1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2001,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_format.h"
9#include "xfs_log_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_bit.h"
12#include "xfs_shared.h"
13#include "xfs_mount.h"
14#include "xfs_defer.h"
15#include "xfs_trans.h"
16#include "xfs_trans_priv.h"
17#include "xfs_extfree_item.h"
18#include "xfs_log.h"
19#include "xfs_btree.h"
20#include "xfs_rmap.h"
21#include "xfs_alloc.h"
22#include "xfs_bmap.h"
23#include "xfs_trace.h"
24#include "xfs_error.h"
25#include "xfs_log_priv.h"
26#include "xfs_log_recover.h"
27
28kmem_zone_t	*xfs_efi_zone;
29kmem_zone_t	*xfs_efd_zone;
30
31static const struct xfs_item_ops xfs_efi_item_ops;
32
33static inline struct xfs_efi_log_item *EFI_ITEM(struct xfs_log_item *lip)
34{
35	return container_of(lip, struct xfs_efi_log_item, efi_item);
36}
37
38STATIC void
39xfs_efi_item_free(
40	struct xfs_efi_log_item	*efip)
41{
42	kmem_free(efip->efi_item.li_lv_shadow);
43	if (efip->efi_format.efi_nextents > XFS_EFI_MAX_FAST_EXTENTS)
44		kmem_free(efip);
45	else
46		kmem_cache_free(xfs_efi_zone, efip);
47}
48
49/*
50 * Freeing the efi requires that we remove it from the AIL if it has already
51 * been placed there. However, the EFI may not yet have been placed in the AIL
52 * when called by xfs_efi_release() from EFD processing due to the ordering of
53 * committed vs unpin operations in bulk insert operations. Hence the reference
54 * count to ensure only the last caller frees the EFI.
55 */
56STATIC void
57xfs_efi_release(
58	struct xfs_efi_log_item	*efip)
59{
60	ASSERT(atomic_read(&efip->efi_refcount) > 0);
61	if (atomic_dec_and_test(&efip->efi_refcount)) {
62		xfs_trans_ail_delete(&efip->efi_item, SHUTDOWN_LOG_IO_ERROR);
63		xfs_efi_item_free(efip);
64	}
65}
66
67/*
68 * This returns the number of iovecs needed to log the given efi item.
69 * We only need 1 iovec for an efi item.  It just logs the efi_log_format
70 * structure.
71 */
72static inline int
73xfs_efi_item_sizeof(
74	struct xfs_efi_log_item *efip)
75{
76	return sizeof(struct xfs_efi_log_format) +
77	       (efip->efi_format.efi_nextents - 1) * sizeof(xfs_extent_t);
78}
79
80STATIC void
81xfs_efi_item_size(
82	struct xfs_log_item	*lip,
83	int			*nvecs,
84	int			*nbytes)
85{
86	*nvecs += 1;
87	*nbytes += xfs_efi_item_sizeof(EFI_ITEM(lip));
88}
89
90/*
91 * This is called to fill in the vector of log iovecs for the
92 * given efi log item. We use only 1 iovec, and we point that
93 * at the efi_log_format structure embedded in the efi item.
94 * It is at this point that we assert that all of the extent
95 * slots in the efi item have been filled.
96 */
97STATIC void
98xfs_efi_item_format(
99	struct xfs_log_item	*lip,
100	struct xfs_log_vec	*lv)
101{
102	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
103	struct xfs_log_iovec	*vecp = NULL;
104
105	ASSERT(atomic_read(&efip->efi_next_extent) ==
106				efip->efi_format.efi_nextents);
107
108	efip->efi_format.efi_type = XFS_LI_EFI;
109	efip->efi_format.efi_size = 1;
110
111	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFI_FORMAT,
112			&efip->efi_format,
113			xfs_efi_item_sizeof(efip));
114}
115
116
117/*
118 * The unpin operation is the last place an EFI is manipulated in the log. It is
119 * either inserted in the AIL or aborted in the event of a log I/O error. In
120 * either case, the EFI transaction has been successfully committed to make it
121 * this far. Therefore, we expect whoever committed the EFI to either construct
122 * and commit the EFD or drop the EFD's reference in the event of error. Simply
123 * drop the log's EFI reference now that the log is done with it.
