1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6#include "xfs.h" 7#include "xfs_fs.h" 8#include "xfs_shared.h" 9#include "xfs_format.h" 10#include "xfs_log_format.h" 11#include "xfs_trans_resv.h" 12#include "xfs_bit.h" 13#include "xfs_mount.h" 14#include "xfs_trans.h" 15#include "xfs_trans_priv.h" 16#include "xfs_buf_item.h" 17#include "xfs_inode.h" 18#include "xfs_inode_item.h" 19#include "xfs_quota.h" 20#include "xfs_dquot_item.h" 21#include "xfs_dquot.h" 22#include "xfs_trace.h" 23#include "xfs_log.h" 24 25 26kmem_zone_t *xfs_buf_item_zone; 27 28static inline struct xfs_buf_log_item *BUF_ITEM(struct xfs_log_item *lip) 29{ 30 return container_of(lip, struct xfs_buf_log_item, bli_item); 31} 32 33/* Is this log iovec plausibly large enough to contain the buffer log format? */ 34bool 35xfs_buf_log_check_iovec( 36 struct xfs_log_iovec *iovec) 37{ 38 struct xfs_buf_log_format *blfp = iovec->i_addr; 39 char *bmp_end; 40 char *item_end; 41 42 if (offsetof(struct xfs_buf_log_format, blf_data_map) > iovec->i_len) 43 return false; 44 45 item_end = (char *)iovec->i_addr + iovec->i_len; 46 bmp_end = (char *)&blfp->blf_data_map[blfp->blf_map_size]; 47 return bmp_end <= item_end; 48} 49 50static inline int 51xfs_buf_log_format_size( 52 struct xfs_buf_log_format *blfp) 53{ 54 return offsetof(struct xfs_buf_log_format, blf_data_map) + 55 (blfp->blf_map_size * sizeof(blfp->blf_data_map[0])); 56} 57 58/* 59 * Return the number of log iovecs and space needed to log the given buf log 60 * item segment. 61 * 62 * It calculates this as 1 iovec for the buf log format structure and 1 for each 63 * stretch of non-contiguous chunks to be logged. Contiguous chunks are logged 64 * in a single iovec. 65 */ 66STATIC void 67xfs_buf_item_size_segment( 68 struct xfs_buf_log_item *bip, 69 struct xfs_buf_log_format *blfp, 70 int *nvecs, 71 int *nbytes) 72{ 73 struct xfs_buf *bp = bip->bli_buf; 74 int next_bit; 75 int last_bit; 76 77 last_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 78 if (last_bit == -1) 79 return; 80 81 /* 82 * initial count for a dirty buffer is 2 vectors - the format structure 83 * and the first dirty region. 84 */ 85 *nvecs += 2; 86 *nbytes += xfs_buf_log_format_size(blfp) + XFS_BLF_CHUNK; 87 88 while (last_bit != -1) { 89 /* 90 * This takes the bit number to start looking from and 91 * returns the next set bit from there. It returns -1 92 * if there are no more bits set or the start bit is 93 * beyond the end of the bitmap. 94 */ 95 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 96 last_bit + 1); 97 /* 98 * If we run out of bits, leave the loop, 99 * else if we find a new set of bits bump the number of vecs, 100 * else keep scanning the current set of bits. 101 */ 102 if (next_bit == -1) { 103 break; 104 } else if (next_bit != last_bit + 1) { 105 last_bit = next_bit; 106 (*nvecs)++; 107 } else if (xfs_buf_offset(bp, next_bit * XFS_BLF_CHUNK) != 108 (xfs_buf_offset(bp, last_bit * XFS_BLF_CHUNK) + 109 XFS_BLF_CHUNK)) { 110 last_bit = next_bit; 111 (*nvecs)++; 112 } else { 113 last_bit++; 114 } 115 *nbytes += XFS_BLF_CHUNK; 116 } 117} 118 119/* 120 * Return the number of log iovecs and space needed to log the given buf log 121 * item. 122 * 123 * Discontiguous buffers need a format structure per region that is being 124 * logged. This makes the changes in the buffer appear to log recovery as though 125 * they came from separate buffers, just like would occur if multiple buffers 126 * were used instead of a single discontiguous buffer. This enables 127 * discontiguous buffers to be in-memory constructs, completely transparent to 128 * what ends up on disk. 129 * 130 * If the XFS_BLI_STALE