xref: /kernel/linux/linux-5.10/fs/xfs/xfs_file.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_inode.h"
14#include "xfs_trans.h"
15#include "xfs_inode_item.h"
16#include "xfs_bmap.h"
17#include "xfs_bmap_util.h"
18#include "xfs_dir2.h"
19#include "xfs_dir2_priv.h"
20#include "xfs_ioctl.h"
21#include "xfs_trace.h"
22#include "xfs_log.h"
23#include "xfs_icache.h"
24#include "xfs_pnfs.h"
25#include "xfs_iomap.h"
26#include "xfs_reflink.h"
27
28#include <linux/falloc.h>
29#include <linux/backing-dev.h>
30#include <linux/mman.h>
31#include <linux/fadvise.h>
32
33static const struct vm_operations_struct xfs_file_vm_ops;
34
35/*
36 * Decide if the given file range is aligned to the size of the fundamental
37 * allocation unit for the file.
38 */
39static bool
40xfs_is_falloc_aligned(
41	struct xfs_inode	*ip,
42	loff_t			pos,
43	long long int		len)
44{
45	struct xfs_mount	*mp = ip->i_mount;
46	uint64_t		mask;
47
48	if (XFS_IS_REALTIME_INODE(ip)) {
49		if (!is_power_of_2(mp->m_sb.sb_rextsize)) {
50			u64	rextbytes;
51			u32	mod;
52
53			rextbytes = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize);
54			div_u64_rem(pos, rextbytes, &mod);
55			if (mod)
56				return false;
57			div_u64_rem(len, rextbytes, &mod);
58			return mod == 0;
59		}
60		mask = XFS_FSB_TO_B(mp, mp->m_sb.sb_rextsize) - 1;
61	} else {
62		mask = mp->m_sb.sb_blocksize - 1;
63	}
64
65	return !((pos | len) & mask);
66}
67
68int
69xfs_update_prealloc_flags(
70	struct xfs_inode	*ip,
71	enum xfs_prealloc_flags	flags)
72{
73	struct xfs_trans	*tp;
74	int			error;
75
76	error = xfs_trans_alloc(ip->i_mount, &M_RES(ip->i_mount)->tr_writeid,
77			0, 0, 0, &tp);
78	if (error)
79		return error;
80
81	xfs_ilock(ip, XFS_ILOCK_EXCL);
82	xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL);
83
84	if (!(flags & XFS_PREALLOC_INVISIBLE)) {
85		VFS_I(ip)->i_mode &= ~S_ISUID;
86		if (VFS_I(ip)->i_mode & S_IXGRP)
87			VFS_I(ip)->i_mode &= ~S_ISGID;
88		xfs_trans_ichgtime(tp, ip, XFS_ICHGTIME_MOD | XFS_ICHGTIME_CHG);
89	}
90
91	if (flags & XFS_PREALLOC_SET)
92		ip->i_d.di_flags |= XFS_DIFLAG_PREALLOC;
93	if (flags & XFS_PREALLOC_CLEAR)
94		ip->i_d.di_flags &= ~XFS_DIFLAG_PREALLOC;
95
96	xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE);
97	return xfs_trans_commit(tp);
98}
99
100/*
101 * Fsync operations on directories are much simpler than on regular files,
102 * as there is no file data to flush, and thus also no need for explicit
103 * cache flush operations, and there are no non-transaction metadata updates
104 * on directories either.
105 */
106STATIC int
107xfs_dir_fsync(
108	struct file		*file,
109	loff_t			start,
110	loff_t			end,
111	int			datasync)
112{
113	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
114
115	trace_xfs_dir_fsync(ip);
116	return xfs_log_force_inode(ip);
117}
118
119static xfs_csn_t
120xfs_fsync_seq(
121	struct xfs_inode	*ip,
122	bool			datasync)
123{
124	if (!xfs_ipincount(ip))
125		return 0;
126	if (datasync && !(ip->i_itemp->ili_fsync_fields & ~XFS_ILOG_TIMESTAMP))
127		return 0;
128	return ip->i_itemp->ili_commit_seq;
129}
130
131/*
132 * All metadata updates are logged, which means that we just have to flush the
133 * log up to the latest LSN that touched the inode.
134 *
135 * If we have concurrent fsync/fdatasync() calls, we need them to all block on
136 * the log force before we clear the ili_fsync_fields field. This ensures that
137 * we don't get a racing sync operation that does not wait for the metadata to
138 * hit the journal before returning.  If we race with clearing ili_fsync_fields,
139 * then all that will happen is the log force will do nothing as the lsn will
140 * already be on disk.  We can't race with setting ili_fsync_fields because that
141 * is done under XFS_ILOCK_EXCL, and that can't happen because we hold the lock
142 * shared until after the ili_fsync_fields is cleared.
143 */
144static  int
145xfs_fsync_flush_log(
146	struct xfs_inode	*ip,
147	bool			datasync,
148	int			*log_flushed)
149{
150	int			error = 0;
151	xfs_csn_t		seq;
152
153	xfs_ilock(ip, XFS_ILOCK_SHARED);
154	seq = xfs_fsync_seq(ip, datasync);
155	if (seq) {
156		error = xfs_log_force_seq(ip->i_mount, seq, XFS_LOG_SYNC,
157					  log_flushed);
158
159		spin_lock(&ip->i_itemp->ili_lock);
160		ip->i_itemp->ili_fsync_fields = 0;
161		spin_unlock(&ip->i_itemp->ili_lock);
162	}
163	xfs_iunlock(ip, XFS_ILOCK_SHARED);
164	return error;
165}
166
167STATIC int
168xfs_file_fsync(
169	struct file		*file,
170	loff_t			start,
171	loff_t			end,
172	int			datasync)
173{
174	struct xfs_inode	*ip = XFS_I(file->f_mapping->host);
175	struct xfs_mount	*mp = ip->i_mount;
176	int			error = 0;
177	int			log_flushed = 0;
178
179	trace_xfs_file_fsync(ip);
180
181	error = file_write_and_wait_range(file, start, end);
182	if (error)
183		return error;
184
185	if (XFS_FORCED_SHUTDOWN(mp))
186		return -EIO;
187
188	xfs_iflags_clear(ip, XFS_ITRUNCATED);
189
190	/*
191	 * If we have an RT and/or log subvolume we need to make sure to flush
192	 * the write cache the device used for file data first.  This is to
193	 * ensure newly written file data make it to disk before logging the new
194	 * inode size in case of an extending write.