124 */
125STATIC void
126xfs_efi_item_unpin(
127	struct xfs_log_item	*lip,
128	int			remove)
129{
130	struct xfs_efi_log_item	*efip = EFI_ITEM(lip);
131	xfs_efi_release(efip);
132}
133
134/*
135 * The EFI has been either committed or aborted if the transaction has been
136 * cancelled. If the transaction was cancelled, an EFD isn't going to be
137 * constructed and thus we free the EFI here directly.
138 */
139STATIC void
140xfs_efi_item_release(
141	struct xfs_log_item	*lip)
142{
143	xfs_efi_release(EFI_ITEM(lip));
144}
145
146/*
147 * Allocate and initialize an efi item with the given number of extents.
148 */
149STATIC struct xfs_efi_log_item *
150xfs_efi_init(
151	struct xfs_mount	*mp,
152	uint			nextents)
153
154{
155	struct xfs_efi_log_item	*efip;
156	uint			size;
157
158	ASSERT(nextents > 0);
159	if (nextents > XFS_EFI_MAX_FAST_EXTENTS) {
160		size = (uint)(sizeof(struct xfs_efi_log_item) +
161			((nextents - 1) * sizeof(xfs_extent_t)));
162		efip = kmem_zalloc(size, 0);
163	} else {
164		efip = kmem_cache_zalloc(xfs_efi_zone,
165					 GFP_KERNEL | __GFP_NOFAIL);
166	}
167
168	xfs_log_item_init(mp, &efip->efi_item, XFS_LI_EFI, &xfs_efi_item_ops);
169	efip->efi_format.efi_nextents = nextents;
170	efip->efi_format.efi_id = (uintptr_t)(void *)efip;
171	atomic_set(&efip->efi_next_extent, 0);
172	atomic_set(&efip->efi_refcount, 2);
173
174	return efip;
175}
176
177/*
178 * Copy an EFI format buffer from the given buf, and into the destination
179 * EFI format structure.
180 * The given buffer can be in 32 bit or 64 bit form (which has different padding),
181 * one of which will be the native format for this kernel.
182 * It will handle the conversion of formats if necessary.
183 */
184STATIC int
185xfs_efi_copy_format(xfs_log_iovec_t *buf, xfs_efi_log_format_t *dst_efi_fmt)
186{
187	xfs_efi_log_format_t *src_efi_fmt = buf->i_addr;
188	uint i;
189	uint len = sizeof(xfs_efi_log_format_t) +
190		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_t);
191	uint len32 = sizeof(xfs_efi_log_format_32_t) +
192		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_32_t);
193	uint len64 = sizeof(xfs_efi_log_format_64_t) +
194		(src_efi_fmt->efi_nextents - 1) * sizeof(xfs_extent_64_t);
195
196	if (buf->i_len == len) {
197		memcpy((char *)dst_efi_fmt, (char*)src_efi_fmt, len);
198		return 0;
199	} else if (buf->i_len == len32) {
200		xfs_efi_log_format_32_t *src_efi_fmt_32 = buf->i_addr;
201
202		dst_efi_fmt->efi_type     = src_efi_fmt_32->efi_type;
203		dst_efi_fmt->efi_size     = src_efi_fmt_32->efi_size;
204		dst_efi_fmt->efi_nextents = src_efi_fmt_32->efi_nextents;
205		dst_efi_fmt->efi_id       = src_efi_fmt_32->efi_id;
206		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
207			dst_efi_fmt->efi_extents[i].ext_start =
208				src_efi_fmt_32->efi_extents[i].ext_start;
209			dst_efi_fmt->efi_extents[i].ext_len =
210				src_efi_fmt_32->efi_extents[i].ext_len;
211		}
212		return 0;
213	} else if (buf->i_len == len64) {
214		xfs_efi_log_format_64_t *src_efi_fmt_64 = buf->i_addr;
215
216		dst_efi_fmt->efi_type     = src_efi_fmt_64->efi_type;
217		dst_efi_fmt->efi_size     = src_efi_fmt_64->efi_size;
218		dst_efi_fmt->efi_nextents = src_efi_fmt_64->efi_nextents;
219		dst_efi_fmt->efi_id       = src_efi_fmt_64->efi_id;
220		for (i = 0; i < dst_efi_fmt->efi_nextents; i++) {
221			dst_efi_fmt->efi_extents[i].ext_start =
222				src_efi_fmt_64->efi_extents[i].ext_start;
223			dst_efi_fmt->efi_extents[i].ext_len =
224				src_efi_fmt_64->efi_extents[i].ext_len;
225		}
226		return 0;
227	}
228	XFS_ERROR_REPORT(__func__, XFS_ERRLEVEL_LOW, NULL);
229	return -EFSCORRUPTED;
230}
231
232static inline struct xfs_efd_log_item *EFD_ITEM(struct xfs_log_item *lip)
233{
234	return container_of(lip, struct xfs_efd_log_item, efd_item);
235}
236
237STATIC void
238xfs_efd_item_free(struct xfs_efd_log_item *efdp)
239{
240	kmem_free(efdp->efd_item.li_lv_shadow);
241	if (efdp->efd_format.efd_nextents > XFS_EFD_MAX_FAST_EXTENTS)
242		kmem_free(efdp);
243	else
244		kmem_cache_free(xfs_efd_zone, efdp);
245}
246
247/*
248 * This returns the number of iovecs needed to log the given efd item.
