xref: /kernel/linux/linux-5.10/fs/xfs/xfs_icache.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_inode_item.h"
18#include "xfs_quota.h"
19#include "xfs_trace.h"
20#include "xfs_icache.h"
21#include "xfs_bmap_util.h"
22#include "xfs_dquot_item.h"
23#include "xfs_dquot.h"
24#include "xfs_reflink.h"
25#include "xfs_ialloc.h"
26
27#include <linux/iversion.h>
28
29/*
30 * Allocate and initialise an xfs_inode.
31 */
32struct xfs_inode *
33xfs_inode_alloc(
34	struct xfs_mount	*mp,
35	xfs_ino_t		ino)
36{
37	struct xfs_inode	*ip;
38
39	/*
40	 * XXX: If this didn't occur in transactions, we could drop GFP_NOFAIL
41	 * and return NULL here on ENOMEM.
42	 */
43	ip = kmem_cache_alloc(xfs_inode_zone, GFP_KERNEL | __GFP_NOFAIL);
44
45	if (inode_init_always(mp->m_super, VFS_I(ip))) {
46		kmem_cache_free(xfs_inode_zone, ip);
47		return NULL;
48	}
49
50	/* VFS doesn't initialise i_mode or i_state! */
51	VFS_I(ip)->i_mode = 0;
52	VFS_I(ip)->i_state = 0;
53
54	XFS_STATS_INC(mp, vn_active);
55	ASSERT(atomic_read(&ip->i_pincount) == 0);
56	ASSERT(ip->i_ino == 0);
57
58	/* initialise the xfs inode */
59	ip->i_ino = ino;
60	ip->i_mount = mp;
61	memset(&ip->i_imap, 0, sizeof(struct xfs_imap));
62	ip->i_afp = NULL;
63	ip->i_cowfp = NULL;
64	memset(&ip->i_df, 0, sizeof(ip->i_df));
65	ip->i_flags = 0;
66	ip->i_delayed_blks = 0;
67	memset(&ip->i_d, 0, sizeof(ip->i_d));
68	ip->i_sick = 0;
69	ip->i_checked = 0;
70	INIT_WORK(&ip->i_ioend_work, xfs_end_io);
71	INIT_LIST_HEAD(&ip->i_ioend_list);
72	spin_lock_init(&ip->i_ioend_lock);
73
74	return ip;
75}
76
77STATIC void
78xfs_inode_free_callback(
79	struct rcu_head		*head)
80{
81	struct inode		*inode = container_of(head, struct inode, i_rcu);
82	struct xfs_inode	*ip = XFS_I(inode);
83
84	switch (VFS_I(ip)->i_mode & S_IFMT) {
85	case S_IFREG:
86	case S_IFDIR:
87	case S_IFLNK:
88		xfs_idestroy_fork(&ip->i_df);
89		break;
90	}
91
92	if (ip->i_afp) {
93		xfs_idestroy_fork(ip->i_afp);
94		kmem_cache_free(xfs_ifork_zone, ip->i_afp);
95	}
96	if (ip->i_cowfp) {
97		xfs_idestroy_fork(ip->i_cowfp);
98		kmem_cache_free(xfs_ifork_zone, ip->i_cowfp);
99	}
100	if (ip->i_itemp) {
101		ASSERT(!test_bit(XFS_LI_IN_AIL,
102				 &ip->i_itemp->ili_item.li_flags));
103		xfs_inode_item_destroy(ip);
104		ip->i_itemp = NULL;
105	}
106
107	kmem_cache_free(xfs_inode_zone, ip);
108}
109
110static void
111__xfs_inode_free(
112	struct xfs_inode	*ip)
113{
114	/* asserts to verify all state is correct here */
115	ASSERT(atomic_read(&ip->i_pincount) == 0);
116	ASSERT(!ip->i_itemp || list_empty(&ip->i_itemp->ili_item.li_bio_list));
117	XFS_STATS_DEC(ip->i_mount, vn_active);
118
119	call_rcu(&VFS_I(ip)->i_rcu, xfs_inode_free_callback);
120}
121
122void
123xfs_inode_free(
124	struct xfs_inode	*ip)
125{
126	ASSERT(!xfs_iflags_test(ip, XFS_IFLUSHING));
127
128	/*
129	 * Because we use RCU freeing we need to ensure the inode always
130	 * appears to be reclaimed with an invalid inode number when in the
131	 * free state. The ip->i_flags_lock provides the barrier against lookup
132	 * races.
133	 */
134	spin_lock(&ip->i_flags_lock);
135	ip->i_flags = XFS_IRECLAIM;
136	ip->i_ino = 0;
137	spin_unlock(&ip->i_flags_lock);
138
139	__xfs_inode_free(ip);
140}
141
142/*
143 * Queue background inode reclaim work if there are reclaimable inodes and there
144 * isn't reclaim work already scheduled or in progress.
145 */
146static void
147xfs_reclaim_work_queue(
148	struct xfs_mount        *mp)
149{
150
151	rcu_read_lock();
152	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
153		queue_delayed_work(mp->m_reclaim_workqueue, &mp->m_reclaim_work,
154			msecs_to_jiffies(xfs_syncd_centisecs / 6 * 10));
155	}
156	rcu_read_unlock();
157}
158
159static void
160xfs_perag_set_reclaim_tag(
161	struct xfs_perag	*pag)
162{
163	struct xfs_mount	*mp = pag->pag_mount;
164
165	lockdep_assert_held(&pag->pag_ici_lock);
166	if (pag->pag_ici_reclaimable++)
167		return;
168
169	/* propagate the reclaim tag up into the perag radix tree */
170	spin_lock(&mp->m_perag_lock);
171	radix_tree_tag_set(&mp->m_perag_tree, pag->pag_agno,
172			   XFS_ICI_RECLAIM_TAG);
173	spin_unlock(&mp->m_perag_lock);
174
175	/* schedule periodic background inode reclaim */
176	xfs_reclaim_work_queue(mp);
177
178	trace_xfs_perag_set_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
179}
180
181static void
182xfs_perag_clear_reclaim_tag(
183	struct xfs_perag	*pag)
184{
185	struct xfs_mount	*mp = pag->pag_mount;
186
187	lockdep_assert_held(&pag->pag_ici_lock);
188	if (--pag->pag_ici_reclaimable)
189		return;
190
191	/* clear the reclaim tag from the perag radix tree */
192	spin_lock(&mp->m_perag_lock);
193	radix_tree_tag_clear(&mp->m_perag_tree, pag->pag_agno,
194			     XFS_ICI_RECLAIM_TAG);
195	spin_unlock(&mp->m_perag_lock);
196	trace_xfs_perag_clear_reclaim(mp, pag->pag_agno, -1, _RET_IP_);
197}
198
199
200/*
201 * We set the inode flag atomically with the radix tree tag.
202 * Once we get tag lookups on the radix tree, this inode flag
203 * can go away.