195	 */
196	if (XFS_IS_REALTIME_INODE(ip))
197		xfs_blkdev_issue_flush(mp->m_rtdev_targp);
198	else if (mp->m_logdev_targp != mp->m_ddev_targp)
199		xfs_blkdev_issue_flush(mp->m_ddev_targp);
200
201	error = xfs_fsync_flush_log(ip, datasync, &log_flushed);
202
203	/*
204	 * If we only have a single device, and the log force about was
205	 * a no-op we might have to flush the data device cache here.
206	 * This can only happen for fdatasync/O_DSYNC if we were overwriting
207	 * an already allocated file and thus do not have any metadata to
208	 * commit.
209	 */
210	if (!log_flushed && !XFS_IS_REALTIME_INODE(ip) &&
211	    mp->m_logdev_targp == mp->m_ddev_targp)
212		xfs_blkdev_issue_flush(mp->m_ddev_targp);
213
214	return error;
215}
216
217STATIC ssize_t
218xfs_file_dio_aio_read(
219	struct kiocb		*iocb,
220	struct iov_iter		*to)
221{
222	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
223	size_t			count = iov_iter_count(to);
224	ssize_t			ret;
225
226	trace_xfs_file_direct_read(ip, count, iocb->ki_pos);
227
228	if (!count)
229		return 0; /* skip atime */
230
231	file_accessed(iocb->ki_filp);
232
233	if (iocb->ki_flags & IOCB_NOWAIT) {
234		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
235			return -EAGAIN;
236	} else {
237		xfs_ilock(ip, XFS_IOLOCK_SHARED);
238	}
239	ret = iomap_dio_rw(iocb, to, &xfs_read_iomap_ops, NULL,
240			is_sync_kiocb(iocb));
241	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
242
243	return ret;
244}
245
246static noinline ssize_t
247xfs_file_dax_read(
248	struct kiocb		*iocb,
249	struct iov_iter		*to)
250{
251	struct xfs_inode	*ip = XFS_I(iocb->ki_filp->f_mapping->host);
252	size_t			count = iov_iter_count(to);
253	ssize_t			ret = 0;
254
255	trace_xfs_file_dax_read(ip, count, iocb->ki_pos);
256
257	if (!count)
258		return 0; /* skip atime */
259
260	if (iocb->ki_flags & IOCB_NOWAIT) {
261		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
262			return -EAGAIN;
263	} else {
264		xfs_ilock(ip, XFS_IOLOCK_SHARED);
265	}
266
267	ret = dax_iomap_rw(iocb, to, &xfs_read_iomap_ops);
268	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
269
270	file_accessed(iocb->ki_filp);
271	return ret;
272}
273
274STATIC ssize_t
275xfs_file_buffered_aio_read(
276	struct kiocb		*iocb,
277	struct iov_iter		*to)
278{
279	struct xfs_inode	*ip = XFS_I(file_inode(iocb->ki_filp));
280	ssize_t			ret;
281
282	trace_xfs_file_buffered_read(ip, iov_iter_count(to), iocb->ki_pos);
283
284	if (iocb->ki_flags & IOCB_NOWAIT) {
285		if (!xfs_ilock_nowait(ip, XFS_IOLOCK_SHARED))
286			return -EAGAIN;
287	} else {
288		xfs_ilock(ip, XFS_IOLOCK_SHARED);
289	}
290	ret = generic_file_read_iter(iocb, to);
291	xfs_iunlock(ip, XFS_IOLOCK_SHARED);
292
293	return ret;
294}
295
296STATIC ssize_t
297xfs_file_read_iter(
298	struct kiocb		*iocb,
299	struct iov_iter		*to)
300{
301	struct inode		*inode = file_inode(iocb->ki_filp);
302	struct xfs_mount	*mp = XFS_I(inode)->i_mount;
303	ssize_t			ret = 0;
304
305	XFS_STATS_INC(mp, xs_read_calls);
306
307	if (XFS_FORCED_SHUTDOWN(mp))
308		return -EIO;
309
310	if (IS_DAX(inode))
311		ret = xfs_file_dax_read(iocb, to);
312	else if (iocb->ki_flags & IOCB_DIRECT)
313		ret = xfs_file_dio_aio_read(iocb, to);
314	else
315		ret = xfs_file_buffered_aio_read(iocb, to);
316
317	if (ret > 0)
318		XFS_STATS_ADD(mp, xs_read_bytes, ret);
319	return ret;
320}
321
322/*
323 * Common pre-write limit and setup checks.
324 *
325 * Called with the iolocked held either shared and exclusive according to
326 * @iolock, and returns with it held.  Might upgrade the iolock to exclusive
327 * if called for a direct write beyond i_size.
328 */
329STATIC ssize_t
330xfs_file_aio_write_checks(
331	struct kiocb		*iocb,
332	struct iov_iter		*from,
333	int			*iolock)
334{
335	struct file		*file = iocb->ki_filp;
336	struct inode		*inode = file->f_mapping->host;
337	struct xfs_inode	*ip = XFS_I(inode);
338	ssize_t			error = 0;
339	size_t			count = iov_iter_count(from);
340	bool			drained_dio = false;
341	loff_t			isize;
342
343restart:
344	error = generic_write_checks(iocb, from);
345	if (error <= 0)
346		return error;
347
348	error = xfs_break_layouts(inode, iolock, BREAK_WRITE);
349	if (error)
350		return error;
351
352	/*
353	 * For changing security info in file_remove_privs() we need i_rwsem
354	 * exclusively.
355	 */
356	if (*iolock == XFS_IOLOCK_SHARED && !IS_NOSEC(inode)) {
357		xfs_iunlock(ip, *iolock);
358		*iolock = XFS_IOLOCK_EXCL;
359		xfs_ilock(ip, *iolock);
360		goto restart;
361	}
362	/*
363	 * If the offset is beyond the size of the file, we need to zero any
364	 * blocks that fall between the existing EOF and the start of this
365	 * write.  If zeroing is needed and we are currently holding the
366	 * iolock shared, we need to update it to exclusive which implies
367	 * having to redo all checks before.
368	 *
369	 * We need to serialise against EOF updates that occur in IO
370	 * completions here. We want to make sure that nobody is changing the
371	 * size while we do this check until we have placed an IO barrier (i.e.