249 * We only need 1 iovec for an efd item.  It just logs the efd_log_format
250 * structure.
251 */
252static inline int
253xfs_efd_item_sizeof(
254	struct xfs_efd_log_item *efdp)
255{
256	return sizeof(xfs_efd_log_format_t) +
257	       (efdp->efd_format.efd_nextents - 1) * sizeof(xfs_extent_t);
258}
259
260STATIC void
261xfs_efd_item_size(
262	struct xfs_log_item	*lip,
263	int			*nvecs,
264	int			*nbytes)
265{
266	*nvecs += 1;
267	*nbytes += xfs_efd_item_sizeof(EFD_ITEM(lip));
268}
269
270/*
271 * This is called to fill in the vector of log iovecs for the
272 * given efd log item. We use only 1 iovec, and we point that
273 * at the efd_log_format structure embedded in the efd item.
274 * It is at this point that we assert that all of the extent
275 * slots in the efd item have been filled.
276 */
277STATIC void
278xfs_efd_item_format(
279	struct xfs_log_item	*lip,
280	struct xfs_log_vec	*lv)
281{
282	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
283	struct xfs_log_iovec	*vecp = NULL;
284
285	ASSERT(efdp->efd_next_extent == efdp->efd_format.efd_nextents);
286
287	efdp->efd_format.efd_type = XFS_LI_EFD;
288	efdp->efd_format.efd_size = 1;
289
290	xlog_copy_iovec(lv, &vecp, XLOG_REG_TYPE_EFD_FORMAT,
291			&efdp->efd_format,
292			xfs_efd_item_sizeof(efdp));
293}
294
295/*
296 * The EFD is either committed or aborted if the transaction is cancelled. If
297 * the transaction is cancelled, drop our reference to the EFI and free the EFD.
298 */
299STATIC void
300xfs_efd_item_release(
301	struct xfs_log_item	*lip)
302{
303	struct xfs_efd_log_item	*efdp = EFD_ITEM(lip);
304
305	xfs_efi_release(efdp->efd_efip);
306	xfs_efd_item_free(efdp);
307}
308
309static const struct xfs_item_ops xfs_efd_item_ops = {
310	.flags		= XFS_ITEM_RELEASE_WHEN_COMMITTED,
311	.iop_size	= xfs_efd_item_size,
312	.iop_format	= xfs_efd_item_format,
313	.iop_release	= xfs_efd_item_release,
314};
315
316/*
317 * Allocate an "extent free done" log item that will hold nextents worth of
318 * extents.  The caller must use all nextents extents, because we are not
319 * flexible about this at all.
