog size, then we 3393 * undercalculate the number of headers required. 3394 * 3395 * Furthermore - the addition of op headers for split-recs might 3396 * increase the space required enough to require more log and op 3397 * headers, so take that into account too. 3398 * 3399 * IMPORTANT: This reservation makes the assumption that if this 3400 * transaction is the first in an iclog and hence has the LR headers 3401 * accounted to it, then the remaining space in the iclog is 3402 * exclusively for this transaction. i.e. if the transaction is larger 3403 * than the iclog, it will be the only thing in that iclog. 3404 * Fundamentally, this means we must pass the entire log vector to 3405 * xlog_write to guarantee this. 3406 */ 3407 iclog_space = log->l_iclog_size - log->l_iclog_hsize; 3408 num_headers = howmany(unit_bytes, iclog_space); 3409 3410 /* for split-recs - ophdrs added when data split over LRs */ 3411 unit_bytes += sizeof(xlog_op_header_t) * num_headers; 3412 3413 /* add extra header reservations if we overrun */ 3414 while (!num_headers || 3415 howmany(unit_bytes, iclog_space) > num_headers) { 3416 unit_bytes += sizeof(xlog_op_header_t); 3417 num_headers++; 3418 } 3419 unit_bytes += log->l_iclog_hsize * num_headers; 3420 3421 /* for commit-rec LR header - note: padding will subsume the ophdr */ 3422 unit_bytes += log->l_iclog_hsize; 3423 3424 /* for roundoff padding for transaction data and one for commit record */ 3425 if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) { 3426 /* log su roundoff */ 3427 unit_bytes += 2 * mp->m_sb.sb_logsunit; 3428 } else { 3429 /* BB roundoff */ 3430 unit_bytes += 2 * BBSIZE; 3431 } 3432 3433 return unit_bytes; 3434} 3435 3436/* 3437 * Allocate and initialise a new log ticket. 3438 */ 3439struct xlog_ticket * 3440xlog_ticket_alloc( 3441 struct xlog *log, 3442 int unit_bytes, 3443 int cnt, 3444 char client, 3445 bool permanent) 3446{ 3447 struct xlog_ticket *tic; 3448 int unit_res; 3449 3450 tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL); 3451 3452 unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes); 3453 3454 atomic_set(&tic->t_ref, 1); 3455 tic->t_task = current; 3456 INIT_LIST_HEAD(&tic->t_queue); 3457 tic->t_unit_res = unit_res; 3458 tic->t_curr_res = unit_res; 3459 tic->t_cnt = cnt; 3460 tic->t_ocnt = cnt; 3461 tic->t_tid = prandom_u32(); 3462 tic->t_clientid = client; 3463 if (permanent) 3464 tic->t_flags |= XLOG_TIC_PERM_RESERV; 3465 3466 xlog_tic_reset_res(tic); 3467 3468 return tic; 3469} 3470 3471#if defined(DEBUG) 3472/* 3473 * Make sure that the destination ptr is within the valid data region of 3474 * one of the iclogs. This uses backup pointers stored in a different 3475 * part of the log in case we trash the log structure. 3476 */ 3477STATIC void 3478xlog_verify_dest_ptr( 3479 struct xlog *log, 3480 void *ptr) 3481{ 3482 int i; 3483 int good_ptr = 0; 3484 3485 for (i = 0; i < log->l_iclog_bufs; i++) { 3486 if (ptr >= log->l_iclog_bak[i] && 3487 ptr <= log->l_iclog_bak[i] + log->l_iclog_size) 3488 good_ptr++; 3489 } 3490 3491 if (!good_ptr) 3492 xfs_emerg(log->l_mp, "%s: invalid ptr", __func__); 3493} 3494 3495/* 3496 * Check to make sure the grant write head didn't just over lap the tail. If 3497 * the cycles are the same, we can't be overlapping. Otherwise, make sure that 3498 * the cycles differ by exactly one and check the byte count. 3499 * 3500 * This check is run unlocked, so can give false positives. Rather than assert 3501 * on failures, use a warn-once flag and a panic tag to allow the admin to 3502 * determine if they want to panic the machine when such an error occurs. For 3503 * debug kernels this will have the same effect as using an assert but, unlinke 3504 * an assert, it can be turned off at runtime. 