372	 * hold the XFS_IOLOCK_EXCL) that prevents new IO from being dispatched.
373	 * The spinlock effectively forms a memory barrier once we have the
374	 * XFS_IOLOCK_EXCL so we are guaranteed to see the latest EOF value
375	 * and hence be able to correctly determine if we need to run zeroing.
376	 */
377	spin_lock(&ip->i_flags_lock);
378	isize = i_size_read(inode);
379	if (iocb->ki_pos > isize) {
380		spin_unlock(&ip->i_flags_lock);
381		if (!drained_dio) {
382			if (*iolock == XFS_IOLOCK_SHARED) {
383				xfs_iunlock(ip, *iolock);
384				*iolock = XFS_IOLOCK_EXCL;
385				xfs_ilock(ip, *iolock);
386				iov_iter_reexpand(from, count);
387			}
388			/*
389			 * We now have an IO submission barrier in place, but
390			 * AIO can do EOF updates during IO completion and hence
391			 * we now need to wait for all of them to drain. Non-AIO
392			 * DIO will have drained before we are given the
393			 * XFS_IOLOCK_EXCL, and so for most cases this wait is a
394			 * no-op.
395			 */
396			inode_dio_wait(inode);
397			drained_dio = true;
398			goto restart;
399		}
400
401		trace_xfs_zero_eof(ip, isize, iocb->ki_pos - isize);
402		error = iomap_zero_range(inode, isize, iocb->ki_pos - isize,
403				NULL, &xfs_buffered_write_iomap_ops);
404		if (error)
405			return error;
406	} else
407		spin_unlock(&ip->i_flags_lock);
408
409	/*
410	 * Updating the timestamps will grab the ilock again from
411	 * xfs_fs_dirty_inode, so we have to call it after dropping the
412	 * lock above.  Eventually we should look into a way to avoid
413	 * the pointless lock roundtrip.
414	 */
415	return file_modified(file);
416}
417
418static int
419xfs_dio_write_end_io(
420	struct kiocb		*iocb,
421	ssize_t			size,
422	int			error,
423	unsigned		flags)
424{
425	struct inode		*inode = file_inode(iocb->ki_filp);
426	struct xfs_inode	*ip = XFS_I(inode);
427	loff_t			offset = iocb->ki_pos;
428	unsigned int		nofs_flag;
429
430	trace_xfs_end_io_direct_write(ip, offset, size);
431
432	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
433		return -EIO;
434
435	if (error)
436		return error;
437	if (!size)
438		return 0;
439
440	/*
441	 * Capture amount written on completion as we can't reliably account
442	 * for it on submission.
443	 */
444	XFS_STATS_ADD(ip->i_mount, xs_write_bytes, size);
445
446	/*
447	 * We can allocate memory here while doing writeback on behalf of
448	 * memory reclaim.  To avoid memory allocation deadlocks set the
449	 * task-wide nofs context for the following operations.
450	 */
451	nofs_flag = memalloc_nofs_save();
452
453	if (flags & IOMAP_DIO_COW) {
454		error = xfs_reflink_end_cow(ip, offset, size);
455		if (error)
456			goto out;
457	}
458
459	/*
460	 * Unwritten conversion updates the in-core isize after extent
461	 * conversion but before updating the on-disk size. Updating isize any
462	 * earlier allows a racing dio read to find unwritten extents before
463	 * they are converted.
464	 */
465	if (flags & IOMAP_DIO_UNWRITTEN) {
466		error = xfs_iomap_write_unwritten(ip, offset, size, true);
467		goto out;
468	}
469
470	/*
471	 * We need to update the in-core inode size here so that we don't end up
472	 * with the on-disk inode size being outside the in-core inode size. We
473	 * have no other method of updating EOF for AIO, so always do it here
474	 * if necessary.
475	 *
476	 * We need to lock the test/set EOF update as we can be racing with
477	 * other IO completions here to update the EOF. Failing to serialise
478	 * here can result in EOF moving backwards and Bad Things Happen when
479	 * that occurs.
480	 */
481	spin_lock(&ip->i_flags_lock);
482	if (offset + size > i_size_read(inode)) {
483		i_size_write(inode, offset + size);
484		spin_unlock(&ip->i_flags_lock);
485		error = xfs_setfilesize(ip, offset, size);
486	} else {
487		spin_unlock(&ip->i_flags_lock);
488	}
489
490out:
491	memalloc_nofs_restore(nofs_flag);
492	return error;
493}
494
495static const struct iomap_dio_ops xfs_dio_write_ops = {
496	.end_io		= xfs_dio_write_end_io,
497};
498
499/*
500 * xfs_file_dio_aio_write - handle direct IO writes
501 *
502 * Lock the inode appropriately to prepare for and issue a direct IO write.
503 * By separating it from the buffered write path we remove all the tricky to
504 * follow locking changes and looping.
505 *
506 * If there are cached pages or we're extending the file, we need IOLOCK_EXCL
507 * until we're sure the bytes at the new EOF have been zeroed and/or the cached
508 * pages are flushed out.
509 *
510 * In most cases the direct IO writes will be done holding IOLOCK_SHARED
511 * allowing them to be done in parallel with reads and other direct IO writes.
512 * However, if the IO is not aligned to filesystem blocks, the direct IO layer
513 * needs to do sub-block zeroing and that requires serialisation against other
514 * direct IOs to the same block. In this case we need to serialise the
515 * submission of the unaligned IOs so that we don't get racing block zeroing in
516 * the dio layer.  To avoid the problem with aio, we also need to wait for
517 * outstanding IOs to complete so that unwritten extent conversion is completed
518 * before we try to map the overlapping block. This is currently implemented by
519 * hitting it with a big hammer (i.e. inode_dio_wait()).
520 *
521 * Returns with locks held indicated by @iolock and errors indicated by
522 * negative return values.
