1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2005 Silicon Graphics, Inc. 4 * Copyright (c) 2016-2018 Christoph Hellwig. 5 * All Rights Reserved. 6 */ 7#include "xfs.h" 8#include "xfs_shared.h" 9#include "xfs_format.h" 10#include "xfs_log_format.h" 11#include "xfs_trans_resv.h" 12#include "xfs_mount.h" 13#include "xfs_inode.h" 14#include "xfs_trans.h" 15#include "xfs_iomap.h" 16#include "xfs_trace.h" 17#include "xfs_bmap.h" 18#include "xfs_bmap_util.h" 19#include "xfs_reflink.h" 20 21struct xfs_writepage_ctx { 22 struct iomap_writepage_ctx ctx; 23 unsigned int data_seq; 24 unsigned int cow_seq; 25}; 26 27static inline struct xfs_writepage_ctx * 28XFS_WPC(struct iomap_writepage_ctx *ctx) 29{ 30 return container_of(ctx, struct xfs_writepage_ctx, ctx); 31} 32 33/* 34 * Fast and loose check if this write could update the on-disk inode size. 35 */ 36static inline bool xfs_ioend_is_append(struct iomap_ioend *ioend) 37{ 38 return ioend->io_offset + ioend->io_size > 39 XFS_I(ioend->io_inode)->i_d.di_size; 40} 41 42/* 43 * Update on-disk file size now that data has been written to disk. 44 */ 45STATIC int 46__xfs_setfilesize( 47 struct xfs_inode *ip, 48 struct xfs_trans *tp, 49 xfs_off_t offset, 50 size_t size) 51{ 52 xfs_fsize_t isize; 53 54 xfs_ilock(ip, XFS_ILOCK_EXCL); 55 isize = xfs_new_eof(ip, offset + size); 56 if (!isize) { 57 xfs_iunlock(ip, XFS_ILOCK_EXCL); 58 xfs_trans_cancel(tp); 59 return 0; 60 } 61 62 trace_xfs_setfilesize(ip, offset, size); 63 64 ip->i_d.di_size = isize; 65 xfs_trans_ijoin(tp, ip, XFS_ILOCK_EXCL); 66 xfs_trans_log_inode(tp, ip, XFS_ILOG_CORE); 67 68 return xfs_trans_commit(tp); 69} 70 71int 72xfs_setfilesize( 73 struct xfs_inode *ip, 74 xfs_off_t offset, 75 size_t size) 76{ 77 struct xfs_mount *mp = ip->i_mount; 78 struct xfs_trans *tp; 79 int error; 80 81 error = xfs_trans_alloc(mp, &M_RES(mp)->tr_fsyncts, 0, 0, 0, &tp); 82 if (error) 83 return error; 84 85 return __xfs_setfilesize(ip, tp, offset, size); 86} 87 88STATIC int 89xfs_setfilesize_ioend( 90 struct iomap_ioend *ioend, 91 int error) 92{ 93 struct xfs_inode *ip = XFS_I(ioend->io_inode); 94 struct xfs_trans *tp = ioend->io_private; 95 96 /* 97 * The transaction may have been allocated in the I/O submission thread, 98 * thus we need to mark ourselves as being in a transaction manually. 99 * Similarly for freeze protection. 100 */ 101 xfs_trans_set_context(tp); 102 __sb_writers_acquired(VFS_I(ip)->i_sb, SB_FREEZE_FS); 103 104 /* we abort the update if there was an IO error */ 105 if (error) { 106 xfs_trans_cancel(tp); 107 return error; 108 } 109 110 return __xfs_setfilesize(ip, tp, ioend->io_offset, ioend->io_size); 111} 112 113/* 114 * IO write completion. 115 */ 116STATIC void 117xfs_end_ioend( 118 struct iomap_ioend *ioend) 119{ 120 struct xfs_inode *ip = XFS_I(ioend->io_inode); 121 struct xfs_mount *mp = ip->i_mount; 122 xfs_off_t offset = ioend->io_offset; 123 size_t size = ioend->io_size; 124 unsigned int nofs_flag; 125 int error; 126 127 /* 128 * We can allocate memory here while doing writeback on behalf of 129 * memory reclaim. To avoid memory allocation deadlocks set the 130 * task-wide nofs context for the following operations. 