3505 */ 3506STATIC void 3507xlog_verify_grant_tail( 3508 struct xlog *log) 3509{ 3510 int tail_cycle, tail_blocks; 3511 int cycle, space; 3512 3513 xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space); 3514 xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks); 3515 if (tail_cycle != cycle) { 3516 if (cycle - 1 != tail_cycle && 3517 !(log->l_flags & XLOG_TAIL_WARN)) { 3518 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3519 "%s: cycle - 1 != tail_cycle", __func__); 3520 log->l_flags |= XLOG_TAIL_WARN; 3521 } 3522 3523 if (space > BBTOB(tail_blocks) && 3524 !(log->l_flags & XLOG_TAIL_WARN)) { 3525 xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES, 3526 "%s: space > BBTOB(tail_blocks)", __func__); 3527 log->l_flags |= XLOG_TAIL_WARN; 3528 } 3529 } 3530} 3531 3532/* check if it will fit */ 3533STATIC void 3534xlog_verify_tail_lsn( 3535 struct xlog *log, 3536 struct xlog_in_core *iclog, 3537 xfs_lsn_t tail_lsn) 3538{ 3539 int blocks; 3540 3541 if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) { 3542 blocks = 3543 log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn)); 3544 if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize)) 3545 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3546 } else { 3547 ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle); 3548 3549 if (BLOCK_LSN(tail_lsn) == log->l_prev_block) 3550 xfs_emerg(log->l_mp, "%s: tail wrapped", __func__); 3551 3552 blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block; 3553 if (blocks < BTOBB(iclog->ic_offset) + 1) 3554 xfs_emerg(log->l_mp, "%s: ran out of log space", __func__); 3555 } 3556} 3557 3558/* 3559 * Perform a number of checks on the iclog before writing to disk. 3560 * 3561 * 1. Make sure the iclogs are still circular 3562 * 2. Make sure we have a good magic number 3563 * 3. Make sure we don't have magic numbers in the data 3564 * 4. Check fields of each log operation header for: 3565 * A. Valid client identifier 3566 * B. tid ptr value falls in valid ptr space (user space code) 3567 * C. Length in log record header is correct according to the 3568 * individual operation headers within record. 3569 * 5. When a bwrite will occur within 5 blocks of the front of the physical 3570 * log, check the preceding blocks of the physical log to make sure all 3571 * the cycle numbers agree with the current cycle number. 3572 */ 3573STATIC void 3574xlog_verify_iclog( 3575 struct xlog *log, 3576 struct xlog_in_core *iclog, 3577 int count) 3578{ 3579 xlog_op_header_t *ophead; 3580 xlog_in_core_t *icptr; 3581 xlog_in_core_2_t *xhdr; 3582 void *base_ptr, *ptr, *p; 3583 ptrdiff_t field_offset; 3584 uint8_t clientid; 3585 int len, i, j, k, op_len; 3586 int idx; 3587 3588 /* check validity of iclog pointers */ 3589 spin_lock(&log->l_icloglock); 3590 icptr = log->l_iclog; 3591 for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next) 3592 ASSERT(icptr); 3593 3594 if (icptr != log->l_iclog) 3595 xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__); 3596 spin_unlock(&log->l_icloglock); 3597 3598 /* check log magic numbers */ 3599 if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3600 xfs_emerg(log->l_mp, "%s: invalid magic num", __func__); 3601 3602 base_ptr = ptr = &iclog->ic_header; 3603 p = &iclog->ic_header; 3604 for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) { 3605 if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM)) 3606 xfs_emerg(log->l_mp, "%s: unexpected magic num", 3607 __func__); 3608 } 3609 3610 /* check fields */ 3611 len = be32_to_cpu(iclog->ic_header.h_num_logops); 3612 base_ptr = ptr = iclog->ic_datap; 3613 ophead = ptr; 3614 xhdr = iclog->ic_data; 3615 for (i = 0; i < len; i++) { 3616 