xref: /kernel/linux/linux-5.10/fs/xfs/scrub/repair.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2018 Oracle.  All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_trans_resv.h"
11#include "xfs_mount.h"
12#include "xfs_btree.h"
13#include "xfs_log_format.h"
14#include "xfs_trans.h"
15#include "xfs_sb.h"
16#include "xfs_inode.h"
17#include "xfs_alloc.h"
18#include "xfs_alloc_btree.h"
19#include "xfs_ialloc.h"
20#include "xfs_ialloc_btree.h"
21#include "xfs_rmap.h"
22#include "xfs_rmap_btree.h"
23#include "xfs_refcount_btree.h"
24#include "xfs_extent_busy.h"
25#include "xfs_ag_resv.h"
26#include "xfs_quota.h"
27#include "scrub/scrub.h"
28#include "scrub/common.h"
29#include "scrub/trace.h"
30#include "scrub/repair.h"
31#include "scrub/bitmap.h"
32
33/*
34 * Attempt to repair some metadata, if the metadata is corrupt and userspace
35 * told us to fix it.  This function returns -EAGAIN to mean "re-run scrub",
36 * and will set *fixed to true if it thinks it repaired anything.
37 */
38int
39xrep_attempt(
40	struct xfs_inode	*ip,
41	struct xfs_scrub	*sc)
42{
43	int			error = 0;
44
45	trace_xrep_attempt(ip, sc->sm, error);
46
47	xchk_ag_btcur_free(&sc->sa);
48
49	/* Repair whatever's broken. */
50	ASSERT(sc->ops->repair);
51	error = sc->ops->repair(sc);
52	trace_xrep_done(ip, sc->sm, error);
53	switch (error) {
54	case 0:
55		/*
56		 * Repair succeeded.  Commit the fixes and perform a second
57		 * scrub so that we can tell userspace if we fixed the problem.
58		 */
59		sc->sm->sm_flags &= ~XFS_SCRUB_FLAGS_OUT;
60		sc->flags |= XREP_ALREADY_FIXED;
61		return -EAGAIN;
62	case -EDEADLOCK:
63	case -EAGAIN:
64		/* Tell the caller to try again having grabbed all the locks. */
65		if (!(sc->flags & XCHK_TRY_HARDER)) {
66			sc->flags |= XCHK_TRY_HARDER;
67			return -EAGAIN;
68		}
69		/*
70		 * We tried harder but still couldn't grab all the resources
71		 * we needed to fix it.  The corruption has not been fixed,
72		 * so report back to userspace.
73		 */
74		return -EFSCORRUPTED;
75	default:
76		return error;
77	}
78}
79
80/*
81 * Complain about unfixable problems in the filesystem.  We don't log
82 * corruptions when IFLAG_REPAIR wasn't set on the assumption that the driver
83 * program is xfs_scrub, which will call back with IFLAG_REPAIR set if the
84 * administrator isn't running xfs_scrub in no-repairs mode.
85 *
86 * Use this helper function because _ratelimited silently declares a static
87 * structure to track rate limiting information.
88 */
89void
90xrep_failure(
91	struct xfs_mount	*mp)
92{
93	xfs_alert_ratelimited(mp,
94"Corruption not fixed during online repair.  Unmount and run xfs_repair.");
95}
96
97/*
98 * Repair probe -- userspace uses this to probe if we're willing to repair a
99 * given mountpoint.
100 */
101int
102xrep_probe(
103	struct xfs_scrub	*sc)
104{
105	int			error = 0;
106
107	if (xchk_should_terminate(sc, &error))
108		return error;
109
110	return 0;
111}
112
113/*
114 * Roll a transaction, keeping the AG headers locked and reinitializing
115 * the btree cursors.
116 */
117int
118xrep_roll_ag_trans(
119	struct xfs_scrub	*sc)
120{
121	int			error;
122
123	/* Keep the AG header buffers locked so we can keep going. */
124	if (sc->sa.agi_bp)
125		xfs_trans_bhold(sc->tp, sc->sa.agi_bp);
126	if (sc->sa.agf_bp)
127		xfs_trans_bhold(sc->tp, sc->sa.agf_bp);
128	if (sc->sa.agfl_bp)
129		xfs_trans_bhold(sc->tp, sc->sa.agfl_bp);
130
131	/*
132	 * Roll the transaction.  We still own the buffer and the buffer lock
133	 * regardless of whether or not the roll succeeds.  If the roll fails,
134	 * the buffers will be released during teardown on our way out of the
135	 * kernel.  If it succeeds, we join them to the new transaction and
136	 * move on.