523 */
524STATIC ssize_t
525xfs_file_dio_aio_write(
526	struct kiocb		*iocb,
527	struct iov_iter		*from)
528{
529	struct file		*file = iocb->ki_filp;
530	struct address_space	*mapping = file->f_mapping;
531	struct inode		*inode = mapping->host;
532	struct xfs_inode	*ip = XFS_I(inode);
533	struct xfs_mount	*mp = ip->i_mount;
534	ssize_t			ret = 0;
535	int			unaligned_io = 0;
536	int			iolock;
537	size_t			count = iov_iter_count(from);
538	struct xfs_buftarg      *target = xfs_inode_buftarg(ip);
539
540	/* DIO must be aligned to device logical sector size */
541	if ((iocb->ki_pos | count) & target->bt_logical_sectormask)
542		return -EINVAL;
543
544	/*
545	 * Don't take the exclusive iolock here unless the I/O is unaligned to
546	 * the file system block size.  We don't need to consider the EOF
547	 * extension case here because xfs_file_aio_write_checks() will relock
548	 * the inode as necessary for EOF zeroing cases and fill out the new
549	 * inode size as appropriate.
550	 */
551	if ((iocb->ki_pos & mp->m_blockmask) ||
552	    ((iocb->ki_pos + count) & mp->m_blockmask)) {
553		unaligned_io = 1;
554
555		/*
556		 * We can't properly handle unaligned direct I/O to reflink
557		 * files yet, as we can't unshare a partial block.
558		 */
559		if (xfs_is_cow_inode(ip)) {
560			trace_xfs_reflink_bounce_dio_write(ip, iocb->ki_pos, count);
561			return -ENOTBLK;
562		}
563		iolock = XFS_IOLOCK_EXCL;
564	} else {
565		iolock = XFS_IOLOCK_SHARED;
566	}
567
568	if (iocb->ki_flags & IOCB_NOWAIT) {
569		/* unaligned dio always waits, bail */
570		if (unaligned_io)
571			return -EAGAIN;
572		if (!xfs_ilock_nowait(ip, iolock))
573			return -EAGAIN;
574	} else {
575		xfs_ilock(ip, iolock);
576	}
577
578	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
579	if (ret)
580		goto out;
581	count = iov_iter_count(from);
582
583	/*
584	 * If we are doing unaligned IO, we can't allow any other overlapping IO
585	 * in-flight at the same time or we risk data corruption. Wait for all
586	 * other IO to drain before we submit. If the IO is aligned, demote the
587	 * iolock if we had to take the exclusive lock in
588	 * xfs_file_aio_write_checks() for other reasons.
589	 */
590	if (unaligned_io) {
591		inode_dio_wait(inode);
592	} else if (iolock == XFS_IOLOCK_EXCL) {
593		xfs_ilock_demote(ip, XFS_IOLOCK_EXCL);
594		iolock = XFS_IOLOCK_SHARED;
595	}
596
597	trace_xfs_file_direct_write(ip, count, iocb->ki_pos);
598	/*
599	 * If unaligned, this is the only IO in-flight. Wait on it before we
600	 * release the iolock to prevent subsequent overlapping IO.
601	 */
602	ret = iomap_dio_rw(iocb, from, &xfs_direct_write_iomap_ops,
603			   &xfs_dio_write_ops,
604			   is_sync_kiocb(iocb) || unaligned_io);
605out:
606	xfs_iunlock(ip, iolock);
607
608	/*
609	 * No fallback to buffered IO after short writes for XFS, direct I/O
610	 * will either complete fully or return an error.
611	 */
612	ASSERT(ret < 0 || ret == count);
613	return ret;
614}
615
616static noinline ssize_t
617xfs_file_dax_write(
618	struct kiocb		*iocb,
619	struct iov_iter		*from)
620{
621	struct inode		*inode = iocb->ki_filp->f_mapping->host;
622	struct xfs_inode	*ip = XFS_I(inode);
623	int			iolock = XFS_IOLOCK_EXCL;
624	ssize_t			ret, error = 0;
625	size_t			count;
626	loff_t			pos;
627
628	if (iocb->ki_flags & IOCB_NOWAIT) {
629		if (!xfs_ilock_nowait(ip, iolock))
630			return -EAGAIN;
631	} else {
632		xfs_ilock(ip, iolock);
633	}
634
635	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
636	if (ret)
637		goto out;
638
639	pos = iocb->ki_pos;
640	count = iov_iter_count(from);
641
642	trace_xfs_file_dax_write(ip, count, pos);
643	ret = dax_iomap_rw(iocb, from, &xfs_direct_write_iomap_ops);
644	if (ret > 0 && iocb->ki_pos > i_size_read(inode)) {
645		i_size_write(inode, iocb->ki_pos);
646		error = xfs_setfilesize(ip, pos, ret);
647	}
648out:
649	xfs_iunlock(ip, iolock);
650	if (error)
651		return error;
652
653	if (ret > 0) {
654		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
655
656		/* Handle various SYNC-type writes */
657		ret = generic_write_sync(iocb, ret);
658	}
659	return ret;
660}
661
662STATIC ssize_t
663xfs_file_buffered_aio_write(
664	struct kiocb		*iocb,
665	struct iov_iter		*from)
666{
667	struct file		*file = iocb->ki_filp;
668	struct address_space	*mapping = file->f_mapping;
669	struct inode		*inode = mapping->host;
670	struct xfs_inode	*ip = XFS_I(inode);
671	ssize_t			ret;
672	int			enospc = 0;
673	int			iolock;
674
675	if (iocb->ki_flags & IOCB_NOWAIT)
676		return -EOPNOTSUPP;
677
678write_retry:
679	iolock = XFS_IOLOCK_EXCL;
680	xfs_ilock(ip, iolock);
681
682	ret = xfs_file_aio_write_checks(iocb, from, &iolock);
683	if (ret)
684		goto out;
685
686	/* We can write back this queue in page reclaim */
687	current->backing_dev_info = inode_to_bdi(inode);
688
689	trace_xfs_file_buffered_write(ip, iov_iter_count(from), iocb->ki_pos);
690	ret = iomap_file_buffered_write(iocb, from,
691			&xfs_buffered_write_iomap_ops);
692	if (likely(ret >= 0))
693		iocb->ki_pos += ret;
694
695	/*
696	 * If we hit a space limit, try to free up some lingering preallocated
697	 * space before returning an error. In the case of ENOSPC, first try to
698	 * write back all dirty inodes to free up some of the excess reserved
699	 * metadata space. This reduces the chances that the eofblocks scan
700	 * waits on dirty mappings. Since xfs_flush_inodes() is serialized, this
701	 * also behaves as a filter to prevent too many eofblocks scans from
702	 * running at the same time.
