xref: /kernel/linux/linux-5.10/fs/xfs/xfs_log.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_errortag.h"
14#include "xfs_error.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_log.h"
18#include "xfs_log_priv.h"
19#include "xfs_trace.h"
20#include "xfs_sysfs.h"
21#include "xfs_sb.h"
22#include "xfs_health.h"
23
24kmem_zone_t	*xfs_log_ticket_zone;
25
26/* Local miscellaneous function prototypes */
27STATIC struct xlog *
28xlog_alloc_log(
29	struct xfs_mount	*mp,
30	struct xfs_buftarg	*log_target,
31	xfs_daddr_t		blk_offset,
32	int			num_bblks);
33STATIC int
34xlog_space_left(
35	struct xlog		*log,
36	atomic64_t		*head);
37STATIC void
38xlog_dealloc_log(
39	struct xlog		*log);
40
41/* local state machine functions */
42STATIC void xlog_state_done_syncing(
43	struct xlog_in_core	*iclog);
44STATIC int
45xlog_state_get_iclog_space(
46	struct xlog		*log,
47	int			len,
48	struct xlog_in_core	**iclog,
49	struct xlog_ticket	*ticket,
50	int			*continued_write,
51	int			*logoffsetp);
52STATIC void
53xlog_state_switch_iclogs(
54	struct xlog		*log,
55	struct xlog_in_core	*iclog,
56	int			eventual_size);
57STATIC void
58xlog_grant_push_ail(
59	struct xlog		*log,
60	int			need_bytes);
61STATIC void
62xlog_sync(
63	struct xlog		*log,
64	struct xlog_in_core	*iclog);
65#if defined(DEBUG)
66STATIC void
67xlog_verify_dest_ptr(
68	struct xlog		*log,
69	void			*ptr);
70STATIC void
71xlog_verify_grant_tail(
72	struct xlog *log);
73STATIC void
74xlog_verify_iclog(
75	struct xlog		*log,
76	struct xlog_in_core	*iclog,
77	int			count);
78STATIC void
79xlog_verify_tail_lsn(
80	struct xlog		*log,
81	struct xlog_in_core	*iclog,
82	xfs_lsn_t		tail_lsn);
83#else
84#define xlog_verify_dest_ptr(a,b)
85#define xlog_verify_grant_tail(a)
86#define xlog_verify_iclog(a,b,c)
87#define xlog_verify_tail_lsn(a,b,c)
88#endif
89
90STATIC int
91xlog_iclogs_empty(
92	struct xlog		*log);
93
94static void
95xlog_grant_sub_space(
96	struct xlog		*log,
97	atomic64_t		*head,
98	int			bytes)
99{
100	int64_t	head_val = atomic64_read(head);
101	int64_t new, old;
102
103	do {
104		int	cycle, space;
105
106		xlog_crack_grant_head_val(head_val, &cycle, &space);
107
108		space -= bytes;
109		if (space < 0) {
110			space += log->l_logsize;
111			cycle--;
112		}
113
114		old = head_val;
115		new = xlog_assign_grant_head_val(cycle, space);
116		head_val = atomic64_cmpxchg(head, old, new);
117	} while (head_val != old);
118}
119
120static void
121xlog_grant_add_space(
122	struct xlog		*log,
123	atomic64_t		*head,
124	int			bytes)
125{
126	int64_t	head_val = atomic64_read(head);
127	int64_t new, old;
128
129	do {
130		int		tmp;
131		int		cycle, space;
132
133		xlog_crack_grant_head_val(head_val, &cycle, &space);
134
135		tmp = log->l_logsize - space;
136		if (tmp > bytes)
137			space += bytes;
138		else {
139			space = bytes - tmp;
140			cycle++;
141		}
142
143		old = head_val;
144		new = xlog_assign_grant_head_val(cycle, space);
145		head_val = atomic64_cmpxchg(head, old, new);
146	} while (head_val != old);
147}
148
149STATIC void
150xlog_grant_head_init(
151	struct xlog_grant_head	*head)
152{
153	xlog_assign_grant_head(&head->grant, 1, 0);
154	INIT_LIST_HEAD(&head->waiters);
155	spin_lock_init(&head->lock);
156}
157
158STATIC void
159xlog_grant_head_wake_all(
160	struct xlog_grant_head	*head)
161{
162	struct xlog_ticket	*tic;
163
164	spin_lock(&head->lock);
165	list_for_each_entry(tic, &head->waiters, t_queue)
166		wake_up_process(tic->t_task);
167	spin_unlock(&head->lock);
168}
169
170static inline int
171xlog_ticket_reservation(
172	struct xlog		*log,
173	struct xlog_grant_head	*head,
174	struct xlog_ticket	*tic)
175{
176	if (head == &log->l_write_head) {
177		ASSERT(tic->t_flags & XLOG_TIC_PERM_RESERV);
178		return tic->t_unit_res;
179	} else {
180		if (tic->t_flags & XLOG_TIC_PERM_RESERV)
181			return tic->t_unit_res * tic->t_cnt;
182		else
183			return tic->t_unit_res;
184	}
185}
186
187STATIC bool
188xlog_grant_head_wake(
189	struct xlog		*log,
190	struct xlog_grant_head	*head,
191	int			*free_bytes)
192{
193	struct xlog_ticket	*tic;
194	int			need_bytes;
195	bool			woken_task = false;
196
197	list_for_each_entry(tic, &head->waiters, t_queue) {
198
199		/*
200		 * There is a chance that the size of the CIL checkpoints in
201		 * progress at the last AIL push target calculation resulted in
202		 * limiting the target to the log head (l_last_sync_lsn) at the
203		 * time. This may not reflect where the log head is now as the
204		 * CIL checkpoints may have completed.
205		 *
206		 * Hence when we are woken here, it may be that the head of the
207		 * log that has moved rather than the tail. As the tail didn't
208		 * move, there still won't be space available for the
209		 * reservation we require.  However, if the AIL has already
210		 * pushed to the target defined by the old log head location, we
211		 * will hang here waiting for something else to update the AIL
212		 * push target.
213		 *
214		 * Therefore, if there isn't space to wake the first waiter on
215		 * the grant head, we need to push the AIL again to ensure the
216		 * target reflects both the current log tail and log head
217		 * position before we wait for the tail to move again.
218		 */
219
220		need_bytes = xlog_ticket_reservation(log, head, tic);
221		if (*free_bytes < need_bytes) {
222			if (!woken_task)
223				xlog_grant_push_ail(log, need_bytes);
224			return false;
225		}
226
227		*free_bytes -= need_bytes;
228		trace_xfs_log_grant_wake_up(log, tic);
229		wake_up_process(tic->t_task);
230		woken_task = true;
231	}
232
233	return true;
234}
235
236STATIC int
237xlog_grant_head_wait(
238	struct xlog		*log,
239	struct xlog_grant_head	*head,
240	struct xlog_ticket	*tic,
241	int			need_bytes) __releases(&head->lock)
242					    __acquires(&head->lock)
243{
244	list_add_tail(&tic->t_queue, &head->waiters);
245
246	do {
247		if (XLOG_FORCED_SHUTDOWN(log))
248			goto shutdown;
249		xlog_grant_push_ail(log, need_bytes);
250
251		__set_current_state(TASK_UNINTERRUPTIBLE);
252		spin_unlock(&head->lock);
253
254		XFS_STATS_INC(log->l_mp, xs_sleep_logspace);
255
256		trace_xfs_log_grant_sleep(log, tic);
257		schedule();
258		trace_xfs_log_grant_wake(log, tic);
259
260		spin_lock(&head->lock);
261		if (XLOG_FORCED_SHUTDOWN(log))
262			goto shutdown;
263	} while (xlog_space_left(log, &head->grant) < need_bytes);
264
265	list_del_init(&tic->t_queue);
266	return 0;
267shutdown:
268	list_del_init(&tic->t_queue);
269	return -EIO;
270}
271
272/*
273 * Atomically get the log space required for a log ticket.
274 *
275 * Once a ticket gets put onto head->waiters, it will only return after the
276 * needed reservation is satisfied.
277 *
278 * This function is structured so that it has a lock free fast path. This is
279 * necessary because every new transaction reservation will come through this
280 * path. Hence any lock will be globally hot if we take it unconditionally on
281 * every pass.
282 *
283 * As tickets are only ever moved on and off head->waiters under head->lock, we
284 * only need to take that lock if we are going to add the ticket to the queue
285 * and sleep. We can avoid taking the lock if the ticket was never added to
286 * head->waiters because the t_queue list head will be empty and we hold the
287 * only reference to it so it can safely be checked unlocked.
288 */
289STATIC int
290xlog_grant_head_check(
291	struct xlog		*log,
292	struct xlog_grant_head	*head,
293	struct xlog_ticket	*tic,
294	int			*need_bytes)
295{
296	int			free_bytes;
297	int			error = 0;
298
299	ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
300
301	/*
302	 * If there are other waiters on the queue then give them a chance at
303	 * logspace before us.  Wake up the first waiters, if we do not wake
304	 * up all the waiters then go to sleep waiting for more free space,
305	 * otherwise try to get some space for this transaction.
306	 */
307	*need_bytes = xlog_ticket_reservation(log, head, tic);
308	free_bytes = xlog_space_left(log, &head->grant);
309	if (!list_empty_careful(&head->waiters)) {
310		spin_lock(&head->lock);
311		if (!xlog_grant_head_wake(log, head, &free_bytes) ||
312		    free_bytes < *need_bytes) {
313			error = xlog_grant_head_wait(log, head, tic,
314						     *need_bytes);
315		}
316		spin_unlock(&head->lock);
317	} else if (free_bytes < *need_bytes) {
318		spin_lock(&head->lock);
319		error = xlog_grant_head_wait(log, head, tic, *need_bytes);
320		spin_unlock(&head->lock);
321	}
322
323	return error;
324}
325
326static void
327xlog_tic_reset_res(xlog_ticket_t *tic)
328{
329	tic->t_res_num = 0;
330	tic->t_res_arr_sum = 0;
331	tic->t_res_num_ophdrs = 0;
332}
333
334static void
335xlog_tic_add_region(xlog_ticket_t *tic, uint len, uint type)
336{
337	if (tic->t_res_num == XLOG_TIC_LEN_MAX) {
338		/* add to overflow and start again */
339		tic->t_res_o_flow += tic->t_res_arr_sum;
340		tic->t_res_num = 0;
341		tic->t_res_arr_sum = 0;
342	}
343
344	tic->t_res_arr[tic->t_res_num].r_len = len;
345	tic->t_res_arr[tic->t_res_num].r_type = type;
346	tic->t_res_arr_sum += len;
347	tic->t_res_num++;
348}
349
350bool
351xfs_log_writable(
352	struct xfs_mount	*mp)
353{
354	/*
355	 * Never write to the log on norecovery mounts, if the block device is
356	 * read-only, or if the filesystem is shutdown. Read-only mounts still
357	 * allow internal writes for log recovery and unmount purposes, so don't
358	 * restrict that case here.
359	 */
360	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
361		return false;
362	if (xfs_readonly_buftarg(mp->m_log->l_targ))
363		return false;
364	if (XFS_FORCED_SHUTDOWN(mp))
365		return false;
366	return true;
367}
368
369/*
370 * Replenish the byte reservation required by moving the grant write head.
371 */
372int
373xfs_log_regrant(
374	struct xfs_mount	*mp,
375	struct xlog_ticket	*tic)
376{
377	struct xlog		*log = mp->m_log;
378	int			need_bytes;
379	int			error = 0;
380
381	if (XLOG_FORCED_SHUTDOWN(log))
382		return -EIO;
383
384	XFS_STATS_INC(mp, xs_try_logspace);
385
386	/*
387	 * This is a new transaction on the ticket, so we need to change the
388	 * transaction ID so that the next transaction has a different TID in
389	 * the log. Just add one to the existing tid so that we can see chains
390	 * of rolling transactions in the log easily.
391	 */
392	tic->t_tid++;
393
394	xlog_grant_push_ail(log, tic->t_unit_res);
395
396	tic->t_curr_res = tic->t_unit_res;
397	xlog_tic_reset_res(tic);
398
399	if (tic->t_cnt > 0)
400		return 0;
401
402	trace_xfs_log_regrant(log, tic);
403
404	error = xlog_grant_head_check(log, &log->l_write_head, tic,
405				      &need_bytes);
406	if (error)
407		goto out_error;
408
409	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
410	trace_xfs_log_regrant_exit(log, tic);
411	xlog_verify_grant_tail(log);
412	return 0;
413
414out_error:
415	/*
416	 * If we are failing, make sure the ticket doesn't have any current
417	 * reservations.  We don't want to add this back when the ticket/
418	 * transaction gets cancelled.
419	 */
420	tic->t_curr_res = 0;
421	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
422	return error;
423}
424
425/*
426 * Reserve log space and return a ticket corresponding to the reservation.
427 *
428 * Each reservation is going to reserve extra space for a log record header.
429 * When writes happen to the on-disk log, we don't subtract the length of the
430 * log record header from any reservation.  By wasting space in each
431 * reservation, we prevent over allocation problems.
432 */
433int
434xfs_log_reserve(
435	struct xfs_mount	*mp,
436	int		 	unit_bytes,
437	int		 	cnt,
438	struct xlog_ticket	**ticp,
439	uint8_t		 	client,
440	bool			permanent)
441{
442	struct xlog		*log = mp->m_log;
443	struct xlog_ticket	*tic;
444	int			need_bytes;
445	int			error = 0;
446
447	ASSERT(client == XFS_TRANSACTION || client == XFS_LOG);
448
449	if (XLOG_FORCED_SHUTDOWN(log))
450		return -EIO;
451
452	XFS_STATS_INC(mp, xs_try_logspace);
453
454	ASSERT(*ticp == NULL);
455	tic = xlog_ticket_alloc(log, unit_bytes, cnt, client, permanent);
456	*ticp = tic;
457
458	xlog_grant_push_ail(log, tic->t_cnt ? tic->t_unit_res * tic->t_cnt
459					    : tic->t_unit_res);
460
461	trace_xfs_log_reserve(log, tic);
462
463	error = xlog_grant_head_check(log, &log->l_reserve_head, tic,
464				      &need_bytes);
465	if (error)
466		goto out_error;
467
468	xlog_grant_add_space(log, &log->l_reserve_head.grant, need_bytes);
469	xlog_grant_add_space(log, &log->l_write_head.grant, need_bytes);
470	trace_xfs_log_reserve_exit(log, tic);
471	xlog_verify_grant_tail(log);
472	return 0;
473
474out_error:
475	/*
476	 * If we are failing, make sure the ticket doesn't have any current
477	 * reservations.  We don't want to add this back when the ticket/
478	 * transaction gets cancelled.
479	 */
480	tic->t_curr_res = 0;
481	tic->t_cnt = 0;	/* ungrant will give back unit_res * t_cnt. */
482	return error;
483}
484
485static bool
486__xlog_state_release_iclog(
487	struct xlog		*log,
488	struct xlog_in_core	*iclog)
489{
490	lockdep_assert_held(&log->l_icloglock);
491
492	if (iclog->ic_state == XLOG_STATE_WANT_SYNC) {
493		/* update tail before writing to iclog */
494		xfs_lsn_t tail_lsn = xlog_assign_tail_lsn(log->l_mp);
495
496		iclog->ic_state = XLOG_STATE_SYNCING;
497		iclog->ic_header.h_tail_lsn = cpu_to_be64(tail_lsn);
498		xlog_verify_tail_lsn(log, iclog, tail_lsn);
499		/* cycle incremented when incrementing curr_block */
500		return true;
501	}
502
503	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
504	return false;
505}
506
507/*
508 * Flush iclog to disk if this is the last reference to the given iclog and the
509 * it is in the WANT_SYNC state.
510 */
511static int
512xlog_state_release_iclog(
513	struct xlog		*log,
514	struct xlog_in_core	*iclog)
515{
516	lockdep_assert_held(&log->l_icloglock);
517
518	if (iclog->ic_state == XLOG_STATE_IOERROR)
519		return -EIO;
520
521	if (atomic_dec_and_test(&iclog->ic_refcnt) &&
522	    __xlog_state_release_iclog(log, iclog)) {
523		spin_unlock(&log->l_icloglock);
524		xlog_sync(log, iclog);
525		spin_lock(&log->l_icloglock);
526	}
527
528	return 0;
529}
530
531void
532xfs_log_release_iclog(
533	struct xlog_in_core	*iclog)
534{
535	struct xlog		*log = iclog->ic_log;
536	bool			sync = false;
537
538	if (atomic_dec_and_lock(&iclog->ic_refcnt, &log->l_icloglock)) {
539		if (iclog->ic_state != XLOG_STATE_IOERROR)
540			sync = __xlog_state_release_iclog(log, iclog);
541		spin_unlock(&log->l_icloglock);
542	}
543
544	if (sync)
545		xlog_sync(log, iclog);
546}
547
548/*
549 * Mount a log filesystem
550 *
551 * mp		- ubiquitous xfs mount point structure
552 * log_target	- buftarg of on-disk log device
553 * blk_offset	- Start block # where block size is 512 bytes (BBSIZE)
554 * num_bblocks	- Number of BBSIZE blocks in on-disk log
555 *
556 * Return error or zero.
557 */
558int
559xfs_log_mount(
560	xfs_mount_t	*mp,
561	xfs_buftarg_t	*log_target,
562	xfs_daddr_t	blk_offset,
563	int		num_bblks)
564{
565	bool		fatal = xfs_sb_version_hascrc(&mp->m_sb);
566	int		error = 0;
567	int		min_logfsbs;
568
569	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
570		xfs_notice(mp, "Mounting V%d Filesystem",
571			   XFS_SB_VERSION_NUM(&mp->m_sb));
572	} else {
573		xfs_notice(mp,
574"Mounting V%d filesystem in no-recovery mode. Filesystem will be inconsistent.",
575			   XFS_SB_VERSION_NUM(&mp->m_sb));
576		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
577	}
578
579	mp->m_log = xlog_alloc_log(mp, log_target, blk_offset, num_bblks);
580	if (IS_ERR(mp->m_log)) {
581		error = PTR_ERR(mp->m_log);
582		goto out;
583	}
584
585	/*
586	 * Validate the given log space and drop a critical message via syslog
587	 * if the log size is too small that would lead to some unexpected
588	 * situations in transaction log space reservation stage.