ophead = ptr; 3617 3618 /* clientid is only 1 byte */ 3619 p = &ophead->oh_clientid; 3620 field_offset = p - base_ptr; 3621 if (field_offset & 0x1ff) { 3622 clientid = ophead->oh_clientid; 3623 } else { 3624 idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap); 3625 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3626 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3627 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3628 clientid = xlog_get_client_id( 3629 xhdr[j].hic_xheader.xh_cycle_data[k]); 3630 } else { 3631 clientid = xlog_get_client_id( 3632 iclog->ic_header.h_cycle_data[idx]); 3633 } 3634 } 3635 if (clientid != XFS_TRANSACTION && clientid != XFS_LOG) 3636 xfs_warn(log->l_mp, 3637 "%s: invalid clientid %d op "PTR_FMT" offset 0x%lx", 3638 __func__, clientid, ophead, 3639 (unsigned long)field_offset); 3640 3641 /* check length */ 3642 p = &ophead->oh_len; 3643 field_offset = p - base_ptr; 3644 if (field_offset & 0x1ff) { 3645 op_len = be32_to_cpu(ophead->oh_len); 3646 } else { 3647 idx = BTOBBT((uintptr_t)&ophead->oh_len - 3648 (uintptr_t)iclog->ic_datap); 3649 if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) { 3650 j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3651 k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE); 3652 op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]); 3653 } else { 3654 op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]); 3655 } 3656 } 3657 ptr += sizeof(xlog_op_header_t) + op_len; 3658 } 3659} 3660#endif 3661 3662/* 3663 * Mark all iclogs IOERROR. l_icloglock is held by the caller. 3664 */ 3665STATIC int 3666xlog_state_ioerror( 3667 struct xlog *log) 3668{ 3669 xlog_in_core_t *iclog, *ic; 3670 3671 iclog = log->l_iclog; 3672 if (iclog->ic_state != XLOG_STATE_IOERROR) { 3673 /* 3674 * Mark all the incore logs IOERROR. 3675 * From now on, no log flushes will result. 3676 */ 3677 ic = iclog; 3678 do { 3679 ic->ic_state = XLOG_STATE_IOERROR; 3680 ic = ic->ic_next; 3681 } while (ic != iclog); 3682 return 0; 3683 } 3684 /* 3685 * Return non-zero, if state transition has already happened. 3686 */ 3687 return 1; 3688} 3689 3690/* 3691 * This is called from xfs_force_shutdown, when we're forcibly 3692 * shutting down the filesystem, typically because of an IO error. 3693 * Our main objectives here are to make sure that: 3694 * a. if !logerror, flush the logs to disk. Anything modified 3695 * after this is ignored. 3696 * b. the filesystem gets marked 'SHUTDOWN' for all interested 3697 * parties to find out, 'atomically'. 3698 * c. those who're sleeping on log reservations, pinned objects and 3699 * other resources get woken up, and be told the bad news. 3700 * d. nothing new gets queued up after (b) and (c) are done. 3701 * 3702 * Note: for the !logerror case we need to flush the regions held in memory out 3703 * to disk first. This needs to be done before the log is marked as shutdown, 3704 * otherwise the iclog writes will fail. 3705 */ 3706int 3707xfs_log_force_umount( 3708 struct xfs_mount *mp, 3709 int logerror) 3710{ 3711 struct xlog *log; 3712 int retval; 3713 3714 log = mp->m_log; 3715 3716 /* 3717 * If this happens during log recovery, don't worry about 3718 * locking; the log isn't open for business yet. 3719 */ 3720 if (!log || 3721 log->l_flags & XLOG_ACTIVE_RECOVERY) { 3722 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3723 if (mp->m_sb_bp) 3724 mp->m_sb_bp->b_flags |= XBF_DONE; 3725 return 0; 3726 } 3727 3728 /* 3729 * Somebody could've already done the hard work for us. 3730 * No need to get locks for this. 3731 */ 3732 if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) { 3733 ASSERT(XLOG_FORCED_SHUTDOWN(log)); 3734 return 1; 3735 } 3736 3737 /* 3738 * Flush