703	 */
704	if (ret == -EDQUOT && !enospc) {
705		xfs_iunlock(ip, iolock);
706		enospc = xfs_inode_free_quota_eofblocks(ip);
707		if (enospc)
708			goto write_retry;
709		enospc = xfs_inode_free_quota_cowblocks(ip);
710		if (enospc)
711			goto write_retry;
712		iolock = 0;
713	} else if (ret == -ENOSPC && !enospc) {
714		struct xfs_eofblocks eofb = {0};
715
716		enospc = 1;
717		xfs_flush_inodes(ip->i_mount);
718
719		xfs_iunlock(ip, iolock);
720		eofb.eof_flags = XFS_EOF_FLAGS_SYNC;
721		xfs_icache_free_eofblocks(ip->i_mount, &eofb);
722		xfs_icache_free_cowblocks(ip->i_mount, &eofb);
723		goto write_retry;
724	}
725
726	current->backing_dev_info = NULL;
727out:
728	if (iolock)
729		xfs_iunlock(ip, iolock);
730
731	if (ret > 0) {
732		XFS_STATS_ADD(ip->i_mount, xs_write_bytes, ret);
733		/* Handle various SYNC-type writes */
734		ret = generic_write_sync(iocb, ret);
735	}
736	return ret;
737}
738
739STATIC ssize_t
740xfs_file_write_iter(
741	struct kiocb		*iocb,
742	struct iov_iter		*from)
743{
744	struct file		*file = iocb->ki_filp;
745	struct address_space	*mapping = file->f_mapping;
746	struct inode		*inode = mapping->host;
747	struct xfs_inode	*ip = XFS_I(inode);
748	ssize_t			ret;
749	size_t			ocount = iov_iter_count(from);
750
751	XFS_STATS_INC(ip->i_mount, xs_write_calls);
752
753	if (ocount == 0)
754		return 0;
755
756	if (XFS_FORCED_SHUTDOWN(ip->i_mount))
757		return -EIO;
758
759	if (IS_DAX(inode))
760		return xfs_file_dax_write(iocb, from);
761
762	if (iocb->ki_flags & IOCB_DIRECT) {
763		/*
764		 * Allow a directio write to fall back to a buffered
765		 * write *only* in the case that we're doing a reflink
766		 * CoW.  In all other directio scenarios we do not
767		 * allow an operation to fall back to buffered mode.
768		 */
769		ret = xfs_file_dio_aio_write(iocb, from);
770		if (ret != -ENOTBLK)
771			return ret;
772	}
773
774	return xfs_file_buffered_aio_write(iocb, from);
775}
776
777static void
778xfs_wait_dax_page(
779	struct inode		*inode)
780{
781	struct xfs_inode        *ip = XFS_I(inode);
782
783	xfs_iunlock(ip, XFS_MMAPLOCK_EXCL);
784	schedule();
785	xfs_ilock(ip, XFS_MMAPLOCK_EXCL);
786}
787
788static int
789xfs_break_dax_layouts(
790	struct inode		*inode,
791	bool			*retry)
792{
793	struct page		*page;
794
795	ASSERT(xfs_isilocked(XFS_I(inode), XFS_MMAPLOCK_EXCL));
796
797	page = dax_layout_busy_page(inode->i_mapping);
798	if (!page)
799		return 0;
800
801	*retry = true;
802	return ___wait_var_event(&page->_refcount,
803			atomic_read(&page->_refcount) == 1, TASK_INTERRUPTIBLE,
804			0, 0, xfs_wait_dax_page(inode));
805}
806
807int
808xfs_break_layouts(
809	struct inode		*inode,
810	uint			*iolock,
811	enum layout_break_reason reason)
812{
813	bool			retry;
814	int			error;
815
816	ASSERT(xfs_isilocked(XFS_I(inode), XFS_IOLOCK_SHARED|XFS_IOLOCK_EXCL));
817
818	do {
819		retry = false;
820		switch (reason) {
821		case BREAK_UNMAP:
822			error = xfs_break_dax_layouts(inode, &retry);
823			if (error || retry)
824				break;
825			/* fall through */
826		case BREAK_WRITE:
827			error = xfs_break_leased_layouts(inode, iolock, &retry);
828			break;
829		default:
830			WARN_ON_ONCE(1);
831			error = -EINVAL;
832		}
833	} while (error == 0 && retry);
834
835	return error;
836}
837
838#define	XFS_FALLOC_FL_SUPPORTED						\
839		(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE |		\
840		 FALLOC_FL_COLLAPSE_RANGE | FALLOC_FL_ZERO_RANGE |	\
841		 FALLOC_FL_INSERT_RANGE | FALLOC_FL_UNSHARE_RANGE)
842
843STATIC long
844xfs_file_fallocate(
845	struct file		*file,
846	int			mode,
847	loff_t			offset,
848	loff_t			len)
849{
850	struct inode		*inode = file_inode(file);
851	struct xfs_inode	*ip = XFS_I(inode);
852	long			error;
853	uint			iolock = XFS_IOLOCK_EXCL | XFS_MMAPLOCK_EXCL;
854	loff_t			new_size = 0;
855	bool			do_file_insert = false;
856
857	if (!S_ISREG(inode->i_mode))
858		return -EINVAL;
859	if (mode & ~XFS_FALLOC_FL_SUPPORTED)
860		return -EOPNOTSUPP;
861
862	xfs_ilock(ip, iolock);
863	error = xfs_break_layouts(inode, &iolock, BREAK_UNMAP);
864	if (error)
865		goto out_unlock;
866
867	/*
868	 * Must wait for all AIO to complete before we continue as AIO can
869	 * change the file size on completion without holding any locks we
870	 * currently hold. We must do this first because AIO can update both
871	 * the on disk and in memory inode sizes, and the operations that follow
872	 * require the in-memory size to be fully up-to-date.
873	 */
874	inode_dio_wait(inode);
875
876	/*
877	 * Now AIO and DIO has drained we flush and (if necessary) invalidate
878	 * the cached range over the first operation we are about to run.
879	 *
880	 * We care about zero and collapse here because they both run a hole
881	 * punch over the range first. Because that can zero data, and the range
882	 * of invalidation for the shift operations is much larger, we still do
883	 * the required flush for collapse in xfs_prepare_shift().
884	 *
885	 * Insert has the same range requirements as collapse, and we extend the
886	 * file first which can zero data. Hence insert has the same
887	 * flush/invalidate requirements as collapse and so they are both
888	 * handled at the right time by xfs_prepare_shift().