137	 */
138	error = xfs_trans_roll(&sc->tp);
139	if (error)
140		return error;
141
142	/* Join AG headers to the new transaction. */
143	if (sc->sa.agi_bp)
144		xfs_trans_bjoin(sc->tp, sc->sa.agi_bp);
145	if (sc->sa.agf_bp)
146		xfs_trans_bjoin(sc->tp, sc->sa.agf_bp);
147	if (sc->sa.agfl_bp)
148		xfs_trans_bjoin(sc->tp, sc->sa.agfl_bp);
149
150	return 0;
151}
152
153/*
154 * Does the given AG have enough space to rebuild a btree?  Neither AG
155 * reservation can be critical, and we must have enough space (factoring
156 * in AG reservations) to construct a whole btree.
157 */
158bool
159xrep_ag_has_space(
160	struct xfs_perag	*pag,
161	xfs_extlen_t		nr_blocks,
162	enum xfs_ag_resv_type	type)
163{
164	return  !xfs_ag_resv_critical(pag, XFS_AG_RESV_RMAPBT) &&
165		!xfs_ag_resv_critical(pag, XFS_AG_RESV_METADATA) &&
166		pag->pagf_freeblks > xfs_ag_resv_needed(pag, type) + nr_blocks;
167}
168
169/*
170 * Figure out how many blocks to reserve for an AG repair.  We calculate the
171 * worst case estimate for the number of blocks we'd need to rebuild one of
172 * any type of per-AG btree.
173 */
174xfs_extlen_t
175xrep_calc_ag_resblks(
176	struct xfs_scrub		*sc)
177{
178	struct xfs_mount		*mp = sc->mp;
179	struct xfs_scrub_metadata	*sm = sc->sm;
180	struct xfs_perag		*pag;
181	struct xfs_buf			*bp;
182	xfs_agino_t			icount = NULLAGINO;
183	xfs_extlen_t			aglen = NULLAGBLOCK;
184	xfs_extlen_t			usedlen;
185	xfs_extlen_t			freelen;
186	xfs_extlen_t			bnobt_sz;
187	xfs_extlen_t			inobt_sz;
188	xfs_extlen_t			rmapbt_sz;
189	xfs_extlen_t			refcbt_sz;
190	int				error;
191
192	if (!(sm->sm_flags & XFS_SCRUB_IFLAG_REPAIR))
193		return 0;
194
195	pag = xfs_perag_get(mp, sm->sm_agno);
196	if (pag->pagi_init) {
197		/* Use in-core icount if possible. */
198		icount = pag->pagi_count;
199	} else {
200		/* Try to get the actual counters from disk. */
201		error = xfs_ialloc_read_agi(mp, NULL, sm->sm_agno, &bp);
202		if (!error) {
203			icount = pag->pagi_count;
204			xfs_buf_relse(bp);
205		}
206	}
207
208	/* Now grab the block counters from the AGF. */
209	error = xfs_alloc_read_agf(mp, NULL, sm->sm_agno, 0, &bp);
210	if (!error) {
211		struct xfs_agf	*agf = bp->b_addr;
212
213		aglen = be32_to_cpu(agf->agf_length);
214		freelen = be32_to_cpu(agf->agf_freeblks);
215		usedlen = aglen - freelen;
216		xfs_buf_relse(bp);
217	}
218	xfs_perag_put(pag);
219
220	/* If the icount is impossible, make some worst-case assumptions. */
221	if (icount == NULLAGINO ||
222	    !xfs_verify_agino(mp, sm->sm_agno, icount)) {
223		xfs_agino_t	first, last;
224
225		xfs_agino_range(mp, sm->sm_agno, &first, &last);
226		icount = last - first + 1;
227	}
228
229	/* If the block counts are impossible, make worst-case assumptions. */
230	if (aglen == NULLAGBLOCK ||
231	    aglen != xfs_ag_block_count(mp, sm->sm_agno) ||
232	    freelen >= aglen) {
233		aglen = xfs_ag_block_count(mp, sm->sm_agno);
234		freelen = aglen;
235		usedlen = aglen;
236	}
237
238	trace_xrep_calc_ag_resblks(mp, sm->sm_agno, icount, aglen,
239			freelen, usedlen);
240
241	/*
242	 * Figure out how many blocks we'd need worst case to rebuild
243	 * each type of btree.  Note that we can only rebuild the
244	 * bnobt/cntbt or inobt/finobt as pairs.
245	 */
246	bnobt_sz = 2 * xfs_allocbt_calc_size(mp, freelen);
247	if (xfs_sb_version_hassparseinodes(&mp->m_sb))
248		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
249				XFS_INODES_PER_HOLEMASK_BIT);
250	else
251		inobt_sz = xfs_iallocbt_calc_size(mp, icount /
252				XFS_INODES_PER_CHUNK);
253	if (xfs_sb_version_hasfinobt(&mp->m_sb))
254		inobt_sz *= 2;
255	if (xfs_sb_version_hasreflink(&mp->m_sb))
256		refcbt_sz = xfs_refcountbt_calc_size(mp, usedlen);
257	else
258		refcbt_sz = 0;
259	if (xfs_sb_version_hasrmapbt(&mp->m_sb)) {
260		/*
261		 * Guess how many blocks we need to rebuild the rmapbt.