589	 *
590	 * Note: we can't just reject the mount if the validation fails.  This
591	 * would mean that people would have to downgrade their kernel just to
592	 * remedy the situation as there is no way to grow the log (short of
593	 * black magic surgery with xfs_db).
594	 *
595	 * We can, however, reject mounts for CRC format filesystems, as the
596	 * mkfs binary being used to make the filesystem should never create a
597	 * filesystem with a log that is too small.
598	 */
599	min_logfsbs = xfs_log_calc_minimum_size(mp);
600
601	if (mp->m_sb.sb_logblocks < min_logfsbs) {
602		xfs_warn(mp,
603		"Log size %d blocks too small, minimum size is %d blocks",
604			 mp->m_sb.sb_logblocks, min_logfsbs);
605		error = -EINVAL;
606	} else if (mp->m_sb.sb_logblocks > XFS_MAX_LOG_BLOCKS) {
607		xfs_warn(mp,
608		"Log size %d blocks too large, maximum size is %lld blocks",
609			 mp->m_sb.sb_logblocks, XFS_MAX_LOG_BLOCKS);
610		error = -EINVAL;
611	} else if (XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks) > XFS_MAX_LOG_BYTES) {
612		xfs_warn(mp,
613		"log size %lld bytes too large, maximum size is %lld bytes",
614			 XFS_FSB_TO_B(mp, mp->m_sb.sb_logblocks),
615			 XFS_MAX_LOG_BYTES);
616		error = -EINVAL;
617	} else if (mp->m_sb.sb_logsunit > 1 &&
618		   mp->m_sb.sb_logsunit % mp->m_sb.sb_blocksize) {
619		xfs_warn(mp,
620		"log stripe unit %u bytes must be a multiple of block size",
621			 mp->m_sb.sb_logsunit);
622		error = -EINVAL;
623		fatal = true;
624	}
625	if (error) {
626		/*
627		 * Log check errors are always fatal on v5; or whenever bad
628		 * metadata leads to a crash.
629		 */
630		if (fatal) {
631			xfs_crit(mp, "AAIEEE! Log failed size checks. Abort!");
632			ASSERT(0);
633			goto out_free_log;
634		}
635		xfs_crit(mp, "Log size out of supported range.");
636		xfs_crit(mp,
637"Continuing onwards, but if log hangs are experienced then please report this message in the bug report.");
638	}
639
640	/*
641	 * Initialize the AIL now we have a log.
642	 */
643	error = xfs_trans_ail_init(mp);
644	if (error) {
645		xfs_warn(mp, "AIL initialisation failed: error %d", error);
646		goto out_free_log;
647	}
648	mp->m_log->l_ailp = mp->m_ail;
649
650	/*
651	 * skip log recovery on a norecovery mount.  pretend it all
652	 * just worked.
653	 */
654	if (!(mp->m_flags & XFS_MOUNT_NORECOVERY)) {
655		int	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
656
657		if (readonly)
658			mp->m_flags &= ~XFS_MOUNT_RDONLY;
659
660		error = xlog_recover(mp->m_log);
661
662		if (readonly)
663			mp->m_flags |= XFS_MOUNT_RDONLY;
664		if (error) {
665			xfs_warn(mp, "log mount/recovery failed: error %d",
666				error);
667			xlog_recover_cancel(mp->m_log);
668			goto out_destroy_ail;
669		}
670	}
671
672	error = xfs_sysfs_init(&mp->m_log->l_kobj, &xfs_log_ktype, &mp->m_kobj,
673			       "log");
674	if (error)
675		goto out_destroy_ail;
676
677	/* Normal transactions can now occur */
678	mp->m_log->l_flags &= ~XLOG_ACTIVE_RECOVERY;
679
680	/*
681	 * Now the log has been fully initialised and we know were our
682	 * space grant counters are, we can initialise the permanent ticket
683	 * needed for delayed logging to work.
684	 */
685	xlog_cil_init_post_recovery(mp->m_log);
686
687	return 0;
688
689out_destroy_ail:
690	xfs_trans_ail_destroy(mp);
691out_free_log:
692	xlog_dealloc_log(mp->m_log);
693out:
694	return error;
695}
696
697/*
698 * Finish the recovery of the file system.  This is separate from the
699 * xfs_log_mount() call, because it depends on the code in xfs_mountfs() to read
700 * in the root and real-time bitmap inodes between calling xfs_log_mount() and
701 * here.
702 *
703 * If we finish recovery successfully, start the background log work. If we are
704 * not doing recovery, then we have a RO filesystem and we don't need to start
705 * it.
706 */
707int
708xfs_log_mount_finish(
709	struct xfs_mount	*mp)
710{
711	int	error = 0;
712	bool	readonly = (mp->m_flags & XFS_MOUNT_RDONLY);
713	bool	recovered = mp->m_log->l_flags & XLOG_RECOVERY_NEEDED;
714
715	if (mp->m_flags & XFS_MOUNT_NORECOVERY) {
716		ASSERT(mp->m_flags & XFS_MOUNT_RDONLY);
717		return 0;
718	} else if (readonly) {
719		/* Allow unlinked processing to proceed */
720		mp->m_flags &= ~XFS_MOUNT_RDONLY;
721	}
722
723	/*
724	 * During the second phase of log recovery, we need iget and
725	 * iput to behave like they do for an active filesystem.
726	 * xfs_fs_drop_inode needs to be able to prevent the deletion
727	 * of inodes before we're done replaying log items on those
728	 * inodes.  Turn it off immediately after recovery finishes
729	 * so that we don't leak the quota inodes if subsequent mount
730	 * activities fail.
731	 *
732	 * We let all inodes involved in redo item processing end up on
733	 * the LRU instead of being evicted immediately so that if we do
734	 * something to an unlinked inode, the irele won't cause
735	 * premature truncation and freeing of the inode, which results
736	 * in log recovery failure.  We have to evict the unreferenced
737	 * lru inodes after clearing SB_ACTIVE because we don't
738	 * otherwise clean up the lru if there's a subsequent failure in
739	 * xfs_mountfs, which leads to us leaking the inodes if nothing
740	 * else (e.g. quotacheck) references the inodes before the
741	 * mount failure occurs.
742	 */
743	mp->m_super->s_flags |= SB_ACTIVE;
744	error = xlog_recover_finish(mp->m_log);
745	if (!error)
746		xfs_log_work_queue(mp);
747	mp->m_super->s_flags &= ~SB_ACTIVE;
748	evict_inodes(mp->m_super);
749
750	/*
751	 * Drain the buffer LRU after log recovery. This is required for v4
752	 * filesystems to avoid leaving around buffers with NULL verifier ops,
753	 * but we do it unconditionally to make sure we're always in a clean
754	 * cache state after mount.
755	 *
756	 * Don't push in the error case because the AIL may have pending intents
757	 * that aren't removed until recovery is cancelled.
758	 */
759	if (!error && recovered) {
760		xfs_log_force(mp, XFS_LOG_SYNC);
761		xfs_ail_push_all_sync(mp->m_ail);
762	}
763	xfs_wait_buftarg(mp->m_ddev_targp);
764
765	if (readonly)
766		mp->m_flags |= XFS_MOUNT_RDONLY;
767
768	/* Make sure the log is dead if we're returning failure. */
769	ASSERT(!error || (mp->m_log->l_flags & XLOG_IO_ERROR));
770
771	return error;
772}
773
774/*
775 * The mount has failed. Cancel the recovery if it hasn't completed and destroy
776 * the log.
777 */
778void
779xfs_log_mount_cancel(
780	struct xfs_mount	*mp)
781{
782	xlog_recover_cancel(mp->m_log);
783	xfs_log_unmount(mp);
784}
785
786/*
787 * Wait for the iclog to be written disk, or return an error if the log has been
788 * shut down.
789 */
790static int
791xlog_wait_on_iclog(
792	struct xlog_in_core	*iclog)
793		__releases(iclog->ic_log->l_icloglock)
794{
795	struct xlog		*log = iclog->ic_log;
796
797	if (!XLOG_FORCED_SHUTDOWN(log) &&
798	    iclog->ic_state != XLOG_STATE_ACTIVE &&
799	    iclog->ic_state != XLOG_STATE_DIRTY) {
800		XFS_STATS_INC(log->l_mp, xs_log_force_sleep);
801		xlog_wait(&iclog->ic_force_wait, &log->l_icloglock);
802	} else {
803		spin_unlock(&log->l_icloglock);
804	}
805
806	if (XLOG_FORCED_SHUTDOWN(log))
807		return -EIO;
808	return 0;
809}
810
811/*
812 * Write out an unmount record using the ticket provided. We have to account for
813 * the data space used in the unmount ticket as this write is not done from a
814 * transaction context that has already done the accounting for us.
815 */
816static int
817xlog_write_unmount_record(
818	struct xlog		*log,
819	struct xlog_ticket	*ticket,
820	xfs_lsn_t		*lsn,
821	uint			flags)
822{
823	struct xfs_unmount_log_format ulf = {
824		.magic = XLOG_UNMOUNT_TYPE,
825	};
826	struct xfs_log_iovec reg = {
827		.i_addr = &ulf,
828		.i_len = sizeof(ulf),
829		.i_type = XLOG_REG_TYPE_UNMOUNT,
830	};
831	struct xfs_log_vec vec = {
832		.lv_niovecs = 1,
833		.lv_iovecp = &reg,
834	};
835
836	/* account for space used by record data */
837	ticket->t_curr_res -= sizeof(ulf);
838	return xlog_write(log, &vec, ticket, lsn, NULL, flags, false);
839}
840
841/*
842 * Mark the filesystem clean by writing an unmount record to the head of the
843 * log.
844 */
845static void
846xlog_unmount_write(
847	struct xlog		*log)
848{
849	struct xfs_mount	*mp = log->l_mp;
850	struct xlog_in_core	*iclog;
851	struct xlog_ticket	*tic = NULL;
852	xfs_lsn_t		lsn;
853	uint			flags = XLOG_UNMOUNT_TRANS;
854	int			error;
855
856	error = xfs_log_reserve(mp, 600, 1, &tic, XFS_LOG, 0);
857	if (error)
858		goto out_err;
859
860	error = xlog_write_unmount_record(log, tic, &lsn, flags);
861	/*
862	 * At this point, we're umounting anyway, so there's no point in
863	 * transitioning log state to IOERROR. Just continue...
864	 */
865out_err:
866	if (error)
867		xfs_alert(mp, "%s: unmount record failed", __func__);
868
869	spin_lock(&log->l_icloglock);
870	iclog = log->l_iclog;
871	atomic_inc(&iclog->ic_refcnt);
872	if (iclog->ic_state == XLOG_STATE_ACTIVE)
873		xlog_state_switch_iclogs(log, iclog, 0);
874	else
875		ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
876		       iclog->ic_state == XLOG_STATE_IOERROR);
877	error = xlog_state_release_iclog(log, iclog);
878	xlog_wait_on_iclog(iclog);
879
880	if (tic) {
881		trace_xfs_log_umount_write(log, tic);
882		xfs_log_ticket_ungrant(log, tic);
883	}
884}
885
886static void
887xfs_log_unmount_verify_iclog(
888	struct xlog		*log)
889{
890	struct xlog_in_core	*iclog = log->l_iclog;
891
892	do {
893		ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
894		ASSERT(iclog->ic_offset == 0);
895	} while ((iclog = iclog->ic_next) != log->l_iclog);
896}
897
898/*
899 * Unmount record used to have a string "Unmount filesystem--" in the
900 * data section where the "Un" was really a magic number (XLOG_UNMOUNT_TYPE).
901 * We just write the magic number now since that particular field isn't
902 * currently architecture converted and "Unmount" is a bit foo.
903 * As far as I know, there weren't any dependencies on the old behaviour.
904 */
905static void
906xfs_log_unmount_write(
907	struct xfs_mount	*mp)
908{
909	struct xlog		*log = mp->m_log;
910
911	if (!xfs_log_writable(mp))
912		return;
913
914	xfs_log_force(mp, XFS_LOG_SYNC);
915
916	if (XLOG_FORCED_SHUTDOWN(log))
917		return;
918
919	/*
920	 * If we think the summary counters are bad, avoid writing the unmount
921	 * record to force log recovery at next mount, after which the summary
922	 * counters will be recalculated.  Refer to xlog_check_unmount_rec for
923	 * more details.
924	 */
925	if (XFS_TEST_ERROR(xfs_fs_has_sickness(mp, XFS_SICK_FS_COUNTERS), mp,
926			XFS_ERRTAG_FORCE_SUMMARY_RECALC)) {
927		xfs_alert(mp, "%s: will fix summary counters at next mount",
928				__func__);
929		return;
930	}
931
932	xfs_log_unmount_verify_iclog(log);
933	xlog_unmount_write(log);
934}
935
936/*
937 * Empty the log for unmount/freeze.
938 *
939 * To do this, we first need to shut down the background log work so it is not
940 * trying to cover the log as we clean up. We then need to unpin all objects in
941 * the log so we can then flush them out. Once they have completed their IO and
942 * run the callbacks removing themselves from the AIL, we can write the unmount
943 * record.
944 */
945void
946xfs_log_quiesce(
947	struct xfs_mount	*mp)
948{
949	cancel_delayed_work_sync(&mp->m_log->l_work);
950	xfs_log_force(mp, XFS_LOG_SYNC);
951
952	/*
953	 * The superblock buffer is uncached and while xfs_ail_push_all_sync()
954	 * will push it, xfs_wait_buftarg() will not wait for it. Further,
955	 * xfs_buf_iowait() cannot be used because it was pushed with the
956	 * XBF_ASYNC flag set, so we need to use a lock/unlock pair to wait for
957	 * the IO to complete.
958	 */
959	xfs_ail_push_all_sync(mp->m_ail);
960	xfs_wait_buftarg(mp->m_ddev_targp);
961	xfs_buf_lock(mp->m_sb_bp);
962	xfs_buf_unlock(mp->m_sb_bp);
963
964	xfs_log_unmount_write(mp);
965}
966
967/*
968 * Shut down and release the AIL and Log.
969 *
970 * During unmount, we need to ensure we flush all the dirty metadata objects
971 * from the AIL so that the log is empty before we write the unmount record to
972 * the log. Once this is done, we can tear down the AIL and the log.
973 */
974void
975xfs_log_unmount(
976	struct xfs_mount	*mp)
977{
978	xfs_log_quiesce(mp);
979
980	xfs_trans_ail_destroy(mp);
981
982	xfs_sysfs_del(&mp->m_log->l_kobj);
983
984	xlog_dealloc_log(mp->m_log);
985}
986
987void
988xfs_log_item_init(
989	struct xfs_mount	*mp,
990	struct xfs_log_item	*item,
991	int			type,
992	const struct xfs_item_ops *ops)
993{
994	item->li_mountp = mp;
995	item->li_ailp = mp->m_ail;
996	item->li_type = type;
997	item->li_ops = ops;
998	item->li_lv = NULL;
999
1000	INIT_LIST_HEAD(&item->li_ail);
1001	INIT_LIST_HEAD(&item->li_cil);
1002	INIT_LIST_HEAD(&item->li_bio_list);
1003	INIT_LIST_HEAD(&item->li_trans);
1004}
1005
1006/*
1007 * Wake up processes waiting for log space after we have moved the log tail.
1008 */
1009void
1010xfs_log_space_wake(
1011	struct xfs_mount	*mp)
1012{
1013	struct xlog		*log = mp->m_log;
1014	int			free_bytes;
1015
1016	if (XLOG_FORCED_SHUTDOWN(log))
1017		return;
1018
1019	if (!list_empty_careful(&log->l_write_head.waiters)) {
1020		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1021
1022		spin_lock(&log->l_write_head.lock);
1023		free_bytes = xlog_space_left(log, &log->l_write_head.grant);
1024		xlog_grant_head_wake(log, &log->l_write_head, &free_bytes);
1025		spin_unlock(&log->l_write_head.lock);
1026	}
1027
1028	if (!list_empty_careful(&log->l_reserve_head.waiters)) {
1029		ASSERT(!(log->l_flags & XLOG_ACTIVE_RECOVERY));
1030
1031		spin_lock(&log->l_reserve_head.lock);
1032		free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1033		xlog_grant_head_wake(log, &log->l_reserve_head, &free_bytes);
1034		spin_unlock(&log->l_reserve_head.lock);
1035	}
1036}
1037
1038/*
1039 * Determine if we have a transaction that has gone to disk that needs to be
1040 * covered. To begin the transition to the idle state firstly the log needs to
1041 * be idle. That means the CIL, the AIL and the iclogs needs to be empty before
1042 * we start attempting to cover the log.
1043 *
1044 * Only if we are then in a state where covering is needed, the caller is
1045 * informed that dummy transactions are required to move the log into the idle
1046 * state.
1047 *
1048 * If there are any items in the AIl or CIL, then we do not want to attempt to
1049 * cover the log as we may be in a situation where there isn't log space
1050 * available to run a dummy transaction and this can lead to deadlocks when the
1051 * tail of the log is pinned by an item that is modified in the CIL.  Hence
1052 * there's no point in running a dummy transaction at this point because we
1053 * can't start trying to idle the log until both the CIL and AIL are empty.
1054 */
1055static int
1056xfs_log_need_covered(xfs_mount_t *mp)
1057{
1058	struct xlog	*log = mp->m_log;
1059	int		needed = 0;
1060
1061	if (!xfs_fs_writable(mp, SB_FREEZE_WRITE))
1062		return 0;
1063
1064	if (!xlog_cil_empty(log))
1065		return 0;
1066
1067	spin_lock(&log->l_icloglock);
1068	switch (log->l_covered_state) {
1069	case XLOG_STATE_COVER_DONE:
1070	case XLOG_STATE_COVER_DONE2:
1071	case XLOG_STATE_COVER_IDLE:
1072		break;
1073	case XLOG_STATE_COVER_NEED:
1074	case XLOG_STATE_COVER_NEED2:
1075		if (xfs_ail_min_lsn(log->l_ailp))
1076			break;
1077		if (!xlog_iclogs_empty(log))
1078			break;
1079
1080		needed = 1;
1081		if (log->l_covered_state == XLOG_STATE_COVER_NEED)
1082			log->l_covered_state = XLOG_STATE_COVER_DONE;
1083		else
1084			log->l_covered_state = XLOG_STATE_COVER_DONE2;
1085		break;
1086	default:
1087		needed = 1;
1088		break;
1089	}
1090	spin_unlock(&log->l_icloglock);
1091	return needed;
1092}
1093
1094/*
1095 * We may be holding the log iclog lock upon entering this routine.