flag has been set, then log nothing but the buf log 131 * format structures. If the item has previously been logged and has dirty 132 * regions, we do not relog them in stale buffers. This has the effect of 133 * reducing the size of the relogged item by the amount of dirty data tracked 134 * by the log item. This can result in the committing transaction reducing the 135 * amount of space being consumed by the CIL. 136 */ 137STATIC void 138xfs_buf_item_size( 139 struct xfs_log_item *lip, 140 int *nvecs, 141 int *nbytes) 142{ 143 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 144 int i; 145 146 ASSERT(atomic_read(&bip->bli_refcount) > 0); 147 if (bip->bli_flags & XFS_BLI_STALE) { 148 /* 149 * The buffer is stale, so all we need to log is the buf log 150 * format structure with the cancel flag in it as we are never 151 * going to replay the changes tracked in the log item. 152 */ 153 trace_xfs_buf_item_size_stale(bip); 154 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 155 *nvecs += bip->bli_format_count; 156 for (i = 0; i < bip->bli_format_count; i++) { 157 *nbytes += xfs_buf_log_format_size(&bip->bli_formats[i]); 158 } 159 return; 160 } 161 162 ASSERT(bip->bli_flags & XFS_BLI_LOGGED); 163 164 if (bip->bli_flags & XFS_BLI_ORDERED) { 165 /* 166 * The buffer has been logged just to order it. It is not being 167 * included in the transaction commit, so no vectors are used at 168 * all. 169 */ 170 trace_xfs_buf_item_size_ordered(bip); 171 *nvecs = XFS_LOG_VEC_ORDERED; 172 return; 173 } 174 175 /* 176 * the vector count is based on the number of buffer vectors we have 177 * dirty bits in. This will only be greater than one when we have a 178 * compound buffer with more than one segment dirty. Hence for compound 179 * buffers we need to track which segment the dirty bits correspond to, 180 * and when we move from one segment to the next increment the vector 181 * count for the extra buf log format structure that will need to be 182 * written. 183 */ 184 for (i = 0; i < bip->bli_format_count; i++) { 185 xfs_buf_item_size_segment(bip, &bip->bli_formats[i], 186 nvecs, nbytes); 187 } 188 trace_xfs_buf_item_size(bip); 189} 190 191static inline void 192xfs_buf_item_copy_iovec( 193 struct xfs_log_vec *lv, 194 struct xfs_log_iovec **vecp, 195 struct xfs_buf *bp, 196 uint offset, 197 int first_bit, 198 uint nbits) 199{ 200 offset += first_bit * XFS_BLF_CHUNK; 201 xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BCHUNK, 202 xfs_buf_offset(bp, offset), 203 nbits * XFS_BLF_CHUNK); 204} 205 206static inline bool 207xfs_buf_item_straddle( 208 struct xfs_buf *bp, 209 uint offset, 210 int next_bit, 211 int last_bit) 212{ 213 return xfs_buf_offset(bp, offset + (next_bit << XFS_BLF_SHIFT)) != 214 (xfs_buf_offset(bp, offset + (last_bit << XFS_BLF_SHIFT)) + 215 XFS_BLF_CHUNK); 216} 217 218static void 219xfs_buf_item_format_segment( 220 struct xfs_buf_log_item *bip, 221 struct xfs_log_vec *lv, 222 struct xfs_log_iovec **vecp, 223 uint offset, 224 struct xfs_buf_log_format *blfp) 225{ 226 struct xfs_buf *bp = bip->bli_buf; 227 uint base_size; 228 int first_bit; 229 int last_bit; 230 int next_bit; 231 uint nbits; 232 233 /* copy the flags across from the base format item */ 234 blfp->blf_flags = bip->__bli_format.blf_flags; 235 236 /* 237 * Base size is the actual size of the ondisk structure - it reflects 238 * the actual size of the dirty bitmap rather than the size of the in 239 * memory structure. 240 */ 241 base_size = xfs_buf_log_format_size(blfp); 242 243 first_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 0); 244 if (!