204 */
205void
206xfs_inode_set_reclaim_tag(
207	struct xfs_inode	*ip)
208{
209	struct xfs_mount	*mp = ip->i_mount;
210	struct xfs_perag	*pag;
211
212	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
213	spin_lock(&pag->pag_ici_lock);
214	spin_lock(&ip->i_flags_lock);
215
216	radix_tree_tag_set(&pag->pag_ici_root, XFS_INO_TO_AGINO(mp, ip->i_ino),
217			   XFS_ICI_RECLAIM_TAG);
218	xfs_perag_set_reclaim_tag(pag);
219	__xfs_iflags_set(ip, XFS_IRECLAIMABLE);
220
221	spin_unlock(&ip->i_flags_lock);
222	spin_unlock(&pag->pag_ici_lock);
223	xfs_perag_put(pag);
224}
225
226STATIC void
227xfs_inode_clear_reclaim_tag(
228	struct xfs_perag	*pag,
229	xfs_ino_t		ino)
230{
231	radix_tree_tag_clear(&pag->pag_ici_root,
232			     XFS_INO_TO_AGINO(pag->pag_mount, ino),
233			     XFS_ICI_RECLAIM_TAG);
234	xfs_perag_clear_reclaim_tag(pag);
235}
236
237static void
238xfs_inew_wait(
239	struct xfs_inode	*ip)
240{
241	wait_queue_head_t *wq = bit_waitqueue(&ip->i_flags, __XFS_INEW_BIT);
242	DEFINE_WAIT_BIT(wait, &ip->i_flags, __XFS_INEW_BIT);
243
244	do {
245		prepare_to_wait(wq, &wait.wq_entry, TASK_UNINTERRUPTIBLE);
246		if (!xfs_iflags_test(ip, XFS_INEW))
247			break;
248		schedule();
249	} while (true);
250	finish_wait(wq, &wait.wq_entry);
251}
252
253/*
254 * When we recycle a reclaimable inode, we need to re-initialise the VFS inode
255 * part of the structure. This is made more complex by the fact we store
256 * information about the on-disk values in the VFS inode and so we can't just
257 * overwrite the values unconditionally. Hence we save the parameters we
258 * need to retain across reinitialisation, and rewrite them into the VFS inode
259 * after reinitialisation even if it fails.
260 */
261static int
262xfs_reinit_inode(
263	struct xfs_mount	*mp,
264	struct inode		*inode)
265{
266	int		error;
267	uint32_t	nlink = inode->i_nlink;
268	uint32_t	generation = inode->i_generation;
269	uint64_t	version = inode_peek_iversion(inode);
270	umode_t		mode = inode->i_mode;
271	dev_t		dev = inode->i_rdev;
272	kuid_t		uid = inode->i_uid;
273	kgid_t		gid = inode->i_gid;
274
275	error = inode_init_always(mp->m_super, inode);
276
277	set_nlink(inode, nlink);
278	inode->i_generation = generation;
279	inode_set_iversion_queried(inode, version);
280	inode->i_mode = mode;
281	inode->i_rdev = dev;
282	inode->i_uid = uid;
283	inode->i_gid = gid;
284	return error;
285}
286
287/*
288 * If we are allocating a new inode, then check what was returned is
289 * actually a free, empty inode. If we are not allocating an inode,
290 * then check we didn't find a free inode.
291 *
292 * Returns:
293 *	0		if the inode free state matches the lookup context
294 *	-ENOENT		if the inode is free and we are not allocating
295 *	-EFSCORRUPTED	if there is any state mismatch at all
296 */
297static int
298xfs_iget_check_free_state(
299	struct xfs_inode	*ip,
300	int			flags)
301{
302	if (flags & XFS_IGET_CREATE) {
303		/* should be a free inode */
304		if (VFS_I(ip)->i_mode != 0) {
305			xfs_warn(ip->i_mount,
306"Corruption detected! Free inode 0x%llx not marked free! (mode 0x%x)",
307				ip->i_ino, VFS_I(ip)->i_mode);
308			return -EFSCORRUPTED;
309		}
310
311		if (ip->i_d.di_nblocks != 0) {
312			xfs_warn(ip->i_mount,
313"Corruption detected! Free inode 0x%llx has blocks allocated!",
314				ip->i_ino);
315			return -EFSCORRUPTED;
316		}
317		return 0;
318	}
319
320	/* should be an allocated inode */
321	if (VFS_I(ip)->i_mode == 0)
322		return -ENOENT;
323
324	return 0;
325}
326
327/*
328 * Check the validity of the inode we just found it the cache
329 */
330static int
331xfs_iget_cache_hit(
332	struct xfs_perag	*pag,
333	struct xfs_inode	*ip,
334	xfs_ino_t		ino,
335	int			flags,
336	int			lock_flags) __releases(RCU)
337{
338	struct inode		*inode = VFS_I(ip);
339	struct xfs_mount	*mp = ip->i_mount;
340	int			error;
341
342	/*
343	 * check for re-use of an inode within an RCU grace period due to the
344	 * radix tree nodes not being updated yet. We monitor for this by
345	 * setting the inode number to zero before freeing the inode structure.
346	 * If the inode has been reallocated and set up, then the inode number
347	 * will not match, so check for that, too.
348	 */
349	spin_lock(&ip->i_flags_lock);
350	if (ip->i_ino != ino) {
351		trace_xfs_iget_skip(ip);
352		XFS_STATS_INC(mp, xs_ig_frecycle);
353		error = -EAGAIN;
354		goto out_error;
355	}
356
357
358	/*
359	 * If we are racing with another cache hit that is currently
360	 * instantiating this inode or currently recycling it out of
361	 * reclaimabe state, wait for the initialisation to complete
362	 * before continuing.
363	 *
364	 * XXX(hch): eventually we should do something equivalent to
365	 *	     wait_on_inode to wait for these flags to be cleared
366	 *	     instead of polling for it.
367	 */
368	if (ip->i_flags & (XFS_INEW|XFS_IRECLAIM)) {
369		trace_xfs_iget_skip(ip);
370		XFS_STATS_INC(mp, xs_ig_frecycle);
371		error = -EAGAIN;
372		goto out_error;
373	}
374
375	/*
376	 * Check the inode free state is valid. This also detects lookup
377	 * racing with unlinks.
378	 */
379	error = xfs_iget_check_free_state(ip, flags);
380	if (error)
381		goto out_error;
382
383	/*
384	 * If IRECLAIMABLE is set, we've torn down the VFS inode already.
385	 * Need to carefully get it back into useable state.
386	 */
387	if (ip->i_flags & XFS_IRECLAIMABLE) {
388		trace_xfs_iget_reclaim(ip);
389
390		if (flags & XFS_IGET_INCORE) {
391			error = -EAGAIN;
392			goto out_error;
393		}
394
395		/*
396		 * We need to set XFS_IRECLAIM to prevent xfs_reclaim_inode
397		 * from stomping over us while we recycle the inode.  We can't
398		 * clear the radix tree reclaimable tag yet as it requires
399		 * pag_ici_lock to be held exclusive.
400		 */
401		ip->i_flags |= XFS_IRECLAIM;
402
403		spin_unlock(&ip->i_flags_lock);
404		rcu_read_unlock();
405
406		ASSERT(!rwsem_is_locked(&inode->i_rwsem));
407		error = xfs_reinit_inode(mp, inode);
408		if (error) {
409			bool wake;
410			/*
411			 * Re-initializing the inode failed, and we are in deep
412			 * trouble.  Try to re-add it to the reclaim list.
413			 */
414			rcu_read_lock();
415			spin_lock(&ip->i_flags_lock);
416			wake = !!__xfs_iflags_test(ip, XFS_INEW);
417			ip->i_flags &= ~(XFS_INEW | XFS_IRECLAIM);
418			if (wake)
419				wake_up_bit(&ip->i_flags, __XFS_INEW_BIT);
420			ASSERT(ip->i_flags & XFS_IRECLAIMABLE);
421			trace_xfs_iget_reclaim_fail(ip);
422			goto out_error;
423		}
424
425		spin_lock(&pag->pag_ici_lock);
426		spin_lock(&ip->i_flags_lock);
427
428		/*
429		 * Clear the per-lifetime state in the inode as we are now
430		 * effectively a new inode and need to return to the initial
431		 * state before reuse occurs.