262		 * For non-reflink filesystems we can't have more records than
263		 * used blocks.  However, with reflink it's possible to have
264		 * more than one rmap record per AG block.  We don't know how
265		 * many rmaps there could be in the AG, so we start off with
266		 * what we hope is an generous over-estimation.
267		 */
268		if (xfs_sb_version_hasreflink(&mp->m_sb))
269			rmapbt_sz = xfs_rmapbt_calc_size(mp,
270					(unsigned long long)aglen * 2);
271		else
272			rmapbt_sz = xfs_rmapbt_calc_size(mp, usedlen);
273	} else {
274		rmapbt_sz = 0;
275	}
276
277	trace_xrep_calc_ag_resblks_btsize(mp, sm->sm_agno, bnobt_sz,
278			inobt_sz, rmapbt_sz, refcbt_sz);
279
280	return max(max(bnobt_sz, inobt_sz), max(rmapbt_sz, refcbt_sz));
281}
282
283/* Allocate a block in an AG. */
284int
285xrep_alloc_ag_block(
286	struct xfs_scrub		*sc,
287	const struct xfs_owner_info	*oinfo,
288	xfs_fsblock_t			*fsbno,
289	enum xfs_ag_resv_type		resv)
290{
291	struct xfs_alloc_arg		args = {0};
292	xfs_agblock_t			bno;
293	int				error;
294
295	switch (resv) {
296	case XFS_AG_RESV_AGFL:
297	case XFS_AG_RESV_RMAPBT:
298		error = xfs_alloc_get_freelist(sc->tp, sc->sa.agf_bp, &bno, 1);
299		if (error)
300			return error;
301		if (bno == NULLAGBLOCK)
302			return -ENOSPC;
303		xfs_extent_busy_reuse(sc->mp, sc->sa.agno, bno,
304				1, false);
305		*fsbno = XFS_AGB_TO_FSB(sc->mp, sc->sa.agno, bno);
306		if (resv == XFS_AG_RESV_RMAPBT)
307			xfs_ag_resv_rmapbt_alloc(sc->mp, sc->sa.agno);
308		return 0;
309	default:
310		break;
311	}
312
313	args.tp = sc->tp;
314	args.mp = sc->mp;
315	args.oinfo = *oinfo;
316	args.fsbno = XFS_AGB_TO_FSB(args.mp, sc->sa.agno, 0);
317	args.minlen = 1;
318	args.maxlen = 1;
319	args.prod = 1;
320	args.type = XFS_ALLOCTYPE_THIS_AG;
321	args.resv = resv;
322
323	error = xfs_alloc_vextent(&args);
324	if (error)
325		return error;
326	if (args.fsbno == NULLFSBLOCK)
327		return -ENOSPC;
328	ASSERT(args.len == 1);
329	*fsbno = args.fsbno;
330
331	return 0;
332}
333
334/* Initialize a new AG btree root block with zero entries. */
335int
336xrep_init_btblock(
337	struct xfs_scrub		*sc,
338	xfs_fsblock_t			fsb,
339	struct xfs_buf			**bpp,
340	xfs_btnum_t			btnum,
341	const struct xfs_buf_ops	*ops)
342{
343	struct xfs_trans		*tp = sc->tp;
344	struct xfs_mount		*mp = sc->mp;
345	struct xfs_buf			*bp;
346	int				error;
347
348	trace_xrep_init_btblock(mp, XFS_FSB_TO_AGNO(mp, fsb),
349			XFS_FSB_TO_AGBNO(mp, fsb), btnum);
350
351	ASSERT(XFS_FSB_TO_AGNO(mp, fsb) == sc->sa.agno);
352	error = xfs_trans_get_buf(tp, mp->m_ddev_targp,
353			XFS_FSB_TO_DADDR(mp, fsb), XFS_FSB_TO_BB(mp, 1), 0,
354			&bp);
355	if (error)
356		return error;
357	xfs_buf_zero(bp, 0, BBTOB(bp->b_length));
358	xfs_btree_init_block(mp, bp, btnum, 0, 0, sc->sa.agno);
359	xfs_trans_buf_set_type(tp, bp, XFS_BLFT_BTREE_BUF);
360	xfs_trans_log_buf(tp, bp, 0, BBTOB(bp->b_length) - 1);
361	bp->b_ops = ops;
362	*bpp = bp;
363
364	return 0;
365}
366
367/*
368 * Reconstructing per-AG Btrees
369 *
370 * When a space btree is corrupt, we don't bother trying to fix it.  Instead,
371 * we scan secondary space metadata to derive the records that should be in
372 * the damaged btree, initialize a fresh btree root, and insert the records.