(bip->bli_flags & XFS_BLI_STALE) && first_bit == -1) { 245 /* 246 * If the map is not be dirty in the transaction, mark 247 * the size as zero and do not advance the vector pointer. 248 */ 249 return; 250 } 251 252 blfp = xlog_copy_iovec(lv, vecp, XLOG_REG_TYPE_BFORMAT, blfp, base_size); 253 blfp->blf_size = 1; 254 255 if (bip->bli_flags & XFS_BLI_STALE) { 256 /* 257 * The buffer is stale, so all we need to log 258 * is the buf log format structure with the 259 * cancel flag in it. 260 */ 261 trace_xfs_buf_item_format_stale(bip); 262 ASSERT(blfp->blf_flags & XFS_BLF_CANCEL); 263 return; 264 } 265 266 267 /* 268 * Fill in an iovec for each set of contiguous chunks. 269 */ 270 last_bit = first_bit; 271 nbits = 1; 272 for (;;) { 273 /* 274 * This takes the bit number to start looking from and 275 * returns the next set bit from there. It returns -1 276 * if there are no more bits set or the start bit is 277 * beyond the end of the bitmap. 278 */ 279 next_bit = xfs_next_bit(blfp->blf_data_map, blfp->blf_map_size, 280 (uint)last_bit + 1); 281 /* 282 * If we run out of bits fill in the last iovec and get out of 283 * the loop. Else if we start a new set of bits then fill in 284 * the iovec for the series we were looking at and start 285 * counting the bits in the new one. Else we're still in the 286 * same set of bits so just keep counting and scanning. 287 */ 288 if (next_bit == -1) { 289 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 290 first_bit, nbits); 291 blfp->blf_size++; 292 break; 293 } else if (next_bit != last_bit + 1 || 294 xfs_buf_item_straddle(bp, offset, next_bit, last_bit)) { 295 xfs_buf_item_copy_iovec(lv, vecp, bp, offset, 296 first_bit, nbits); 297 blfp->blf_size++; 298 first_bit = next_bit; 299 last_bit = next_bit; 300 nbits = 1; 301 } else { 302 last_bit++; 303 nbits++; 304 } 305 } 306} 307 308/* 309 * This is called to fill in the vector of log iovecs for the 310 * given log buf item. It fills the first entry with a buf log 311 * format structure, and the rest point to contiguous chunks 312 * within the buffer. 313 */ 314STATIC void 315xfs_buf_item_format( 316 struct xfs_log_item *lip, 317 struct xfs_log_vec *lv) 318{ 319 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 320 struct xfs_buf *bp = bip->bli_buf; 321 struct xfs_log_iovec *vecp = NULL; 322 uint offset = 0; 323 int i; 324 325 ASSERT(atomic_read(&bip->bli_refcount) > 0); 326 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 327 (bip->bli_flags & XFS_BLI_STALE)); 328 ASSERT((bip->bli_flags & XFS_BLI_STALE) || 329 (xfs_blft_from_flags(&bip->__bli_format) > XFS_BLFT_UNKNOWN_BUF 330 && xfs_blft_from_flags(&bip->__bli_format) < XFS_BLFT_MAX_BUF)); 331 ASSERT(!(bip->bli_flags & XFS_BLI_ORDERED) || 332 (bip->bli_flags & XFS_BLI_STALE)); 333 334 335 /* 336 * If it is an inode buffer, transfer the in-memory state to the 337 * format flags and clear the in-memory state. 338 * 339 * For buffer based inode allocation, we do not transfer 340 * this state if the inode buffer allocation has not yet been committed 341 * to the log as setting the XFS_BLI_INODE_BUF flag will prevent 342 * correct replay of the inode allocation. 343 * 344 * For icreate item based inode allocation, the buffers aren't written 345 * to the journal during allocation, and hence we should always tag the 346 * buffer as an inode buffer so that the correct unlinked list replay 347 * occurs during recovery. 348 */ 349 if (bip->bli_flags & XFS_BLI_INODE_BUF) { 350 if (xfs_sb_version_has_v3inode(&lip->li_mountp->m_sb) || 351 !