131 */ 132 nofs_flag = memalloc_nofs_save(); 133 134 /* 135 * Just clean up the in-memory strutures if the fs has been shut down. 136 */ 137 if (XFS_FORCED_SHUTDOWN(mp)) { 138 error = -EIO; 139 goto done; 140 } 141 142 /* 143 * Clean up all COW blocks and underlying data fork delalloc blocks on 144 * I/O error. The delalloc punch is required because this ioend was 145 * mapped to blocks in the COW fork and the associated pages are no 146 * longer dirty. If we don't remove delalloc blocks here, they become 147 * stale and can corrupt free space accounting on unmount. 148 */ 149 error = blk_status_to_errno(ioend->io_bio->bi_status); 150 if (unlikely(error)) { 151 if (ioend->io_flags & IOMAP_F_SHARED) { 152 xfs_reflink_cancel_cow_range(ip, offset, size, true); 153 xfs_bmap_punch_delalloc_range(ip, 154 XFS_B_TO_FSBT(mp, offset), 155 XFS_B_TO_FSB(mp, size)); 156 } 157 goto done; 158 } 159 160 /* 161 * Success: commit the COW or unwritten blocks if needed. 162 */ 163 if (ioend->io_flags & IOMAP_F_SHARED) 164 error = xfs_reflink_end_cow(ip, offset, size); 165 else if (ioend->io_type == IOMAP_UNWRITTEN) 166 error = xfs_iomap_write_unwritten(ip, offset, size, false); 167 168 if (!error && xfs_ioend_is_append(ioend)) 169 error = xfs_setfilesize(ip, ioend->io_offset, ioend->io_size); 170done: 171 iomap_finish_ioends(ioend, error); 172 memalloc_nofs_restore(nofs_flag); 173} 174 175/* 176 * If the to be merged ioend has a preallocated transaction for file 177 * size updates we need to ensure the ioend it is merged into also 178 * has one. If it already has one we can simply cancel the transaction 179 * as it is guaranteed to be clean. 180 */ 181static void 182xfs_ioend_merge_private( 183 struct iomap_ioend *ioend, 184 struct iomap_ioend *next) 185{ 186 if (!ioend->io_private) { 187 ioend->io_private = next->io_private; 188 next->io_private = NULL; 189 } else { 190 xfs_setfilesize_ioend(next, -ECANCELED); 191 } 192} 193 194/* Finish all pending io completions. */ 195void 196xfs_end_io( 197 struct work_struct *work) 198{ 199 struct xfs_inode *ip = 200 container_of(work, struct xfs_inode, i_ioend_work); 201 struct iomap_ioend *ioend; 202 struct list_head tmp; 203 unsigned long flags; 204 205 spin_lock_irqsave(&ip->i_ioend_lock, flags); 206 list_replace_init(&ip->i_ioend_list, &tmp); 207 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 208 209 iomap_sort_ioends(&tmp); 210 while ((ioend = list_first_entry_or_null(&tmp, struct iomap_ioend, 211 io_list))) { 212 list_del_init(&ioend->io_list); 213 iomap_ioend_try_merge(ioend, &tmp, xfs_ioend_merge_private); 214 xfs_end_ioend(ioend); 215 } 216} 217 218static inline bool xfs_ioend_needs_workqueue(struct iomap_ioend *ioend) 219{ 220 return xfs_ioend_is_append(ioend) || 221 ioend->io_type == IOMAP_UNWRITTEN || 222 (ioend->io_flags & IOMAP_F_SHARED); 223} 224 225STATIC void 226xfs_end_bio( 227 struct bio *bio) 228{ 229 struct iomap_ioend *ioend = bio->bi_private; 230 struct xfs_inode *ip = XFS_I(ioend->io_inode); 231 unsigned long flags; 232 233 spin_lock_irqsave(&ip->i_ioend_lock, flags); 234 if (list_empty(&ip->i_ioend_list)) 235 WARN_ON_ONCE(!queue_work(ip->i_mount->m_unwritten_workqueue, 236 &ip->i_ioend_work)); 237 list_add_tail(&ioend->io_list, &ip->i_ioend_list); 238 spin_unlock_irqrestore(&ip->i_ioend_lock, flags); 239} 240 241/* 242 * Fast revalidation of the cached writeback mapping. Return true if the current 243 * mapping is valid, false otherwise. 