1096 */
1097xfs_lsn_t
1098xlog_assign_tail_lsn_locked(
1099	struct xfs_mount	*mp)
1100{
1101	struct xlog		*log = mp->m_log;
1102	struct xfs_log_item	*lip;
1103	xfs_lsn_t		tail_lsn;
1104
1105	assert_spin_locked(&mp->m_ail->ail_lock);
1106
1107	/*
1108	 * To make sure we always have a valid LSN for the log tail we keep
1109	 * track of the last LSN which was committed in log->l_last_sync_lsn,
1110	 * and use that when the AIL was empty.
1111	 */
1112	lip = xfs_ail_min(mp->m_ail);
1113	if (lip)
1114		tail_lsn = lip->li_lsn;
1115	else
1116		tail_lsn = atomic64_read(&log->l_last_sync_lsn);
1117	trace_xfs_log_assign_tail_lsn(log, tail_lsn);
1118	atomic64_set(&log->l_tail_lsn, tail_lsn);
1119	return tail_lsn;
1120}
1121
1122xfs_lsn_t
1123xlog_assign_tail_lsn(
1124	struct xfs_mount	*mp)
1125{
1126	xfs_lsn_t		tail_lsn;
1127
1128	spin_lock(&mp->m_ail->ail_lock);
1129	tail_lsn = xlog_assign_tail_lsn_locked(mp);
1130	spin_unlock(&mp->m_ail->ail_lock);
1131
1132	return tail_lsn;
1133}
1134
1135/*
1136 * Return the space in the log between the tail and the head.  The head
1137 * is passed in the cycle/bytes formal parms.  In the special case where
1138 * the reserve head has wrapped passed the tail, this calculation is no
1139 * longer valid.  In this case, just return 0 which means there is no space
1140 * in the log.  This works for all places where this function is called
1141 * with the reserve head.  Of course, if the write head were to ever
1142 * wrap the tail, we should blow up.  Rather than catch this case here,
1143 * we depend on other ASSERTions in other parts of the code.   XXXmiken
1144 *
1145 * This code also handles the case where the reservation head is behind
1146 * the tail.  The details of this case are described below, but the end
1147 * result is that we return the size of the log as the amount of space left.
1148 */
1149STATIC int
1150xlog_space_left(
1151	struct xlog	*log,
1152	atomic64_t	*head)
1153{
1154	int		free_bytes;
1155	int		tail_bytes;
1156	int		tail_cycle;
1157	int		head_cycle;
1158	int		head_bytes;
1159
1160	xlog_crack_grant_head(head, &head_cycle, &head_bytes);
1161	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_bytes);
1162	tail_bytes = BBTOB(tail_bytes);
1163	if (tail_cycle == head_cycle && head_bytes >= tail_bytes)
1164		free_bytes = log->l_logsize - (head_bytes - tail_bytes);
1165	else if (tail_cycle + 1 < head_cycle)
1166		return 0;
1167	else if (tail_cycle < head_cycle) {
1168		ASSERT(tail_cycle == (head_cycle - 1));
1169		free_bytes = tail_bytes - head_bytes;
1170	} else {
1171		/*
1172		 * The reservation head is behind the tail.
1173		 * In this case we just want to return the size of the
1174		 * log as the amount of space left.
1175		 */
1176		xfs_alert(log->l_mp, "xlog_space_left: head behind tail");
1177		xfs_alert(log->l_mp,
1178			  "  tail_cycle = %d, tail_bytes = %d",
1179			  tail_cycle, tail_bytes);
1180		xfs_alert(log->l_mp,
1181			  "  GH   cycle = %d, GH   bytes = %d",
1182			  head_cycle, head_bytes);
1183		ASSERT(0);
1184		free_bytes = log->l_logsize;
1185	}
1186	return free_bytes;
1187}
1188
1189
1190static void
1191xlog_ioend_work(
1192	struct work_struct	*work)
1193{
1194	struct xlog_in_core     *iclog =
1195		container_of(work, struct xlog_in_core, ic_end_io_work);
1196	struct xlog		*log = iclog->ic_log;
1197	int			error;
1198
1199	error = blk_status_to_errno(iclog->ic_bio.bi_status);
1200#ifdef DEBUG
1201	/* treat writes with injected CRC errors as failed */
1202	if (iclog->ic_fail_crc)
1203		error = -EIO;
1204#endif
1205
1206	/*
1207	 * Race to shutdown the filesystem if we see an error.
1208	 */
1209	if (XFS_TEST_ERROR(error, log->l_mp, XFS_ERRTAG_IODONE_IOERR)) {
1210		xfs_alert(log->l_mp, "log I/O error %d", error);
1211		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1212	}
1213
1214	xlog_state_done_syncing(iclog);
1215	bio_uninit(&iclog->ic_bio);
1216
1217	/*
1218	 * Drop the lock to signal that we are done. Nothing references the
1219	 * iclog after this, so an unmount waiting on this lock can now tear it
1220	 * down safely. As such, it is unsafe to reference the iclog after the
1221	 * unlock as we could race with it being freed.
1222	 */
1223	up(&iclog->ic_sema);
1224}
1225
1226/*
1227 * Return size of each in-core log record buffer.
1228 *
1229 * All machines get 8 x 32kB buffers by default, unless tuned otherwise.
1230 *
1231 * If the filesystem blocksize is too large, we may need to choose a
1232 * larger size since the directory code currently logs entire blocks.
1233 */
1234STATIC void
1235xlog_get_iclog_buffer_size(
1236	struct xfs_mount	*mp,
1237	struct xlog		*log)
1238{
1239	if (mp->m_logbufs <= 0)
1240		mp->m_logbufs = XLOG_MAX_ICLOGS;
1241	if (mp->m_logbsize <= 0)
1242		mp->m_logbsize = XLOG_BIG_RECORD_BSIZE;
1243
1244	log->l_iclog_bufs = mp->m_logbufs;
1245	log->l_iclog_size = mp->m_logbsize;
1246
1247	/*
1248	 * # headers = size / 32k - one header holds cycles from 32k of data.
1249	 */
1250	log->l_iclog_heads =
1251		DIV_ROUND_UP(mp->m_logbsize, XLOG_HEADER_CYCLE_SIZE);
1252	log->l_iclog_hsize = log->l_iclog_heads << BBSHIFT;
1253}
1254
1255void
1256xfs_log_work_queue(
1257	struct xfs_mount        *mp)
1258{
1259	queue_delayed_work(mp->m_sync_workqueue, &mp->m_log->l_work,
1260				msecs_to_jiffies(xfs_syncd_centisecs * 10));
1261}
1262
1263/*
1264 * Every sync period we need to unpin all items in the AIL and push them to
1265 * disk. If there is nothing dirty, then we might need to cover the log to
1266 * indicate that the filesystem is idle.
1267 */
1268static void
1269xfs_log_worker(
1270	struct work_struct	*work)
1271{
1272	struct xlog		*log = container_of(to_delayed_work(work),
1273						struct xlog, l_work);
1274	struct xfs_mount	*mp = log->l_mp;
1275
1276	/* dgc: errors ignored - not fatal and nowhere to report them */
1277	if (xfs_log_need_covered(mp)) {
1278		/*
1279		 * Dump a transaction into the log that contains no real change.
1280		 * This is needed to stamp the current tail LSN into the log
1281		 * during the covering operation.
1282		 *
1283		 * We cannot use an inode here for this - that will push dirty
1284		 * state back up into the VFS and then periodic inode flushing
1285		 * will prevent log covering from making progress. Hence we
1286		 * synchronously log the superblock instead to ensure the
1287		 * superblock is immediately unpinned and can be written back.
1288		 */
1289		xfs_sync_sb(mp, true);
1290	} else
1291		xfs_log_force(mp, 0);
1292
1293	/* start pushing all the metadata that is currently dirty */
1294	xfs_ail_push_all(mp->m_ail);
1295
1296	/* queue us up again */
1297	xfs_log_work_queue(mp);
1298}
1299
1300/*
1301 * This routine initializes some of the log structure for a given mount point.
1302 * Its primary purpose is to fill in enough, so recovery can occur.  However,
1303 * some other stuff may be filled in too.
1304 */
1305STATIC struct xlog *
1306xlog_alloc_log(
1307	struct xfs_mount	*mp,
1308	struct xfs_buftarg	*log_target,
1309	xfs_daddr_t		blk_offset,
1310	int			num_bblks)
1311{
1312	struct xlog		*log;
1313	xlog_rec_header_t	*head;
1314	xlog_in_core_t		**iclogp;
1315	xlog_in_core_t		*iclog, *prev_iclog=NULL;
1316	int			i;
1317	int			error = -ENOMEM;
1318	uint			log2_size = 0;
1319
1320	log = kmem_zalloc(sizeof(struct xlog), KM_MAYFAIL);
1321	if (!log) {
1322		xfs_warn(mp, "Log allocation failed: No memory!");
1323		goto out;
1324	}
1325
1326	log->l_mp	   = mp;
1327	log->l_targ	   = log_target;
1328	log->l_logsize     = BBTOB(num_bblks);
1329	log->l_logBBstart  = blk_offset;
1330	log->l_logBBsize   = num_bblks;
1331	log->l_covered_state = XLOG_STATE_COVER_IDLE;
1332	log->l_flags	   |= XLOG_ACTIVE_RECOVERY;
1333	INIT_DELAYED_WORK(&log->l_work, xfs_log_worker);
1334
1335	log->l_prev_block  = -1;
1336	/* log->l_tail_lsn = 0x100000000LL; cycle = 1; current block = 0 */
1337	xlog_assign_atomic_lsn(&log->l_tail_lsn, 1, 0);
1338	xlog_assign_atomic_lsn(&log->l_last_sync_lsn, 1, 0);
1339	log->l_curr_cycle  = 1;	    /* 0 is bad since this is initial value */
1340
1341	xlog_grant_head_init(&log->l_reserve_head);
1342	xlog_grant_head_init(&log->l_write_head);
1343
1344	error = -EFSCORRUPTED;
1345	if (xfs_sb_version_hassector(&mp->m_sb)) {
1346	        log2_size = mp->m_sb.sb_logsectlog;
1347		if (log2_size < BBSHIFT) {
1348			xfs_warn(mp, "Log sector size too small (0x%x < 0x%x)",
1349				log2_size, BBSHIFT);
1350			goto out_free_log;
1351		}
1352
1353	        log2_size -= BBSHIFT;
1354		if (log2_size > mp->m_sectbb_log) {
1355			xfs_warn(mp, "Log sector size too large (0x%x > 0x%x)",
1356				log2_size, mp->m_sectbb_log);
1357			goto out_free_log;
1358		}
1359
1360		/* for larger sector sizes, must have v2 or external log */
1361		if (log2_size && log->l_logBBstart > 0 &&
1362			    !xfs_sb_version_haslogv2(&mp->m_sb)) {
1363			xfs_warn(mp,
1364		"log sector size (0x%x) invalid for configuration.",
1365				log2_size);
1366			goto out_free_log;
1367		}
1368	}
1369	log->l_sectBBsize = 1 << log2_size;
1370
1371	xlog_get_iclog_buffer_size(mp, log);
1372
1373	spin_lock_init(&log->l_icloglock);
1374	init_waitqueue_head(&log->l_flush_wait);
1375
1376	iclogp = &log->l_iclog;
1377	/*
1378	 * The amount of memory to allocate for the iclog structure is
1379	 * rather funky due to the way the structure is defined.  It is
1380	 * done this way so that we can use different sizes for machines
1381	 * with different amounts of memory.  See the definition of
1382	 * xlog_in_core_t in xfs_log_priv.h for details.
1383	 */
1384	ASSERT(log->l_iclog_size >= 4096);
1385	for (i = 0; i < log->l_iclog_bufs; i++) {
1386		int align_mask = xfs_buftarg_dma_alignment(mp->m_logdev_targp);
1387		size_t bvec_size = howmany(log->l_iclog_size, PAGE_SIZE) *
1388				sizeof(struct bio_vec);
1389
1390		iclog = kmem_zalloc(sizeof(*iclog) + bvec_size, KM_MAYFAIL);
1391		if (!iclog)
1392			goto out_free_iclog;
1393
1394		*iclogp = iclog;
1395		iclog->ic_prev = prev_iclog;
1396		prev_iclog = iclog;
1397
1398		iclog->ic_data = kmem_alloc_io(log->l_iclog_size, align_mask,
1399						KM_MAYFAIL | KM_ZERO);
1400		if (!iclog->ic_data)
1401			goto out_free_iclog;
1402#ifdef DEBUG
1403		log->l_iclog_bak[i] = &iclog->ic_header;
1404#endif
1405		head = &iclog->ic_header;
1406		memset(head, 0, sizeof(xlog_rec_header_t));
1407		head->h_magicno = cpu_to_be32(XLOG_HEADER_MAGIC_NUM);
1408		head->h_version = cpu_to_be32(
1409			xfs_sb_version_haslogv2(&log->l_mp->m_sb) ? 2 : 1);
1410		head->h_size = cpu_to_be32(log->l_iclog_size);
1411		/* new fields */
1412		head->h_fmt = cpu_to_be32(XLOG_FMT);
1413		memcpy(&head->h_fs_uuid, &mp->m_sb.sb_uuid, sizeof(uuid_t));
1414
1415		iclog->ic_size = log->l_iclog_size - log->l_iclog_hsize;
1416		iclog->ic_state = XLOG_STATE_ACTIVE;
1417		iclog->ic_log = log;
1418		atomic_set(&iclog->ic_refcnt, 0);
1419		spin_lock_init(&iclog->ic_callback_lock);
1420		INIT_LIST_HEAD(&iclog->ic_callbacks);
1421		iclog->ic_datap = (char *)iclog->ic_data + log->l_iclog_hsize;
1422
1423		init_waitqueue_head(&iclog->ic_force_wait);
1424		init_waitqueue_head(&iclog->ic_write_wait);
1425		INIT_WORK(&iclog->ic_end_io_work, xlog_ioend_work);
1426		sema_init(&iclog->ic_sema, 1);
1427
1428		iclogp = &iclog->ic_next;
1429	}
1430	*iclogp = log->l_iclog;			/* complete ring */
1431	log->l_iclog->ic_prev = prev_iclog;	/* re-write 1st prev ptr */
1432
1433	log->l_ioend_workqueue = alloc_workqueue("xfs-log/%s",
1434			WQ_MEM_RECLAIM | WQ_FREEZABLE | WQ_HIGHPRI, 0,
1435			mp->m_super->s_id);
1436	if (!log->l_ioend_workqueue)
1437		goto out_free_iclog;
1438
1439	error = xlog_cil_init(log);
1440	if (error)
1441		goto out_destroy_workqueue;
1442	return log;
1443
1444out_destroy_workqueue:
1445	destroy_workqueue(log->l_ioend_workqueue);
1446out_free_iclog:
1447	for (iclog = log->l_iclog; iclog; iclog = prev_iclog) {
1448		prev_iclog = iclog->ic_next;
1449		kmem_free(iclog->ic_data);
1450		kmem_free(iclog);
1451		if (prev_iclog == log->l_iclog)
1452			break;
1453	}
1454out_free_log:
1455	kmem_free(log);
1456out:
1457	return ERR_PTR(error);
1458}	/* xlog_alloc_log */
1459
1460/*
1461 * Write out the commit record of a transaction associated with the given
1462 * ticket to close off a running log write. Return the lsn of the commit record.
1463 */
1464int
1465xlog_commit_record(
1466	struct xlog		*log,
1467	struct xlog_ticket	*ticket,
1468	struct xlog_in_core	**iclog,
1469	xfs_lsn_t		*lsn)
1470{
1471	struct xfs_log_iovec reg = {
1472		.i_addr = NULL,
1473		.i_len = 0,
1474		.i_type = XLOG_REG_TYPE_COMMIT,
1475	};
1476	struct xfs_log_vec vec = {
1477		.lv_niovecs = 1,
1478		.lv_iovecp = &reg,
1479	};
1480	int	error;
1481
1482	if (XLOG_FORCED_SHUTDOWN(log))
1483		return -EIO;
1484
1485	error = xlog_write(log, &vec, ticket, lsn, iclog, XLOG_COMMIT_TRANS,
1486			   false);
1487	if (error)
1488		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1489	return error;
1490}
1491
1492/*
1493 * Compute the LSN that we'd need to push the log tail towards in order to have
1494 * (a) enough on-disk log space to log the number of bytes specified, (b) at
1495 * least 25% of the log space free, and (c) at least 256 blocks free.  If the
1496 * log free space already meets all three thresholds, this function returns
1497 * NULLCOMMITLSN.
1498 */
1499xfs_lsn_t
1500xlog_grant_push_threshold(
1501	struct xlog	*log,
1502	int		need_bytes)
1503{
1504	xfs_lsn_t	threshold_lsn = 0;
1505	xfs_lsn_t	last_sync_lsn;
1506	int		free_blocks;
1507	int		free_bytes;
1508	int		threshold_block;
1509	int		threshold_cycle;
1510	int		free_threshold;
1511
1512	ASSERT(BTOBB(need_bytes) < log->l_logBBsize);
1513
1514	free_bytes = xlog_space_left(log, &log->l_reserve_head.grant);
1515	free_blocks = BTOBBT(free_bytes);
1516
1517	/*
1518	 * Set the threshold for the minimum number of free blocks in the
1519	 * log to the maximum of what the caller needs, one quarter of the
1520	 * log, and 256 blocks.
1521	 */
1522	free_threshold = BTOBB(need_bytes);
1523	free_threshold = max(free_threshold, (log->l_logBBsize >> 2));
1524	free_threshold = max(free_threshold, 256);
1525	if (free_blocks >= free_threshold)
1526		return NULLCOMMITLSN;
1527
1528	xlog_crack_atomic_lsn(&log->l_tail_lsn, &threshold_cycle,
1529						&threshold_block);
1530	threshold_block += free_threshold;
1531	if (threshold_block >= log->l_logBBsize) {
1532		threshold_block -= log->l_logBBsize;
1533		threshold_cycle += 1;
1534	}
1535	threshold_lsn = xlog_assign_lsn(threshold_cycle,
1536					threshold_block);
1537	/*
1538	 * Don't pass in an lsn greater than the lsn of the last
1539	 * log record known to be on disk. Use a snapshot of the last sync lsn
1540	 * so that it doesn't change between the compare and the set.