((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && 352 xfs_log_item_in_current_chkpt(lip))) 353 bip->__bli_format.blf_flags |= XFS_BLF_INODE_BUF; 354 bip->bli_flags &= ~XFS_BLI_INODE_BUF; 355 } 356 357 for (i = 0; i < bip->bli_format_count; i++) { 358 xfs_buf_item_format_segment(bip, lv, &vecp, offset, 359 &bip->bli_formats[i]); 360 offset += BBTOB(bp->b_maps[i].bm_len); 361 } 362 363 /* 364 * Check to make sure everything is consistent. 365 */ 366 trace_xfs_buf_item_format(bip); 367} 368 369/* 370 * This is called to pin the buffer associated with the buf log item in memory 371 * so it cannot be written out. 372 * 373 * We also always take a reference to the buffer log item here so that the bli 374 * is held while the item is pinned in memory. This means that we can 375 * unconditionally drop the reference count a transaction holds when the 376 * transaction is completed. 377 */ 378STATIC void 379xfs_buf_item_pin( 380 struct xfs_log_item *lip) 381{ 382 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 383 384 ASSERT(atomic_read(&bip->bli_refcount) > 0); 385 ASSERT((bip->bli_flags & XFS_BLI_LOGGED) || 386 (bip->bli_flags & XFS_BLI_ORDERED) || 387 (bip->bli_flags & XFS_BLI_STALE)); 388 389 trace_xfs_buf_item_pin(bip); 390 391 atomic_inc(&bip->bli_refcount); 392 atomic_inc(&bip->bli_buf->b_pin_count); 393} 394 395/* 396 * This is called to unpin the buffer associated with the buf log item which 397 * was previously pinned with a call to xfs_buf_item_pin(). 398 */ 399STATIC void 400xfs_buf_item_unpin( 401 struct xfs_log_item *lip, 402 int remove) 403{ 404 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 405 xfs_buf_t *bp = bip->bli_buf; 406 int stale = bip->bli_flags & XFS_BLI_STALE; 407 int freed; 408 409 ASSERT(bp->b_log_item == bip); 410 ASSERT(atomic_read(&bip->bli_refcount) > 0); 411 412 trace_xfs_buf_item_unpin(bip); 413 414 /* 415 * Drop the bli ref associated with the pin and grab the hold required 416 * for the I/O simulation failure in the abort case. We have to do this 417 * before the pin count drops because the AIL doesn't acquire a bli 418 * reference. Therefore if the refcount drops to zero, the bli could 419 * still be AIL resident and the buffer submitted for I/O (and freed on 420 * completion) at any point before we return. This can be removed once 421 * the AIL properly holds a reference on the bli. 422 */ 423 freed = atomic_dec_and_test(&bip->bli_refcount); 424 if (freed && !stale && remove) 425 xfs_buf_hold(bp); 426 if (atomic_dec_and_test(&bp->b_pin_count)) 427 wake_up_all(&bp->b_waiters); 428 429 /* nothing to do but drop the pin count if the bli is active */ 430 if (!freed) 431 return; 432 433 if (stale) { 434 ASSERT(bip->bli_flags & XFS_BLI_STALE); 435 ASSERT(xfs_buf_islocked(bp)); 436 ASSERT(bp->b_flags & XBF_STALE); 437 ASSERT(bip->__bli_format.blf_flags & XFS_BLF_CANCEL); 438 ASSERT(list_empty(&lip->li_trans)); 439 ASSERT(!bp->b_transp); 440 441 trace_xfs_buf_item_unpin_stale(bip); 442 443 /* 444 * If we get called here because of an IO error, we may or may 445 * not have the item on the AIL. xfs_trans_ail_delete() will 446 * take care of that situation. xfs_trans_ail_delete() drops 447 * the AIL lock. 448 */ 449 if (bip->bli_flags & XFS_BLI_STALE_INODE) { 450 xfs_buf_item_done(bp); 451 xfs_buf_inode_iodone(bp); 452 ASSERT(list_empty(&bp->b_li_list)); 453 } else { 454 xfs_trans_ail_delete(lip, SHUTDOWN_LOG_IO_ERROR); 455 xfs_buf_item_relse(bp); 456 ASSERT(bp->b_log_item == NULL); 457 } 458 xfs_buf_relse(bp); 459 } else if (remove) { 460 /* 461 * The buffer must be locked and held by the caller to simulate 462 * an async I/O failure. We acquired the hold for this case 463 * before the buffer was unpinned. 