244 */ 245static bool 246xfs_imap_valid( 247 struct iomap_writepage_ctx *wpc, 248 struct xfs_inode *ip, 249 loff_t offset) 250{ 251 if (offset < wpc->iomap.offset || 252 offset >= wpc->iomap.offset + wpc->iomap.length) 253 return false; 254 /* 255 * If this is a COW mapping, it is sufficient to check that the mapping 256 * covers the offset. Be careful to check this first because the caller 257 * can revalidate a COW mapping without updating the data seqno. 258 */ 259 if (wpc->iomap.flags & IOMAP_F_SHARED) 260 return true; 261 262 /* 263 * This is not a COW mapping. Check the sequence number of the data fork 264 * because concurrent changes could have invalidated the extent. Check 265 * the COW fork because concurrent changes since the last time we 266 * checked (and found nothing at this offset) could have added 267 * overlapping blocks. 268 */ 269 if (XFS_WPC(wpc)->data_seq != READ_ONCE(ip->i_df.if_seq)) 270 return false; 271 if (xfs_inode_has_cow_data(ip) && 272 XFS_WPC(wpc)->cow_seq != READ_ONCE(ip->i_cowfp->if_seq)) 273 return false; 274 return true; 275} 276 277/* 278 * Pass in a dellalloc extent and convert it to real extents, return the real 279 * extent that maps offset_fsb in wpc->iomap. 280 * 281 * The current page is held locked so nothing could have removed the block 282 * backing offset_fsb, although it could have moved from the COW to the data 283 * fork by another thread. 284 */ 285static int 286xfs_convert_blocks( 287 struct iomap_writepage_ctx *wpc, 288 struct xfs_inode *ip, 289 int whichfork, 290 loff_t offset) 291{ 292 int error; 293 unsigned *seq; 294 295 if (whichfork == XFS_COW_FORK) 296 seq = &XFS_WPC(wpc)->cow_seq; 297 else 298 seq = &XFS_WPC(wpc)->data_seq; 299 300 /* 301 * Attempt to allocate whatever delalloc extent currently backs offset 302 * and put the result into wpc->iomap. Allocate in a loop because it 303 * may take several attempts to allocate real blocks for a contiguous 304 * delalloc extent if free space is sufficiently fragmented. 305 */ 306 do { 307 error = xfs_bmapi_convert_delalloc(ip, whichfork, offset, 308 &wpc->iomap, seq); 309 if (error) 310 return error; 311 } while (wpc->iomap.offset + wpc->iomap.length <= offset); 312 313 return 0; 314} 315 316static int 317xfs_map_blocks( 318 struct iomap_writepage_ctx *wpc, 319 struct inode *inode, 320 loff_t offset) 321{ 322 struct xfs_inode *ip = XFS_I(inode); 323 struct xfs_mount *mp = ip->i_mount; 324 ssize_t count = i_blocksize(inode); 325 xfs_fileoff_t offset_fsb = XFS_B_TO_FSBT(mp, offset); 326 xfs_fileoff_t end_fsb = XFS_B_TO_FSB(mp, offset + count); 327 xfs_fileoff_t cow_fsb; 328 int whichfork; 329 struct xfs_bmbt_irec imap; 330 struct xfs_iext_cursor icur; 331 int retries = 0; 332 int error = 0; 333 334 if (XFS_FORCED_SHUTDOWN(mp)) 335 return -EIO; 336 337 /* 338 * COW fork blocks can overlap data fork blocks even if the blocks 339 * aren't shared. COW I/O always takes precedent, so we must always 340 * check for overlap on reflink inodes unless the mapping is already a 341 * COW one, or the COW fork hasn't changed from the last time we looked 342 * at it. 343 * 344 * It's safe to check the COW fork if_seq here without the ILOCK because 345 * we've indirectly protected against concurrent updates: writeback has 346 * the page locked, which prevents concurrent invalidations by reflink 347 * and directio and prevents concurrent buffered writes to the same 348 * page. Changes to if_seq always happen under i_lock, which protects 349 * against concurrent updates and provides a memory barrier on the way 350 * out that ensures that we always see the current value. 