1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2014 Red Hat, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_sb.h"
13#include "xfs_mount.h"
14#include "xfs_trans.h"
15#include "xfs_alloc.h"
16#include "xfs_btree.h"
17#include "xfs_btree_staging.h"
18#include "xfs_rmap.h"
19#include "xfs_rmap_btree.h"
20#include "xfs_trace.h"
21#include "xfs_error.h"
22#include "xfs_extent_busy.h"
23#include "xfs_ag_resv.h"
24
25/*
26 * Reverse map btree.
27 *
28 * This is a per-ag tree used to track the owner(s) of a given extent. With
29 * reflink it is possible for there to be multiple owners, which is a departure
30 * from classic XFS. Owner records for data extents are inserted when the
31 * extent is mapped and removed when an extent is unmapped.  Owner records for
32 * all other block types (i.e. metadata) are inserted when an extent is
33 * allocated and removed when an extent is freed. There can only be one owner
34 * of a metadata extent, usually an inode or some other metadata structure like
35 * an AG btree.
36 *
37 * The rmap btree is part of the free space management, so blocks for the tree
38 * are sourced from the agfl. Hence we need transaction reservation support for
39 * this tree so that the freelist is always large enough. This also impacts on
40 * the minimum space we need to leave free in the AG.
41 *
42 * The tree is ordered by [ag block, owner, offset]. This is a large key size,
43 * but it is the only way to enforce unique keys when a block can be owned by
44 * multiple files at any offset. There's no need to order/search by extent
45 * size for online updating/management of the tree. It is intended that most
46 * reverse lookups will be to find the owner(s) of a particular block, or to
47 * try to recover tree and file data from corrupt primary metadata.
48 */
49
50static struct xfs_btree_cur *
51xfs_rmapbt_dup_cursor(
52	struct xfs_btree_cur	*cur)
53{
54	return xfs_rmapbt_init_cursor(cur->bc_mp, cur->bc_tp,
55			cur->bc_ag.agbp, cur->bc_ag.agno);
56}
57
58STATIC void
59xfs_rmapbt_set_root(
60	struct xfs_btree_cur	*cur,
61	union xfs_btree_ptr	*ptr,
62	int			inc)
63{
64	struct xfs_buf		*agbp = cur->bc_ag.agbp;
65	struct xfs_agf		*agf = agbp->b_addr;
66	int			btnum = cur->bc_btnum;
67	struct xfs_perag	*pag = agbp->b_pag;
68
69	ASSERT(ptr->s != 0);
70
71	agf->agf_roots[btnum] = ptr->s;
72	be32_add_cpu(&agf->agf_levels[btnum], inc);
73	pag->pagf_levels[btnum] += inc;
74
75	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS);
76}
77
78STATIC int
79xfs_rmapbt_alloc_block(
80	struct xfs_btree_cur	*cur,
81	union xfs_btree_ptr	*start,
82	union xfs_btree_ptr	*new,
83	int			*stat)
84{
85	struct xfs_buf		*agbp = cur->bc_ag.agbp;
86	struct xfs_agf		*agf = agbp->b_addr;
87	int			error;
88	xfs_agblock_t		bno;
89
90	/* Allocate the new block from the freelist. If we can't, give up.  */
91	error = xfs_alloc_get_freelist(cur->bc_tp, cur->bc_ag.agbp,
92				       &bno, 1);
93	if (error)
94		return error;
95
96	trace_xfs_rmapbt_alloc_block(cur->bc_mp, cur->bc_ag.agno,
97			bno, 1);
98	if (bno == NULLAGBLOCK) {
99		*stat = 0;
100		return 0;
101	}
102
103	xfs_extent_busy_reuse(cur->bc_mp, cur->bc_ag.agno, bno, 1,
104			false);
105
106	xfs_trans_agbtree_delta(cur->bc_tp, 1);
107	new->s = cpu_to_be32(bno);
108	be32_add_cpu(&agf->agf_rmap_blocks, 1);
109	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
110
111	xfs_ag_resv_rmapbt_alloc(cur->bc_mp, cur->bc_ag.agno);
112
113	*stat = 1;
114	return 0;
115}
116
117STATIC int
118xfs_rmapbt_free_block(
119	struct xfs_btree_cur	*cur,
120	struct xfs_buf		*bp)
121{
122	struct xfs_buf		*agbp = cur->bc_ag.agbp;
123	struct xfs_agf		*agf = agbp->b_addr;
124	struct xfs_perag	*pag;