373 * Note that for rebuilding the rmapbt we scan all the primary data to
374 * generate the new records.
375 *
376 * However, that leaves the matter of removing all the metadata describing the
377 * old broken structure.  For primary metadata we use the rmap data to collect
378 * every extent with a matching rmap owner (bitmap); we then iterate all other
379 * metadata structures with the same rmap owner to collect the extents that
380 * cannot be removed (sublist).  We then subtract sublist from bitmap to
381 * derive the blocks that were used by the old btree.  These blocks can be
382 * reaped.
383 *
384 * For rmapbt reconstructions we must use different tactics for extent
385 * collection.  First we iterate all primary metadata (this excludes the old
386 * rmapbt, obviously) to generate new rmap records.  The gaps in the rmap
387 * records are collected as bitmap.  The bnobt records are collected as
388 * sublist.  As with the other btrees we subtract sublist from bitmap, and the
389 * result (since the rmapbt lives in the free space) are the blocks from the
390 * old rmapbt.
391 *
392 * Disposal of Blocks from Old per-AG Btrees
393 *
394 * Now that we've constructed a new btree to replace the damaged one, we want
395 * to dispose of the blocks that (we think) the old btree was using.
396 * Previously, we used the rmapbt to collect the extents (bitmap) with the
397 * rmap owner corresponding to the tree we rebuilt, collected extents for any
398 * blocks with the same rmap owner that are owned by another data structure
399 * (sublist), and subtracted sublist from bitmap.  In theory the extents
400 * remaining in bitmap are the old btree's blocks.
401 *
402 * Unfortunately, it's possible that the btree was crosslinked with other
403 * blocks on disk.  The rmap data can tell us if there are multiple owners, so
404 * if the rmapbt says there is an owner of this block other than @oinfo, then
405 * the block is crosslinked.  Remove the reverse mapping and continue.
406 *
407 * If there is one rmap record, we can free the block, which removes the
408 * reverse mapping but doesn't add the block to the free space.  Our repair
409 * strategy is to hope the other metadata objects crosslinked on this block
410 * will be rebuilt (atop different blocks), thereby removing all the cross
411 * links.
412 *
413 * If there are no rmap records at all, we also free the block.  If the btree
414 * being rebuilt lives in the free space (bnobt/cntbt/rmapbt) then there isn't
415 * supposed to be a rmap record and everything is ok.  For other btrees there
416 * had to have been an rmap entry for the block to have ended up on @bitmap,
417 * so if it's gone now there's something wrong and the fs will shut down.
418 *
419 * Note: If there are multiple rmap records with only the same rmap owner as
420 * the btree we're trying to rebuild and the block is indeed owned by another
421 * data structure with the same rmap owner, then the block will be in sublist
422 * and therefore doesn't need disposal.  If there are multiple rmap records
423 * with only the same rmap owner but the block is not owned by something with
424 * the same rmap owner, the block will be freed.
425 *
426 * The caller is responsible for locking the AG headers for the entire rebuild
427 * operation so that nothing else can sneak in and change the AG state while
428 * we're not looking.  We also assume that the caller already invalidated any
429 * buffers associated with @bitmap.
430 */
431
432/*
433 * Invalidate buffers for per-AG btree blocks we're dumping.  This function
434 * is not intended for use with file data repairs; we have bunmapi for that.
435 */
436int
437xrep_invalidate_blocks(
438	struct xfs_scrub	*sc,
439	struct xbitmap		*bitmap)
440{
441	struct xbitmap_range	*bmr;
442	struct xbitmap_range	*n;
443	struct xfs_buf		*bp;
444	xfs_fsblock_t		fsbno;
445
446	/*
447	 * For each block in each extent, see if there's an incore buffer for
448	 * exactly that block; if so, invalidate it.  The buffer cache only
449	 * lets us look for one buffer at a time, so we have to look one block
450	 * at a time.  Avoid invalidating AG headers and post-EOFS blocks
451	 * because we never own those; and if we can't TRYLOCK the buffer we
452	 * assume it's owned by someone else.