351 */ 352 if (xfs_imap_valid(wpc, ip, offset)) 353 return 0; 354 355 /* 356 * If we don't have a valid map, now it's time to get a new one for this 357 * offset. This will convert delayed allocations (including COW ones) 358 * into real extents. If we return without a valid map, it means we 359 * landed in a hole and we skip the block. 360 */ 361retry: 362 cow_fsb = NULLFILEOFF; 363 whichfork = XFS_DATA_FORK; 364 xfs_ilock(ip, XFS_ILOCK_SHARED); 365 ASSERT(ip->i_df.if_format != XFS_DINODE_FMT_BTREE || 366 (ip->i_df.if_flags & XFS_IFEXTENTS)); 367 368 /* 369 * Check if this is offset is covered by a COW extents, and if yes use 370 * it directly instead of looking up anything in the data fork. 371 */ 372 if (xfs_inode_has_cow_data(ip) && 373 xfs_iext_lookup_extent(ip, ip->i_cowfp, offset_fsb, &icur, &imap)) 374 cow_fsb = imap.br_startoff; 375 if (cow_fsb != NULLFILEOFF && cow_fsb <= offset_fsb) { 376 XFS_WPC(wpc)->cow_seq = READ_ONCE(ip->i_cowfp->if_seq); 377 xfs_iunlock(ip, XFS_ILOCK_SHARED); 378 379 whichfork = XFS_COW_FORK; 380 goto allocate_blocks; 381 } 382 383 /* 384 * No COW extent overlap. Revalidate now that we may have updated 385 * ->cow_seq. If the data mapping is still valid, we're done. 386 */ 387 if (xfs_imap_valid(wpc, ip, offset)) { 388 xfs_iunlock(ip, XFS_ILOCK_SHARED); 389 return 0; 390 } 391 392 /* 393 * If we don't have a valid map, now it's time to get a new one for this 394 * offset. This will convert delayed allocations (including COW ones) 395 * into real extents. 396 */ 397 if (!xfs_iext_lookup_extent(ip, &ip->i_df, offset_fsb, &icur, &imap)) 398 imap.br_startoff = end_fsb; /* fake a hole past EOF */ 399 XFS_WPC(wpc)->data_seq = READ_ONCE(ip->i_df.if_seq); 400 xfs_iunlock(ip, XFS_ILOCK_SHARED); 401 402 /* landed in a hole or beyond EOF? */ 403 if (imap.br_startoff > offset_fsb) { 404 imap.br_blockcount = imap.br_startoff - offset_fsb; 405 imap.br_startoff = offset_fsb; 406 imap.br_startblock = HOLESTARTBLOCK; 407 imap.br_state = XFS_EXT_NORM; 408 } 409 410 /* 411 * Truncate to the next COW extent if there is one. This is the only 412 * opportunity to do this because we can skip COW fork lookups for the 413 * subsequent blocks in the mapping; however, the requirement to treat 414 * the COW range separately remains. 415 */ 416 if (cow_fsb != NULLFILEOFF && 417 cow_fsb < imap.br_startoff + imap.br_blockcount) 418 imap.br_blockcount = cow_fsb - imap.br_startoff; 419 420 /* got a delalloc extent? */ 421 if (imap.br_startblock != HOLESTARTBLOCK && 422 isnullstartblock(imap.br_startblock)) 423 goto allocate_blocks; 424 425 xfs_bmbt_to_iomap(ip, &wpc->iomap, &imap, 0); 426 trace_xfs_map_blocks_found(ip, offset, count, whichfork, &imap); 427 return 0; 428allocate_blocks: 429 error = xfs_convert_blocks(wpc, ip, whichfork, offset); 430 if (error) { 431 /* 432 * If we failed to find the extent in the COW fork we might have 433 * raced with a COW to data fork conversion or truncate. 