125	xfs_agblock_t		bno;
126	int			error;
127
128	bno = xfs_daddr_to_agbno(cur->bc_mp, XFS_BUF_ADDR(bp));
129	trace_xfs_rmapbt_free_block(cur->bc_mp, cur->bc_ag.agno,
130			bno, 1);
131	be32_add_cpu(&agf->agf_rmap_blocks, -1);
132	xfs_alloc_log_agf(cur->bc_tp, agbp, XFS_AGF_RMAP_BLOCKS);
133	error = xfs_alloc_put_freelist(cur->bc_tp, agbp, NULL, bno, 1);
134	if (error)
135		return error;
136
137	xfs_extent_busy_insert(cur->bc_tp, be32_to_cpu(agf->agf_seqno), bno, 1,
138			      XFS_EXTENT_BUSY_SKIP_DISCARD);
139	xfs_trans_agbtree_delta(cur->bc_tp, -1);
140
141	pag = cur->bc_ag.agbp->b_pag;
142	xfs_ag_resv_free_extent(pag, XFS_AG_RESV_RMAPBT, NULL, 1);
143	return 0;
144}
145
146STATIC int
147xfs_rmapbt_get_minrecs(
148	struct xfs_btree_cur	*cur,
149	int			level)
150{
151	return cur->bc_mp->m_rmap_mnr[level != 0];
152}
153
154STATIC int
155xfs_rmapbt_get_maxrecs(
156	struct xfs_btree_cur	*cur,
157	int			level)
158{
159	return cur->bc_mp->m_rmap_mxr[level != 0];
160}
161
162STATIC void
163xfs_rmapbt_init_key_from_rec(
164	union xfs_btree_key	*key,
165	union xfs_btree_rec	*rec)
166{
167	key->rmap.rm_startblock = rec->rmap.rm_startblock;
168	key->rmap.rm_owner = rec->rmap.rm_owner;
169	key->rmap.rm_offset = rec->rmap.rm_offset;
170}
171
172/*
173 * The high key for a reverse mapping record can be computed by shifting
174 * the startblock and offset to the highest value that would still map
175 * to that record.  In practice this means that we add blockcount-1 to
176 * the startblock for all records, and if the record is for a data/attr
177 * fork mapping, we add blockcount-1 to the offset too.
178 */
179STATIC void
180xfs_rmapbt_init_high_key_from_rec(
181	union xfs_btree_key	*key,
182	union xfs_btree_rec	*rec)
183{
184	uint64_t		off;
185	int			adj;
186
187	adj = be32_to_cpu(rec->rmap.rm_blockcount) - 1;
188
189	key->rmap.rm_startblock = rec->rmap.rm_startblock;
190	be32_add_cpu(&key->rmap.rm_startblock, adj);
191	key->rmap.rm_owner = rec->rmap.rm_owner;
192	key->rmap.rm_offset = rec->rmap.rm_offset;
193	if (XFS_RMAP_NON_INODE_OWNER(be64_to_cpu(rec->rmap.rm_owner)) ||
194	    XFS_RMAP_IS_BMBT_BLOCK(be64_to_cpu(rec->rmap.rm_offset)))
195		return;
196	off = be64_to_cpu(key->rmap.rm_offset);
197	off = (XFS_RMAP_OFF(off) + adj) | (off & ~XFS_RMAP_OFF_MASK);
198	key->rmap.rm_offset = cpu_to_be64(off);
199}
200
201STATIC void
202xfs_rmapbt_init_rec_from_cur(
203	struct xfs_btree_cur	*cur,
204	union xfs_btree_rec	*rec)
205{
206	rec->rmap.rm_startblock = cpu_to_be32(cur->bc_rec.r.rm_startblock);
207	rec->rmap.rm_blockcount = cpu_to_be32(cur->bc_rec.r.rm_blockcount);
208	rec->rmap.rm_owner = cpu_to_be64(cur->bc_rec.r.rm_owner);
209	rec->rmap.rm_offset = cpu_to_be64(
210			xfs_rmap_irec_offset_pack(&cur->bc_rec.r));
211}
212
213STATIC void
214xfs_rmapbt_init_ptr_from_cur(
215	struct xfs_btree_cur	*cur,
216	union xfs_btree_ptr	*ptr)
217{
218	struct xfs_agf		*agf = cur->bc_ag.agbp->b_addr;
219
220	ASSERT(cur->bc_ag.agno == be32_to_cpu(agf->agf_seqno));
221
222	ptr->s = agf->agf_roots[cur->bc_btnum];
223}
224
225STATIC int64_t
226xfs_rmapbt_key_diff(
227	struct xfs_btree_cur	*cur,
228	union xfs_btree_key	*key)
229{
230	struct xfs_rmap_irec	*rec = &cur->bc_rec.r;
231	struct xfs_rmap_key	*kp = &key->rmap;
232	__u64			x, y;
233	int64_t			d;
234
235	d = (int64_t)be32_to_cpu(kp->rm_startblock) - rec->rm_startblock;
236	if (d)
237		return d;
238
239	x = be64_to_cpu(kp->rm_owner);
240	y = rec->rm_owner;
241	if (x > y)
242		return 1;
243	else if (y > x)
244		return -1;
245
246	x = XFS_RMAP_OFF(be64_to_cpu(kp->rm_offset));
247	y = rec->rm_offset;
248	if (x > y)
249		return 1;
250	else if (y > x)
251		return -1;
252	return 0;
253}