432		 */
433		ip->i_flags &= ~XFS_IRECLAIM_RESET_FLAGS;
434		ip->i_flags |= XFS_INEW;
435		xfs_inode_clear_reclaim_tag(pag, ip->i_ino);
436		inode->i_state = I_NEW;
437		ip->i_sick = 0;
438		ip->i_checked = 0;
439
440		spin_unlock(&ip->i_flags_lock);
441		spin_unlock(&pag->pag_ici_lock);
442	} else {
443		/* If the VFS inode is being torn down, pause and try again. */
444		if (!igrab(inode)) {
445			trace_xfs_iget_skip(ip);
446			error = -EAGAIN;
447			goto out_error;
448		}
449
450		/* We've got a live one. */
451		spin_unlock(&ip->i_flags_lock);
452		rcu_read_unlock();
453		trace_xfs_iget_hit(ip);
454	}
455
456	if (lock_flags != 0)
457		xfs_ilock(ip, lock_flags);
458
459	if (!(flags & XFS_IGET_INCORE))
460		xfs_iflags_clear(ip, XFS_ISTALE);
461	XFS_STATS_INC(mp, xs_ig_found);
462
463	return 0;
464
465out_error:
466	spin_unlock(&ip->i_flags_lock);
467	rcu_read_unlock();
468	return error;
469}
470
471
472static int
473xfs_iget_cache_miss(
474	struct xfs_mount	*mp,
475	struct xfs_perag	*pag,
476	xfs_trans_t		*tp,
477	xfs_ino_t		ino,
478	struct xfs_inode	**ipp,
479	int			flags,
480	int			lock_flags)
481{
482	struct xfs_inode	*ip;
483	int			error;
484	xfs_agino_t		agino = XFS_INO_TO_AGINO(mp, ino);
485	int			iflags;
486
487	ip = xfs_inode_alloc(mp, ino);
488	if (!ip)
489		return -ENOMEM;
490
491	error = xfs_imap(mp, tp, ip->i_ino, &ip->i_imap, flags);
492	if (error)
493		goto out_destroy;
494
495	/*
496	 * For version 5 superblocks, if we are initialising a new inode and we
497	 * are not utilising the XFS_MOUNT_IKEEP inode cluster mode, we can
498	 * simply build the new inode core with a random generation number.
499	 *
500	 * For version 4 (and older) superblocks, log recovery is dependent on
501	 * the di_flushiter field being initialised from the current on-disk
502	 * value and hence we must also read the inode off disk even when
503	 * initializing new inodes.
504	 */
505	if (xfs_sb_version_has_v3inode(&mp->m_sb) &&
506	    (flags & XFS_IGET_CREATE) && !(mp->m_flags & XFS_MOUNT_IKEEP)) {
507		VFS_I(ip)->i_generation = prandom_u32();
508	} else {
509		struct xfs_dinode	*dip;
510		struct xfs_buf		*bp;
511
512		error = xfs_imap_to_bp(mp, tp, &ip->i_imap, &dip, &bp, 0);
513		if (error)
514			goto out_destroy;
515
516		error = xfs_inode_from_disk(ip, dip);
517		if (!error)
518			xfs_buf_set_ref(bp, XFS_INO_REF);
519		xfs_trans_brelse(tp, bp);
520
521		if (error)
522			goto out_destroy;
523	}
524
525	trace_xfs_iget_miss(ip);
526
527	/*
528	 * Check the inode free state is valid. This also detects lookup
529	 * racing with unlinks.
530	 */
531	error = xfs_iget_check_free_state(ip, flags);
532	if (error)
533		goto out_destroy;
534
535	/*
536	 * Preload the radix tree so we can insert safely under the
537	 * write spinlock. Note that we cannot sleep inside the preload
538	 * region. Since we can be called from transaction context, don't
539	 * recurse into the file system.
540	 */
541	if (radix_tree_preload(GFP_NOFS)) {
542		error = -EAGAIN;
543		goto out_destroy;
544	}
545
546	/*
547	 * Because the inode hasn't been added to the radix-tree yet it can't
548	 * be found by another thread, so we can do the non-sleeping lock here.
549	 */
550	if (lock_flags) {
551		if (!xfs_ilock_nowait(ip, lock_flags))
552			BUG();
553	}
554
555	/*
556	 * These values must be set before inserting the inode into the radix
557	 * tree as the moment it is inserted a concurrent lookup (allowed by the
558	 * RCU locking mechanism) can find it and that lookup must see that this
559	 * is an inode currently under construction (i.e. that XFS_INEW is set).
560	 * The ip->i_flags_lock that protects the XFS_INEW flag forms the
561	 * memory barrier that ensures this detection works correctly at lookup
562	 * time.
563	 */
564	iflags = XFS_INEW;
565	if (flags & XFS_IGET_DONTCACHE)
566		d_mark_dontcache(VFS_I(ip));
567	ip->i_udquot = NULL;
568	ip->i_gdquot = NULL;
569	ip->i_pdquot = NULL;
570	xfs_iflags_set(ip, iflags);
571
572	/* insert the new inode */
573	spin_lock(&pag->pag_ici_lock);
574	error = radix_tree_insert(&pag->pag_ici_root, agino, ip);
575	if (unlikely(error)) {
576		WARN_ON(error != -EEXIST);
577		XFS_STATS_INC(mp, xs_ig_dup);
578		error = -EAGAIN;
579		goto out_preload_end;
580	}
581	spin_unlock(&pag->pag_ici_lock);
582	radix_tree_preload_end();
583
584	*ipp = ip;
585	return 0;
586
587out_preload_end:
588	spin_unlock(&pag->pag_ici_lock);
589	radix_tree_preload_end();
590	if (lock_flags)
591		xfs_iunlock(ip, lock_flags);
592out_destroy:
593	__destroy_inode(VFS_I(ip));
594	xfs_inode_free(ip);
595	return error;
596}
597
598/*
599 * Look up an inode by number in the given file system.  The inode is looked up
600 * in the cache held in each AG.  If the inode is found in the cache, initialise
601 * the vfs inode if necessary.
602 *
603 * If it is not in core, read it in from the file system's device, add it to the
604 * cache and initialise the vfs inode.
605 *
606 * The inode is locked according to the value of the lock_flags parameter.
607 * Inode lookup is only done during metadata operations and not as part of the
608 * data IO path. Hence we only allow locking of the XFS_ILOCK during lookup.
609 */
610int
611xfs_iget(
612	struct xfs_mount	*mp,
613	struct xfs_trans	*tp,
614	xfs_ino_t		ino,
615	uint			flags,
616	uint			lock_flags,
617	struct xfs_inode	**ipp)
618{
619	struct xfs_inode	*ip;
620	struct xfs_perag	*pag;
621	xfs_agino_t		agino;
622	int			error;
623
624	ASSERT((lock_flags & (XFS_IOLOCK_EXCL | XFS_IOLOCK_SHARED)) == 0);
625
626	/* reject inode numbers outside existing AGs */
627	if (!ino || XFS_INO_TO_AGNO(mp, ino) >= mp->m_sb.sb_agcount)
628		return -EINVAL;
629
630	XFS_STATS_INC(mp, xs_ig_attempts);
631
632	/* get the perag structure and ensure that it's inode capable */
633	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ino));
634	agino = XFS_INO_TO_AGINO(mp, ino);
635
636again:
637	error = 0;
638	rcu_read_lock();
639	ip = radix_tree_lookup(&pag->pag_ici_root, agino);
640
641	if (ip) {
642		error = xfs_iget_cache_hit(pag, ip, ino, flags, lock_flags);
643		if (error)
644			goto out_error_or_again;
645	} else {
646		rcu_read_unlock();
647		if (flags & XFS_IGET_INCORE) {
648			error = -ENODATA;
649			goto out_error_or_again;
650		}
651		XFS_STATS_INC(mp, xs_ig_missed);
652
653		error = xfs_iget_cache_miss(mp, pag, tp, ino, &ip,
654							flags, lock_flags);
655		if (error)
656			goto out_error_or_again;
657	}
658	xfs_perag_put(pag);
659
660	*ipp = ip;
661
662	/*
663	 * If we have a real type for an on-disk inode, we can setup the inode
664	 * now.	 If it's a new inode being created, xfs_ialloc will handle it.