453	 */
454	for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
455		/* Skip AG headers and post-EOFS blocks */
456		if (!xfs_verify_fsbno(sc->mp, fsbno))
457			continue;
458		bp = xfs_buf_incore(sc->mp->m_ddev_targp,
459				XFS_FSB_TO_DADDR(sc->mp, fsbno),
460				XFS_FSB_TO_BB(sc->mp, 1), XBF_TRYLOCK);
461		if (bp) {
462			xfs_trans_bjoin(sc->tp, bp);
463			xfs_trans_binval(sc->tp, bp);
464		}
465	}
466
467	return 0;
468}
469
470/* Ensure the freelist is the correct size. */
471int
472xrep_fix_freelist(
473	struct xfs_scrub	*sc,
474	bool			can_shrink)
475{
476	struct xfs_alloc_arg	args = {0};
477
478	args.mp = sc->mp;
479	args.tp = sc->tp;
480	args.agno = sc->sa.agno;
481	args.alignment = 1;
482	args.pag = sc->sa.pag;
483
484	return xfs_alloc_fix_freelist(&args,
485			can_shrink ? 0 : XFS_ALLOC_FLAG_NOSHRINK);
486}
487
488/*
489 * Put a block back on the AGFL.
490 */
491STATIC int
492xrep_put_freelist(
493	struct xfs_scrub	*sc,
494	xfs_agblock_t		agbno)
495{
496	int			error;
497
498	/* Make sure there's space on the freelist. */
499	error = xrep_fix_freelist(sc, true);
500	if (error)
501		return error;
502
503	/*
504	 * Since we're "freeing" a lost block onto the AGFL, we have to
505	 * create an rmap for the block prior to merging it or else other
506	 * parts will break.
507	 */
508	error = xfs_rmap_alloc(sc->tp, sc->sa.agf_bp, sc->sa.agno, agbno, 1,
509			&XFS_RMAP_OINFO_AG);
510	if (error)
511		return error;
512
513	/* Put the block on the AGFL. */
514	error = xfs_alloc_put_freelist(sc->tp, sc->sa.agf_bp, sc->sa.agfl_bp,
515			agbno, 0);
516	if (error)
517		return error;
518	xfs_extent_busy_insert(sc->tp, sc->sa.agno, agbno, 1,
519			XFS_EXTENT_BUSY_SKIP_DISCARD);
520
521	return 0;
522}
523
524/* Dispose of a single block. */
525STATIC int
526xrep_reap_block(
527	struct xfs_scrub		*sc,
528	xfs_fsblock_t			fsbno,
529	const struct xfs_owner_info	*oinfo,
530	enum xfs_ag_resv_type		resv)
531{
532	struct xfs_btree_cur		*cur;
533	struct xfs_buf			*agf_bp = NULL;
534	xfs_agnumber_t			agno;
535	xfs_agblock_t			agbno;
536	bool				has_other_rmap;
537	int				error;
538
539	agno = XFS_FSB_TO_AGNO(sc->mp, fsbno);
540	agbno = XFS_FSB_TO_AGBNO(sc->mp, fsbno);
541
542	/*
543	 * If we are repairing per-inode metadata, we need to read in the AGF
544	 * buffer.  Otherwise, we're repairing a per-AG structure, so reuse
545	 * the AGF buffer that the setup functions already grabbed.
546	 */
547	if (sc->ip) {
548		error = xfs_alloc_read_agf(sc->mp, sc->tp, agno, 0, &agf_bp);
549		if (error)
550			return error;
551	} else {
552		agf_bp = sc->sa.agf_bp;
553	}
554	cur = xfs_rmapbt_init_cursor(sc->mp, sc->tp, agf_bp, agno);
555
556	/* Can we find any other rmappings? */
557	error = xfs_rmap_has_other_keys(cur, agbno, 1, oinfo, &has_other_rmap);
558	xfs_btree_del_cursor(cur, error);
559	if (error)
560		goto out_free;
561
562	/*
563	 * If there are other rmappings, this block is cross linked and must
564	 * not be freed.  Remove the reverse mapping and move on.  Otherwise,
565	 * we were the only owner of the block, so free the extent, which will
566	 * also remove the rmap.
567	 *
568	 * XXX: XFS doesn't support detecting the case where a single block
569	 * metadata structure is crosslinked with a multi-block structure
570	 * because the buffer cache doesn't detect aliasing problems, so we
571	 * can't fix 100% of crosslinking problems (yet).  The verifiers will
572	 * blow on writeout, the filesystem will shut down, and the admin gets
573	 * to run xfs_repair.