320 */
321static struct xfs_efd_log_item *
322xfs_trans_get_efd(
323	struct xfs_trans		*tp,
324	struct xfs_efi_log_item		*efip,
325	unsigned int			nextents)
326{
327	struct xfs_efd_log_item		*efdp;
328
329	ASSERT(nextents > 0);
330
331	if (nextents > XFS_EFD_MAX_FAST_EXTENTS) {
332		efdp = kmem_zalloc(sizeof(struct xfs_efd_log_item) +
333				(nextents - 1) * sizeof(struct xfs_extent),
334				0);
335	} else {
336		efdp = kmem_cache_zalloc(xfs_efd_zone,
337					GFP_KERNEL | __GFP_NOFAIL);
338	}
339
340	xfs_log_item_init(tp->t_mountp, &efdp->efd_item, XFS_LI_EFD,
341			  &xfs_efd_item_ops);
342	efdp->efd_efip = efip;
343	efdp->efd_format.efd_nextents = nextents;
344	efdp->efd_format.efd_efi_id = efip->efi_format.efi_id;
345
346	xfs_trans_add_item(tp, &efdp->efd_item);
347	return efdp;
348}
349
350/*
351 * Free an extent and log it to the EFD. Note that the transaction is marked
352 * dirty regardless of whether the extent free succeeds or fails to support the
353 * EFI/EFD lifecycle rules.
354 */
355static int
356xfs_trans_free_extent(
357	struct xfs_trans		*tp,
358	struct xfs_efd_log_item		*efdp,
359	xfs_fsblock_t			start_block,
360	xfs_extlen_t			ext_len,
361	const struct xfs_owner_info	*oinfo,
362	bool				skip_discard)
363{
364	struct xfs_mount		*mp = tp->t_mountp;
365	struct xfs_extent		*extp;
366	uint				next_extent;
367	xfs_agnumber_t			agno = XFS_FSB_TO_AGNO(mp, start_block);
368	xfs_agblock_t			agbno = XFS_FSB_TO_AGBNO(mp,
369								start_block);
370	int				error;
371
372	trace_xfs_bmap_free_deferred(tp->t_mountp, agno, 0, agbno, ext_len);
373
374	error = __xfs_free_extent(tp, start_block, ext_len,
375				  oinfo, XFS_AG_RESV_NONE, skip_discard);
376	/*
377	 * Mark the transaction dirty, even on error. This ensures the
378	 * transaction is aborted, which:
379	 *
380	 * 1.) releases the EFI and frees the EFD
381	 * 2.) shuts down the filesystem
382	 */
383	tp->t_flags |= XFS_TRANS_DIRTY;
384	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
385
386	next_extent = efdp->efd_next_extent;
387	ASSERT(next_extent < efdp->efd_format.efd_nextents);
388	extp = &(efdp->efd_format.efd_extents[next_extent]);
389	extp->ext_start = start_block;
390	extp->ext_len = ext_len;
391	efdp->efd_next_extent++;
392
393	return error;
394}
395
396/* Sort bmap items by AG. */
397static int
398xfs_extent_free_diff_items(
399	void				*priv,
400	const struct list_head		*a,
401	const struct list_head		*b)
402{
403	struct xfs_mount		*mp = priv;
404	struct xfs_extent_free_item	*ra;
405	struct xfs_extent_free_item	*rb;
406
407	ra = container_of(a, struct xfs_extent_free_item, xefi_list);
408	rb = container_of(b, struct xfs_extent_free_item, xefi_list);
409	return  XFS_FSB_TO_AGNO(mp, ra->xefi_startblock) -
410		XFS_FSB_TO_AGNO(mp, rb->xefi_startblock);
411}
412
413/* Log a free extent to the intent item. */
414STATIC void
415xfs_extent_free_log_item(
416	struct xfs_trans		*tp,
417	struct xfs_efi_log_item		*efip,
418	struct xfs_extent_free_item	*free)
419{
420	uint				next_extent;
421	struct xfs_extent		*extp;
422
423	tp->t_flags |= XFS_TRANS_DIRTY;
424	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
425
426	/*
427	 * atomic_inc_return gives us the value after the increment;
428	 * we want to use it as an array index so we need to subtract 1 from
429	 * it.