464 */ 465 xfs_buf_lock(bp); 466 bp->b_flags |= XBF_ASYNC; 467 xfs_buf_ioend_fail(bp); 468 } 469} 470 471STATIC uint 472xfs_buf_item_push( 473 struct xfs_log_item *lip, 474 struct list_head *buffer_list) 475{ 476 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 477 struct xfs_buf *bp = bip->bli_buf; 478 uint rval = XFS_ITEM_SUCCESS; 479 480 if (xfs_buf_ispinned(bp)) 481 return XFS_ITEM_PINNED; 482 if (!xfs_buf_trylock(bp)) { 483 /* 484 * If we have just raced with a buffer being pinned and it has 485 * been marked stale, we could end up stalling until someone else 486 * issues a log force to unpin the stale buffer. Check for the 487 * race condition here so xfsaild recognizes the buffer is pinned 488 * and queues a log force to move it along. 489 */ 490 if (xfs_buf_ispinned(bp)) 491 return XFS_ITEM_PINNED; 492 return XFS_ITEM_LOCKED; 493 } 494 495 ASSERT(!(bip->bli_flags & XFS_BLI_STALE)); 496 497 trace_xfs_buf_item_push(bip); 498 499 /* has a previous flush failed due to IO errors? */ 500 if (bp->b_flags & XBF_WRITE_FAIL) { 501 xfs_buf_alert_ratelimited(bp, "XFS: Failing async write", 502 "Failing async write on buffer block 0x%llx. Retrying async write.", 503 (long long)bp->b_bn); 504 } 505 506 if (!xfs_buf_delwri_queue(bp, buffer_list)) 507 rval = XFS_ITEM_FLUSHING; 508 xfs_buf_unlock(bp); 509 return rval; 510} 511 512/* 513 * Drop the buffer log item refcount and take appropriate action. This helper 514 * determines whether the bli must be freed or not, since a decrement to zero 515 * does not necessarily mean the bli is unused. 516 * 517 * Return true if the bli is freed, false otherwise. 518 */ 519bool 520xfs_buf_item_put( 521 struct xfs_buf_log_item *bip) 522{ 523 struct xfs_log_item *lip = &bip->bli_item; 524 bool aborted; 525 bool dirty; 526 527 /* drop the bli ref and return if it wasn't the last one */ 528 if (!atomic_dec_and_test(&bip->bli_refcount)) 529 return false; 530 531 /* 532 * We dropped the last ref and must free the item if clean or aborted. 533 * If the bli is dirty and non-aborted, the buffer was clean in the 534 * transaction but still awaiting writeback from previous changes. In 535 * that case, the bli is freed on buffer writeback completion. 536 */ 537 aborted = test_bit(XFS_LI_ABORTED, &lip->li_flags) || 538 XFS_FORCED_SHUTDOWN(lip->li_mountp); 539 dirty = bip->bli_flags & XFS_BLI_DIRTY; 540 if (dirty && !aborted) 541 return false; 542 543 /* 544 * The bli is aborted or clean. An aborted item may be in the AIL 545 * regardless of dirty state. For example, consider an aborted 546 * transaction that invalidated a dirty bli and cleared the dirty 547 * state. 548 */ 549 if (aborted) 550 xfs_trans_ail_delete(lip, 0); 551 xfs_buf_item_relse(bip->bli_buf); 552 return true; 553} 554 555/* 556 * Release the buffer associated with the buf log item. If there is no dirty 557 * logged data associated with the buffer recorded in the buf log item, then 558 * free the buf log item and remove the reference to it in the buffer. 559 * 560 * This call ignores the recursion count. It is only called when the buffer 561 * should REALLY be unlocked, regardless of the recursion count. 562 * 563 * We unconditionally drop the transaction's reference to the log item. If the 564 * item was logged, then another reference was taken when it was pinned, so we 565 * can safely drop the transaction reference now. This also allows us to avoid 566 * potential races with the unpin code freeing the bli by not referencing the 567 * bli after we've dropped the reference count. 