574	 */
575	if (has_other_rmap)
576		error = xfs_rmap_free(sc->tp, agf_bp, agno, agbno, 1, oinfo);
577	else if (resv == XFS_AG_RESV_AGFL)
578		error = xrep_put_freelist(sc, agbno);
579	else
580		error = xfs_free_extent(sc->tp, fsbno, 1, oinfo, resv);
581	if (agf_bp != sc->sa.agf_bp)
582		xfs_trans_brelse(sc->tp, agf_bp);
583	if (error)
584		return error;
585
586	if (sc->ip)
587		return xfs_trans_roll_inode(&sc->tp, sc->ip);
588	return xrep_roll_ag_trans(sc);
589
590out_free:
591	if (agf_bp != sc->sa.agf_bp)
592		xfs_trans_brelse(sc->tp, agf_bp);
593	return error;
594}
595
596/* Dispose of every block of every extent in the bitmap. */
597int
598xrep_reap_extents(
599	struct xfs_scrub		*sc,
600	struct xbitmap			*bitmap,
601	const struct xfs_owner_info	*oinfo,
602	enum xfs_ag_resv_type		type)
603{
604	struct xbitmap_range		*bmr;
605	struct xbitmap_range		*n;
606	xfs_fsblock_t			fsbno;
607	int				error = 0;
608
609	ASSERT(xfs_sb_version_hasrmapbt(&sc->mp->m_sb));
610
611	for_each_xbitmap_block(fsbno, bmr, n, bitmap) {
612		ASSERT(sc->ip != NULL ||
613		       XFS_FSB_TO_AGNO(sc->mp, fsbno) == sc->sa.agno);
614		trace_xrep_dispose_btree_extent(sc->mp,
615				XFS_FSB_TO_AGNO(sc->mp, fsbno),
616				XFS_FSB_TO_AGBNO(sc->mp, fsbno), 1);
617
618		error = xrep_reap_block(sc, fsbno, oinfo, type);
619		if (error)
620			break;
621	}
622
623	return error;
624}
625
626/*
627 * Finding per-AG Btree Roots for AGF/AGI Reconstruction
628 *
629 * If the AGF or AGI become slightly corrupted, it may be necessary to rebuild
630 * the AG headers by using the rmap data to rummage through the AG looking for
631 * btree roots.  This is not guaranteed to work if the AG is heavily damaged
632 * or the rmap data are corrupt.
633 *
634 * Callers of xrep_find_ag_btree_roots must lock the AGF and AGFL
635 * buffers if the AGF is being rebuilt; or the AGF and AGI buffers if the
636 * AGI is being rebuilt.  It must maintain these locks until it's safe for
637 * other threads to change the btrees' shapes.  The caller provides
638 * information about the btrees to look for by passing in an array of
639 * xrep_find_ag_btree with the (rmap owner, buf_ops, magic) fields set.
640 * The (root, height) fields will be set on return if anything is found.  The
641 * last element of the array should have a NULL buf_ops to mark the end of the
642 * array.
643 *
644 * For every rmapbt record matching any of the rmap owners in btree_info,
645 * read each block referenced by the rmap record.  If the block is a btree
646 * block from this filesystem matching any of the magic numbers and has a
647 * level higher than what we've already seen, remember the block and the
648 * height of the tree required to have such a block.  When the call completes,
649 * we return the highest block we've found for each btree description; those
650 * should be the roots.
651 */
652
653struct xrep_findroot {
654	struct xfs_scrub		*sc;
655	struct xfs_buf			*agfl_bp;
656	struct xfs_agf			*agf;
657	struct xrep_find_ag_btree	*btree_info;
658};
659
660/* See if our block is in the AGFL. */
661STATIC int
662xrep_findroot_agfl_walk(
663	struct xfs_mount	*mp,
664	xfs_agblock_t		bno,
665	void			*priv)
666{
667	xfs_agblock_t		*agbno = priv;
668
669	return (*agbno == bno) ? -ECANCELED : 0;
670}
671
672/* Does this block match the btree information passed in? */
673STATIC int
674xrep_findroot_block(
675	struct xrep_findroot		*ri,
676	struct xrep_find_ag_btree	*fab,
677	uint64_t			owner,
678	xfs_agblock_t			agbno,
679	bool				*done_with_block)
680{
681	struct xfs_mount		*mp = ri->sc->mp;
682	struct xfs_buf			*bp;
683	struct xfs_btree_block		*btblock;
684	xfs_daddr_t			daddr;
685	int				block_level;
686	int				error = 0;
687
688	daddr = XFS_AGB_TO_DADDR(mp, ri->sc->sa.agno, agbno);
689
690	/*
691	 * Blocks in the AGFL have stale contents that might just happen to
692	 * have a matching magic and uuid.  We don't want to pull these blocks
693	 * in as part of a tree root, so we have to filter out the AGFL stuff
694	 * here.  If the AGFL looks insane we'll just refuse to repair.
695	 */
696	if (owner == XFS_RMAP_OWN_AG) {
697		error = xfs_agfl_walk(mp, ri->agf, ri->agfl_bp,
698				xrep_findroot_agfl_walk, &agbno);
699		if (error == -ECANCELED)
700			return 0;
701		if (error)
702			return error;
703	}
704
705	/*
706	 * Read the buffer into memory so that we can see if it's a match for
707	 * our btree type.  We have no clue if it is beforehand, and we want to
708	 * avoid xfs_trans_read_buf's behavior of dumping the DONE state (which
709	 * will cause needless disk reads in subsequent calls to this function)
710	 * and logging metadata verifier failures.