430	 */
431	next_extent = atomic_inc_return(&efip->efi_next_extent) - 1;
432	ASSERT(next_extent < efip->efi_format.efi_nextents);
433	extp = &efip->efi_format.efi_extents[next_extent];
434	extp->ext_start = free->xefi_startblock;
435	extp->ext_len = free->xefi_blockcount;
436}
437
438static struct xfs_log_item *
439xfs_extent_free_create_intent(
440	struct xfs_trans		*tp,
441	struct list_head		*items,
442	unsigned int			count,
443	bool				sort)
444{
445	struct xfs_mount		*mp = tp->t_mountp;
446	struct xfs_efi_log_item		*efip = xfs_efi_init(mp, count);
447	struct xfs_extent_free_item	*free;
448
449	ASSERT(count > 0);
450
451	xfs_trans_add_item(tp, &efip->efi_item);
452	if (sort)
453		list_sort(mp, items, xfs_extent_free_diff_items);
454	list_for_each_entry(free, items, xefi_list)
455		xfs_extent_free_log_item(tp, efip, free);
456	return &efip->efi_item;
457}
458
459/* Get an EFD so we can process all the free extents. */
460static struct xfs_log_item *
461xfs_extent_free_create_done(
462	struct xfs_trans		*tp,
463	struct xfs_log_item		*intent,
464	unsigned int			count)
465{
466	return &xfs_trans_get_efd(tp, EFI_ITEM(intent), count)->efd_item;
467}
468
469/* Process a free extent. */
470STATIC int
471xfs_extent_free_finish_item(
472	struct xfs_trans		*tp,
473	struct xfs_log_item		*done,
474	struct list_head		*item,
475	struct xfs_btree_cur		**state)
476{
477	struct xfs_extent_free_item	*free;
478	int				error;
479
480	free = container_of(item, struct xfs_extent_free_item, xefi_list);
481	error = xfs_trans_free_extent(tp, EFD_ITEM(done),
482			free->xefi_startblock,
483			free->xefi_blockcount,
484			&free->xefi_oinfo, free->xefi_skip_discard);
485	kmem_cache_free(xfs_bmap_free_item_zone, free);
486	return error;
487}
488
489/* Abort all pending EFIs. */
490STATIC void
491xfs_extent_free_abort_intent(
492	struct xfs_log_item		*intent)
493{
494	xfs_efi_release(EFI_ITEM(intent));
495}
496
497/* Cancel a free extent. */
498STATIC void
499xfs_extent_free_cancel_item(
500	struct list_head		*item)
501{
502	struct xfs_extent_free_item	*free;
503
504	free = container_of(item, struct xfs_extent_free_item, xefi_list);
505	kmem_cache_free(xfs_bmap_free_item_zone, free);
506}
507
508const struct xfs_defer_op_type xfs_extent_free_defer_type = {
509	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
510	.create_intent	= xfs_extent_free_create_intent,
511	.abort_intent	= xfs_extent_free_abort_intent,
512	.create_done	= xfs_extent_free_create_done,
513	.finish_item	= xfs_extent_free_finish_item,
514	.cancel_item	= xfs_extent_free_cancel_item,
515};
516
517/*
518 * AGFL blocks are accounted differently in the reserve pools and are not
519 * inserted into the busy extent list.
520 */
521STATIC int
522xfs_agfl_free_finish_item(
523	struct xfs_trans		*tp,
524	struct xfs_log_item		*done,
525	struct list_head		*item,
526	struct xfs_btree_cur		**state)
527{
528	struct xfs_mount		*mp = tp->t_mountp;
529	struct xfs_efd_log_item		*efdp = EFD_ITEM(done);
530	struct xfs_extent_free_item	*free;
531	struct xfs_extent		*extp;
532	struct xfs_buf			*agbp;
533	int				error;
534	xfs_agnumber_t			agno;
535	xfs_agblock_t			agbno;
536	uint				next_extent;
537
538	free = container_of(item, struct xfs_extent_free_item, xefi_list);
539	ASSERT(free->xefi_blockcount == 1);
540	agno = XFS_FSB_TO_AGNO(mp, free->xefi_startblock);
541	agbno = XFS_FSB_TO_AGBNO(mp, free->xefi_startblock);
542
543	trace_xfs_agfl_free_deferred(mp, agno, 0, agbno, free->xefi_blockcount);
544