568 * 569 * If the XFS_BLI_HOLD flag is set in the buf log item, then free the log item 570 * if necessary but do not unlock the buffer. This is for support of 571 * xfs_trans_bhold(). Make sure the XFS_BLI_HOLD field is cleared if we don't 572 * free the item. 573 */ 574STATIC void 575xfs_buf_item_release( 576 struct xfs_log_item *lip) 577{ 578 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 579 struct xfs_buf *bp = bip->bli_buf; 580 bool released; 581 bool hold = bip->bli_flags & XFS_BLI_HOLD; 582 bool stale = bip->bli_flags & XFS_BLI_STALE; 583#if defined(DEBUG) || defined(XFS_WARN) 584 bool ordered = bip->bli_flags & XFS_BLI_ORDERED; 585 bool dirty = bip->bli_flags & XFS_BLI_DIRTY; 586 bool aborted = test_bit(XFS_LI_ABORTED, 587 &lip->li_flags); 588#endif 589 590 trace_xfs_buf_item_release(bip); 591 592 /* 593 * The bli dirty state should match whether the blf has logged segments 594 * except for ordered buffers, where only the bli should be dirty. 595 */ 596 ASSERT((!ordered && dirty == xfs_buf_item_dirty_format(bip)) || 597 (ordered && dirty && !xfs_buf_item_dirty_format(bip))); 598 ASSERT(!stale || (bip->__bli_format.blf_flags & XFS_BLF_CANCEL)); 599 600 /* 601 * Clear the buffer's association with this transaction and 602 * per-transaction state from the bli, which has been copied above. 603 */ 604 bp->b_transp = NULL; 605 bip->bli_flags &= ~(XFS_BLI_LOGGED | XFS_BLI_HOLD | XFS_BLI_ORDERED); 606 607 /* 608 * Unref the item and unlock the buffer unless held or stale. Stale 609 * buffers remain locked until final unpin unless the bli is freed by 610 * the unref call. The latter implies shutdown because buffer 611 * invalidation dirties the bli and transaction. 612 */ 613 released = xfs_buf_item_put(bip); 614 if (hold || (stale && !released)) 615 return; 616 ASSERT(!stale || aborted); 617 xfs_buf_relse(bp); 618} 619 620STATIC void 621xfs_buf_item_committing( 622 struct xfs_log_item *lip, 623 xfs_csn_t seq) 624{ 625 return xfs_buf_item_release(lip); 626} 627 628/* 629 * This is called to find out where the oldest active copy of the 630 * buf log item in the on disk log resides now that the last log 631 * write of it completed at the given lsn. 632 * We always re-log all the dirty data in a buffer, so usually the 633 * latest copy in the on disk log is the only one that matters. For 634 * those cases we simply return the given lsn. 635 * 636 * The one exception to this is for buffers full of newly allocated 637 * inodes. These buffers are only relogged with the XFS_BLI_INODE_BUF 638 * flag set, indicating that only the di_next_unlinked fields from the 639 * inodes in the buffers will be replayed during recovery. If the 640 * original newly allocated inode images have not yet been flushed 641 * when the buffer is so relogged, then we need to make sure that we 642 * keep the old images in the 'active' portion of the log. We do this 643 * by returning the original lsn of that transaction here rather than 644 * the current one. 645 */ 646STATIC xfs_lsn_t 647xfs_buf_item_committed( 648 struct xfs_log_item *lip, 649 xfs_lsn_t lsn) 650{ 651 struct xfs_buf_log_item *bip = BUF_ITEM(lip); 652 653 trace_xfs_buf_item_committed(bip); 654 655 if ((bip->bli_flags & XFS_BLI_INODE_ALLOC_BUF) && lip->li_lsn != 0) 656 return lip->li_lsn; 657 return lsn; 658} 659 660static const struct xfs_item_ops xfs_buf_item_ops = { 661 .iop_size = xfs_buf_item_size, 662 .iop_format = xfs_buf_item_format, 663 .iop_pin = xfs_buf_item_pin, 664 .iop_unpin = xfs_buf_item_unpin, 665 .iop_release = xfs_buf_item_release, 666 .iop_committing = xfs_buf_item_committing, 667 .iop_committed = xfs_buf_item_committed, 668 .iop_push = xfs_buf_item_push, 669}; 670 671STATIC void 672xfs_buf_item_get_format( 673 struct xfs_buf_log_item *bip, 674 int count) 675{ 676 ASSERT(bip->bli_formats == NULL); 677 bip->bli_format_count = count; 678 679 if (count == 1) { 680 bip->bli_formats = &bip->__bli_format; 681 return; 682 } 683 684 bip->bli_formats = kmem_zalloc(count * sizeof(struct xfs_buf_log_format), 685 0); 686} 687 688STATIC void 689xfs_buf_item_free_format( 690 struct xfs_buf_log_item *bip) 691{ 692 if (bip->bli_formats != &bip->__bli_format) { 693 kmem_free(bip->bli_formats); 694 bip->bli_formats = NULL; 695 } 696} 697 698/* 699 * Allocate a new buf log item to go with the given buffer. 