665	 */
666	if (xfs_iflags_test(ip, XFS_INEW) && VFS_I(ip)->i_mode != 0)
667		xfs_setup_existing_inode(ip);
668	return 0;
669
670out_error_or_again:
671	if (!(flags & XFS_IGET_INCORE) && error == -EAGAIN) {
672		delay(1);
673		goto again;
674	}
675	xfs_perag_put(pag);
676	return error;
677}
678
679/*
680 * "Is this a cached inode that's also allocated?"
681 *
682 * Look up an inode by number in the given file system.  If the inode is
683 * in cache and isn't in purgatory, return 1 if the inode is allocated
684 * and 0 if it is not.  For all other cases (not in cache, being torn
685 * down, etc.), return a negative error code.
686 *
687 * The caller has to prevent inode allocation and freeing activity,
688 * presumably by locking the AGI buffer.   This is to ensure that an
689 * inode cannot transition from allocated to freed until the caller is
690 * ready to allow that.  If the inode is in an intermediate state (new,
691 * reclaimable, or being reclaimed), -EAGAIN will be returned; if the
692 * inode is not in the cache, -ENOENT will be returned.  The caller must
693 * deal with these scenarios appropriately.
694 *
695 * This is a specialized use case for the online scrubber; if you're
696 * reading this, you probably want xfs_iget.
697 */
698int
699xfs_icache_inode_is_allocated(
700	struct xfs_mount	*mp,
701	struct xfs_trans	*tp,
702	xfs_ino_t		ino,
703	bool			*inuse)
704{
705	struct xfs_inode	*ip;
706	int			error;
707
708	error = xfs_iget(mp, tp, ino, XFS_IGET_INCORE, 0, &ip);
709	if (error)
710		return error;
711
712	*inuse = !!(VFS_I(ip)->i_mode);
713	xfs_irele(ip);
714	return 0;
715}
716
717/*
718 * The inode lookup is done in batches to keep the amount of lock traffic and
719 * radix tree lookups to a minimum. The batch size is a trade off between
720 * lookup reduction and stack usage. This is in the reclaim path, so we can't
721 * be too greedy.
722 */
723#define XFS_LOOKUP_BATCH	32
724
725/*
726 * Decide if the given @ip is eligible to be a part of the inode walk, and
727 * grab it if so.  Returns true if it's ready to go or false if we should just
728 * ignore it.
729 */
730STATIC bool
731xfs_inode_walk_ag_grab(
732	struct xfs_inode	*ip,
733	int			flags)
734{
735	struct inode		*inode = VFS_I(ip);
736	bool			newinos = !!(flags & XFS_INODE_WALK_INEW_WAIT);
737
738	ASSERT(rcu_read_lock_held());
739
740	/* Check for stale RCU freed inode */
741	spin_lock(&ip->i_flags_lock);
742	if (!ip->i_ino)
743		goto out_unlock_noent;
744
745	/* avoid new or reclaimable inodes. Leave for reclaim code to flush */
746	if ((!newinos && __xfs_iflags_test(ip, XFS_INEW)) ||
747	    __xfs_iflags_test(ip, XFS_IRECLAIMABLE | XFS_IRECLAIM))
748		goto out_unlock_noent;
749	spin_unlock(&ip->i_flags_lock);
750
751	/* nothing to sync during shutdown */
752	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
753		return false;
754
755	/* If we can't grab the inode, it must on it's way to reclaim. */
756	if (!igrab(inode))
757		return false;
758
759	/* inode is valid */
760	return true;
761
762out_unlock_noent:
763	spin_unlock(&ip->i_flags_lock);
764	return false;
765}
766
767/*
768 * For a given per-AG structure @pag, grab, @execute, and rele all incore
769 * inodes with the given radix tree @tag.
770 */
771STATIC int
772xfs_inode_walk_ag(
773	struct xfs_perag	*pag,
774	int			iter_flags,
775	int			(*execute)(struct xfs_inode *ip, void *args),
776	void			*args,
777	int			tag)
778{
779	struct xfs_mount	*mp = pag->pag_mount;
780	uint32_t		first_index;
781	int			last_error = 0;
782	int			skipped;
783	bool			done;
784	int			nr_found;
785
786restart:
787	done = false;
788	skipped = 0;
789	first_index = 0;
790	nr_found = 0;
791	do {
792		struct xfs_inode *batch[XFS_LOOKUP_BATCH];
793		int		error = 0;
794		int		i;
795
796		rcu_read_lock();
797
798		if (tag == XFS_ICI_NO_TAG)
799			nr_found = radix_tree_gang_lookup(&pag->pag_ici_root,
800					(void **)batch, first_index,
801					XFS_LOOKUP_BATCH);
802		else
803			nr_found = radix_tree_gang_lookup_tag(
804					&pag->pag_ici_root,
805					(void **) batch, first_index,
806					XFS_LOOKUP_BATCH, tag);
807
808		if (!nr_found) {
809			rcu_read_unlock();
810			break;
811		}
812
813		/*
814		 * Grab the inodes before we drop the lock. if we found
815		 * nothing, nr == 0 and the loop will be skipped.
816		 */
817		for (i = 0; i < nr_found; i++) {
818			struct xfs_inode *ip = batch[i];
819
820			if (done || !xfs_inode_walk_ag_grab(ip, iter_flags))
821				batch[i] = NULL;
822
823			/*
824			 * Update the index for the next lookup. Catch
825			 * overflows into the next AG range which can occur if
826			 * we have inodes in the last block of the AG and we
827			 * are currently pointing to the last inode.
828			 *
829			 * Because we may see inodes that are from the wrong AG
830			 * due to RCU freeing and reallocation, only update the
831			 * index if it lies in this AG. It was a race that lead
832			 * us to see this inode, so another lookup from the
833			 * same index will not find it again.
834			 */
835			if (XFS_INO_TO_AGNO(mp, ip->i_ino) != pag->pag_agno)
836				continue;
837			first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
838			if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
839				done = true;
840		}
841
842		/* unlock now we've grabbed the inodes. */
843		rcu_read_unlock();
844
845		for (i = 0; i < nr_found; i++) {
846			if (!batch[i])
847				continue;
848			if ((iter_flags & XFS_INODE_WALK_INEW_WAIT) &&
849			    xfs_iflags_test(batch[i], XFS_INEW))
850				xfs_inew_wait(batch[i]);
851			error = execute(batch[i], args);
852			xfs_irele(batch[i]);
853			if (error == -EAGAIN) {
854				skipped++;
855				continue;
856			}
857			if (error && last_error != -EFSCORRUPTED)
858				last_error = error;
859		}
860
861		/* bail out if the filesystem is corrupted.  */
862		if (error == -EFSCORRUPTED)
863			break;
864
865		cond_resched();
866
867	} while (nr_found && !done);
868
869	if (skipped) {
870		delay(1);
871		goto restart;
872	}
873	return last_error;
874}
875
876/* Fetch the next (possibly tagged) per-AG structure. */
877static inline struct xfs_perag *
878xfs_inode_walk_get_perag(
879	struct xfs_mount	*mp,
880	xfs_agnumber_t		agno,
881	int			tag)
882{
883	if (tag == XFS_ICI_NO_TAG)
884		return xfs_perag_get(mp, agno);
885	return xfs_perag_get_tag(mp, agno, tag);
886}
887
888/*
889 * Call the @execute function on all incore inodes matching the radix tree
890 * @tag.