545	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
546	if (!error)
547		error = xfs_free_agfl_block(tp, agno, agbno, agbp,
548					    &free->xefi_oinfo);
549
550	/*
551	 * Mark the transaction dirty, even on error. This ensures the
552	 * transaction is aborted, which:
553	 *
554	 * 1.) releases the EFI and frees the EFD
555	 * 2.) shuts down the filesystem
556	 */
557	tp->t_flags |= XFS_TRANS_DIRTY;
558	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
559
560	next_extent = efdp->efd_next_extent;
561	ASSERT(next_extent < efdp->efd_format.efd_nextents);
562	extp = &(efdp->efd_format.efd_extents[next_extent]);
563	extp->ext_start = free->xefi_startblock;
564	extp->ext_len = free->xefi_blockcount;
565	efdp->efd_next_extent++;
566
567	kmem_cache_free(xfs_bmap_free_item_zone, free);
568	return error;
569}
570
571/* sub-type with special handling for AGFL deferred frees */
572const struct xfs_defer_op_type xfs_agfl_free_defer_type = {
573	.max_items	= XFS_EFI_MAX_FAST_EXTENTS,
574	.create_intent	= xfs_extent_free_create_intent,
575	.abort_intent	= xfs_extent_free_abort_intent,
576	.create_done	= xfs_extent_free_create_done,
577	.finish_item	= xfs_agfl_free_finish_item,
578	.cancel_item	= xfs_extent_free_cancel_item,
579};
580
581/*
582 * Process an extent free intent item that was recovered from
583 * the log.  We need to free the extents that it describes.
584 */
585STATIC int
586xfs_efi_item_recover(
587	struct xfs_log_item		*lip,
588	struct list_head		*capture_list)
589{
590	struct xfs_efi_log_item		*efip = EFI_ITEM(lip);
591	struct xfs_mount		*mp = lip->li_mountp;
592	struct xfs_efd_log_item		*efdp;
593	struct xfs_trans		*tp;
594	struct xfs_extent		*extp;
595	xfs_fsblock_t			startblock_fsb;
596	int				i;
597	int				error = 0;
598
599	/*
600	 * First check the validity of the extents described by the
601	 * EFI.  If any are bad, then assume that all are bad and
602	 * just toss the EFI.
603	 */
604	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
605		extp = &efip->efi_format.efi_extents[i];
606		startblock_fsb = XFS_BB_TO_FSB(mp,
607				   XFS_FSB_TO_DADDR(mp, extp->ext_start));
608		if (startblock_fsb == 0 ||
609		    extp->ext_len == 0 ||
610		    startblock_fsb >= mp->m_sb.sb_dblocks ||
611		    extp->ext_len >= mp->m_sb.sb_agblocks)
612			return -EFSCORRUPTED;
613	}
614
615	error = xfs_trans_alloc(mp, &M_RES(mp)->tr_itruncate, 0, 0, 0, &tp);
616	if (error)
617		return error;
618	efdp = xfs_trans_get_efd(tp, efip, efip->efi_format.efi_nextents);
619
620	for (i = 0; i < efip->efi_format.efi_nextents; i++) {
621		extp = &efip->efi_format.efi_extents[i];
622		error = xfs_trans_free_extent(tp, efdp, extp->ext_start,
623					      extp->ext_len,
624					      &XFS_RMAP_OINFO_ANY_OWNER, false);
625		if (error)
626			goto abort_error;
627
628	}
629
630	return xfs_defer_ops_capture_and_commit(tp, NULL, capture_list);
631
632abort_error:
633	xfs_trans_cancel(tp);
634	return error;
635}
636
637STATIC bool
638xfs_efi_item_match(
639	struct xfs_log_item	*lip,
640	uint64_t		intent_id)
641{
642	return EFI_ITEM(lip)->efi_format.efi_id == intent_id;
643}
644
645/* Relog an intent item to push the log tail forward. */
646static struct xfs_log_item *
647xfs_efi_item_relog(
648	struct xfs_log_item		*intent,
649	struct xfs_trans		*tp)
650{
651	struct xfs_efd_log_item		*efdp;
652	struct xfs_efi_log_item		*efip;
653	struct xfs_extent		*extp;
654	unsigned int			count;
655
656	count = EFI_ITEM(intent)->efi_format.efi_nextents;