1541	 */
1542	last_sync_lsn = atomic64_read(&log->l_last_sync_lsn);
1543	if (XFS_LSN_CMP(threshold_lsn, last_sync_lsn) > 0)
1544		threshold_lsn = last_sync_lsn;
1545
1546	return threshold_lsn;
1547}
1548
1549/*
1550 * Push the tail of the log if we need to do so to maintain the free log space
1551 * thresholds set out by xlog_grant_push_threshold.  We may need to adopt a
1552 * policy which pushes on an lsn which is further along in the log once we
1553 * reach the high water mark.  In this manner, we would be creating a low water
1554 * mark.
1555 */
1556STATIC void
1557xlog_grant_push_ail(
1558	struct xlog	*log,
1559	int		need_bytes)
1560{
1561	xfs_lsn_t	threshold_lsn;
1562
1563	threshold_lsn = xlog_grant_push_threshold(log, need_bytes);
1564	if (threshold_lsn == NULLCOMMITLSN || XLOG_FORCED_SHUTDOWN(log))
1565		return;
1566
1567	/*
1568	 * Get the transaction layer to kick the dirty buffers out to
1569	 * disk asynchronously. No point in trying to do this if
1570	 * the filesystem is shutting down.
1571	 */
1572	xfs_ail_push(log->l_ailp, threshold_lsn);
1573}
1574
1575/*
1576 * Stamp cycle number in every block
1577 */
1578STATIC void
1579xlog_pack_data(
1580	struct xlog		*log,
1581	struct xlog_in_core	*iclog,
1582	int			roundoff)
1583{
1584	int			i, j, k;
1585	int			size = iclog->ic_offset + roundoff;
1586	__be32			cycle_lsn;
1587	char			*dp;
1588
1589	cycle_lsn = CYCLE_LSN_DISK(iclog->ic_header.h_lsn);
1590
1591	dp = iclog->ic_datap;
1592	for (i = 0; i < BTOBB(size); i++) {
1593		if (i >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE))
1594			break;
1595		iclog->ic_header.h_cycle_data[i] = *(__be32 *)dp;
1596		*(__be32 *)dp = cycle_lsn;
1597		dp += BBSIZE;
1598	}
1599
1600	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1601		xlog_in_core_2_t *xhdr = iclog->ic_data;
1602
1603		for ( ; i < BTOBB(size); i++) {
1604			j = i / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1605			k = i % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
1606			xhdr[j].hic_xheader.xh_cycle_data[k] = *(__be32 *)dp;
1607			*(__be32 *)dp = cycle_lsn;
1608			dp += BBSIZE;
1609		}
1610
1611		for (i = 1; i < log->l_iclog_heads; i++)
1612			xhdr[i].hic_xheader.xh_cycle = cycle_lsn;
1613	}
1614}
1615
1616/*
1617 * Calculate the checksum for a log buffer.
1618 *
1619 * This is a little more complicated than it should be because the various
1620 * headers and the actual data are non-contiguous.
1621 */
1622__le32
1623xlog_cksum(
1624	struct xlog		*log,
1625	struct xlog_rec_header	*rhead,
1626	char			*dp,
1627	int			size)
1628{
1629	uint32_t		crc;
1630
1631	/* first generate the crc for the record header ... */
1632	crc = xfs_start_cksum_update((char *)rhead,
1633			      sizeof(struct xlog_rec_header),
1634			      offsetof(struct xlog_rec_header, h_crc));
1635
1636	/* ... then for additional cycle data for v2 logs ... */
1637	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb)) {
1638		union xlog_in_core2 *xhdr = (union xlog_in_core2 *)rhead;
1639		int		i;
1640		int		xheads;
1641
1642		xheads = DIV_ROUND_UP(size, XLOG_HEADER_CYCLE_SIZE);
1643
1644		for (i = 1; i < xheads; i++) {
1645			crc = crc32c(crc, &xhdr[i].hic_xheader,
1646				     sizeof(struct xlog_rec_ext_header));
1647		}
1648	}
1649
1650	/* ... and finally for the payload */
1651	crc = crc32c(crc, dp, size);
1652
1653	return xfs_end_cksum(crc);
1654}
1655
1656static void
1657xlog_bio_end_io(
1658	struct bio		*bio)
1659{
1660	struct xlog_in_core	*iclog = bio->bi_private;
1661
1662	queue_work(iclog->ic_log->l_ioend_workqueue,
1663		   &iclog->ic_end_io_work);
1664}
1665
1666static int
1667xlog_map_iclog_data(
1668	struct bio		*bio,
1669	void			*data,
1670	size_t			count)
1671{
1672	do {
1673		struct page	*page = kmem_to_page(data);
1674		unsigned int	off = offset_in_page(data);
1675		size_t		len = min_t(size_t, count, PAGE_SIZE - off);
1676
1677		if (bio_add_page(bio, page, len, off) != len)
1678			return -EIO;
1679
1680		data += len;
1681		count -= len;
1682	} while (count);
1683
1684	return 0;
1685}
1686
1687STATIC void
1688xlog_write_iclog(
1689	struct xlog		*log,
1690	struct xlog_in_core	*iclog,
1691	uint64_t		bno,
1692	unsigned int		count,
1693	bool			need_flush)
1694{
1695	ASSERT(bno < log->l_logBBsize);
1696
1697	/*
1698	 * We lock the iclogbufs here so that we can serialise against I/O
1699	 * completion during unmount.  We might be processing a shutdown
1700	 * triggered during unmount, and that can occur asynchronously to the
1701	 * unmount thread, and hence we need to ensure that completes before
1702	 * tearing down the iclogbufs.  Hence we need to hold the buffer lock
1703	 * across the log IO to archieve that.
1704	 */
1705	down(&iclog->ic_sema);
1706	if (unlikely(iclog->ic_state == XLOG_STATE_IOERROR)) {
1707		/*
1708		 * It would seem logical to return EIO here, but we rely on
1709		 * the log state machine to propagate I/O errors instead of
1710		 * doing it here.  We kick of the state machine and unlock
1711		 * the buffer manually, the code needs to be kept in sync
1712		 * with the I/O completion path.
1713		 */
1714		xlog_state_done_syncing(iclog);
1715		up(&iclog->ic_sema);
1716		return;
1717	}
1718
1719	bio_init(&iclog->ic_bio, iclog->ic_bvec, howmany(count, PAGE_SIZE));
1720	bio_set_dev(&iclog->ic_bio, log->l_targ->bt_bdev);
1721	iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart + bno;
1722	iclog->ic_bio.bi_end_io = xlog_bio_end_io;
1723	iclog->ic_bio.bi_private = iclog;
1724
1725	/*
1726	 * We use REQ_SYNC | REQ_IDLE here to tell the block layer the are more
1727	 * IOs coming immediately after this one. This prevents the block layer
1728	 * writeback throttle from throttling log writes behind background
1729	 * metadata writeback and causing priority inversions.
1730	 */
1731	iclog->ic_bio.bi_opf = REQ_OP_WRITE | REQ_META | REQ_SYNC |
1732				REQ_IDLE | REQ_FUA;
1733	if (need_flush)
1734		iclog->ic_bio.bi_opf |= REQ_PREFLUSH;
1735
1736	if (xlog_map_iclog_data(&iclog->ic_bio, iclog->ic_data, count)) {
1737		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
1738		return;
1739	}
1740	if (is_vmalloc_addr(iclog->ic_data))
1741		flush_kernel_vmap_range(iclog->ic_data, count);
1742
1743	/*
1744	 * If this log buffer would straddle the end of the log we will have
1745	 * to split it up into two bios, so that we can continue at the start.
1746	 */
1747	if (bno + BTOBB(count) > log->l_logBBsize) {
1748		struct bio *split;
1749
1750		split = bio_split(&iclog->ic_bio, log->l_logBBsize - bno,
1751				  GFP_NOIO, &fs_bio_set);
1752		bio_chain(split, &iclog->ic_bio);
1753		submit_bio(split);
1754
1755		/* restart at logical offset zero for the remainder */
1756		iclog->ic_bio.bi_iter.bi_sector = log->l_logBBstart;
1757	}
1758
1759	submit_bio(&iclog->ic_bio);
1760}
1761
1762/*
1763 * We need to bump cycle number for the part of the iclog that is
1764 * written to the start of the log. Watch out for the header magic
1765 * number case, though.
1766 */
1767static void
1768xlog_split_iclog(
1769	struct xlog		*log,
1770	void			*data,
1771	uint64_t		bno,
1772	unsigned int		count)
1773{
1774	unsigned int		split_offset = BBTOB(log->l_logBBsize - bno);
1775	unsigned int		i;
1776
1777	for (i = split_offset; i < count; i += BBSIZE) {
1778		uint32_t cycle = get_unaligned_be32(data + i);
1779
1780		if (++cycle == XLOG_HEADER_MAGIC_NUM)
1781			cycle++;
1782		put_unaligned_be32(cycle, data + i);
1783	}
1784}
1785
1786static int
1787xlog_calc_iclog_size(
1788	struct xlog		*log,
1789	struct xlog_in_core	*iclog,
1790	uint32_t		*roundoff)
1791{
1792	uint32_t		count_init, count;
1793	bool			use_lsunit;
1794
1795	use_lsunit = xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
1796			log->l_mp->m_sb.sb_logsunit > 1;
1797
1798	/* Add for LR header */
1799	count_init = log->l_iclog_hsize + iclog->ic_offset;
1800
1801	/* Round out the log write size */
1802	if (use_lsunit) {
1803		/* we have a v2 stripe unit to use */
1804		count = XLOG_LSUNITTOB(log, XLOG_BTOLSUNIT(log, count_init));
1805	} else {
1806		count = BBTOB(BTOBB(count_init));
1807	}
1808
1809	ASSERT(count >= count_init);
1810	*roundoff = count - count_init;
1811
1812	if (use_lsunit)
1813		ASSERT(*roundoff < log->l_mp->m_sb.sb_logsunit);
1814	else
1815		ASSERT(*roundoff < BBTOB(1));
1816	return count;
1817}
1818
1819/*
1820 * Flush out the in-core log (iclog) to the on-disk log in an asynchronous
1821 * fashion.  Previously, we should have moved the current iclog
1822 * ptr in the log to point to the next available iclog.  This allows further
1823 * write to continue while this code syncs out an iclog ready to go.
1824 * Before an in-core log can be written out, the data section must be scanned
1825 * to save away the 1st word of each BBSIZE block into the header.  We replace
1826 * it with the current cycle count.  Each BBSIZE block is tagged with the
1827 * cycle count because there in an implicit assumption that drives will
1828 * guarantee that entire 512 byte blocks get written at once.  In other words,
1829 * we can't have part of a 512 byte block written and part not written.  By
1830 * tagging each block, we will know which blocks are valid when recovering
1831 * after an unclean shutdown.
1832 *
1833 * This routine is single threaded on the iclog.  No other thread can be in
1834 * this routine with the same iclog.  Changing contents of iclog can there-
1835 * fore be done without grabbing the state machine lock.  Updating the global
1836 * log will require grabbing the lock though.
1837 *
1838 * The entire log manager uses a logical block numbering scheme.  Only
1839 * xlog_write_iclog knows about the fact that the log may not start with
1840 * block zero on a given device.
1841 */
1842STATIC void
1843xlog_sync(
1844	struct xlog		*log,
1845	struct xlog_in_core	*iclog)
1846{
1847	unsigned int		count;		/* byte count of bwrite */
1848	unsigned int		roundoff;       /* roundoff to BB or stripe */
1849	uint64_t		bno;
1850	unsigned int		size;
1851	bool			need_flush = true, split = false;
1852
1853	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
1854
1855	count = xlog_calc_iclog_size(log, iclog, &roundoff);
1856
1857	/* move grant heads by roundoff in sync */
1858	xlog_grant_add_space(log, &log->l_reserve_head.grant, roundoff);
1859	xlog_grant_add_space(log, &log->l_write_head.grant, roundoff);
1860
1861	/* put cycle number in every block */
1862	xlog_pack_data(log, iclog, roundoff);
1863
1864	/* real byte length */
1865	size = iclog->ic_offset;
1866	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb))
1867		size += roundoff;
1868	iclog->ic_header.h_len = cpu_to_be32(size);
1869
1870	XFS_STATS_INC(log->l_mp, xs_log_writes);
1871	XFS_STATS_ADD(log->l_mp, xs_log_blocks, BTOBB(count));
1872
1873	bno = BLOCK_LSN(be64_to_cpu(iclog->ic_header.h_lsn));
1874
1875	/* Do we need to split this write into 2 parts? */
1876	if (bno + BTOBB(count) > log->l_logBBsize) {
1877		xlog_split_iclog(log, &iclog->ic_header, bno, count);
1878		split = true;
1879	}
1880
1881	/* calculcate the checksum */
1882	iclog->ic_header.h_crc = xlog_cksum(log, &iclog->ic_header,
1883					    iclog->ic_datap, size);
1884	/*
1885	 * Intentionally corrupt the log record CRC based on the error injection
1886	 * frequency, if defined. This facilitates testing log recovery in the
1887	 * event of torn writes. Hence, set the IOABORT state to abort the log
1888	 * write on I/O completion and shutdown the fs. The subsequent mount
1889	 * detects the bad CRC and attempts to recover.
1890	 */
1891#ifdef DEBUG
1892	if (XFS_TEST_ERROR(false, log->l_mp, XFS_ERRTAG_LOG_BAD_CRC)) {
1893		iclog->ic_header.h_crc &= cpu_to_le32(0xAAAAAAAA);
1894		iclog->ic_fail_crc = true;
1895		xfs_warn(log->l_mp,
1896	"Intentionally corrupted log record at LSN 0x%llx. Shutdown imminent.",
1897			 be64_to_cpu(iclog->ic_header.h_lsn));
1898	}
1899#endif
1900
1901	/*
1902	 * Flush the data device before flushing the log to make sure all meta
1903	 * data written back from the AIL actually made it to disk before
1904	 * stamping the new log tail LSN into the log buffer.  For an external
1905	 * log we need to issue the flush explicitly, and unfortunately
1906	 * synchronously here; for an internal log we can simply use the block
1907	 * layer state machine for preflushes.
1908	 */
1909	if (log->l_targ != log->l_mp->m_ddev_targp || split) {
1910		xfs_blkdev_issue_flush(log->l_mp->m_ddev_targp);
1911		need_flush = false;
1912	}
1913
1914	xlog_verify_iclog(log, iclog, count);
1915	xlog_write_iclog(log, iclog, bno, count, need_flush);
1916}
1917
1918/*
1919 * Deallocate a log structure
1920 */
1921STATIC void
1922xlog_dealloc_log(
1923	struct xlog	*log)
1924{
1925	xlog_in_core_t	*iclog, *next_iclog;
1926	int		i;
1927
1928	xlog_cil_destroy(log);
1929
1930	/*
1931	 * Cycle all the iclogbuf locks to make sure all log IO completion
1932	 * is done before we tear down these buffers.
1933	 */
1934	iclog = log->l_iclog;
1935	for (i = 0; i < log->l_iclog_bufs; i++) {
1936		down(&iclog->ic_sema);
1937		up(&iclog->ic_sema);
1938		iclog = iclog->ic_next;
1939	}
1940
1941	iclog = log->l_iclog;
1942	for (i = 0; i < log->l_iclog_bufs; i++) {
1943		next_iclog = iclog->ic_next;
1944		kmem_free(iclog->ic_data);
1945		kmem_free(iclog);
1946		iclog = next_iclog;
1947	}
1948
1949	log->l_mp->m_log = NULL;
1950	destroy_workqueue(log->l_ioend_workqueue);
1951	kmem_free(log);
1952}
1953
1954/*
1955 * Update counters atomically now that memcpy is done.
1956 */
1957static inline void
1958xlog_state_finish_copy(
1959	struct xlog		*log,
1960	struct xlog_in_core	*iclog,
1961	int			record_cnt,
1962	int			copy_bytes)
1963{
1964	lockdep_assert_held(&log->l_icloglock);
1965
1966	be32_add_cpu(&iclog->ic_header.h_num_logops, record_cnt);
1967	iclog->ic_offset += copy_bytes;
1968}
1969
1970/*
1971 * print out info relating to regions written which consume
1972 * the reservation
1973 */
1974void
1975xlog_print_tic_res(
1976	struct xfs_mount	*mp,
1977	struct xlog_ticket	*ticket)
1978{
1979	uint i;
1980	uint ophdr_spc = ticket->t_res_num_ophdrs * (uint)sizeof(xlog_op_header_t);
1981
1982	/* match with XLOG_REG_TYPE_* in xfs_log.h */
1983#define REG_TYPE_STR(type, str)	[XLOG_REG_TYPE_##type] = str
1984	static char *res_type_str[] = {
1985	    REG_TYPE_STR(BFORMAT, "bformat"),
1986	    REG_TYPE_STR(BCHUNK, "bchunk"),
1987	    REG_TYPE_STR(EFI_FORMAT, "efi_format"),
1988	    REG_TYPE_STR(EFD_FORMAT, "efd_format"),
1989	    REG_TYPE_STR(IFORMAT, "iformat"),
1990	    REG_TYPE_STR(ICORE, "icore"),
1991	    REG_TYPE_STR(IEXT, "iext"),
1992	    REG_TYPE_STR(IBROOT, "ibroot"),
1993	    REG_TYPE_STR(ILOCAL, "ilocal"),
1994	    REG_TYPE_STR(IATTR_EXT, "iattr_ext"),
1995	    REG_TYPE_STR(IATTR_BROOT, "iattr_broot"),
1996	    REG_TYPE_STR(IATTR_LOCAL, "iattr_local"),
1997	    REG_TYPE_STR(QFORMAT, "qformat"),
1998	    REG_TYPE_STR(DQUOT, "dquot"),
1999	    REG_TYPE_STR(QUOTAOFF, "quotaoff"),
2000	    REG_TYPE_STR(LRHEADER, "LR header"),
2001	    REG_TYPE_STR(UNMOUNT, "unmount"),
2002	    REG_TYPE_STR(COMMIT, "commit"),
2003	    REG_TYPE_STR(TRANSHDR, "trans header"),
2004	    REG_TYPE_STR(ICREATE, "inode create"),
2005	    REG_TYPE_STR(RUI_FORMAT, "rui_format"),
2006	    REG_TYPE_STR(RUD_FORMAT, "rud_format"),
2007	    REG_TYPE_STR(CUI_FORMAT, "cui_format"),
2008	    REG_TYPE_STR(CUD_FORMAT, "cud_format"),
2009	    REG_TYPE_STR(BUI_FORMAT, "bui_format"),
2010	    REG_TYPE_STR(BUD_FORMAT, "bud_format"),
2011	};
2012	BUILD_BUG_ON(ARRAY_SIZE(res_type_str) != XLOG_REG_TYPE_MAX + 1);
2013#undef REG_TYPE_STR
2014
2015	xfs_warn(mp, "ticket reservation summary:");
2016	xfs_warn(mp, "  unit res    = %d bytes",
2017		 ticket->t_unit_res);
2018	xfs_warn(mp, "  current res = %d bytes",
2019		 ticket->t_curr_res);
2020	xfs_warn(mp, "  total reg   = %u bytes (o/flow = %u bytes)",
2021		 ticket->t_res_arr_sum, ticket->t_res_o_flow);
2022	xfs_warn(mp, "  ophdrs      = %u (ophdr space = %u bytes)",
2023		 ticket->t_res_num_ophdrs, ophdr_spc);
2024	xfs_warn(mp, "  ophdr + reg = %u bytes",
2025		 ticket->t_res_arr_sum + ticket->t_res_o_flow + ophdr_spc);
2026	xfs_warn(mp, "  num regions = %u",
2027		 ticket->t_res_num);
2028
2029	for (i = 0; i < ticket->t_res_num; i++) {
2030		uint r_type = ticket->t_res_arr[i].r_type;
2031		xfs_warn(mp, "region[%u]: %s - %u bytes", i,
2032			    ((r_type <= 0 || r_type > XLOG_REG_TYPE_MAX) ?