891 */
892int
893xfs_inode_walk(
894	struct xfs_mount	*mp,
895	int			iter_flags,
896	int			(*execute)(struct xfs_inode *ip, void *args),
897	void			*args,
898	int			tag)
899{
900	struct xfs_perag	*pag;
901	int			error = 0;
902	int			last_error = 0;
903	xfs_agnumber_t		ag;
904
905	ag = 0;
906	while ((pag = xfs_inode_walk_get_perag(mp, ag, tag))) {
907		ag = pag->pag_agno + 1;
908		error = xfs_inode_walk_ag(pag, iter_flags, execute, args, tag);
909		xfs_perag_put(pag);
910		if (error) {
911			last_error = error;
912			if (error == -EFSCORRUPTED)
913				break;
914		}
915	}
916	return last_error;
917}
918
919/*
920 * Background scanning to trim post-EOF preallocated space. This is queued
921 * based on the 'speculative_prealloc_lifetime' tunable (5m by default).
922 */
923void
924xfs_queue_eofblocks(
925	struct xfs_mount *mp)
926{
927	rcu_read_lock();
928	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_EOFBLOCKS_TAG))
929		queue_delayed_work(mp->m_eofblocks_workqueue,
930				   &mp->m_eofblocks_work,
931				   msecs_to_jiffies(xfs_eofb_secs * 1000));
932	rcu_read_unlock();
933}
934
935void
936xfs_eofblocks_worker(
937	struct work_struct *work)
938{
939	struct xfs_mount *mp = container_of(to_delayed_work(work),
940				struct xfs_mount, m_eofblocks_work);
941
942	if (!sb_start_write_trylock(mp->m_super))
943		return;
944	xfs_icache_free_eofblocks(mp, NULL);
945	sb_end_write(mp->m_super);
946
947	xfs_queue_eofblocks(mp);
948}
949
950/*
951 * Background scanning to trim preallocated CoW space. This is queued
952 * based on the 'speculative_cow_prealloc_lifetime' tunable (5m by default).
953 * (We'll just piggyback on the post-EOF prealloc space workqueue.)
954 */
955void
956xfs_queue_cowblocks(
957	struct xfs_mount *mp)
958{
959	rcu_read_lock();
960	if (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_COWBLOCKS_TAG))
961		queue_delayed_work(mp->m_eofblocks_workqueue,
962				   &mp->m_cowblocks_work,
963				   msecs_to_jiffies(xfs_cowb_secs * 1000));
964	rcu_read_unlock();
965}
966
967void
968xfs_cowblocks_worker(
969	struct work_struct *work)
970{
971	struct xfs_mount *mp = container_of(to_delayed_work(work),
972				struct xfs_mount, m_cowblocks_work);
973
974	if (!sb_start_write_trylock(mp->m_super))
975		return;
976	xfs_icache_free_cowblocks(mp, NULL);
977	sb_end_write(mp->m_super);
978
979	xfs_queue_cowblocks(mp);
980}
981
982/*
983 * Grab the inode for reclaim exclusively.
984 *
985 * We have found this inode via a lookup under RCU, so the inode may have
986 * already been freed, or it may be in the process of being recycled by
987 * xfs_iget(). In both cases, the inode will have XFS_IRECLAIM set. If the inode
988 * has been fully recycled by the time we get the i_flags_lock, XFS_IRECLAIMABLE
989 * will not be set. Hence we need to check for both these flag conditions to
990 * avoid inodes that are no longer reclaim candidates.
991 *
992 * Note: checking for other state flags here, under the i_flags_lock or not, is
993 * racy and should be avoided. Those races should be resolved only after we have
994 * ensured that we are able to reclaim this inode and the world can see that we
995 * are going to reclaim it.
996 *
997 * Return true if we grabbed it, false otherwise.
998 */
999static bool
1000xfs_reclaim_inode_grab(
1001	struct xfs_inode	*ip)
1002{
1003	ASSERT(rcu_read_lock_held());
1004
1005	spin_lock(&ip->i_flags_lock);
1006	if (!__xfs_iflags_test(ip, XFS_IRECLAIMABLE) ||
1007	    __xfs_iflags_test(ip, XFS_IRECLAIM)) {
1008		/* not a reclaim candidate. */
1009		spin_unlock(&ip->i_flags_lock);
1010		return false;
1011	}
1012	__xfs_iflags_set(ip, XFS_IRECLAIM);
1013	spin_unlock(&ip->i_flags_lock);
1014	return true;
1015}
1016
1017/*
1018 * Inode reclaim is non-blocking, so the default action if progress cannot be
1019 * made is to "requeue" the inode for reclaim by unlocking it and clearing the
1020 * XFS_IRECLAIM flag.  If we are in a shutdown state, we don't care about
1021 * blocking anymore and hence we can wait for the inode to be able to reclaim
1022 * it.
1023 *
1024 * We do no IO here - if callers require inodes to be cleaned they must push the
1025 * AIL first to trigger writeback of dirty inodes.  This enables writeback to be
1026 * done in the background in a non-blocking manner, and enables memory reclaim
1027 * to make progress without blocking.
1028 */
1029static void
1030xfs_reclaim_inode(
1031	struct xfs_inode	*ip,
1032	struct xfs_perag	*pag)
1033{
1034	xfs_ino_t		ino = ip->i_ino; /* for radix_tree_delete */
1035
1036	if (!xfs_ilock_nowait(ip, XFS_ILOCK_EXCL))
1037		goto out;
1038	if (xfs_iflags_test_and_set(ip, XFS_IFLUSHING))
1039		goto out_iunlock;
1040
1041	if (XFS_FORCED_SHUTDOWN(ip->i_mount)) {
1042		xfs_iunpin_wait(ip);
1043		xfs_iflush_abort(ip);
1044		goto reclaim;
1045	}
1046	if (xfs_ipincount(ip))
1047		goto out_clear_flush;
1048	if (!xfs_inode_clean(ip))
1049		goto out_clear_flush;
1050
1051	xfs_iflags_clear(ip, XFS_IFLUSHING);
1052reclaim:
1053
1054	/*
1055	 * Because we use RCU freeing we need to ensure the inode always appears
1056	 * to be reclaimed with an invalid inode number when in the free state.
1057	 * We do this as early as possible under the ILOCK so that
1058	 * xfs_iflush_cluster() and xfs_ifree_cluster() can be guaranteed to
1059	 * detect races with us here. By doing this, we guarantee that once
1060	 * xfs_iflush_cluster() or xfs_ifree_cluster() has locked XFS_ILOCK that
1061	 * it will see either a valid inode that will serialise correctly, or it
1062	 * will see an invalid inode that it can skip.
1063	 */
1064	spin_lock(&ip->i_flags_lock);
1065	ip->i_flags = XFS_IRECLAIM;
1066	ip->i_ino = 0;
1067	spin_unlock(&ip->i_flags_lock);
1068
1069	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1070
1071	XFS_STATS_INC(ip->i_mount, xs_ig_reclaims);
1072	/*
1073	 * Remove the inode from the per-AG radix tree.
1074	 *
1075	 * Because radix_tree_delete won't complain even if the item was never
1076	 * added to the tree assert that it's been there before to catch
1077	 * problems with the inode life time early on.