700 * Set the buffer's b_log_item field to point to the new 701 * buf log item. 702 */ 703int 704xfs_buf_item_init( 705 struct xfs_buf *bp, 706 struct xfs_mount *mp) 707{ 708 struct xfs_buf_log_item *bip = bp->b_log_item; 709 int chunks; 710 int map_size; 711 int i; 712 713 /* 714 * Check to see if there is already a buf log item for 715 * this buffer. If we do already have one, there is 716 * nothing to do here so return. 717 */ 718 ASSERT(bp->b_mount == mp); 719 if (bip) { 720 ASSERT(bip->bli_item.li_type == XFS_LI_BUF); 721 ASSERT(!bp->b_transp); 722 ASSERT(bip->bli_buf == bp); 723 return 0; 724 } 725 726 bip = kmem_cache_zalloc(xfs_buf_item_zone, GFP_KERNEL | __GFP_NOFAIL); 727 xfs_log_item_init(mp, &bip->bli_item, XFS_LI_BUF, &xfs_buf_item_ops); 728 bip->bli_buf = bp; 729 730 /* 731 * chunks is the number of XFS_BLF_CHUNK size pieces the buffer 732 * can be divided into. Make sure not to truncate any pieces. 733 * map_size is the size of the bitmap needed to describe the 734 * chunks of the buffer. 735 * 736 * Discontiguous buffer support follows the layout of the underlying 737 * buffer. This makes the implementation as simple as possible. 738 */ 739 xfs_buf_item_get_format(bip, bp->b_map_count); 740 741 for (i = 0; i < bip->bli_format_count; i++) { 742 chunks = DIV_ROUND_UP(BBTOB(bp->b_maps[i].bm_len), 743 XFS_BLF_CHUNK); 744 map_size = DIV_ROUND_UP(chunks, NBWORD); 745 746 if (map_size > XFS_BLF_DATAMAP_SIZE) { 747 kmem_cache_free(xfs_buf_item_zone, bip); 748 xfs_err(mp, 749 "buffer item dirty bitmap (%u uints) too small to reflect %u bytes!", 750 map_size, 751 BBTOB(bp->b_maps[i].bm_len)); 752 return -EFSCORRUPTED; 753 } 754 755 bip->bli_formats[i].blf_type = XFS_LI_BUF; 756 bip->bli_formats[i].blf_blkno = bp->b_maps[i].bm_bn; 757 bip->bli_formats[i].blf_len = bp->b_maps[i].bm_len; 758 bip->bli_formats[i].blf_map_size = map_size; 759 } 760 761 bp->b_log_item = bip; 762 xfs_buf_hold(bp); 763 return 0; 764} 765 766 767/* 768 * Mark bytes first through last inclusive as dirty in the buf 769 * item's bitmap. 770 */ 771static void 772xfs_buf_item_log_segment( 773 uint first, 774 uint last, 775 uint *map) 776{ 777 uint first_bit; 778 uint last_bit; 779 uint bits_to_set; 780 uint bits_set; 781 uint word_num; 782 uint *wordp; 783 uint bit; 784 uint end_bit; 785 uint mask; 786 787 ASSERT(first < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 788 ASSERT(last < XFS_BLF_DATAMAP_SIZE * XFS_BLF_CHUNK * NBWORD); 789 790 /* 791 * Convert byte offsets to bit numbers. 792 */ 793 first_bit = first >> XFS_BLF_SHIFT; 794 last_bit = last >> XFS_BLF_SHIFT; 795 796 /* 797 * Calculate the total number of bits to be set. 798 */ 799 bits_to_set = last_bit - first_bit + 1; 800 801 /* 802 * Get a pointer to the first word in the bitmap 803 * to set a bit in. 804 */ 805 word_num = first_bit >> BIT_TO_WORD_SHIFT; 806 wordp = &map[word_num]; 807 808 /* 809 * Calculate the starting bit in the first word. 810 */ 811 bit = first_bit & (uint)(NBWORD - 1); 812 813 /* 814 * First set any bits in the first word of our range. 