889	 */
890	if (mode & (FALLOC_FL_PUNCH_HOLE | FALLOC_FL_ZERO_RANGE |
891		    FALLOC_FL_COLLAPSE_RANGE)) {
892		error = xfs_flush_unmap_range(ip, offset, len);
893		if (error)
894			goto out_unlock;
895	}
896
897	error = file_modified(file);
898	if (error)
899		goto out_unlock;
900
901	if (mode & FALLOC_FL_PUNCH_HOLE) {
902		error = xfs_free_file_space(ip, offset, len);
903		if (error)
904			goto out_unlock;
905	} else if (mode & FALLOC_FL_COLLAPSE_RANGE) {
906		if (!xfs_is_falloc_aligned(ip, offset, len)) {
907			error = -EINVAL;
908			goto out_unlock;
909		}
910
911		/*
912		 * There is no need to overlap collapse range with EOF,
913		 * in which case it is effectively a truncate operation
914		 */
915		if (offset + len >= i_size_read(inode)) {
916			error = -EINVAL;
917			goto out_unlock;
918		}
919
920		new_size = i_size_read(inode) - len;
921
922		error = xfs_collapse_file_space(ip, offset, len);
923		if (error)
924			goto out_unlock;
925	} else if (mode & FALLOC_FL_INSERT_RANGE) {
926		loff_t		isize = i_size_read(inode);
927
928		if (!xfs_is_falloc_aligned(ip, offset, len)) {
929			error = -EINVAL;
930			goto out_unlock;
931		}
932
933		/*
934		 * New inode size must not exceed ->s_maxbytes, accounting for
935		 * possible signed overflow.
936		 */
937		if (inode->i_sb->s_maxbytes - isize < len) {
938			error = -EFBIG;
939			goto out_unlock;
940		}
941		new_size = isize + len;
942
943		/* Offset should be less than i_size */
944		if (offset >= isize) {
945			error = -EINVAL;
946			goto out_unlock;
947		}
948		do_file_insert = true;
949	} else {
950		if (!(mode & FALLOC_FL_KEEP_SIZE) &&
951		    offset + len > i_size_read(inode)) {
952			new_size = offset + len;
953			error = inode_newsize_ok(inode, new_size);
954			if (error)
955				goto out_unlock;
956		}
957
958		if (mode & FALLOC_FL_ZERO_RANGE) {
959			/*
960			 * Punch a hole and prealloc the range.  We use a hole
961			 * punch rather than unwritten extent conversion for two
962			 * reasons:
963			 *
964			 *   1.) Hole punch handles partial block zeroing for us.
965			 *   2.) If prealloc returns ENOSPC, the file range is
966			 *       still zero-valued by virtue of the hole punch.
967			 */
968			unsigned int blksize = i_blocksize(inode);
969
970			trace_xfs_zero_file_space(ip);
971
972			error = xfs_free_file_space(ip, offset, len);
973			if (error)
974				goto out_unlock;
975
976			len = round_up(offset + len, blksize) -
977			      round_down(offset, blksize);
978			offset = round_down(offset, blksize);
979		} else if (mode & FALLOC_FL_UNSHARE_RANGE) {
980			error = xfs_reflink_unshare(ip, offset, len);
981			if (error)
982				goto out_unlock;
983		} else {
984			/*
985			 * If always_cow mode we can't use preallocations and
986			 * thus should not create them.
987			 */
988			if (xfs_is_always_cow_inode(ip)) {
989				error = -EOPNOTSUPP;
990				goto out_unlock;
991			}
992		}
993
994		if (!xfs_is_always_cow_inode(ip)) {
995			error = xfs_alloc_file_space(ip, offset, len,
996						     XFS_BMAPI_PREALLOC);
997			if (error)
998				goto out_unlock;
999		}
1000	}
1001
1002	/* Change file size if needed */
1003	if (new_size) {
1004		struct iattr iattr;
1005
1006		iattr.ia_valid = ATTR_SIZE;
1007		iattr.ia_size = new_size;
1008		error = xfs_vn_setattr_size(file_dentry(file), &iattr);
1009		if (error)
1010			goto out_unlock;
1011	}
1012
1013	/*
1014	 * Perform hole insertion now that the file size has been
1015	 * updated so that if we crash during the operation we don't
1016	 * leave shifted extents past EOF and hence losing access to
1017	 * the data that is contained within them.
1018	 */
1019	if (do_file_insert) {
1020		error = xfs_insert_file_space(ip, offset, len);
1021		if (error)
1022			goto out_unlock;
1023	}
1024
1025	if (file->f_flags & O_DSYNC)
1026		error = xfs_log_force_inode(ip);
1027
1028out_unlock:
1029	xfs_iunlock(ip, iolock);
1030	return error;
1031}
1032
1033STATIC int
1034xfs_file_fadvise(
1035	struct file	*file,
1036	loff_t		start,
1037	loff_t		end,
1038	int		advice)
1039{
1040	struct xfs_inode *ip = XFS_I(file_inode(file));
1041	int ret;
1042	int lockflags = 0;
1043
1044	/*
1045	 * Operations creating pages in page cache need protection from hole
1046	 * punching and similar ops
1047	 */
1048	if (advice == POSIX_FADV_WILLNEED) {
1049		lockflags = XFS_IOLOCK_SHARED;
1050		xfs_ilock(ip, lockflags);
1051	}
1052	ret = generic_fadvise(file, start, end, advice);
1053	if (lockflags)
1054		xfs_iunlock(ip, lockflags);
1055	return ret;
1056}
1057
1058/* Does this file, inode, or mount want synchronous writes? */
1059static inline bool xfs_file_sync_writes(struct file *filp)
1060{
1061	struct xfs_inode	*ip = XFS_I(file_inode(filp));
1062
1063	if (ip->i_mount->m_flags & XFS_MOUNT_WSYNC)
1064		return true;
1065	if (filp->f_flags & (__O_SYNC | O_DSYNC))
1066		return true;
1067	if (IS_SYNC(file_inode(filp)))
1068		return true;
1069
1070	return false;
1071}
1072
1073STATIC loff_t
1074xfs_file_remap_range(
1075	struct file		*file_in,
1076	loff_t			pos_in,
1077	struct file		*file_out,
1078	loff_t			pos_out,
1079	loff_t			len,
1080	unsigned int		remap_flags)
1081{
1082	struct inode		*inode_in = file_inode(file_in);
1083	struct xfs_inode	*src = XFS_I(inode_in);
1084	struct inode		*inode_out = file_inode(file_out);
1085	struct xfs_inode	*dest = XFS_I(inode_out);
1086	struct xfs_mount	*mp = src->i_mount;
1087	loff_t			remapped = 0;
1088	xfs_extlen_t		cowextsize;
1089	int			ret;
1090
1091	if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY))
1092		return -EINVAL;
1093
1094	if (!xfs_sb_version_hasreflink(&mp->m_sb))
1095		return -EOPNOTSUPP;
1096
1097	if (XFS_FORCED_SHUTDOWN(mp))
1098		return -EIO;
1099
1100	/* Prepare and then clone file data. */
1101	ret = xfs_reflink_remap_prep(file_in, pos_in, file_out, pos_out,
1102			&len, remap_flags);
1103	if (ret || len == 0)
1104		return ret;
1105
1106	trace_xfs_reflink_remap_range(src, pos_in, len, dest, pos_out);
1107
1108	ret = xfs_reflink_remap_blocks(src, pos_in, dest, pos_out, len,
1109			&remapped);
1110	if (ret)
1111		goto out_unlock;
1112
1113	/*
1114	 * Carry the cowextsize hint from src to dest if we're sharing the
1115	 * entire source file to the entire destination file, the source file
1116	 * has a cowextsize hint, and the destination file does not.