1078	 */
1079	spin_lock(&pag->pag_ici_lock);
1080	if (!radix_tree_delete(&pag->pag_ici_root,
1081				XFS_INO_TO_AGINO(ip->i_mount, ino)))
1082		ASSERT(0);
1083	xfs_perag_clear_reclaim_tag(pag);
1084	spin_unlock(&pag->pag_ici_lock);
1085
1086	/*
1087	 * Here we do an (almost) spurious inode lock in order to coordinate
1088	 * with inode cache radix tree lookups.  This is because the lookup
1089	 * can reference the inodes in the cache without taking references.
1090	 *
1091	 * We make that OK here by ensuring that we wait until the inode is
1092	 * unlocked after the lookup before we go ahead and free it.
1093	 */
1094	xfs_ilock(ip, XFS_ILOCK_EXCL);
1095	xfs_qm_dqdetach(ip);
1096	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1097	ASSERT(xfs_inode_clean(ip));
1098
1099	__xfs_inode_free(ip);
1100	return;
1101
1102out_clear_flush:
1103	xfs_iflags_clear(ip, XFS_IFLUSHING);
1104out_iunlock:
1105	xfs_iunlock(ip, XFS_ILOCK_EXCL);
1106out:
1107	xfs_iflags_clear(ip, XFS_IRECLAIM);
1108}
1109
1110/*
1111 * Walk the AGs and reclaim the inodes in them. Even if the filesystem is
1112 * corrupted, we still want to try to reclaim all the inodes. If we don't,
1113 * then a shut down during filesystem unmount reclaim walk leak all the
1114 * unreclaimed inodes.
1115 *
1116 * Returns non-zero if any AGs or inodes were skipped in the reclaim pass
1117 * so that callers that want to block until all dirty inodes are written back
1118 * and reclaimed can sanely loop.
1119 */
1120static void
1121xfs_reclaim_inodes_ag(
1122	struct xfs_mount	*mp,
1123	int			*nr_to_scan)
1124{
1125	struct xfs_perag	*pag;
1126	xfs_agnumber_t		ag = 0;
1127
1128	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1129		unsigned long	first_index = 0;
1130		int		done = 0;
1131		int		nr_found = 0;
1132
1133		ag = pag->pag_agno + 1;
1134
1135		first_index = READ_ONCE(pag->pag_ici_reclaim_cursor);
1136		do {
1137			struct xfs_inode *batch[XFS_LOOKUP_BATCH];
1138			int	i;
1139
1140			rcu_read_lock();
1141			nr_found = radix_tree_gang_lookup_tag(
1142					&pag->pag_ici_root,
1143					(void **)batch, first_index,
1144					XFS_LOOKUP_BATCH,
1145					XFS_ICI_RECLAIM_TAG);
1146			if (!nr_found) {
1147				done = 1;
1148				rcu_read_unlock();
1149				break;
1150			}
1151
1152			/*
1153			 * Grab the inodes before we drop the lock. if we found
1154			 * nothing, nr == 0 and the loop will be skipped.
1155			 */
1156			for (i = 0; i < nr_found; i++) {
1157				struct xfs_inode *ip = batch[i];
1158
1159				if (done || !xfs_reclaim_inode_grab(ip))
1160					batch[i] = NULL;
1161
1162				/*
1163				 * Update the index for the next lookup. Catch
1164				 * overflows into the next AG range which can
1165				 * occur if we have inodes in the last block of
1166				 * the AG and we are currently pointing to the
1167				 * last inode.
1168				 *
1169				 * Because we may see inodes that are from the
1170				 * wrong AG due to RCU freeing and
1171				 * reallocation, only update the index if it
1172				 * lies in this AG. It was a race that lead us
1173				 * to see this inode, so another lookup from
1174				 * the same index will not find it again.
1175				 */
1176				if (XFS_INO_TO_AGNO(mp, ip->i_ino) !=
1177								pag->pag_agno)
1178					continue;
1179				first_index = XFS_INO_TO_AGINO(mp, ip->i_ino + 1);
1180				if (first_index < XFS_INO_TO_AGINO(mp, ip->i_ino))
1181					done = 1;
1182			}
1183
1184			/* unlock now we've grabbed the inodes. */
1185			rcu_read_unlock();
1186
1187			for (i = 0; i < nr_found; i++) {
1188				if (batch[i])
1189					xfs_reclaim_inode(batch[i], pag);
1190			}
1191
1192			*nr_to_scan -= XFS_LOOKUP_BATCH;
1193			cond_resched();
1194		} while (nr_found && !done && *nr_to_scan > 0);
1195
1196		if (done)
1197			first_index = 0;
1198		WRITE_ONCE(pag->pag_ici_reclaim_cursor, first_index);
1199		xfs_perag_put(pag);
1200	}
1201}
1202
1203void
1204xfs_reclaim_inodes(
1205	struct xfs_mount	*mp)
1206{
1207	int		nr_to_scan = INT_MAX;
1208
1209	while (radix_tree_tagged(&mp->m_perag_tree, XFS_ICI_RECLAIM_TAG)) {
1210		xfs_ail_push_all_sync(mp->m_ail);
1211		xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1212	}
1213}
1214
1215/*
1216 * The shrinker infrastructure determines how many inodes we should scan for
1217 * reclaim. We want as many clean inodes ready to reclaim as possible, so we
1218 * push the AIL here. We also want to proactively free up memory if we can to
1219 * minimise the amount of work memory reclaim has to do so we kick the
1220 * background reclaim if it isn't already scheduled.
1221 */
1222long
1223xfs_reclaim_inodes_nr(
1224	struct xfs_mount	*mp,
1225	int			nr_to_scan)
1226{
1227	/* kick background reclaimer and push the AIL */
1228	xfs_reclaim_work_queue(mp);
1229	xfs_ail_push_all(mp->m_ail);
1230
1231	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1232	return 0;
1233}
1234
1235/*
1236 * Return the number of reclaimable inodes in the filesystem for
1237 * the shrinker to determine how much to reclaim.
1238 */
1239int
1240xfs_reclaim_inodes_count(
1241	struct xfs_mount	*mp)
1242{
1243	struct xfs_perag	*pag;
1244	xfs_agnumber_t		ag = 0;
1245	int			reclaimable = 0;
1246
1247	while ((pag = xfs_perag_get_tag(mp, ag, XFS_ICI_RECLAIM_TAG))) {
1248		ag = pag->pag_agno + 1;
1249		reclaimable += pag->pag_ici_reclaimable;
1250		xfs_perag_put(pag);
1251	}
1252	return reclaimable;
1253}
1254
1255STATIC bool
1256xfs_inode_match_id(
1257	struct xfs_inode	*ip,
1258	struct xfs_eofblocks	*eofb)
1259{
1260	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1261	    !uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1262		return false;
1263
1264	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1265	    !gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1266		return false;
1267
1268	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1269	    ip->i_d.di_projid != eofb->eof_prid)
1270		return false;
1271
1272	return true;
1273}
1274
1275/*
1276 * A union-based inode filtering algorithm. Process the inode if any of the
1277 * criteria match. This is for global/internal scans only.