657	extp = EFI_ITEM(intent)->efi_format.efi_extents;
658
659	tp->t_flags |= XFS_TRANS_DIRTY;
660	efdp = xfs_trans_get_efd(tp, EFI_ITEM(intent), count);
661	efdp->efd_next_extent = count;
662	memcpy(efdp->efd_format.efd_extents, extp, count * sizeof(*extp));
663	set_bit(XFS_LI_DIRTY, &efdp->efd_item.li_flags);
664
665	efip = xfs_efi_init(tp->t_mountp, count);
666	memcpy(efip->efi_format.efi_extents, extp, count * sizeof(*extp));
667	atomic_set(&efip->efi_next_extent, count);
668	xfs_trans_add_item(tp, &efip->efi_item);
669	set_bit(XFS_LI_DIRTY, &efip->efi_item.li_flags);
670	return &efip->efi_item;
671}
672
673static const struct xfs_item_ops xfs_efi_item_ops = {
674	.iop_size	= xfs_efi_item_size,
675	.iop_format	= xfs_efi_item_format,
676	.iop_unpin	= xfs_efi_item_unpin,
677	.iop_release	= xfs_efi_item_release,
678	.iop_recover	= xfs_efi_item_recover,
679	.iop_match	= xfs_efi_item_match,
680	.iop_relog	= xfs_efi_item_relog,
681};
682
683/*
684 * This routine is called to create an in-core extent free intent
685 * item from the efi format structure which was logged on disk.
686 * It allocates an in-core efi, copies the extents from the format
687 * structure into it, and adds the efi to the AIL with the given
688 * LSN.
689 */
690STATIC int
691xlog_recover_efi_commit_pass2(
692	struct xlog			*log,
693	struct list_head		*buffer_list,
694	struct xlog_recover_item	*item,
695	xfs_lsn_t			lsn)
696{
697	struct xfs_mount		*mp = log->l_mp;
698	struct xfs_efi_log_item		*efip;
699	struct xfs_efi_log_format	*efi_formatp;
700	int				error;
701
702	efi_formatp = item->ri_buf[0].i_addr;
703
704	efip = xfs_efi_init(mp, efi_formatp->efi_nextents);
705	error = xfs_efi_copy_format(&item->ri_buf[0], &efip->efi_format);
706	if (error) {
707		xfs_efi_item_free(efip);
708		return error;
709	}
710	atomic_set(&efip->efi_next_extent, efi_formatp->efi_nextents);
711	/*
712	 * Insert the intent into the AIL directly and drop one reference so
713	 * that finishing or canceling the work will drop the other.
714	 */
715	xfs_trans_ail_insert(log->l_ailp, &efip->efi_item, lsn);
716	xfs_efi_release(efip);
717	return 0;
718}
719
720const struct xlog_recover_item_ops xlog_efi_item_ops = {
721	.item_type		= XFS_LI_EFI,
722	.commit_pass2		= xlog_recover_efi_commit_pass2,
723};
724
725/*
726 * This routine is called when an EFD format structure is found in a committed
727 * transaction in the log. Its purpose is to cancel the corresponding EFI if it
728 * was still in the log. To do this it searches the AIL for the EFI with an id
729 * equal to that in the EFD format structure. If we find it we drop the EFD
730 * reference, which removes the EFI from the AIL and frees it.
731 */
732STATIC int
733xlog_recover_efd_commit_pass2(
734	struct xlog			*log,
735	struct list_head		*buffer_list,
736	struct xlog_recover_item	*item,
737	xfs_lsn_t			lsn)
738{
739	struct xfs_efd_log_format	*efd_formatp;
740
741	efd_formatp = item->ri_buf[0].i_addr;
742	ASSERT((item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_32_t) +
743		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_32_t)))) ||
744	       (item->ri_buf[0].i_len == (sizeof(xfs_efd_log_format_64_t) +
745		((efd_formatp->efd_nextents - 1) * sizeof(xfs_extent_64_t)))));
746
747	xlog_recover_release_intent(log, XFS_LI_EFI, efd_formatp->efd_efi_id);
748	return 0;
749}
750
751const struct xlog_recover_item_ops xlog_efd_item_ops = {
752	.item_type		= XFS_LI_EFD,
753	.commit_pass2		= xlog_recover_efd_commit_pass2,
754};
755