1117	 */
1118	cowextsize = 0;
1119	if (pos_in == 0 && len == i_size_read(inode_in) &&
1120	    (src->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE) &&
1121	    pos_out == 0 && len >= i_size_read(inode_out) &&
1122	    !(dest->i_d.di_flags2 & XFS_DIFLAG2_COWEXTSIZE))
1123		cowextsize = src->i_d.di_cowextsize;
1124
1125	ret = xfs_reflink_update_dest(dest, pos_out + len, cowextsize,
1126			remap_flags);
1127	if (ret)
1128		goto out_unlock;
1129
1130	if (xfs_file_sync_writes(file_in) || xfs_file_sync_writes(file_out))
1131		xfs_log_force_inode(dest);
1132out_unlock:
1133	xfs_iunlock2_io_mmap(src, dest);
1134	if (ret)
1135		trace_xfs_reflink_remap_range_error(dest, ret, _RET_IP_);
1136	return remapped > 0 ? remapped : ret;
1137}
1138
1139STATIC int
1140xfs_file_open(
1141	struct inode	*inode,
1142	struct file	*file)
1143{
1144	if (!(file->f_flags & O_LARGEFILE) && i_size_read(inode) > MAX_NON_LFS)
1145		return -EFBIG;
1146	if (XFS_FORCED_SHUTDOWN(XFS_M(inode->i_sb)))
1147		return -EIO;
1148	file->f_mode |= FMODE_NOWAIT | FMODE_BUF_RASYNC;
1149	return 0;
1150}
1151
1152STATIC int
1153xfs_dir_open(
1154	struct inode	*inode,
1155	struct file	*file)
1156{
1157	struct xfs_inode *ip = XFS_I(inode);
1158	int		mode;
1159	int		error;
1160
1161	error = xfs_file_open(inode, file);
1162	if (error)
1163		return error;
1164
1165	/*
1166	 * If there are any blocks, read-ahead block 0 as we're almost
1167	 * certain to have the next operation be a read there.
1168	 */
1169	mode = xfs_ilock_data_map_shared(ip);
1170	if (ip->i_df.if_nextents > 0)
1171		error = xfs_dir3_data_readahead(ip, 0, 0);
1172	xfs_iunlock(ip, mode);
1173	return error;
1174}
1175
1176STATIC int
1177xfs_file_release(
1178	struct inode	*inode,
1179	struct file	*filp)
1180{
1181	return xfs_release(XFS_I(inode));
1182}
1183
1184STATIC int
1185xfs_file_readdir(
1186	struct file	*file,
1187	struct dir_context *ctx)
1188{
1189	struct inode	*inode = file_inode(file);
1190	xfs_inode_t	*ip = XFS_I(inode);
1191	size_t		bufsize;
1192
1193	/*
1194	 * The Linux API doesn't pass down the total size of the buffer
1195	 * we read into down to the filesystem.  With the filldir concept
1196	 * it's not needed for correct information, but the XFS dir2 leaf
1197	 * code wants an estimate of the buffer size to calculate it's
1198	 * readahead window and size the buffers used for mapping to
1199	 * physical blocks.
1200	 *
1201	 * Try to give it an estimate that's good enough, maybe at some
1202	 * point we can change the ->readdir prototype to include the
1203	 * buffer size.  For now we use the current glibc buffer size.
1204	 */
1205	bufsize = (size_t)min_t(loff_t, XFS_READDIR_BUFSIZE, ip->i_d.di_size);
1206
1207	return xfs_readdir(NULL, ip, ctx, bufsize);
1208}
1209
1210STATIC loff_t
1211xfs_file_llseek(
1212	struct file	*file,
1213	loff_t		offset,
1214	int		whence)
1215{
1216	struct inode		*inode = file->f_mapping->host;
1217
1218	if (XFS_FORCED_SHUTDOWN(XFS_I(inode)->i_mount))
1219		return -EIO;
1220
1221	switch (whence) {
1222	default:
1223		return generic_file_llseek(file, offset, whence);
1224	case SEEK_HOLE:
1225		offset = iomap_seek_hole(inode, offset, &xfs_seek_iomap_ops);
1226		break;
1227	case SEEK_DATA:
1228		offset = iomap_seek_data(inode, offset, &xfs_seek_iomap_ops);
1229		break;
1230	}
1231
1232	if (offset < 0)
1233		return offset;
1234	return vfs_setpos(file, offset, inode->i_sb->s_maxbytes);
1235}
1236
1237/*
1238 * Locking for serialisation of IO during page faults. This results in a lock
1239 * ordering of:
1240 *
1241 * mmap_lock (MM)
1242 *   sb_start_pagefault(vfs, freeze)
1243 *     i_mmaplock (XFS - truncate serialisation)
1244 *       page_lock (MM)
1245 *         i_lock (XFS - extent map serialisation)
1246 */
1247static vm_fault_t
1248__xfs_filemap_fault(
1249	struct vm_fault		*vmf,
1250	enum page_entry_size	pe_size,
1251	bool			write_fault)
1252{
1253	struct inode		*inode = file_inode(vmf->vma->vm_file);
1254	struct xfs_inode	*ip = XFS_I(inode);
1255	vm_fault_t		ret;
1256
1257	trace_xfs_filemap_fault(ip, pe_size, write_fault);
1258
1259	if (write_fault) {
1260		sb_start_pagefault(inode->i_sb);
1261		file_update_time(vmf->vma->vm_file);
1262	}
1263
1264	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1265	if (IS_DAX(inode)) {
1266		pfn_t pfn;
1267
1268		ret = dax_iomap_fault(vmf, pe_size, &pfn, NULL,
1269				(write_fault && !vmf->cow_page) ?