434 * Restart the lookup to catch the extent in the data fork for 435 * the former case, but prevent additional retries to avoid 436 * looping forever for the latter case. 437 */ 438 if (error == -EAGAIN && whichfork == XFS_COW_FORK && !retries++) 439 goto retry; 440 ASSERT(error != -EAGAIN); 441 return error; 442 } 443 444 /* 445 * Due to merging the return real extent might be larger than the 446 * original delalloc one. Trim the return extent to the next COW 447 * boundary again to force a re-lookup. 448 */ 449 if (whichfork != XFS_COW_FORK && cow_fsb != NULLFILEOFF) { 450 loff_t cow_offset = XFS_FSB_TO_B(mp, cow_fsb); 451 452 if (cow_offset < wpc->iomap.offset + wpc->iomap.length) 453 wpc->iomap.length = cow_offset - wpc->iomap.offset; 454 } 455 456 ASSERT(wpc->iomap.offset <= offset); 457 ASSERT(wpc->iomap.offset + wpc->iomap.length > offset); 458 trace_xfs_map_blocks_alloc(ip, offset, count, whichfork, &imap); 459 return 0; 460} 461 462static int 463xfs_prepare_ioend( 464 struct iomap_ioend *ioend, 465 int status) 466{ 467 unsigned int nofs_flag; 468 469 /* 470 * We can allocate memory here while doing writeback on behalf of 471 * memory reclaim. To avoid memory allocation deadlocks set the 472 * task-wide nofs context for the following operations. 473 */ 474 nofs_flag = memalloc_nofs_save(); 475 476 /* Convert CoW extents to regular */ 477 if (!status && (ioend->io_flags & IOMAP_F_SHARED)) { 478 status = xfs_reflink_convert_cow(XFS_I(ioend->io_inode), 479 ioend->io_offset, ioend->io_size); 480 } 481 482 memalloc_nofs_restore(nofs_flag); 483 484 if (xfs_ioend_needs_workqueue(ioend)) 485 ioend->io_bio->bi_end_io = xfs_end_bio; 486 return status; 487} 488 489/* 490 * If the page has delalloc blocks on it, we need to punch them out before we 491 * invalidate the page. If we don't, we leave a stale delalloc mapping on the 492 * inode that can trip up a later direct I/O read operation on the same region. 493 * 494 * We prevent this by truncating away the delalloc regions on the page. Because 495 * they are delalloc, we can do this without needing a transaction. Indeed - if 496 * we get ENOSPC errors, we have to be able to do this truncation without a 497 * transaction as there is no space left for block reservation (typically why we 498 * see a ENOSPC in writeback). 499 */ 500static void 501xfs_discard_page( 502 struct page *page, 503 loff_t fileoff) 504{ 505 struct inode *inode = page->mapping->host; 506 struct xfs_inode *ip = XFS_I(inode); 507 struct xfs_mount *mp = ip->i_mount; 508 unsigned int pageoff = offset_in_page(fileoff); 509 xfs_fileoff_t start_fsb = XFS_B_TO_FSBT(mp, fileoff); 510 xfs_fileoff_t pageoff_fsb = XFS_B_TO_FSBT(mp, pageoff); 511 int error; 512 513 if (XFS_FORCED_SHUTDOWN(mp)) 514 goto out_invalidate; 515 516 xfs_alert_ratelimited(mp, 517 "page discard on page "PTR_FMT", inode 0x%llx, offset %llu.", 518 page, ip->i_ino, fileoff); 519 520 error = xfs_bmap_punch_delalloc_range(ip, start_fsb, 521 i_blocks_per_page(inode, page) - pageoff_fsb); 522 if (error && !XFS_FORCED_SHUTDOWN(mp)) 523 xfs_alert(mp, "page discard unable to remove delalloc mapping."); 524out_invalidate: 525 iomap_invalidatepage(page, pageoff, PAGE_SIZE - pageoff); 526} 527 528static const struct iomap_writeback_ops xfs_writeback_ops = { 529 .map_blocks = xfs_map_blocks, 530 .prepare_ioend = xfs_prepare_ioend, 531 .discard_page = xfs_discard_page, 532}; 533 534STATIC int 