all the completed transactions to disk before marking the log 3739 * being shut down. We need to do it in this order to ensure that 3740 * completed operations are safely on disk before we shut down, and that 3741 * we don't have to issue any buffer IO after the shutdown flags are set 3742 * to guarantee this. 3743 */ 3744 if (!logerror) 3745 xfs_log_force(mp, XFS_LOG_SYNC); 3746 3747 /* 3748 * mark the filesystem and the as in a shutdown state and wake 3749 * everybody up to tell them the bad news. 3750 */ 3751 spin_lock(&log->l_icloglock); 3752 mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN; 3753 if (mp->m_sb_bp) 3754 mp->m_sb_bp->b_flags |= XBF_DONE; 3755 3756 /* 3757 * Mark the log and the iclogs with IO error flags to prevent any 3758 * further log IO from being issued or completed. 3759 */ 3760 log->l_flags |= XLOG_IO_ERROR; 3761 retval = xlog_state_ioerror(log); 3762 spin_unlock(&log->l_icloglock); 3763 3764 /* 3765 * We don't want anybody waiting for log reservations after this. That 3766 * means we have to wake up everybody queued up on reserveq as well as 3767 * writeq. In addition, we make sure in xlog_{re}grant_log_space that 3768 * we don't enqueue anything once the SHUTDOWN flag is set, and this 3769 * action is protected by the grant locks. 3770 */ 3771 xlog_grant_head_wake_all(&log->l_reserve_head); 3772 xlog_grant_head_wake_all(&log->l_write_head); 3773 3774 /* 3775 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first 3776 * as if the log writes were completed. The abort handling in the log 3777 * item committed callback functions will do this again under lock to 3778 * avoid races. 3779 */ 3780 spin_lock(&log->l_cilp->xc_push_lock); 3781 wake_up_all(&log->l_cilp->xc_commit_wait); 3782 spin_unlock(&log->l_cilp->xc_push_lock); 3783 xlog_state_do_callback(log); 3784 3785 /* return non-zero if log IOERROR transition had already happened */ 3786 return retval; 3787} 3788 3789STATIC int 3790xlog_iclogs_empty( 3791 struct xlog *log) 3792{ 3793 xlog_in_core_t *iclog; 3794 3795 iclog = log->l_iclog; 3796 do { 3797 /* endianness does not matter here, zero is zero in 3798 * any language. 3799 */ 3800 if (iclog->ic_header.h_num_logops) 3801 return 0; 3802 iclog = iclog->ic_next; 3803 } while (iclog != log->l_iclog); 3804 return 1; 3805} 3806 3807/* 3808 * Verify that an LSN stamped into a piece of metadata is valid. This is 3809 * intended for use in read verifiers on v5 superblocks. 3810 */ 3811bool 3812xfs_log_check_lsn( 3813 struct xfs_mount *mp, 3814 xfs_lsn_t lsn) 3815{ 3816 struct xlog *log = mp->m_log; 3817 bool valid; 3818 3819 /* 3820 * norecovery mode skips mount-time log processing and unconditionally 3821 * resets the in-core LSN. We can't validate in this mode, but 3822 * modifications are not allowed anyways so just return true. 3823 */ 3824 if (mp->m_flags & XFS_MOUNT_NORECOVERY) 3825 return true; 3826 3827 /* 3828 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is 3829 * handled by recovery and thus safe to ignore here. 3830 */ 3831 if (lsn == NULLCOMMITLSN) 3832 return true; 3833 3834 valid = xlog_valid_lsn(mp->m_log, lsn); 3835 3836 /* warn the user about what's gone wrong before verifier failure */ 3837 if (!valid) { 3838 spin_lock(&log->l_icloglock); 3839 xfs_warn(mp, 3840"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). " 3841"Please unmount and run xfs_repair (>= v4.3) to resolve.", 3842 CYCLE_LSN(lsn), BLOCK_LSN(lsn), 3843 log->l_curr_cycle, log->l_curr_block); 3844 spin_unlock(&log->l_icloglock); 3845 } 3846 3847 return valid; 3848} 3849 3850bool 3851xfs_log_in_recovery( 3852 struct xfs_mount *mp) 3853{ 3854 struct xlog *log = mp->m_log; 3855 3856 return log->l_flags & XLOG_ACTIVE_RECOVERY; 3857} 3858