711	 *
712	 * Therefore, pass in NULL buffer ops.  If the buffer was already in
713	 * memory from some other caller it will already have b_ops assigned.
714	 * If it was in memory from a previous unsuccessful findroot_block
715	 * call, the buffer won't have b_ops but it should be clean and ready
716	 * for us to try to verify if the read call succeeds.  The same applies
717	 * if the buffer wasn't in memory at all.
718	 *
719	 * Note: If we never match a btree type with this buffer, it will be
720	 * left in memory with NULL b_ops.  This shouldn't be a problem unless
721	 * the buffer gets written.
722	 */
723	error = xfs_trans_read_buf(mp, ri->sc->tp, mp->m_ddev_targp, daddr,
724			mp->m_bsize, 0, &bp, NULL);
725	if (error)
726		return error;
727
728	/* Ensure the block magic matches the btree type we're looking for. */
729	btblock = XFS_BUF_TO_BLOCK(bp);
730	ASSERT(fab->buf_ops->magic[1] != 0);
731	if (btblock->bb_magic != fab->buf_ops->magic[1])
732		goto out;
733
734	/*
735	 * If the buffer already has ops applied and they're not the ones for
736	 * this btree type, we know this block doesn't match the btree and we
737	 * can bail out.
738	 *
739	 * If the buffer ops match ours, someone else has already validated
740	 * the block for us, so we can move on to checking if this is a root
741	 * block candidate.
742	 *
743	 * If the buffer does not have ops, nobody has successfully validated
744	 * the contents and the buffer cannot be dirty.  If the magic, uuid,
745	 * and structure match this btree type then we'll move on to checking
746	 * if it's a root block candidate.  If there is no match, bail out.
747	 */
748	if (bp->b_ops) {
749		if (bp->b_ops != fab->buf_ops)
750			goto out;
751	} else {
752		ASSERT(!xfs_trans_buf_is_dirty(bp));
753		if (!uuid_equal(&btblock->bb_u.s.bb_uuid,
754				&mp->m_sb.sb_meta_uuid))
755			goto out;
756		/*
757		 * Read verifiers can reference b_ops, so we set the pointer
758		 * here.  If the verifier fails we'll reset the buffer state
759		 * to what it was before we touched the buffer.
760		 */
761		bp->b_ops = fab->buf_ops;
762		fab->buf_ops->verify_read(bp);
763		if (bp->b_error) {
764			bp->b_ops = NULL;
765			bp->b_error = 0;
766			goto out;
767		}
768
769		/*
770		 * Some read verifiers will (re)set b_ops, so we must be
771		 * careful not to change b_ops after running the verifier.
772		 */
773	}
774
775	/*
776	 * This block passes the magic/uuid and verifier tests for this btree
777	 * type.  We don't need the caller to try the other tree types.
778	 */
779	*done_with_block = true;
780
781	/*
782	 * Compare this btree block's level to the height of the current
783	 * candidate root block.
784	 *
785	 * If the level matches the root we found previously, throw away both
786	 * blocks because there can't be two candidate roots.
787	 *
788	 * If level is lower in the tree than the root we found previously,
789	 * ignore this block.
790	 */
791	block_level = xfs_btree_get_level(btblock);
792	if (block_level + 1 == fab->height) {
793		fab->root = NULLAGBLOCK;
794		goto out;
795	} else if (block_level < fab->height) {
796		goto out;
797	}
798
799	/*
800	 * This is the highest block in the tree that we've found so far.
801	 * Update the btree height to reflect what we've learned from this
802	 * block.
803	 */
804	fab->height = block_level + 1;
805
806	/*
807	 * If this block doesn't have sibling pointers, then it's the new root
808	 * block candidate.  Otherwise, the root will be found farther up the
809	 * tree.
810	 */
811	if (btblock->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK) &&
812	    btblock->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
813		fab->root = agbno;
814	else
815		fab->root = NULLAGBLOCK;
816
817	trace_xrep_findroot_block(mp, ri->sc->sa.agno, agbno,
818			be32_to_cpu(btblock->bb_magic), fab->height - 1);
819out:
820	xfs_trans_brelse(ri->sc->tp, bp);
821	return error;
822}
823
824/*
825 * Do any of the blocks in this rmap record match one of the btrees we're
826 * looking for?