535xfs_vm_writepage( 536 struct page *page, 537 struct writeback_control *wbc) 538{ 539 struct xfs_writepage_ctx wpc = { }; 540 541 if (WARN_ON_ONCE(current->journal_info)) { 542 redirty_page_for_writepage(wbc, page); 543 unlock_page(page); 544 return 0; 545 } 546 547 return iomap_writepage(page, wbc, &wpc.ctx, &xfs_writeback_ops); 548} 549 550STATIC int 551xfs_vm_writepages( 552 struct address_space *mapping, 553 struct writeback_control *wbc) 554{ 555 struct xfs_writepage_ctx wpc = { }; 556 557 /* 558 * Writing back data in a transaction context can result in recursive 559 * transactions. This is bad, so issue a warning and get out of here. 560 */ 561 if (WARN_ON_ONCE(current->journal_info)) 562 return 0; 563 564 xfs_iflags_clear(XFS_I(mapping->host), XFS_ITRUNCATED); 565 return iomap_writepages(mapping, wbc, &wpc.ctx, &xfs_writeback_ops); 566} 567 568STATIC int 569xfs_dax_writepages( 570 struct address_space *mapping, 571 struct writeback_control *wbc) 572{ 573 struct xfs_inode *ip = XFS_I(mapping->host); 574 575 xfs_iflags_clear(ip, XFS_ITRUNCATED); 576 return dax_writeback_mapping_range(mapping, 577 xfs_inode_buftarg(ip)->bt_daxdev, wbc); 578} 579 580STATIC sector_t 581xfs_vm_bmap( 582 struct address_space *mapping, 583 sector_t block) 584{ 585 struct xfs_inode *ip = XFS_I(mapping->host); 586 587 trace_xfs_vm_bmap(ip); 588 589 /* 590 * The swap code (ab-)uses ->bmap to get a block mapping and then 591 * bypasses the file system for actual I/O. We really can't allow 592 * that on reflinks inodes, so we have to skip out here. And yes, 593 * 0 is the magic code for a bmap error. 594 * 595 * Since we don't pass back blockdev info, we can't return bmap 596 * information for rt files either. 597 */ 598 if (xfs_is_cow_inode(ip) || XFS_IS_REALTIME_INODE(ip)) 599 return 0; 600 return iomap_bmap(mapping, block, &xfs_read_iomap_ops); 601} 602 603STATIC int 604xfs_vm_readpage( 605 struct file *unused, 606 struct page *page) 607{ 608 return iomap_readpage(page, &xfs_read_iomap_ops); 609} 610 611STATIC void 612xfs_vm_readahead( 613 struct readahead_control *rac) 614{ 615 iomap_readahead(rac, &xfs_read_iomap_ops); 616} 617 618static int 619xfs_iomap_swapfile_activate( 620 struct swap_info_struct *sis, 621 struct file *swap_file, 622 sector_t *span) 623{ 624 sis->bdev = xfs_inode_buftarg(XFS_I(file_inode(swap_file)))->bt_bdev; 625 return iomap_swapfile_activate(sis, swap_file, span, 626 &xfs_read_iomap_ops); 627} 628 629const struct address_space_operations xfs_address_space_operations = { 630 .readpage = xfs_vm_readpage, 631 .readahead = xfs_vm_readahead, 632 .writepage = xfs_vm_writepage, 633 .writepages = xfs_vm_writepages, 634 .set_page_dirty = iomap_set_page_dirty, 635 .releasepage = iomap_releasepage, 636 .invalidatepage = iomap_invalidatepage, 637 .bmap = xfs_vm_bmap, 638 .direct_IO = noop_direct_IO, 639 .migratepage = iomap_migrate_page, 640 .is_partially_uptodate = iomap_is_partially_uptodate, 641 .error_remove_page = generic_error_remove_page, 642 .swap_activate = xfs_iomap_swapfile_activate, 643}; 644 645const struct address_space_operations xfs_dax_aops = { 646 .writepages = xfs_dax_writepages, 647 .direct_IO = noop_direct_IO, 648 .set_page_dirty = noop_set_page_dirty, 649 .invalidatepage = noop_invalidatepage, 650 .swap_activate = xfs_iomap_swapfile_activate, 651}; 652