1270				 &xfs_direct_write_iomap_ops :
1271				 &xfs_read_iomap_ops);
1272		if (ret & VM_FAULT_NEEDDSYNC)
1273			ret = dax_finish_sync_fault(vmf, pe_size, pfn);
1274	} else {
1275		if (write_fault)
1276			ret = iomap_page_mkwrite(vmf,
1277					&xfs_buffered_write_iomap_ops);
1278		else
1279			ret = filemap_fault(vmf);
1280	}
1281	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1282
1283	if (write_fault)
1284		sb_end_pagefault(inode->i_sb);
1285	return ret;
1286}
1287
1288static inline bool
1289xfs_is_write_fault(
1290	struct vm_fault		*vmf)
1291{
1292	return (vmf->flags & FAULT_FLAG_WRITE) &&
1293	       (vmf->vma->vm_flags & VM_SHARED);
1294}
1295
1296static vm_fault_t
1297xfs_filemap_fault(
1298	struct vm_fault		*vmf)
1299{
1300	/* DAX can shortcut the normal fault path on write faults! */
1301	return __xfs_filemap_fault(vmf, PE_SIZE_PTE,
1302			IS_DAX(file_inode(vmf->vma->vm_file)) &&
1303			xfs_is_write_fault(vmf));
1304}
1305
1306static vm_fault_t
1307xfs_filemap_huge_fault(
1308	struct vm_fault		*vmf,
1309	enum page_entry_size	pe_size)
1310{
1311	if (!IS_DAX(file_inode(vmf->vma->vm_file)))
1312		return VM_FAULT_FALLBACK;
1313
1314	/* DAX can shortcut the normal fault path on write faults! */
1315	return __xfs_filemap_fault(vmf, pe_size,
1316			xfs_is_write_fault(vmf));
1317}
1318
1319static vm_fault_t
1320xfs_filemap_page_mkwrite(
1321	struct vm_fault		*vmf)
1322{
1323	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1324}
1325
1326/*
1327 * pfn_mkwrite was originally intended to ensure we capture time stamp updates
1328 * on write faults. In reality, it needs to serialise against truncate and
1329 * prepare memory for writing so handle is as standard write fault.
1330 */
1331static vm_fault_t
1332xfs_filemap_pfn_mkwrite(
1333	struct vm_fault		*vmf)
1334{
1335
1336	return __xfs_filemap_fault(vmf, PE_SIZE_PTE, true);
1337}
1338
1339static void
1340xfs_filemap_map_pages(
1341	struct vm_fault		*vmf,
1342	pgoff_t			start_pgoff,
1343	pgoff_t			end_pgoff)
1344{
1345	struct inode		*inode = file_inode(vmf->vma->vm_file);
1346
1347	xfs_ilock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1348	filemap_map_pages(vmf, start_pgoff, end_pgoff);
1349	xfs_iunlock(XFS_I(inode), XFS_MMAPLOCK_SHARED);
1350}
1351
1352static const struct vm_operations_struct xfs_file_vm_ops = {
1353	.fault		= xfs_filemap_fault,
1354	.huge_fault	= xfs_filemap_huge_fault,
1355	.map_pages	= xfs_filemap_map_pages,
1356	.page_mkwrite	= xfs_filemap_page_mkwrite,
1357	.pfn_mkwrite	= xfs_filemap_pfn_mkwrite,
1358};
1359
1360STATIC int
1361xfs_file_mmap(
1362	struct file		*file,
1363	struct vm_area_struct	*vma)
1364{
1365	struct inode		*inode = file_inode(file);
1366	struct xfs_buftarg	*target = xfs_inode_buftarg(XFS_I(inode));
1367
1368	/*
1369	 * We don't support synchronous mappings for non-DAX files and
1370	 * for DAX files if underneath dax_device is not synchronous.
1371	 */
1372	if (!daxdev_mapping_supported(vma, target->bt_daxdev))
1373		return -EOPNOTSUPP;
1374
1375	file_accessed(file);
1376	vma->vm_ops = &xfs_file_vm_ops;
1377	if (IS_DAX(inode))
1378		vma->vm_flags |= VM_HUGEPAGE;
1379	return 0;
1380}
1381
1382const struct file_operations xfs_file_operations = {
1383	.llseek		= xfs_file_llseek,
1384	.read_iter	= xfs_file_read_iter,
1385	.write_iter	= xfs_file_write_iter,
1386	.splice_read	= generic_file_splice_read,
1387	.splice_write	= iter_file_splice_write,
1388	.iopoll		= iomap_dio_iopoll,
1389	.unlocked_ioctl	= xfs_file_ioctl,
1390#ifdef CONFIG_COMPAT
1391	.compat_ioctl	= xfs_file_compat_ioctl,
1392#endif
1393	.mmap		= xfs_file_mmap,
1394	.mmap_supported_flags = MAP_SYNC,
1395	.open		= xfs_file_open,
1396	.release	= xfs_file_release,
1397	.fsync		= xfs_file_fsync,
1398	.get_unmapped_area = thp_get_unmapped_area,
1399	.fallocate	= xfs_file_fallocate,
1400	.fadvise	= xfs_file_fadvise,
1401	.remap_file_range = xfs_file_remap_range,
1402};
1403
1404const struct file_operations xfs_dir_file_operations = {
1405	.open		= xfs_dir_open,
1406	.read		= generic_read_dir,
1407	.iterate_shared	= xfs_file_readdir,
1408	.llseek		= generic_file_llseek,
1409	.unlocked_ioctl	= xfs_file_ioctl,
1410#ifdef CONFIG_COMPAT
1411	.compat_ioctl	= xfs_file_compat_ioctl,
1412#endif
1413	.fsync		= xfs_dir_fsync,
1414};
1415