2033			    "bad-rtype" : res_type_str[r_type]),
2034			    ticket->t_res_arr[i].r_len);
2035	}
2036}
2037
2038/*
2039 * Print a summary of the transaction.
2040 */
2041void
2042xlog_print_trans(
2043	struct xfs_trans	*tp)
2044{
2045	struct xfs_mount	*mp = tp->t_mountp;
2046	struct xfs_log_item	*lip;
2047
2048	/* dump core transaction and ticket info */
2049	xfs_warn(mp, "transaction summary:");
2050	xfs_warn(mp, "  log res   = %d", tp->t_log_res);
2051	xfs_warn(mp, "  log count = %d", tp->t_log_count);
2052	xfs_warn(mp, "  flags     = 0x%x", tp->t_flags);
2053
2054	xlog_print_tic_res(mp, tp->t_ticket);
2055
2056	/* dump each log item */
2057	list_for_each_entry(lip, &tp->t_items, li_trans) {
2058		struct xfs_log_vec	*lv = lip->li_lv;
2059		struct xfs_log_iovec	*vec;
2060		int			i;
2061
2062		xfs_warn(mp, "log item: ");
2063		xfs_warn(mp, "  type	= 0x%x", lip->li_type);
2064		xfs_warn(mp, "  flags	= 0x%lx", lip->li_flags);
2065		if (!lv)
2066			continue;
2067		xfs_warn(mp, "  niovecs	= %d", lv->lv_niovecs);
2068		xfs_warn(mp, "  size	= %d", lv->lv_size);
2069		xfs_warn(mp, "  bytes	= %d", lv->lv_bytes);
2070		xfs_warn(mp, "  buf len	= %d", lv->lv_buf_len);
2071
2072		/* dump each iovec for the log item */
2073		vec = lv->lv_iovecp;
2074		for (i = 0; i < lv->lv_niovecs; i++) {
2075			int dumplen = min(vec->i_len, 32);
2076
2077			xfs_warn(mp, "  iovec[%d]", i);
2078			xfs_warn(mp, "    type	= 0x%x", vec->i_type);
2079			xfs_warn(mp, "    len	= %d", vec->i_len);
2080			xfs_warn(mp, "    first %d bytes of iovec[%d]:", dumplen, i);
2081			xfs_hex_dump(vec->i_addr, dumplen);
2082
2083			vec++;
2084		}
2085	}
2086}
2087
2088/*
2089 * Calculate the potential space needed by the log vector.  We may need a start
2090 * record, and each region gets its own struct xlog_op_header and may need to be
2091 * double word aligned.
2092 */
2093static int
2094xlog_write_calc_vec_length(
2095	struct xlog_ticket	*ticket,
2096	struct xfs_log_vec	*log_vector,
2097	bool			need_start_rec)
2098{
2099	struct xfs_log_vec	*lv;
2100	int			headers = need_start_rec ? 1 : 0;
2101	int			len = 0;
2102	int			i;
2103
2104	for (lv = log_vector; lv; lv = lv->lv_next) {
2105		/* we don't write ordered log vectors */
2106		if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED)
2107			continue;
2108
2109		headers += lv->lv_niovecs;
2110
2111		for (i = 0; i < lv->lv_niovecs; i++) {
2112			struct xfs_log_iovec	*vecp = &lv->lv_iovecp[i];
2113
2114			len += vecp->i_len;
2115			xlog_tic_add_region(ticket, vecp->i_len, vecp->i_type);
2116		}
2117	}
2118
2119	ticket->t_res_num_ophdrs += headers;
2120	len += headers * sizeof(struct xlog_op_header);
2121
2122	return len;
2123}
2124
2125static void
2126xlog_write_start_rec(
2127	struct xlog_op_header	*ophdr,
2128	struct xlog_ticket	*ticket)
2129{
2130	ophdr->oh_tid	= cpu_to_be32(ticket->t_tid);
2131	ophdr->oh_clientid = ticket->t_clientid;
2132	ophdr->oh_len = 0;
2133	ophdr->oh_flags = XLOG_START_TRANS;
2134	ophdr->oh_res2 = 0;
2135}
2136
2137static xlog_op_header_t *
2138xlog_write_setup_ophdr(
2139	struct xlog		*log,
2140	struct xlog_op_header	*ophdr,
2141	struct xlog_ticket	*ticket,
2142	uint			flags)
2143{
2144	ophdr->oh_tid = cpu_to_be32(ticket->t_tid);
2145	ophdr->oh_clientid = ticket->t_clientid;
2146	ophdr->oh_res2 = 0;
2147
2148	/* are we copying a commit or unmount record? */
2149	ophdr->oh_flags = flags;
2150
2151	/*
2152	 * We've seen logs corrupted with bad transaction client ids.  This
2153	 * makes sure that XFS doesn't generate them on.  Turn this into an EIO
2154	 * and shut down the filesystem.
2155	 */
2156	switch (ophdr->oh_clientid)  {
2157	case XFS_TRANSACTION:
2158	case XFS_VOLUME:
2159	case XFS_LOG:
2160		break;
2161	default:
2162		xfs_warn(log->l_mp,
2163			"Bad XFS transaction clientid 0x%x in ticket "PTR_FMT,
2164			ophdr->oh_clientid, ticket);
2165		return NULL;
2166	}
2167
2168	return ophdr;
2169}
2170
2171/*
2172 * Set up the parameters of the region copy into the log. This has
2173 * to handle region write split across multiple log buffers - this
2174 * state is kept external to this function so that this code can
2175 * be written in an obvious, self documenting manner.
2176 */
2177static int
2178xlog_write_setup_copy(
2179	struct xlog_ticket	*ticket,
2180	struct xlog_op_header	*ophdr,
2181	int			space_available,
2182	int			space_required,
2183	int			*copy_off,
2184	int			*copy_len,
2185	int			*last_was_partial_copy,
2186	int			*bytes_consumed)
2187{
2188	int			still_to_copy;
2189
2190	still_to_copy = space_required - *bytes_consumed;
2191	*copy_off = *bytes_consumed;
2192
2193	if (still_to_copy <= space_available) {
2194		/* write of region completes here */
2195		*copy_len = still_to_copy;
2196		ophdr->oh_len = cpu_to_be32(*copy_len);
2197		if (*last_was_partial_copy)
2198			ophdr->oh_flags |= (XLOG_END_TRANS|XLOG_WAS_CONT_TRANS);
2199		*last_was_partial_copy = 0;
2200		*bytes_consumed = 0;
2201		return 0;
2202	}
2203
2204	/* partial write of region, needs extra log op header reservation */
2205	*copy_len = space_available;
2206	ophdr->oh_len = cpu_to_be32(*copy_len);
2207	ophdr->oh_flags |= XLOG_CONTINUE_TRANS;
2208	if (*last_was_partial_copy)
2209		ophdr->oh_flags |= XLOG_WAS_CONT_TRANS;
2210	*bytes_consumed += *copy_len;
2211	(*last_was_partial_copy)++;
2212
2213	/* account for new log op header */
2214	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2215	ticket->t_res_num_ophdrs++;
2216
2217	return sizeof(struct xlog_op_header);
2218}
2219
2220static int
2221xlog_write_copy_finish(
2222	struct xlog		*log,
2223	struct xlog_in_core	*iclog,
2224	uint			flags,
2225	int			*record_cnt,
2226	int			*data_cnt,
2227	int			*partial_copy,
2228	int			*partial_copy_len,
2229	int			log_offset,
2230	struct xlog_in_core	**commit_iclog)
2231{
2232	int			error;
2233
2234	if (*partial_copy) {
2235		/*
2236		 * This iclog has already been marked WANT_SYNC by
2237		 * xlog_state_get_iclog_space.
2238		 */
2239		spin_lock(&log->l_icloglock);
2240		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2241		*record_cnt = 0;
2242		*data_cnt = 0;
2243		goto release_iclog;
2244	}
2245
2246	*partial_copy = 0;
2247	*partial_copy_len = 0;
2248
2249	if (iclog->ic_size - log_offset <= sizeof(xlog_op_header_t)) {
2250		/* no more space in this iclog - push it. */
2251		spin_lock(&log->l_icloglock);
2252		xlog_state_finish_copy(log, iclog, *record_cnt, *data_cnt);
2253		*record_cnt = 0;
2254		*data_cnt = 0;
2255
2256		if (iclog->ic_state == XLOG_STATE_ACTIVE)
2257			xlog_state_switch_iclogs(log, iclog, 0);
2258		else
2259			ASSERT(iclog->ic_state == XLOG_STATE_WANT_SYNC ||
2260			       iclog->ic_state == XLOG_STATE_IOERROR);
2261		if (!commit_iclog)
2262			goto release_iclog;
2263		spin_unlock(&log->l_icloglock);
2264		ASSERT(flags & XLOG_COMMIT_TRANS);
2265		*commit_iclog = iclog;
2266	}
2267
2268	return 0;
2269
2270release_iclog:
2271	error = xlog_state_release_iclog(log, iclog);
2272	spin_unlock(&log->l_icloglock);
2273	return error;
2274}
2275
2276/*
2277 * Write some region out to in-core log
2278 *
2279 * This will be called when writing externally provided regions or when
2280 * writing out a commit record for a given transaction.
2281 *
2282 * General algorithm:
2283 *	1. Find total length of this write.  This may include adding to the
2284 *		lengths passed in.
2285 *	2. Check whether we violate the tickets reservation.
2286 *	3. While writing to this iclog
2287 *	    A. Reserve as much space in this iclog as can get
2288 *	    B. If this is first write, save away start lsn
2289 *	    C. While writing this region:
2290 *		1. If first write of transaction, write start record
2291 *		2. Write log operation header (header per region)
2292 *		3. Find out if we can fit entire region into this iclog
2293 *		4. Potentially, verify destination memcpy ptr
2294 *		5. Memcpy (partial) region
2295 *		6. If partial copy, release iclog; otherwise, continue
2296 *			copying more regions into current iclog
2297 *	4. Mark want sync bit (in simulation mode)
2298 *	5. Release iclog for potential flush to on-disk log.
2299 *
2300 * ERRORS:
2301 * 1.	Panic if reservation is overrun.  This should never happen since
2302 *	reservation amounts are generated internal to the filesystem.
2303 * NOTES:
2304 * 1. Tickets are single threaded data structures.
2305 * 2. The XLOG_END_TRANS & XLOG_CONTINUE_TRANS flags are passed down to the
2306 *	syncing routine.  When a single log_write region needs to span
2307 *	multiple in-core logs, the XLOG_CONTINUE_TRANS bit should be set
2308 *	on all log operation writes which don't contain the end of the
2309 *	region.  The XLOG_END_TRANS bit is used for the in-core log
2310 *	operation which contains the end of the continued log_write region.
2311 * 3. When xlog_state_get_iclog_space() grabs the rest of the current iclog,
2312 *	we don't really know exactly how much space will be used.  As a result,
2313 *	we don't update ic_offset until the end when we know exactly how many
2314 *	bytes have been written out.
2315 */
2316int
2317xlog_write(
2318	struct xlog		*log,
2319	struct xfs_log_vec	*log_vector,
2320	struct xlog_ticket	*ticket,
2321	xfs_lsn_t		*start_lsn,
2322	struct xlog_in_core	**commit_iclog,
2323	uint			flags,
2324	bool			need_start_rec)
2325{
2326	struct xlog_in_core	*iclog = NULL;
2327	struct xfs_log_vec	*lv = log_vector;
2328	struct xfs_log_iovec	*vecp = lv->lv_iovecp;
2329	int			index = 0;
2330	int			len;
2331	int			partial_copy = 0;
2332	int			partial_copy_len = 0;
2333	int			contwr = 0;
2334	int			record_cnt = 0;
2335	int			data_cnt = 0;
2336	int			error = 0;
2337
2338	/*
2339	 * If this is a commit or unmount transaction, we don't need a start
2340	 * record to be written.  We do, however, have to account for the
2341	 * commit or unmount header that gets written. Hence we always have
2342	 * to account for an extra xlog_op_header here.
2343	 */
2344	ticket->t_curr_res -= sizeof(struct xlog_op_header);
2345	if (ticket->t_curr_res < 0) {
2346		xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
2347		     "ctx ticket reservation ran out. Need to up reservation");
2348		xlog_print_tic_res(log->l_mp, ticket);
2349		xfs_force_shutdown(log->l_mp, SHUTDOWN_LOG_IO_ERROR);
2350	}
2351
2352	len = xlog_write_calc_vec_length(ticket, log_vector, need_start_rec);
2353	*start_lsn = 0;
2354	while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2355		void		*ptr;
2356		int		log_offset;
2357
2358		error = xlog_state_get_iclog_space(log, len, &iclog, ticket,
2359						   &contwr, &log_offset);
2360		if (error)
2361			return error;
2362
2363		ASSERT(log_offset <= iclog->ic_size - 1);
2364		ptr = iclog->ic_datap + log_offset;
2365
2366		/* start_lsn is the first lsn written to. That's all we need. */
2367		if (!*start_lsn)
2368			*start_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2369
2370		/*
2371		 * This loop writes out as many regions as can fit in the amount
2372		 * of space which was allocated by xlog_state_get_iclog_space().
2373		 */
2374		while (lv && (!lv->lv_niovecs || index < lv->lv_niovecs)) {
2375			struct xfs_log_iovec	*reg;
2376			struct xlog_op_header	*ophdr;
2377			int			copy_len;
2378			int			copy_off;
2379			bool			ordered = false;
2380
2381			/* ordered log vectors have no regions to write */
2382			if (lv->lv_buf_len == XFS_LOG_VEC_ORDERED) {
2383				ASSERT(lv->lv_niovecs == 0);
2384				ordered = true;
2385				goto next_lv;
2386			}
2387
2388			reg = &vecp[index];
2389			ASSERT(reg->i_len % sizeof(int32_t) == 0);
2390			ASSERT((unsigned long)ptr % sizeof(int32_t) == 0);
2391
2392			/*
2393			 * Before we start formatting log vectors, we need to
2394			 * write a start record. Only do this for the first
2395			 * iclog we write to.
2396			 */
2397			if (need_start_rec) {
2398				xlog_write_start_rec(ptr, ticket);
2399				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2400						sizeof(struct xlog_op_header));
2401			}
2402
2403			ophdr = xlog_write_setup_ophdr(log, ptr, ticket, flags);
2404			if (!ophdr)
2405				return -EIO;
2406
2407			xlog_write_adv_cnt(&ptr, &len, &log_offset,
2408					   sizeof(struct xlog_op_header));
2409
2410			len += xlog_write_setup_copy(ticket, ophdr,
2411						     iclog->ic_size-log_offset,
2412						     reg->i_len,
2413						     &copy_off, &copy_len,
2414						     &partial_copy,
2415						     &partial_copy_len);
2416			xlog_verify_dest_ptr(log, ptr);
2417
2418			/*
2419			 * Copy region.
2420			 *
2421			 * Unmount records just log an opheader, so can have
2422			 * empty payloads with no data region to copy. Hence we
2423			 * only copy the payload if the vector says it has data
2424			 * to copy.
2425			 */
2426			ASSERT(copy_len >= 0);
2427			if (copy_len > 0) {
2428				memcpy(ptr, reg->i_addr + copy_off, copy_len);
2429				xlog_write_adv_cnt(&ptr, &len, &log_offset,
2430						   copy_len);
2431			}
2432			copy_len += sizeof(struct xlog_op_header);
2433			record_cnt++;
2434			if (need_start_rec) {
2435				copy_len += sizeof(struct xlog_op_header);
2436				record_cnt++;
2437				need_start_rec = false;
2438			}
2439			data_cnt += contwr ? copy_len : 0;
2440
2441			error = xlog_write_copy_finish(log, iclog, flags,
2442						       &record_cnt, &data_cnt,
2443						       &partial_copy,
2444						       &partial_copy_len,
2445						       log_offset,
2446						       commit_iclog);
2447			if (error)
2448				return error;
2449
2450			/*
2451			 * if we had a partial copy, we need to get more iclog
2452			 * space but we don't want to increment the region
2453			 * index because there is still more is this region to
2454			 * write.
2455			 *
2456			 * If we completed writing this region, and we flushed
2457			 * the iclog (indicated by resetting of the record
2458			 * count), then we also need to get more log space. If
2459			 * this was the last record, though, we are done and
2460			 * can just return.