1278 */
1279STATIC bool
1280xfs_inode_match_id_union(
1281	struct xfs_inode	*ip,
1282	struct xfs_eofblocks	*eofb)
1283{
1284	if ((eofb->eof_flags & XFS_EOF_FLAGS_UID) &&
1285	    uid_eq(VFS_I(ip)->i_uid, eofb->eof_uid))
1286		return true;
1287
1288	if ((eofb->eof_flags & XFS_EOF_FLAGS_GID) &&
1289	    gid_eq(VFS_I(ip)->i_gid, eofb->eof_gid))
1290		return true;
1291
1292	if ((eofb->eof_flags & XFS_EOF_FLAGS_PRID) &&
1293	    ip->i_d.di_projid == eofb->eof_prid)
1294		return true;
1295
1296	return false;
1297}
1298
1299/*
1300 * Is this inode @ip eligible for eof/cow block reclamation, given some
1301 * filtering parameters @eofb?  The inode is eligible if @eofb is null or
1302 * if the predicate functions match.
1303 */
1304static bool
1305xfs_inode_matches_eofb(
1306	struct xfs_inode	*ip,
1307	struct xfs_eofblocks	*eofb)
1308{
1309	bool			match;
1310
1311	if (!eofb)
1312		return true;
1313
1314	if (eofb->eof_flags & XFS_EOF_FLAGS_UNION)
1315		match = xfs_inode_match_id_union(ip, eofb);
1316	else
1317		match = xfs_inode_match_id(ip, eofb);
1318	if (!match)
1319		return false;
1320
1321	/* skip the inode if the file size is too small */
1322	if ((eofb->eof_flags & XFS_EOF_FLAGS_MINFILESIZE) &&
1323	    XFS_ISIZE(ip) < eofb->eof_min_file_size)
1324		return false;
1325
1326	return true;
1327}
1328
1329/*
1330 * This is a fast pass over the inode cache to try to get reclaim moving on as
1331 * many inodes as possible in a short period of time. It kicks itself every few
1332 * seconds, as well as being kicked by the inode cache shrinker when memory
1333 * goes low.
1334 */
1335void
1336xfs_reclaim_worker(
1337	struct work_struct *work)
1338{
1339	struct xfs_mount *mp = container_of(to_delayed_work(work),
1340					struct xfs_mount, m_reclaim_work);
1341	int		nr_to_scan = INT_MAX;
1342
1343	xfs_reclaim_inodes_ag(mp, &nr_to_scan);
1344	xfs_reclaim_work_queue(mp);
1345}
1346
1347STATIC int
1348xfs_inode_free_eofblocks(
1349	struct xfs_inode	*ip,
1350	void			*args)
1351{
1352	struct xfs_eofblocks	*eofb = args;
1353	bool			wait;
1354	int			ret;
1355
1356	wait = eofb && (eofb->eof_flags & XFS_EOF_FLAGS_SYNC);
1357
1358	if (!xfs_can_free_eofblocks(ip, false)) {
1359		/* inode could be preallocated or append-only */
1360		trace_xfs_inode_free_eofblocks_invalid(ip);
1361		xfs_inode_clear_eofblocks_tag(ip);
1362		return 0;
1363	}
1364
1365	/*
1366	 * If the mapping is dirty the operation can block and wait for some
1367	 * time. Unless we are waiting, skip it.
1368	 */
1369	if (!wait && mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY))
1370		return 0;
1371
1372	if (!xfs_inode_matches_eofb(ip, eofb))
1373		return 0;
1374
1375	/*
1376	 * If the caller is waiting, return -EAGAIN to keep the background
1377	 * scanner moving and revisit the inode in a subsequent pass.
1378	 */
1379	if (!xfs_ilock_nowait(ip, XFS_IOLOCK_EXCL)) {
1380		if (wait)
1381			return -EAGAIN;
1382		return 0;
1383	}
1384
1385	ret = xfs_free_eofblocks(ip);
1386	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1387
1388	return ret;
1389}
1390
1391int
1392xfs_icache_free_eofblocks(
1393	struct xfs_mount	*mp,
1394	struct xfs_eofblocks	*eofb)
1395{
1396	return xfs_inode_walk(mp, 0, xfs_inode_free_eofblocks, eofb,
1397			XFS_ICI_EOFBLOCKS_TAG);
1398}
1399
1400/*
1401 * Run eofblocks scans on the quotas applicable to the inode. For inodes with
1402 * multiple quotas, we don't know exactly which quota caused an allocation
1403 * failure. We make a best effort by including each quota under low free space
1404 * conditions (less than 1% free space) in the scan.
1405 */
1406static int
1407__xfs_inode_free_quota_eofblocks(
1408	struct xfs_inode	*ip,
1409	int			(*execute)(struct xfs_mount *mp,
1410					   struct xfs_eofblocks	*eofb))
1411{
1412	int scan = 0;
1413	struct xfs_eofblocks eofb = {0};
1414	struct xfs_dquot *dq;
1415
1416	/*
1417	 * Run a sync scan to increase effectiveness and use the union filter to
1418	 * cover all applicable quotas in a single scan.
1419	 */
1420	eofb.eof_flags = XFS_EOF_FLAGS_UNION|XFS_EOF_FLAGS_SYNC;
1421
1422	if (XFS_IS_UQUOTA_ENFORCED(ip->i_mount)) {
1423		dq = xfs_inode_dquot(ip, XFS_DQTYPE_USER);
1424		if (dq && xfs_dquot_lowsp(dq)) {
1425			eofb.eof_uid = VFS_I(ip)->i_uid;
1426			eofb.eof_flags |= XFS_EOF_FLAGS_UID;
1427			scan = 1;
1428		}
1429	}
1430
1431	if (XFS_IS_GQUOTA_ENFORCED(ip->i_mount)) {
1432		dq = xfs_inode_dquot(ip, XFS_DQTYPE_GROUP);
1433		if (dq && xfs_dquot_lowsp(dq)) {
1434			eofb.eof_gid = VFS_I(ip)->i_gid;
1435			eofb.eof_flags |= XFS_EOF_FLAGS_GID;
1436			scan = 1;
1437		}
1438	}
1439
1440	if (scan)
1441		execute(ip->i_mount, &eofb);
1442
1443	return scan;
1444}
1445
1446int
1447xfs_inode_free_quota_eofblocks(
1448	struct xfs_inode *ip)
1449{
1450	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_eofblocks);
1451}
1452
1453static inline unsigned long
1454xfs_iflag_for_tag(
1455	int		tag)
1456{
1457	switch (tag) {
1458	case XFS_ICI_EOFBLOCKS_TAG:
1459		return XFS_IEOFBLOCKS;
1460	case XFS_ICI_COWBLOCKS_TAG:
1461		return XFS_ICOWBLOCKS;
1462	default:
1463		ASSERT(0);
1464		return 0;
1465	}
1466}
1467
1468static void
1469__xfs_inode_set_blocks_tag(
1470	xfs_inode_t	*ip,
1471	void		(*execute)(struct xfs_mount *mp),
1472	void		(*set_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1473				  int error, unsigned long caller_ip),
1474	int		tag)
1475{
1476	struct xfs_mount *mp = ip->i_mount;
1477	struct xfs_perag *pag;
1478	int tagged;
1479
1480	/*
1481	 * Don't bother locking the AG and looking up in the radix trees
1482	 * if we already know that we have the tag set.