827 */
828STATIC int
829xrep_findroot_rmap(
830	struct xfs_btree_cur		*cur,
831	struct xfs_rmap_irec		*rec,
832	void				*priv)
833{
834	struct xrep_findroot		*ri = priv;
835	struct xrep_find_ag_btree	*fab;
836	xfs_agblock_t			b;
837	bool				done;
838	int				error = 0;
839
840	/* Ignore anything that isn't AG metadata. */
841	if (!XFS_RMAP_NON_INODE_OWNER(rec->rm_owner))
842		return 0;
843
844	/* Otherwise scan each block + btree type. */
845	for (b = 0; b < rec->rm_blockcount; b++) {
846		done = false;
847		for (fab = ri->btree_info; fab->buf_ops; fab++) {
848			if (rec->rm_owner != fab->rmap_owner)
849				continue;
850			error = xrep_findroot_block(ri, fab,
851					rec->rm_owner, rec->rm_startblock + b,
852					&done);
853			if (error)
854				return error;
855			if (done)
856				break;
857		}
858	}
859
860	return 0;
861}
862
863/* Find the roots of the per-AG btrees described in btree_info. */
864int
865xrep_find_ag_btree_roots(
866	struct xfs_scrub		*sc,
867	struct xfs_buf			*agf_bp,
868	struct xrep_find_ag_btree	*btree_info,
869	struct xfs_buf			*agfl_bp)
870{
871	struct xfs_mount		*mp = sc->mp;
872	struct xrep_findroot		ri;
873	struct xrep_find_ag_btree	*fab;
874	struct xfs_btree_cur		*cur;
875	int				error;
876
877	ASSERT(xfs_buf_islocked(agf_bp));
878	ASSERT(agfl_bp == NULL || xfs_buf_islocked(agfl_bp));
879
880	ri.sc = sc;
881	ri.btree_info = btree_info;
882	ri.agf = agf_bp->b_addr;
883	ri.agfl_bp = agfl_bp;
884	for (fab = btree_info; fab->buf_ops; fab++) {
885		ASSERT(agfl_bp || fab->rmap_owner != XFS_RMAP_OWN_AG);
886		ASSERT(XFS_RMAP_NON_INODE_OWNER(fab->rmap_owner));
887		fab->root = NULLAGBLOCK;
888		fab->height = 0;
889	}
890
891	cur = xfs_rmapbt_init_cursor(mp, sc->tp, agf_bp, sc->sa.agno);
892	error = xfs_rmap_query_all(cur, xrep_findroot_rmap, &ri);
893	xfs_btree_del_cursor(cur, error);
894
895	return error;
896}
897
898/* Force a quotacheck the next time we mount. */
899void
900xrep_force_quotacheck(
901	struct xfs_scrub	*sc,
902	xfs_dqtype_t		type)
903{
904	uint			flag;
905
906	flag = xfs_quota_chkd_flag(type);
907	if (!(flag & sc->mp->m_qflags))
908		return;
909
910	sc->mp->m_qflags &= ~flag;
911	spin_lock(&sc->mp->m_sb_lock);
912	sc->mp->m_sb.sb_qflags &= ~flag;
913	spin_unlock(&sc->mp->m_sb_lock);
914	xfs_log_sb(sc->tp);
915}
916
917/*
918 * Attach dquots to this inode, or schedule quotacheck to fix them.
919 *
920 * This function ensures that the appropriate dquots are attached to an inode.
921 * We cannot allow the dquot code to allocate an on-disk dquot block here
922 * because we're already in transaction context with the inode locked.  The
923 * on-disk dquot should already exist anyway.  If the quota code signals
924 * corruption or missing quota information, schedule quotacheck, which will
925 * repair corruptions in the quota metadata.
926 */
927int
928xrep_ino_dqattach(
929	struct xfs_scrub	*sc)
930{
931	int			error;
932
933	error = xfs_qm_dqattach_locked(sc->ip, false);
934	switch (error) {
935	case -EFSBADCRC:
936	case -EFSCORRUPTED:
937	case -ENOENT:
938		xfs_err_ratelimited(sc->mp,
939"inode %llu repair encountered quota error %d, quotacheck forced.",
940				(unsigned long long)sc->ip->i_ino, error);
941		if (XFS_IS_UQUOTA_ON(sc->mp) && !sc->ip->i_udquot)
942			xrep_force_quotacheck(sc, XFS_DQTYPE_USER);
943		if (XFS_IS_GQUOTA_ON(sc->mp) && !sc->ip->i_gdquot)
944			xrep_force_quotacheck(sc, XFS_DQTYPE_GROUP);
945		if (XFS_IS_PQUOTA_ON(sc->mp) && !sc->ip->i_pdquot)
946			xrep_force_quotacheck(sc, XFS_DQTYPE_PROJ);
947		/* fall through */
948	case -ESRCH:
949		error = 0;
950		break;
951	default:
952		break;
953	}
954
955	return error;
956}
957