2461			 */
2462			if (partial_copy)
2463				break;
2464
2465			if (++index == lv->lv_niovecs) {
2466next_lv:
2467				lv = lv->lv_next;
2468				index = 0;
2469				if (lv)
2470					vecp = lv->lv_iovecp;
2471			}
2472			if (record_cnt == 0 && !ordered) {
2473				if (!lv)
2474					return 0;
2475				break;
2476			}
2477		}
2478	}
2479
2480	ASSERT(len == 0);
2481
2482	spin_lock(&log->l_icloglock);
2483	xlog_state_finish_copy(log, iclog, record_cnt, data_cnt);
2484	if (commit_iclog) {
2485		ASSERT(flags & XLOG_COMMIT_TRANS);
2486		*commit_iclog = iclog;
2487	} else {
2488		error = xlog_state_release_iclog(log, iclog);
2489	}
2490	spin_unlock(&log->l_icloglock);
2491
2492	return error;
2493}
2494
2495static void
2496xlog_state_activate_iclog(
2497	struct xlog_in_core	*iclog,
2498	int			*iclogs_changed)
2499{
2500	ASSERT(list_empty_careful(&iclog->ic_callbacks));
2501
2502	/*
2503	 * If the number of ops in this iclog indicate it just contains the
2504	 * dummy transaction, we can change state into IDLE (the second time
2505	 * around). Otherwise we should change the state into NEED a dummy.
2506	 * We don't need to cover the dummy.
2507	 */
2508	if (*iclogs_changed == 0 &&
2509	    iclog->ic_header.h_num_logops == cpu_to_be32(XLOG_COVER_OPS)) {
2510		*iclogs_changed = 1;
2511	} else {
2512		/*
2513		 * We have two dirty iclogs so start over.  This could also be
2514		 * num of ops indicating this is not the dummy going out.
2515		 */
2516		*iclogs_changed = 2;
2517	}
2518
2519	iclog->ic_state	= XLOG_STATE_ACTIVE;
2520	iclog->ic_offset = 0;
2521	iclog->ic_header.h_num_logops = 0;
2522	memset(iclog->ic_header.h_cycle_data, 0,
2523		sizeof(iclog->ic_header.h_cycle_data));
2524	iclog->ic_header.h_lsn = 0;
2525}
2526
2527/*
2528 * Loop through all iclogs and mark all iclogs currently marked DIRTY as
2529 * ACTIVE after iclog I/O has completed.
2530 */
2531static void
2532xlog_state_activate_iclogs(
2533	struct xlog		*log,
2534	int			*iclogs_changed)
2535{
2536	struct xlog_in_core	*iclog = log->l_iclog;
2537
2538	do {
2539		if (iclog->ic_state == XLOG_STATE_DIRTY)
2540			xlog_state_activate_iclog(iclog, iclogs_changed);
2541		/*
2542		 * The ordering of marking iclogs ACTIVE must be maintained, so
2543		 * an iclog doesn't become ACTIVE beyond one that is SYNCING.
2544		 */
2545		else if (iclog->ic_state != XLOG_STATE_ACTIVE)
2546			break;
2547	} while ((iclog = iclog->ic_next) != log->l_iclog);
2548}
2549
2550static int
2551xlog_covered_state(
2552	int			prev_state,
2553	int			iclogs_changed)
2554{
2555	/*
2556	 * We usually go to NEED. But we go to NEED2 if the changed indicates we
2557	 * are done writing the dummy record.  If we are done with the second
2558	 * dummy recored (DONE2), then we go to IDLE.
2559	 */
2560	switch (prev_state) {
2561	case XLOG_STATE_COVER_IDLE:
2562	case XLOG_STATE_COVER_NEED:
2563	case XLOG_STATE_COVER_NEED2:
2564		break;
2565	case XLOG_STATE_COVER_DONE:
2566		if (iclogs_changed == 1)
2567			return XLOG_STATE_COVER_NEED2;
2568		break;
2569	case XLOG_STATE_COVER_DONE2:
2570		if (iclogs_changed == 1)
2571			return XLOG_STATE_COVER_IDLE;
2572		break;
2573	default:
2574		ASSERT(0);
2575	}
2576
2577	return XLOG_STATE_COVER_NEED;
2578}
2579
2580STATIC void
2581xlog_state_clean_iclog(
2582	struct xlog		*log,
2583	struct xlog_in_core	*dirty_iclog)
2584{
2585	int			iclogs_changed = 0;
2586
2587	dirty_iclog->ic_state = XLOG_STATE_DIRTY;
2588
2589	xlog_state_activate_iclogs(log, &iclogs_changed);
2590	wake_up_all(&dirty_iclog->ic_force_wait);
2591
2592	if (iclogs_changed) {
2593		log->l_covered_state = xlog_covered_state(log->l_covered_state,
2594				iclogs_changed);
2595	}
2596}
2597
2598STATIC xfs_lsn_t
2599xlog_get_lowest_lsn(
2600	struct xlog		*log)
2601{
2602	struct xlog_in_core	*iclog = log->l_iclog;
2603	xfs_lsn_t		lowest_lsn = 0, lsn;
2604
2605	do {
2606		if (iclog->ic_state == XLOG_STATE_ACTIVE ||
2607		    iclog->ic_state == XLOG_STATE_DIRTY)
2608			continue;
2609
2610		lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2611		if ((lsn && !lowest_lsn) || XFS_LSN_CMP(lsn, lowest_lsn) < 0)
2612			lowest_lsn = lsn;
2613	} while ((iclog = iclog->ic_next) != log->l_iclog);
2614
2615	return lowest_lsn;
2616}
2617
2618/*
2619 * Completion of a iclog IO does not imply that a transaction has completed, as
2620 * transactions can be large enough to span many iclogs. We cannot change the
2621 * tail of the log half way through a transaction as this may be the only
2622 * transaction in the log and moving the tail to point to the middle of it
2623 * will prevent recovery from finding the start of the transaction. Hence we
2624 * should only update the last_sync_lsn if this iclog contains transaction
2625 * completion callbacks on it.
2626 *
2627 * We have to do this before we drop the icloglock to ensure we are the only one
2628 * that can update it.
2629 *
2630 * If we are moving the last_sync_lsn forwards, we also need to ensure we kick
2631 * the reservation grant head pushing. This is due to the fact that the push
2632 * target is bound by the current last_sync_lsn value. Hence if we have a large
2633 * amount of log space bound up in this committing transaction then the
2634 * last_sync_lsn value may be the limiting factor preventing tail pushing from
2635 * freeing space in the log. Hence once we've updated the last_sync_lsn we
2636 * should push the AIL to ensure the push target (and hence the grant head) is
2637 * no longer bound by the old log head location and can move forwards and make
2638 * progress again.
2639 */
2640static void
2641xlog_state_set_callback(
2642	struct xlog		*log,
2643	struct xlog_in_core	*iclog,
2644	xfs_lsn_t		header_lsn)
2645{
2646	iclog->ic_state = XLOG_STATE_CALLBACK;
2647
2648	ASSERT(XFS_LSN_CMP(atomic64_read(&log->l_last_sync_lsn),
2649			   header_lsn) <= 0);
2650
2651	if (list_empty_careful(&iclog->ic_callbacks))
2652		return;
2653
2654	atomic64_set(&log->l_last_sync_lsn, header_lsn);
2655	xlog_grant_push_ail(log, 0);
2656}
2657
2658/*
2659 * Return true if we need to stop processing, false to continue to the next
2660 * iclog. The caller will need to run callbacks if the iclog is returned in the
2661 * XLOG_STATE_CALLBACK state.
2662 */
2663static bool
2664xlog_state_iodone_process_iclog(
2665	struct xlog		*log,
2666	struct xlog_in_core	*iclog,
2667	bool			*ioerror)
2668{
2669	xfs_lsn_t		lowest_lsn;
2670	xfs_lsn_t		header_lsn;
2671
2672	switch (iclog->ic_state) {
2673	case XLOG_STATE_ACTIVE:
2674	case XLOG_STATE_DIRTY:
2675		/*
2676		 * Skip all iclogs in the ACTIVE & DIRTY states:
2677		 */
2678		return false;
2679	case XLOG_STATE_IOERROR:
2680		/*
2681		 * Between marking a filesystem SHUTDOWN and stopping the log,
2682		 * we do flush all iclogs to disk (if there wasn't a log I/O
2683		 * error). So, we do want things to go smoothly in case of just
2684		 * a SHUTDOWN w/o a LOG_IO_ERROR.
2685		 */
2686		*ioerror = true;
2687		return false;
2688	case XLOG_STATE_DONE_SYNC:
2689		/*
2690		 * Now that we have an iclog that is in the DONE_SYNC state, do
2691		 * one more check here to see if we have chased our tail around.
2692		 * If this is not the lowest lsn iclog, then we will leave it
2693		 * for another completion to process.
2694		 */
2695		header_lsn = be64_to_cpu(iclog->ic_header.h_lsn);
2696		lowest_lsn = xlog_get_lowest_lsn(log);
2697		if (lowest_lsn && XFS_LSN_CMP(lowest_lsn, header_lsn) < 0)
2698			return false;
2699		xlog_state_set_callback(log, iclog, header_lsn);
2700		return false;
2701	default:
2702		/*
2703		 * Can only perform callbacks in order.  Since this iclog is not
2704		 * in the DONE_SYNC state, we skip the rest and just try to
2705		 * clean up.
2706		 */
2707		return true;
2708	}
2709}
2710
2711/*
2712 * Keep processing entries in the iclog callback list until we come around and
2713 * it is empty.  We need to atomically see that the list is empty and change the
2714 * state to DIRTY so that we don't miss any more callbacks being added.
2715 *
2716 * This function is called with the icloglock held and returns with it held. We
2717 * drop it while running callbacks, however, as holding it over thousands of
2718 * callbacks is unnecessary and causes excessive contention if we do.
2719 */
2720static void
2721xlog_state_do_iclog_callbacks(
2722	struct xlog		*log,
2723	struct xlog_in_core	*iclog)
2724		__releases(&log->l_icloglock)
2725		__acquires(&log->l_icloglock)
2726{
2727	spin_unlock(&log->l_icloglock);
2728	spin_lock(&iclog->ic_callback_lock);
2729	while (!list_empty(&iclog->ic_callbacks)) {
2730		LIST_HEAD(tmp);
2731
2732		list_splice_init(&iclog->ic_callbacks, &tmp);
2733
2734		spin_unlock(&iclog->ic_callback_lock);
2735		xlog_cil_process_committed(&tmp);
2736		spin_lock(&iclog->ic_callback_lock);
2737	}
2738
2739	/*
2740	 * Pick up the icloglock while still holding the callback lock so we
2741	 * serialise against anyone trying to add more callbacks to this iclog
2742	 * now we've finished processing.
2743	 */
2744	spin_lock(&log->l_icloglock);
2745	spin_unlock(&iclog->ic_callback_lock);
2746}
2747
2748STATIC void
2749xlog_state_do_callback(
2750	struct xlog		*log)
2751{
2752	struct xlog_in_core	*iclog;
2753	struct xlog_in_core	*first_iclog;
2754	bool			cycled_icloglock;
2755	bool			ioerror;
2756	int			flushcnt = 0;
2757	int			repeats = 0;
2758
2759	spin_lock(&log->l_icloglock);
2760	do {
2761		/*
2762		 * Scan all iclogs starting with the one pointed to by the
2763		 * log.  Reset this starting point each time the log is
2764		 * unlocked (during callbacks).
2765		 *
2766		 * Keep looping through iclogs until one full pass is made
2767		 * without running any callbacks.
2768		 */
2769		first_iclog = log->l_iclog;
2770		iclog = log->l_iclog;
2771		cycled_icloglock = false;
2772		ioerror = false;
2773		repeats++;
2774
2775		do {
2776			if (xlog_state_iodone_process_iclog(log, iclog,
2777							&ioerror))
2778				break;
2779
2780			if (iclog->ic_state != XLOG_STATE_CALLBACK &&
2781			    iclog->ic_state != XLOG_STATE_IOERROR) {
2782				iclog = iclog->ic_next;
2783				continue;
2784			}
2785
2786			/*
2787			 * Running callbacks will drop the icloglock which means
2788			 * we'll have to run at least one more complete loop.
2789			 */
2790			cycled_icloglock = true;
2791			xlog_state_do_iclog_callbacks(log, iclog);
2792			if (XLOG_FORCED_SHUTDOWN(log))
2793				wake_up_all(&iclog->ic_force_wait);
2794			else
2795				xlog_state_clean_iclog(log, iclog);
2796			iclog = iclog->ic_next;
2797		} while (first_iclog != iclog);
2798
2799		if (repeats > 5000) {
2800			flushcnt += repeats;
2801			repeats = 0;
2802			xfs_warn(log->l_mp,
2803				"%s: possible infinite loop (%d iterations)",
2804				__func__, flushcnt);
2805		}
2806	} while (!ioerror && cycled_icloglock);
2807
2808	if (log->l_iclog->ic_state == XLOG_STATE_ACTIVE ||
2809	    log->l_iclog->ic_state == XLOG_STATE_IOERROR)
2810		wake_up_all(&log->l_flush_wait);
2811
2812	spin_unlock(&log->l_icloglock);
2813}
2814
2815
2816/*
2817 * Finish transitioning this iclog to the dirty state.
2818 *
2819 * Make sure that we completely execute this routine only when this is
2820 * the last call to the iclog.  There is a good chance that iclog flushes,
2821 * when we reach the end of the physical log, get turned into 2 separate
2822 * calls to bwrite.  Hence, one iclog flush could generate two calls to this
2823 * routine.  By using the reference count bwritecnt, we guarantee that only
2824 * the second completion goes through.
2825 *
2826 * Callbacks could take time, so they are done outside the scope of the
2827 * global state machine log lock.
2828 */
2829STATIC void
2830xlog_state_done_syncing(
2831	struct xlog_in_core	*iclog)
2832{
2833	struct xlog		*log = iclog->ic_log;
2834
2835	spin_lock(&log->l_icloglock);
2836	ASSERT(atomic_read(&iclog->ic_refcnt) == 0);
2837
2838	/*
2839	 * If we got an error, either on the first buffer, or in the case of
2840	 * split log writes, on the second, we shut down the file system and
2841	 * no iclogs should ever be attempted to be written to disk again.
2842	 */
2843	if (!XLOG_FORCED_SHUTDOWN(log)) {
2844		ASSERT(iclog->ic_state == XLOG_STATE_SYNCING);
2845		iclog->ic_state = XLOG_STATE_DONE_SYNC;
2846	}
2847
2848	/*
2849	 * Someone could be sleeping prior to writing out the next
2850	 * iclog buffer, we wake them all, one will get to do the
2851	 * I/O, the others get to wait for the result.
2852	 */
2853	wake_up_all(&iclog->ic_write_wait);
2854	spin_unlock(&log->l_icloglock);
2855	xlog_state_do_callback(log);
2856}
2857
2858/*
2859 * If the head of the in-core log ring is not (ACTIVE or DIRTY), then we must
2860 * sleep.  We wait on the flush queue on the head iclog as that should be
2861 * the first iclog to complete flushing. Hence if all iclogs are syncing,
2862 * we will wait here and all new writes will sleep until a sync completes.
2863 *
2864 * The in-core logs are used in a circular fashion. They are not used
2865 * out-of-order even when an iclog past the head is free.
2866 *
2867 * return:
2868 *	* log_offset where xlog_write() can start writing into the in-core
2869 *		log's data space.
2870 *	* in-core log pointer to which xlog_write() should write.
2871 *	* boolean indicating this is a continued write to an in-core log.
2872 *		If this is the last write, then the in-core log's offset field
2873 *		needs to be incremented, depending on the amount of data which
2874 *		is copied.
2875 */
2876STATIC int
2877xlog_state_get_iclog_space(
2878	struct xlog		*log,
2879	int			len,
2880	struct xlog_in_core	**iclogp,
2881	struct xlog_ticket	*ticket,
2882	int			*continued_write,
2883	int			*logoffsetp)
2884{
2885	int		  log_offset;
2886	xlog_rec_header_t *head;
2887	xlog_in_core_t	  *iclog;
2888
2889restart:
2890	spin_lock(&log->l_icloglock);
2891	if (XLOG_FORCED_SHUTDOWN(log)) {
2892		spin_unlock(&log->l_icloglock);
2893		return -EIO;
2894	}
2895
2896	iclog = log->l_iclog;
2897	if (iclog->ic_state != XLOG_STATE_ACTIVE) {
2898		XFS_STATS_INC(log->l_mp, xs_log_noiclogs);
2899
2900		/* Wait for log writes to have flushed */
2901		xlog_wait(&log->l_flush_wait, &log->l_icloglock);
2902		goto restart;
2903	}
2904
2905	head = &iclog->ic_header;
2906
2907	atomic_inc(&iclog->ic_refcnt);	/* prevents sync */
2908	log_offset = iclog->ic_offset;
2909
2910	/* On the 1st write to an iclog, figure out lsn.  This works
2911	 * if iclogs marked XLOG_STATE_WANT_SYNC always write out what they are
2912	 * committing to.  If the offset is set, that's how many blocks
2913	 * must be written.
2914	 */
2915	if (log_offset == 0) {
2916		ticket->t_curr_res -= log->l_iclog_hsize;
2917		xlog_tic_add_region(ticket,
2918				    log->l_iclog_hsize,
2919				    XLOG_REG_TYPE_LRHEADER);
2920		head->h_cycle = cpu_to_be32(log->l_curr_cycle);
2921		head->h_lsn = cpu_to_be64(
2922			xlog_assign_lsn(log->l_curr_cycle, log->l_curr_block));
2923		ASSERT(log->l_curr_block >= 0);
2924	}
2925
2926	/* If there is enough room to write everything, then do it.  Otherwise,
2927	 * claim the rest of the region and make sure the XLOG_STATE_WANT_SYNC
2928	 * bit is on, so this will get flushed out.  Don't update ic_offset
2929	 * until you know exactly how many bytes get copied.  Therefore, wait
2930	 * until later to update ic_offset.
2931	 *
2932	 * xlog_write() algorithm assumes that at least 2 xlog_op_header_t's
2933	 * can fit into remaining data section.