815 * If it starts at bit 0 of the word, it will be 816 * set below rather than here. That is what the variable 817 * bit tells us. The variable bits_set tracks the number 818 * of bits that have been set so far. End_bit is the number 819 * of the last bit to be set in this word plus one. 820 */ 821 if (bit) { 822 end_bit = min(bit + bits_to_set, (uint)NBWORD); 823 mask = ((1U << (end_bit - bit)) - 1) << bit; 824 *wordp |= mask; 825 wordp++; 826 bits_set = end_bit - bit; 827 } else { 828 bits_set = 0; 829 } 830 831 /* 832 * Now set bits a whole word at a time that are between 833 * first_bit and last_bit. 834 */ 835 while ((bits_to_set - bits_set) >= NBWORD) { 836 *wordp = 0xffffffff; 837 bits_set += NBWORD; 838 wordp++; 839 } 840 841 /* 842 * Finally, set any bits left to be set in one last partial word. 843 */ 844 end_bit = bits_to_set - bits_set; 845 if (end_bit) { 846 mask = (1U << end_bit) - 1; 847 *wordp |= mask; 848 } 849} 850 851/* 852 * Mark bytes first through last inclusive as dirty in the buf 853 * item's bitmap. 854 */ 855void 856xfs_buf_item_log( 857 struct xfs_buf_log_item *bip, 858 uint first, 859 uint last) 860{ 861 int i; 862 uint start; 863 uint end; 864 struct xfs_buf *bp = bip->bli_buf; 865 866 /* 867 * walk each buffer segment and mark them dirty appropriately. 868 */ 869 start = 0; 870 for (i = 0; i < bip->bli_format_count; i++) { 871 if (start > last) 872 break; 873 end = start + BBTOB(bp->b_maps[i].bm_len) - 1; 874 875 /* skip to the map that includes the first byte to log */ 876 if (first > end) { 877 start += BBTOB(bp->b_maps[i].bm_len); 878 continue; 879 } 880 881 /* 882 * Trim the range to this segment and mark it in the bitmap. 883 * Note that we must convert buffer offsets to segment relative 884 * offsets (e.g., the first byte of each segment is byte 0 of 885 * that segment). 886 */ 887 if (first < start) 888 first = start; 889 if (end > last) 890 end = last; 891 xfs_buf_item_log_segment(first - start, end - start, 892 &bip->bli_formats[i].blf_data_map[0]); 893 894 start += BBTOB(bp->b_maps[i].bm_len); 895 } 896} 897 898 899/* 900 * Return true if the buffer has any ranges logged/dirtied by a transaction, 901 * false otherwise. 902 */ 903bool 904xfs_buf_item_dirty_format( 905 struct xfs_buf_log_item *bip) 906{ 907 int i; 908 909 for (i = 0; i < bip->bli_format_count; i++) { 910 if (!xfs_bitmap_empty(bip->bli_formats[i].blf_data_map, 911 bip->bli_formats[i].blf_map_size)) 912 return true; 913 } 914 915 return false; 916} 917 918STATIC void 919xfs_buf_item_free( 920 struct xfs_buf_log_item *bip) 921{ 922 xfs_buf_item_free_format(bip); 923 kmem_free(bip->bli_item.li_lv_shadow); 924 kmem_cache_free(xfs_buf_item_zone, bip); 925} 926 927/* 928 * xfs_buf_item_relse() is called when the buf log item is no longer needed. 929 */ 930void 931xfs_buf_item_relse( 932 xfs_buf_t *bp) 933{ 934 struct xfs_buf_log_item *bip = bp->b_log_item; 935 936 trace_xfs_buf_item_relse(bp, _RET_IP_); 937 ASSERT(!test_bit(XFS_LI_IN_AIL, &bip->bli_item.li_flags)); 938 939 bp->b_log_item = NULL; 940 xfs_buf_rele(bp); 941 xfs_buf_item_free(bip); 942} 943 944void 945xfs_buf_item_done( 946 struct xfs_buf *bp) 947{ 948 /* 949 * If we are forcibly shutting down, this may well be off the AIL 950 * already. That's because we simulate the log-committed callbacks to 951 * unpin these buffers. Or we may never have put this item on AIL 952 * because of the transaction was aborted forcibly. 953 * xfs_trans_ail_delete() takes care of these. 954 * 955 * Either way, AIL is useless if we're forcing a shutdown. 956 * 957 * Note that log recovery writes might have buffer items that are not on 958 * the AIL even when the file system is not shut down. 959 */ 960 xfs_trans_ail_delete(&bp->b_log_item->bli_item, 961 (bp->b_flags & _XBF_LOGRECOVERY) ? 0 : 962 SHUTDOWN_CORRUPT_INCORE); 963 xfs_buf_item_relse(bp); 964} 965