1483	 */
1484	if (ip->i_flags & xfs_iflag_for_tag(tag))
1485		return;
1486	spin_lock(&ip->i_flags_lock);
1487	ip->i_flags |= xfs_iflag_for_tag(tag);
1488	spin_unlock(&ip->i_flags_lock);
1489
1490	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1491	spin_lock(&pag->pag_ici_lock);
1492
1493	tagged = radix_tree_tagged(&pag->pag_ici_root, tag);
1494	radix_tree_tag_set(&pag->pag_ici_root,
1495			   XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1496	if (!tagged) {
1497		/* propagate the eofblocks tag up into the perag radix tree */
1498		spin_lock(&ip->i_mount->m_perag_lock);
1499		radix_tree_tag_set(&ip->i_mount->m_perag_tree,
1500				   XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1501				   tag);
1502		spin_unlock(&ip->i_mount->m_perag_lock);
1503
1504		/* kick off background trimming */
1505		execute(ip->i_mount);
1506
1507		set_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1508	}
1509
1510	spin_unlock(&pag->pag_ici_lock);
1511	xfs_perag_put(pag);
1512}
1513
1514void
1515xfs_inode_set_eofblocks_tag(
1516	xfs_inode_t	*ip)
1517{
1518	trace_xfs_inode_set_eofblocks_tag(ip);
1519	return __xfs_inode_set_blocks_tag(ip, xfs_queue_eofblocks,
1520			trace_xfs_perag_set_eofblocks,
1521			XFS_ICI_EOFBLOCKS_TAG);
1522}
1523
1524static void
1525__xfs_inode_clear_blocks_tag(
1526	xfs_inode_t	*ip,
1527	void		(*clear_tp)(struct xfs_mount *mp, xfs_agnumber_t agno,
1528				    int error, unsigned long caller_ip),
1529	int		tag)
1530{
1531	struct xfs_mount *mp = ip->i_mount;
1532	struct xfs_perag *pag;
1533
1534	spin_lock(&ip->i_flags_lock);
1535	ip->i_flags &= ~xfs_iflag_for_tag(tag);
1536	spin_unlock(&ip->i_flags_lock);
1537
1538	pag = xfs_perag_get(mp, XFS_INO_TO_AGNO(mp, ip->i_ino));
1539	spin_lock(&pag->pag_ici_lock);
1540
1541	radix_tree_tag_clear(&pag->pag_ici_root,
1542			     XFS_INO_TO_AGINO(ip->i_mount, ip->i_ino), tag);
1543	if (!radix_tree_tagged(&pag->pag_ici_root, tag)) {
1544		/* clear the eofblocks tag from the perag radix tree */
1545		spin_lock(&ip->i_mount->m_perag_lock);
1546		radix_tree_tag_clear(&ip->i_mount->m_perag_tree,
1547				     XFS_INO_TO_AGNO(ip->i_mount, ip->i_ino),
1548				     tag);
1549		spin_unlock(&ip->i_mount->m_perag_lock);
1550		clear_tp(ip->i_mount, pag->pag_agno, -1, _RET_IP_);
1551	}
1552
1553	spin_unlock(&pag->pag_ici_lock);
1554	xfs_perag_put(pag);
1555}
1556
1557void
1558xfs_inode_clear_eofblocks_tag(
1559	xfs_inode_t	*ip)
1560{
1561	trace_xfs_inode_clear_eofblocks_tag(ip);
1562	return __xfs_inode_clear_blocks_tag(ip,
1563			trace_xfs_perag_clear_eofblocks, XFS_ICI_EOFBLOCKS_TAG);
1564}
1565
1566/*
1567 * Set ourselves up to free CoW blocks from this file.  If it's already clean
1568 * then we can bail out quickly, but otherwise we must back off if the file
1569 * is undergoing some kind of write.
1570 */
1571static bool
1572xfs_prep_free_cowblocks(
1573	struct xfs_inode	*ip)
1574{
1575	/*
1576	 * Just clear the tag if we have an empty cow fork or none at all. It's
1577	 * possible the inode was fully unshared since it was originally tagged.
1578	 */
1579	if (!xfs_inode_has_cow_data(ip)) {
1580		trace_xfs_inode_free_cowblocks_invalid(ip);
1581		xfs_inode_clear_cowblocks_tag(ip);
1582		return false;
1583	}
1584
1585	/*
1586	 * If the mapping is dirty or under writeback we cannot touch the
1587	 * CoW fork.  Leave it alone if we're in the midst of a directio.
1588	 */
1589	if ((VFS_I(ip)->i_state & I_DIRTY_PAGES) ||
1590	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_DIRTY) ||
1591	    mapping_tagged(VFS_I(ip)->i_mapping, PAGECACHE_TAG_WRITEBACK) ||
1592	    atomic_read(&VFS_I(ip)->i_dio_count))
1593		return false;
1594
1595	return true;
1596}
1597
1598/*
1599 * Automatic CoW Reservation Freeing
1600 *
1601 * These functions automatically garbage collect leftover CoW reservations
1602 * that were made on behalf of a cowextsize hint when we start to run out
1603 * of quota or when the reservations sit around for too long.  If the file
1604 * has dirty pages or is undergoing writeback, its CoW reservations will
1605 * be retained.
1606 *
1607 * The actual garbage collection piggybacks off the same code that runs
1608 * the speculative EOF preallocation garbage collector.
1609 */
1610STATIC int
1611xfs_inode_free_cowblocks(
1612	struct xfs_inode	*ip,
1613	void			*args)
1614{
1615	struct xfs_eofblocks	*eofb = args;
1616	int			ret = 0;
1617
1618	if (!xfs_prep_free_cowblocks(ip))
1619		return 0;
1620
1621	if (!xfs_inode_matches_eofb(ip, eofb))
1622		return 0;
1623
1624	/* Free the CoW blocks */
1625	xfs_ilock(ip, XFS_IOLOCK_EXCL);
1626	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
1627
1628	/*
1629	 * Check again, nobody else should be able to dirty blocks or change
1630	 * the reflink iflag now that we have the first two locks held.
1631	 */
1632	if (xfs_prep_free_cowblocks(ip))
1633		ret = xfs_reflink_cancel_cow_range(ip, 0, NULLFILEOFF, false);
1634
1635	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
1636	xfs_iunlock(ip, XFS_IOLOCK_EXCL);
1637
1638	return ret;
1639}
1640
1641int
1642xfs_icache_free_cowblocks(
1643	struct xfs_mount	*mp,
1644	struct xfs_eofblocks	*eofb)
1645{
1646	return xfs_inode_walk(mp, 0, xfs_inode_free_cowblocks, eofb,
1647			XFS_ICI_COWBLOCKS_TAG);
1648}
1649
1650int
1651xfs_inode_free_quota_cowblocks(
1652	struct xfs_inode *ip)
1653{
1654	return __xfs_inode_free_quota_eofblocks(ip, xfs_icache_free_cowblocks);
1655}
1656
1657void
1658xfs_inode_set_cowblocks_tag(
1659	xfs_inode_t	*ip)
1660{
1661	trace_xfs_inode_set_cowblocks_tag(ip);
1662	return __xfs_inode_set_blocks_tag(ip, xfs_queue_cowblocks,
1663			trace_xfs_perag_set_cowblocks,
1664			XFS_ICI_COWBLOCKS_TAG);
1665}
1666
1667void
1668xfs_inode_clear_cowblocks_tag(
1669	xfs_inode_t	*ip)
1670{
1671	trace_xfs_inode_clear_cowblocks_tag(ip);
1672	return __xfs_inode_clear_blocks_tag(ip,
1673			trace_xfs_perag_clear_cowblocks, XFS_ICI_COWBLOCKS_TAG);
1674}
1675
1676/* Disable post-EOF and CoW block auto-reclamation. */
1677void
1678xfs_stop_block_reaping(
1679	struct xfs_mount	*mp)
1680{
1681	cancel_delayed_work_sync(&mp->m_eofblocks_work);
1682	cancel_delayed_work_sync(&mp->m_cowblocks_work);
1683}
1684
1685/* Enable post-EOF and CoW block auto-reclamation. */
1686void
1687xfs_start_block_reaping(
1688	struct xfs_mount	*mp)
1689{
1690	xfs_queue_eofblocks(mp);
1691	xfs_queue_cowblocks(mp);
1692}
1693