2934	 */
2935	if (iclog->ic_size - iclog->ic_offset < 2*sizeof(xlog_op_header_t)) {
2936		int		error = 0;
2937
2938		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2939
2940		/*
2941		 * If we are the only one writing to this iclog, sync it to
2942		 * disk.  We need to do an atomic compare and decrement here to
2943		 * avoid racing with concurrent atomic_dec_and_lock() calls in
2944		 * xlog_state_release_iclog() when there is more than one
2945		 * reference to the iclog.
2946		 */
2947		if (!atomic_add_unless(&iclog->ic_refcnt, -1, 1))
2948			error = xlog_state_release_iclog(log, iclog);
2949		spin_unlock(&log->l_icloglock);
2950		if (error)
2951			return error;
2952		goto restart;
2953	}
2954
2955	/* Do we have enough room to write the full amount in the remainder
2956	 * of this iclog?  Or must we continue a write on the next iclog and
2957	 * mark this iclog as completely taken?  In the case where we switch
2958	 * iclogs (to mark it taken), this particular iclog will release/sync
2959	 * to disk in xlog_write().
2960	 */
2961	if (len <= iclog->ic_size - iclog->ic_offset) {
2962		*continued_write = 0;
2963		iclog->ic_offset += len;
2964	} else {
2965		*continued_write = 1;
2966		xlog_state_switch_iclogs(log, iclog, iclog->ic_size);
2967	}
2968	*iclogp = iclog;
2969
2970	ASSERT(iclog->ic_offset <= iclog->ic_size);
2971	spin_unlock(&log->l_icloglock);
2972
2973	*logoffsetp = log_offset;
2974	return 0;
2975}
2976
2977/*
2978 * The first cnt-1 times a ticket goes through here we don't need to move the
2979 * grant write head because the permanent reservation has reserved cnt times the
2980 * unit amount.  Release part of current permanent unit reservation and reset
2981 * current reservation to be one units worth.  Also move grant reservation head
2982 * forward.
2983 */
2984void
2985xfs_log_ticket_regrant(
2986	struct xlog		*log,
2987	struct xlog_ticket	*ticket)
2988{
2989	trace_xfs_log_ticket_regrant(log, ticket);
2990
2991	if (ticket->t_cnt > 0)
2992		ticket->t_cnt--;
2993
2994	xlog_grant_sub_space(log, &log->l_reserve_head.grant,
2995					ticket->t_curr_res);
2996	xlog_grant_sub_space(log, &log->l_write_head.grant,
2997					ticket->t_curr_res);
2998	ticket->t_curr_res = ticket->t_unit_res;
2999	xlog_tic_reset_res(ticket);
3000
3001	trace_xfs_log_ticket_regrant_sub(log, ticket);
3002
3003	/* just return if we still have some of the pre-reserved space */
3004	if (!ticket->t_cnt) {
3005		xlog_grant_add_space(log, &log->l_reserve_head.grant,
3006				     ticket->t_unit_res);
3007		trace_xfs_log_ticket_regrant_exit(log, ticket);
3008
3009		ticket->t_curr_res = ticket->t_unit_res;
3010		xlog_tic_reset_res(ticket);
3011	}
3012
3013	xfs_log_ticket_put(ticket);
3014}
3015
3016/*
3017 * Give back the space left from a reservation.
3018 *
3019 * All the information we need to make a correct determination of space left
3020 * is present.  For non-permanent reservations, things are quite easy.  The
3021 * count should have been decremented to zero.  We only need to deal with the
3022 * space remaining in the current reservation part of the ticket.  If the
3023 * ticket contains a permanent reservation, there may be left over space which
3024 * needs to be released.  A count of N means that N-1 refills of the current
3025 * reservation can be done before we need to ask for more space.  The first
3026 * one goes to fill up the first current reservation.  Once we run out of
3027 * space, the count will stay at zero and the only space remaining will be
3028 * in the current reservation field.
3029 */
3030void
3031xfs_log_ticket_ungrant(
3032	struct xlog		*log,
3033	struct xlog_ticket	*ticket)
3034{
3035	int			bytes;
3036
3037	trace_xfs_log_ticket_ungrant(log, ticket);
3038
3039	if (ticket->t_cnt > 0)
3040		ticket->t_cnt--;
3041
3042	trace_xfs_log_ticket_ungrant_sub(log, ticket);
3043
3044	/*
3045	 * If this is a permanent reservation ticket, we may be able to free
3046	 * up more space based on the remaining count.
3047	 */
3048	bytes = ticket->t_curr_res;
3049	if (ticket->t_cnt > 0) {
3050		ASSERT(ticket->t_flags & XLOG_TIC_PERM_RESERV);
3051		bytes += ticket->t_unit_res*ticket->t_cnt;
3052	}
3053
3054	xlog_grant_sub_space(log, &log->l_reserve_head.grant, bytes);
3055	xlog_grant_sub_space(log, &log->l_write_head.grant, bytes);
3056
3057	trace_xfs_log_ticket_ungrant_exit(log, ticket);
3058
3059	xfs_log_space_wake(log->l_mp);
3060	xfs_log_ticket_put(ticket);
3061}
3062
3063/*
3064 * This routine will mark the current iclog in the ring as WANT_SYNC and move
3065 * the current iclog pointer to the next iclog in the ring.
3066 */
3067STATIC void
3068xlog_state_switch_iclogs(
3069	struct xlog		*log,
3070	struct xlog_in_core	*iclog,
3071	int			eventual_size)
3072{
3073	ASSERT(iclog->ic_state == XLOG_STATE_ACTIVE);
3074	assert_spin_locked(&log->l_icloglock);
3075
3076	if (!eventual_size)
3077		eventual_size = iclog->ic_offset;
3078	iclog->ic_state = XLOG_STATE_WANT_SYNC;
3079	iclog->ic_header.h_prev_block = cpu_to_be32(log->l_prev_block);
3080	log->l_prev_block = log->l_curr_block;
3081	log->l_prev_cycle = log->l_curr_cycle;
3082
3083	/* roll log?: ic_offset changed later */
3084	log->l_curr_block += BTOBB(eventual_size)+BTOBB(log->l_iclog_hsize);
3085
3086	/* Round up to next log-sunit */
3087	if (xfs_sb_version_haslogv2(&log->l_mp->m_sb) &&
3088	    log->l_mp->m_sb.sb_logsunit > 1) {
3089		uint32_t sunit_bb = BTOBB(log->l_mp->m_sb.sb_logsunit);
3090		log->l_curr_block = roundup(log->l_curr_block, sunit_bb);
3091	}
3092
3093	if (log->l_curr_block >= log->l_logBBsize) {
3094		/*
3095		 * Rewind the current block before the cycle is bumped to make
3096		 * sure that the combined LSN never transiently moves forward
3097		 * when the log wraps to the next cycle. This is to support the
3098		 * unlocked sample of these fields from xlog_valid_lsn(). Most
3099		 * other cases should acquire l_icloglock.
3100		 */
3101		log->l_curr_block -= log->l_logBBsize;
3102		ASSERT(log->l_curr_block >= 0);
3103		smp_wmb();
3104		log->l_curr_cycle++;
3105		if (log->l_curr_cycle == XLOG_HEADER_MAGIC_NUM)
3106			log->l_curr_cycle++;
3107	}
3108	ASSERT(iclog == log->l_iclog);
3109	log->l_iclog = iclog->ic_next;
3110}
3111
3112/*
3113 * Write out all data in the in-core log as of this exact moment in time.
3114 *
3115 * Data may be written to the in-core log during this call.  However,
3116 * we don't guarantee this data will be written out.  A change from past
3117 * implementation means this routine will *not* write out zero length LRs.
3118 *
3119 * Basically, we try and perform an intelligent scan of the in-core logs.
3120 * If we determine there is no flushable data, we just return.  There is no
3121 * flushable data if:
3122 *
3123 *	1. the current iclog is active and has no data; the previous iclog
3124 *		is in the active or dirty state.
3125 *	2. the current iclog is drity, and the previous iclog is in the
3126 *		active or dirty state.
3127 *
3128 * We may sleep if:
3129 *
3130 *	1. the current iclog is not in the active nor dirty state.
3131 *	2. the current iclog dirty, and the previous iclog is not in the
3132 *		active nor dirty state.
3133 *	3. the current iclog is active, and there is another thread writing
3134 *		to this particular iclog.
3135 *	4. a) the current iclog is active and has no other writers
3136 *	   b) when we return from flushing out this iclog, it is still
3137 *		not in the active nor dirty state.
3138 */
3139int
3140xfs_log_force(
3141	struct xfs_mount	*mp,
3142	uint			flags)
3143{
3144	struct xlog		*log = mp->m_log;
3145	struct xlog_in_core	*iclog;
3146	xfs_lsn_t		lsn;
3147
3148	XFS_STATS_INC(mp, xs_log_force);
3149	trace_xfs_log_force(mp, 0, _RET_IP_);
3150
3151	xlog_cil_force(log);
3152
3153	spin_lock(&log->l_icloglock);
3154	iclog = log->l_iclog;
3155	if (iclog->ic_state == XLOG_STATE_IOERROR)
3156		goto out_error;
3157
3158	if (iclog->ic_state == XLOG_STATE_DIRTY ||
3159	    (iclog->ic_state == XLOG_STATE_ACTIVE &&
3160	     atomic_read(&iclog->ic_refcnt) == 0 && iclog->ic_offset == 0)) {
3161		/*
3162		 * If the head is dirty or (active and empty), then we need to
3163		 * look at the previous iclog.
3164		 *
3165		 * If the previous iclog is active or dirty we are done.  There
3166		 * is nothing to sync out. Otherwise, we attach ourselves to the
3167		 * previous iclog and go to sleep.
3168		 */
3169		iclog = iclog->ic_prev;
3170	} else if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3171		if (atomic_read(&iclog->ic_refcnt) == 0) {
3172			/*
3173			 * We are the only one with access to this iclog.
3174			 *
3175			 * Flush it out now.  There should be a roundoff of zero
3176			 * to show that someone has already taken care of the
3177			 * roundoff from the previous sync.
3178			 */
3179			atomic_inc(&iclog->ic_refcnt);
3180			lsn = be64_to_cpu(iclog->ic_header.h_lsn);
3181			xlog_state_switch_iclogs(log, iclog, 0);
3182			if (xlog_state_release_iclog(log, iclog))
3183				goto out_error;
3184
3185			if (be64_to_cpu(iclog->ic_header.h_lsn) != lsn)
3186				goto out_unlock;
3187		} else {
3188			/*
3189			 * Someone else is writing to this iclog.
3190			 *
3191			 * Use its call to flush out the data.  However, the
3192			 * other thread may not force out this LR, so we mark
3193			 * it WANT_SYNC.
3194			 */
3195			xlog_state_switch_iclogs(log, iclog, 0);
3196		}
3197	} else {
3198		/*
3199		 * If the head iclog is not active nor dirty, we just attach
3200		 * ourselves to the head and go to sleep if necessary.
3201		 */
3202		;
3203	}
3204
3205	if (flags & XFS_LOG_SYNC)
3206		return xlog_wait_on_iclog(iclog);
3207out_unlock:
3208	spin_unlock(&log->l_icloglock);
3209	return 0;
3210out_error:
3211	spin_unlock(&log->l_icloglock);
3212	return -EIO;
3213}
3214
3215static int
3216xlog_force_lsn(
3217	struct xlog		*log,
3218	xfs_lsn_t		lsn,
3219	uint			flags,
3220	int			*log_flushed,
3221	bool			already_slept)
3222{
3223	struct xlog_in_core	*iclog;
3224
3225	spin_lock(&log->l_icloglock);
3226	iclog = log->l_iclog;
3227	if (iclog->ic_state == XLOG_STATE_IOERROR)
3228		goto out_error;
3229
3230	while (be64_to_cpu(iclog->ic_header.h_lsn) != lsn) {
3231		iclog = iclog->ic_next;
3232		if (iclog == log->l_iclog)
3233			goto out_unlock;
3234	}
3235
3236	if (iclog->ic_state == XLOG_STATE_ACTIVE) {
3237		/*
3238		 * We sleep here if we haven't already slept (e.g. this is the
3239		 * first time we've looked at the correct iclog buf) and the
3240		 * buffer before us is going to be sync'ed.  The reason for this
3241		 * is that if we are doing sync transactions here, by waiting
3242		 * for the previous I/O to complete, we can allow a few more
3243		 * transactions into this iclog before we close it down.
3244		 *
3245		 * Otherwise, we mark the buffer WANT_SYNC, and bump up the
3246		 * refcnt so we can release the log (which drops the ref count).
3247		 * The state switch keeps new transaction commits from using
3248		 * this buffer.  When the current commits finish writing into
3249		 * the buffer, the refcount will drop to zero and the buffer
3250		 * will go out then.
3251		 */
3252		if (!already_slept &&
3253		    (iclog->ic_prev->ic_state == XLOG_STATE_WANT_SYNC ||
3254		     iclog->ic_prev->ic_state == XLOG_STATE_SYNCING)) {
3255			xlog_wait(&iclog->ic_prev->ic_write_wait,
3256					&log->l_icloglock);
3257			return -EAGAIN;
3258		}
3259		atomic_inc(&iclog->ic_refcnt);
3260		xlog_state_switch_iclogs(log, iclog, 0);
3261		if (xlog_state_release_iclog(log, iclog))
3262			goto out_error;
3263		if (log_flushed)
3264			*log_flushed = 1;
3265	}
3266
3267	if (flags & XFS_LOG_SYNC)
3268		return xlog_wait_on_iclog(iclog);
3269out_unlock:
3270	spin_unlock(&log->l_icloglock);
3271	return 0;
3272out_error:
3273	spin_unlock(&log->l_icloglock);
3274	return -EIO;
3275}
3276
3277/*
3278 * Force the in-core log to disk for a specific LSN.
3279 *
3280 * Find in-core log with lsn.
3281 *	If it is in the DIRTY state, just return.
3282 *	If it is in the ACTIVE state, move the in-core log into the WANT_SYNC
3283 *		state and go to sleep or return.
3284 *	If it is in any other state, go to sleep or return.
3285 *
3286 * Synchronous forces are implemented with a wait queue.  All callers trying
3287 * to force a given lsn to disk must wait on the queue attached to the
3288 * specific in-core log.  When given in-core log finally completes its write
3289 * to disk, that thread will wake up all threads waiting on the queue.
3290 */
3291int
3292xfs_log_force_seq(
3293	struct xfs_mount	*mp,
3294	xfs_csn_t		seq,
3295	uint			flags,
3296	int			*log_flushed)
3297{
3298	struct xlog		*log = mp->m_log;
3299	xfs_lsn_t		lsn;
3300	int			ret;
3301	ASSERT(seq != 0);
3302
3303	XFS_STATS_INC(mp, xs_log_force);
3304	trace_xfs_log_force(mp, seq, _RET_IP_);
3305
3306	lsn = xlog_cil_force_seq(log, seq);
3307	if (lsn == NULLCOMMITLSN)
3308		return 0;
3309
3310	ret = xlog_force_lsn(log, lsn, flags, log_flushed, false);
3311	if (ret == -EAGAIN) {
3312		XFS_STATS_INC(mp, xs_log_force_sleep);
3313		ret = xlog_force_lsn(log, lsn, flags, log_flushed, true);
3314	}
3315	return ret;
3316}
3317
3318/*
3319 * Free a used ticket when its refcount falls to zero.
3320 */
3321void
3322xfs_log_ticket_put(
3323	xlog_ticket_t	*ticket)
3324{
3325	ASSERT(atomic_read(&ticket->t_ref) > 0);
3326	if (atomic_dec_and_test(&ticket->t_ref))
3327		kmem_cache_free(xfs_log_ticket_zone, ticket);
3328}
3329
3330xlog_ticket_t *
3331xfs_log_ticket_get(
3332	xlog_ticket_t	*ticket)
3333{
3334	ASSERT(atomic_read(&ticket->t_ref) > 0);
3335	atomic_inc(&ticket->t_ref);
3336	return ticket;
3337}
3338
3339/*
3340 * Figure out the total log space unit (in bytes) that would be
3341 * required for a log ticket.
3342 */
3343int
3344xfs_log_calc_unit_res(
3345	struct xfs_mount	*mp,
3346	int			unit_bytes)
3347{
3348	struct xlog		*log = mp->m_log;
3349	int			iclog_space;
3350	uint			num_headers;
3351
3352	/*
3353	 * Permanent reservations have up to 'cnt'-1 active log operations
3354	 * in the log.  A unit in this case is the amount of space for one
3355	 * of these log operations.  Normal reservations have a cnt of 1
3356	 * and their unit amount is the total amount of space required.
3357	 *
3358	 * The following lines of code account for non-transaction data
3359	 * which occupy space in the on-disk log.
3360	 *
3361	 * Normal form of a transaction is:
3362	 * <oph><trans-hdr><start-oph><reg1-oph><reg1><reg2-oph>...<commit-oph>
3363	 * and then there are LR hdrs, split-recs and roundoff at end of syncs.
3364	 *
3365	 * We need to account for all the leadup data and trailer data
3366	 * around the transaction data.
3367	 * And then we need to account for the worst case in terms of using
3368	 * more space.
3369	 * The worst case will happen if:
3370	 * - the placement of the transaction happens to be such that the
3371	 *   roundoff is at its maximum
3372	 * - the transaction data is synced before the commit record is synced
3373	 *   i.e. <transaction-data><roundoff> | <commit-rec><roundoff>
3374	 *   Therefore the commit record is in its own Log Record.
3375	 *   This can happen as the commit record is called with its
3376	 *   own region to xlog_write().
3377	 *   This then means that in the worst case, roundoff can happen for
3378	 *   the commit-rec as well.
3379	 *   The commit-rec is smaller than padding in this scenario and so it is
3380	 *   not added separately.
3381	 */
3382
3383	/* for trans header */
3384	unit_bytes += sizeof(xlog_op_header_t);
3385	unit_bytes += sizeof(xfs_trans_header_t);
3386
3387	/* for start-rec */
3388	unit_bytes += sizeof(xlog_op_header_t);
3389
3390	/*
3391	 * for LR headers - the space for data in an iclog is the size minus
3392	 * the space used for the headers. If we use the iclog size, then we
3393	 * undercalculate the number of headers required.
3394	 *
3395	 * Furthermore - the addition of op headers for split-recs might
3396	 * increase the space required enough to require more log and op
3397	 * headers, so take that into account too.
3398	 *
3399	 * IMPORTANT: This reservation makes the assumption that if this
3400	 * transaction is the first in an iclog and hence has the LR headers
3401	 * accounted to it, then the remaining space in the iclog is
3402	 * exclusively for this transaction.  i.e. if the transaction is larger
3403	 * than the iclog, it will be the only thing in that iclog.
3404	 * Fundamentally, this means we must pass the entire log vector to
3405	 * xlog_write to guarantee this.
3406	 */
3407	iclog_space = log->l_iclog_size - log->l_iclog_hsize;
3408	num_headers = howmany(unit_bytes, iclog_space);
3409
3410	/* for split-recs - ophdrs added when data split over LRs */
3411	unit_bytes += sizeof(xlog_op_header_t) * num_headers;
3412
3413	/* add extra header reservations if we overrun */
3414	while (!num_headers ||
3415	       howmany(unit_bytes, iclog_space) > num_headers) {
3416		unit_bytes += sizeof(xlog_op_header_t);
3417		num_headers++;
3418	}
3419	unit_bytes += log->l_iclog_hsize * num_headers;
3420
3421	/* for commit-rec LR header - note: padding will subsume the ophdr */
3422	unit_bytes += log->l_iclog_hsize;
3423
3424	/* for roundoff padding for transaction data and one for commit record */
3425	if (xfs_sb_version_haslogv2(&mp->m_sb) && mp->m_sb.sb_logsunit > 1) {
3426		/* log su roundoff */
3427		unit_bytes += 2 * mp->m_sb.sb_logsunit;
3428	} else {
3429		/* BB roundoff */
3430		unit_bytes += 2 * BBSIZE;
3431        }
3432
3433	return unit_bytes;
3434}
3435
3436/*
3437 * Allocate and initialise a new log ticket.
3438 */
3439struct xlog_ticket *
3440xlog_ticket_alloc(
3441	struct xlog		*log,
3442	int			unit_bytes,
3443	int			cnt,
3444	char			client,
3445	bool			permanent)
3446{
3447	struct xlog_ticket	*tic;
3448	int			unit_res;
3449
3450	tic = kmem_cache_zalloc(xfs_log_ticket_zone, GFP_NOFS | __GFP_NOFAIL);
3451
3452	unit_res = xfs_log_calc_unit_res(log->l_mp, unit_bytes);
3453
3454	atomic_set(&tic->t_ref, 1);
3455	tic->t_task		= current;
3456	INIT_LIST_HEAD(&tic->t_queue);
3457	tic->t_unit_res		= unit_res;
3458	tic->t_curr_res		= unit_res;
3459	tic->t_cnt		= cnt;
3460	tic->t_ocnt		= cnt;
3461	tic->t_tid		= prandom_u32();
3462	tic->t_clientid		= client;
3463	if (permanent)
3464		tic->t_flags |= XLOG_TIC_PERM_RESERV;
3465
3466	xlog_tic_reset_res(tic);
3467
3468	return tic;
3469}
3470
3471#if defined(DEBUG)
3472/*
3473 * Make sure that the destination ptr is within the valid data region of
3474 * one of the iclogs.  This uses backup pointers stored in a different
3475 * part of the log in case we trash the log structure.
3476 */
3477STATIC void
3478xlog_verify_dest_ptr(
3479	struct xlog	*log,
3480	void		*ptr)
3481{
3482	int i;
3483	int good_ptr = 0;
3484
3485	for (i = 0; i < log->l_iclog_bufs; i++) {
3486		if (ptr >= log->l_iclog_bak[i] &&
3487		    ptr <= log->l_iclog_bak[i] + log->l_iclog_size)
3488			good_ptr++;
3489	}
3490
3491	if (!good_ptr)
3492		xfs_emerg(log->l_mp, "%s: invalid ptr", __func__);
3493}
3494
3495/*
3496 * Check to make sure the grant write head didn't just over lap the tail.  If
3497 * the cycles are the same, we can't be overlapping.  Otherwise, make sure that
3498 * the cycles differ by exactly one and check the byte count.
3499 *
3500 * This check is run unlocked, so can give false positives. Rather than assert
3501 * on failures, use a warn-once flag and a panic tag to allow the admin to
3502 * determine if they want to panic the machine when such an error occurs. For
3503 * debug kernels this will have the same effect as using an assert but, unlinke
3504 * an assert, it can be turned off at runtime.
3505 */
3506STATIC void
3507xlog_verify_grant_tail(
3508	struct xlog	*log)
3509{
3510	int		tail_cycle, tail_blocks;
3511	int		cycle, space;
3512
3513	xlog_crack_grant_head(&log->l_write_head.grant, &cycle, &space);
3514	xlog_crack_atomic_lsn(&log->l_tail_lsn, &tail_cycle, &tail_blocks);
3515	if (tail_cycle != cycle) {
3516		if (cycle - 1 != tail_cycle &&
3517		    !(log->l_flags & XLOG_TAIL_WARN)) {
3518			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3519				"%s: cycle - 1 != tail_cycle", __func__);
3520			log->l_flags |= XLOG_TAIL_WARN;
3521		}
3522
3523		if (space > BBTOB(tail_blocks) &&
3524		    !(log->l_flags & XLOG_TAIL_WARN)) {
3525			xfs_alert_tag(log->l_mp, XFS_PTAG_LOGRES,
3526				"%s: space > BBTOB(tail_blocks)", __func__);
3527			log->l_flags |= XLOG_TAIL_WARN;
3528		}
3529	}
3530}
3531
3532/* check if it will fit */
3533STATIC void
3534xlog_verify_tail_lsn(
3535	struct xlog		*log,
3536	struct xlog_in_core	*iclog,
3537	xfs_lsn_t		tail_lsn)
3538{
3539    int blocks;
3540
3541    if (CYCLE_LSN(tail_lsn) == log->l_prev_cycle) {
3542	blocks =
3543	    log->l_logBBsize - (log->l_prev_block - BLOCK_LSN(tail_lsn));
3544	if (blocks < BTOBB(iclog->ic_offset)+BTOBB(log->l_iclog_hsize))
3545		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3546    } else {
3547	ASSERT(CYCLE_LSN(tail_lsn)+1 == log->l_prev_cycle);
3548
3549	if (BLOCK_LSN(tail_lsn) == log->l_prev_block)
3550		xfs_emerg(log->l_mp, "%s: tail wrapped", __func__);
3551
3552	blocks = BLOCK_LSN(tail_lsn) - log->l_prev_block;
3553	if (blocks < BTOBB(iclog->ic_offset) + 1)
3554		xfs_emerg(log->l_mp, "%s: ran out of log space", __func__);
3555    }
3556}
3557
3558/*
3559 * Perform a number of checks on the iclog before writing to disk.
3560 *
3561 * 1. Make sure the iclogs are still circular
3562 * 2. Make sure we have a good magic number
3563 * 3. Make sure we don't have magic numbers in the data
3564 * 4. Check fields of each log operation header for:
3565 *	A. Valid client identifier
3566 *	B. tid ptr value falls in valid ptr space (user space code)
3567 *	C. Length in log record header is correct according to the
3568 *		individual operation headers within record.
3569 * 5. When a bwrite will occur within 5 blocks of the front of the physical
3570 *	log, check the preceding blocks of the physical log to make sure all
3571 *	the cycle numbers agree with the current cycle number.
3572 */
3573STATIC void
3574xlog_verify_iclog(
3575	struct xlog		*log,
3576	struct xlog_in_core	*iclog,
3577	int			count)
3578{
3579	xlog_op_header_t	*ophead;
3580	xlog_in_core_t		*icptr;
3581	xlog_in_core_2_t	*xhdr;
3582	void			*base_ptr, *ptr, *p;
3583	ptrdiff_t		field_offset;
3584	uint8_t			clientid;
3585	int			len, i, j, k, op_len;
3586	int			idx;
3587
3588	/* check validity of iclog pointers */
3589	spin_lock(&log->l_icloglock);
3590	icptr = log->l_iclog;
3591	for (i = 0; i < log->l_iclog_bufs; i++, icptr = icptr->ic_next)
3592		ASSERT(icptr);
3593
3594	if (icptr != log->l_iclog)
3595		xfs_emerg(log->l_mp, "%s: corrupt iclog ring", __func__);
3596	spin_unlock(&log->l_icloglock);
3597
3598	/* check log magic numbers */
3599	if (iclog->ic_header.h_magicno != cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3600		xfs_emerg(log->l_mp, "%s: invalid magic num", __func__);
3601
3602	base_ptr = ptr = &iclog->ic_header;
3603	p = &iclog->ic_header;
3604	for (ptr += BBSIZE; ptr < base_ptr + count; ptr += BBSIZE) {
3605		if (*(__be32 *)ptr == cpu_to_be32(XLOG_HEADER_MAGIC_NUM))
3606			xfs_emerg(log->l_mp, "%s: unexpected magic num",
3607				__func__);
3608	}
3609
3610	/* check fields */
3611	len = be32_to_cpu(iclog->ic_header.h_num_logops);
3612	base_ptr = ptr = iclog->ic_datap;
3613	ophead = ptr;
3614	xhdr = iclog->ic_data;
3615	for (i = 0; i < len; i++) {
3616		ophead = ptr;
3617
3618		/* clientid is only 1 byte */
3619		p = &ophead->oh_clientid;
3620		field_offset = p - base_ptr;
3621		if (field_offset & 0x1ff) {
3622			clientid = ophead->oh_clientid;
3623		} else {
3624			idx = BTOBBT((char *)&ophead->oh_clientid - iclog->ic_datap);
3625			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3626				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3627				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3628				clientid = xlog_get_client_id(
3629					xhdr[j].hic_xheader.xh_cycle_data[k]);
3630			} else {
3631				clientid = xlog_get_client_id(
3632					iclog->ic_header.h_cycle_data[idx]);
3633			}
3634		}
3635		if (clientid != XFS_TRANSACTION && clientid != XFS_LOG)
3636			xfs_warn(log->l_mp,
3637				"%s: invalid clientid %d op "PTR_FMT" offset 0x%lx",
3638				__func__, clientid, ophead,
3639				(unsigned long)field_offset);
3640
3641		/* check length */
3642		p = &ophead->oh_len;
3643		field_offset = p - base_ptr;
3644		if (field_offset & 0x1ff) {
3645			op_len = be32_to_cpu(ophead->oh_len);
3646		} else {
3647			idx = BTOBBT((uintptr_t)&ophead->oh_len -
3648				    (uintptr_t)iclog->ic_datap);
3649			if (idx >= (XLOG_HEADER_CYCLE_SIZE / BBSIZE)) {
3650				j = idx / (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3651				k = idx % (XLOG_HEADER_CYCLE_SIZE / BBSIZE);
3652				op_len = be32_to_cpu(xhdr[j].hic_xheader.xh_cycle_data[k]);
3653			} else {
3654				op_len = be32_to_cpu(iclog->ic_header.h_cycle_data[idx]);
3655			}
3656		}
3657		ptr += sizeof(xlog_op_header_t) + op_len;
3658	}
3659}
3660#endif
3661
3662/*
3663 * Mark all iclogs IOERROR. l_icloglock is held by the caller.
3664 */
3665STATIC int
3666xlog_state_ioerror(
3667	struct xlog	*log)
3668{
3669	xlog_in_core_t	*iclog, *ic;
3670
3671	iclog = log->l_iclog;
3672	if (iclog->ic_state != XLOG_STATE_IOERROR) {
3673		/*
3674		 * Mark all the incore logs IOERROR.
3675		 * From now on, no log flushes will result.
3676		 */
3677		ic = iclog;
3678		do {
3679			ic->ic_state = XLOG_STATE_IOERROR;
3680			ic = ic->ic_next;
3681		} while (ic != iclog);
3682		return 0;
3683	}
3684	/*
3685	 * Return non-zero, if state transition has already happened.
3686	 */
3687	return 1;
3688}
3689
3690/*
3691 * This is called from xfs_force_shutdown, when we're forcibly
3692 * shutting down the filesystem, typically because of an IO error.
3693 * Our main objectives here are to make sure that:
3694 *	a. if !logerror, flush the logs to disk. Anything modified
3695 *	   after this is ignored.
3696 *	b. the filesystem gets marked 'SHUTDOWN' for all interested
3697 *	   parties to find out, 'atomically'.
3698 *	c. those who're sleeping on log reservations, pinned objects and
3699 *	    other resources get woken up, and be told the bad news.
3700 *	d. nothing new gets queued up after (b) and (c) are done.
3701 *
3702 * Note: for the !logerror case we need to flush the regions held in memory out
3703 * to disk first. This needs to be done before the log is marked as shutdown,
3704 * otherwise the iclog writes will fail.
3705 */
3706int
3707xfs_log_force_umount(
3708	struct xfs_mount	*mp,
3709	int			logerror)
3710{
3711	struct xlog	*log;
3712	int		retval;
3713
3714	log = mp->m_log;
3715
3716	/*
3717	 * If this happens during log recovery, don't worry about
3718	 * locking; the log isn't open for business yet.
3719	 */
3720	if (!log ||
3721	    log->l_flags & XLOG_ACTIVE_RECOVERY) {
3722		mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3723		if (mp->m_sb_bp)
3724			mp->m_sb_bp->b_flags |= XBF_DONE;
3725		return 0;
3726	}
3727
3728	/*
3729	 * Somebody could've already done the hard work for us.
3730	 * No need to get locks for this.
3731	 */
3732	if (logerror && log->l_iclog->ic_state == XLOG_STATE_IOERROR) {
3733		ASSERT(XLOG_FORCED_SHUTDOWN(log));
3734		return 1;
3735	}
3736
3737	/*
3738	 * Flush all the completed transactions to disk before marking the log
3739	 * being shut down. We need to do it in this order to ensure that
3740	 * completed operations are safely on disk before we shut down, and that
3741	 * we don't have to issue any buffer IO after the shutdown flags are set
3742	 * to guarantee this.
3743	 */
3744	if (!logerror)
3745		xfs_log_force(mp, XFS_LOG_SYNC);
3746
3747	/*
3748	 * mark the filesystem and the as in a shutdown state and wake
3749	 * everybody up to tell them the bad news.
3750	 */
3751	spin_lock(&log->l_icloglock);
3752	mp->m_flags |= XFS_MOUNT_FS_SHUTDOWN;
3753	if (mp->m_sb_bp)
3754		mp->m_sb_bp->b_flags |= XBF_DONE;
3755
3756	/*
3757	 * Mark the log and the iclogs with IO error flags to prevent any
3758	 * further log IO from being issued or completed.
3759	 */
3760	log->l_flags |= XLOG_IO_ERROR;
3761	retval = xlog_state_ioerror(log);
3762	spin_unlock(&log->l_icloglock);
3763
3764	/*
3765	 * We don't want anybody waiting for log reservations after this. That
3766	 * means we have to wake up everybody queued up on reserveq as well as
3767	 * writeq.  In addition, we make sure in xlog_{re}grant_log_space that
3768	 * we don't enqueue anything once the SHUTDOWN flag is set, and this
3769	 * action is protected by the grant locks.
3770	 */
3771	xlog_grant_head_wake_all(&log->l_reserve_head);
3772	xlog_grant_head_wake_all(&log->l_write_head);
3773
3774	/*
3775	 * Wake up everybody waiting on xfs_log_force. Wake the CIL push first
3776	 * as if the log writes were completed. The abort handling in the log
3777	 * item committed callback functions will do this again under lock to
3778	 * avoid races.
3779	 */
3780	spin_lock(&log->l_cilp->xc_push_lock);
3781	wake_up_all(&log->l_cilp->xc_commit_wait);
3782	spin_unlock(&log->l_cilp->xc_push_lock);
3783	xlog_state_do_callback(log);
3784
3785	/* return non-zero if log IOERROR transition had already happened */
3786	return retval;
3787}
3788
3789STATIC int
3790xlog_iclogs_empty(
3791	struct xlog	*log)
3792{
3793	xlog_in_core_t	*iclog;
3794
3795	iclog = log->l_iclog;
3796	do {
3797		/* endianness does not matter here, zero is zero in
3798		 * any language.
3799		 */
3800		if (iclog->ic_header.h_num_logops)
3801			return 0;
3802		iclog = iclog->ic_next;
3803	} while (iclog != log->l_iclog);
3804	return 1;
3805}
3806
3807/*
3808 * Verify that an LSN stamped into a piece of metadata is valid. This is
3809 * intended for use in read verifiers on v5 superblocks.
3810 */
3811bool
3812xfs_log_check_lsn(
3813	struct xfs_mount	*mp,
3814	xfs_lsn_t		lsn)
3815{
3816	struct xlog		*log = mp->m_log;
3817	bool			valid;
3818
3819	/*
3820	 * norecovery mode skips mount-time log processing and unconditionally
3821	 * resets the in-core LSN. We can't validate in this mode, but
3822	 * modifications are not allowed anyways so just return true.
3823	 */
3824	if (mp->m_flags & XFS_MOUNT_NORECOVERY)
3825		return true;
3826
3827	/*
3828	 * Some metadata LSNs are initialized to NULL (e.g., the agfl). This is
3829	 * handled by recovery and thus safe to ignore here.
3830	 */
3831	if (lsn == NULLCOMMITLSN)
3832		return true;
3833
3834	valid = xlog_valid_lsn(mp->m_log, lsn);
3835
3836	/* warn the user about what's gone wrong before verifier failure */
3837	if (!valid) {
3838		spin_lock(&log->l_icloglock);
3839		xfs_warn(mp,
3840"Corruption warning: Metadata has LSN (%d:%d) ahead of current LSN (%d:%d). "
3841"Please unmount and run xfs_repair (>= v4.3) to resolve.",
3842			 CYCLE_LSN(lsn), BLOCK_LSN(lsn),
3843			 log->l_curr_cycle, log->l_curr_block);
3844		spin_unlock(&log->l_icloglock);
3845	}
3846
3847	return valid;
3848}
3849
3850bool
3851xfs_log_in_recovery(
3852	struct xfs_mount	*mp)
3853{
3854	struct xlog		*log = mp->m_log;
3855
3856	return log->l_flags & XLOG_ACTIVE_RECOVERY;
3857}
3858