254
255STATIC int64_t
256xfs_rmapbt_diff_two_keys(
257	struct xfs_btree_cur	*cur,
258	union xfs_btree_key	*k1,
259	union xfs_btree_key	*k2)
260{
261	struct xfs_rmap_key	*kp1 = &k1->rmap;
262	struct xfs_rmap_key	*kp2 = &k2->rmap;
263	int64_t			d;
264	__u64			x, y;
265
266	d = (int64_t)be32_to_cpu(kp1->rm_startblock) -
267		       be32_to_cpu(kp2->rm_startblock);
268	if (d)
269		return d;
270
271	x = be64_to_cpu(kp1->rm_owner);
272	y = be64_to_cpu(kp2->rm_owner);
273	if (x > y)
274		return 1;
275	else if (y > x)
276		return -1;
277
278	x = XFS_RMAP_OFF(be64_to_cpu(kp1->rm_offset));
279	y = XFS_RMAP_OFF(be64_to_cpu(kp2->rm_offset));
280	if (x > y)
281		return 1;
282	else if (y > x)
283		return -1;
284	return 0;
285}
286
287static xfs_failaddr_t
288xfs_rmapbt_verify(
289	struct xfs_buf		*bp)
290{
291	struct xfs_mount	*mp = bp->b_mount;
292	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
293	struct xfs_perag	*pag = bp->b_pag;
294	xfs_failaddr_t		fa;
295	unsigned int		level;
296
297	/*
298	 * magic number and level verification
299	 *
300	 * During growfs operations, we can't verify the exact level or owner as
301	 * the perag is not fully initialised and hence not attached to the
302	 * buffer.  In this case, check against the maximum tree depth.
303	 *
304	 * Similarly, during log recovery we will have a perag structure
305	 * attached, but the agf information will not yet have been initialised
306	 * from the on disk AGF. Again, we can only check against maximum limits
307	 * in this case.
308	 */
309	if (!xfs_verify_magic(bp, block->bb_magic))
310		return __this_address;
311
312	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
313		return __this_address;
314	fa = xfs_btree_sblock_v5hdr_verify(bp);
315	if (fa)
316		return fa;
317
318	level = be16_to_cpu(block->bb_level);
319	if (pag && pag->pagf_init) {
320		if (level >= pag->pagf_levels[XFS_BTNUM_RMAPi])
321			return __this_address;
322	} else if (level >= mp->m_rmap_maxlevels)
323		return __this_address;
324
325	return xfs_btree_sblock_verify(bp, mp->m_rmap_mxr[level != 0]);
326}
327
328static void
329xfs_rmapbt_read_verify(
330	struct xfs_buf	*bp)
331{
332	xfs_failaddr_t	fa;
333
334	if (!xfs_btree_sblock_verify_crc(bp))
335		xfs_verifier_error(bp, -EFSBADCRC, __this_address);
336	else {
337		fa = xfs_rmapbt_verify(bp);
338		if (fa)
339			xfs_verifier_error(bp, -EFSCORRUPTED, fa);
340	}
341
342	if (bp->b_error)
343		trace_xfs_btree_corrupt(bp, _RET_IP_);
344}
345
346static void
347xfs_rmapbt_write_verify(
348	struct xfs_buf	*bp)
349{
350	xfs_failaddr_t	fa;
351
352	fa = xfs_rmapbt_verify(bp);
353	if (fa) {
354		trace_xfs_btree_corrupt(bp, _RET_IP_);
355		xfs_verifier_error(bp, -EFSCORRUPTED, fa);
356		return;
357	}
358	xfs_btree_sblock_calc_crc(bp);
359
360}
361
362const struct xfs_buf_ops xfs_rmapbt_buf_ops = {
363	.name			= "xfs_rmapbt",
364	.magic			= { 0, cpu_to_be32(XFS_RMAP_CRC_MAGIC) },
365	.verify_read		= xfs_rmapbt_read_verify,
366	.verify_write		= xfs_rmapbt_write_verify,
367	.verify_struct		= xfs_rmapbt_verify,
368};
369
370STATIC int
371xfs_rmapbt_keys_inorder(
372	struct xfs_btree_cur	*cur,
373	union xfs_btree_key	*k1,
374	union xfs_btree_key	*k2)
375{
376	uint32_t		x;
377	uint32_t		y;
378	uint64_t		a;
379	uint64_t		b;
380
381	x = be32_to_cpu(k1->rmap.rm_startblock);
382	y = be32_to_cpu(k2->rmap.rm_startblock);
383	if (x < y)
384		return 1;
385	else if (x > y)
386		return 0;
387	a = be64_to_cpu(k1->rmap.rm_owner);
388	b = be64_to_cpu(k2->rmap.rm_owner);
389	if (a < b)
390		return 1;
391	else if (a > b)
392		return 0;
393	a = XFS_RMAP_OFF(be64_to_cpu(k1->rmap.rm_offset));
394	b = XFS_RMAP_OFF(be64_to_cpu(k2->rmap.rm_offset));
395	if (a <= b)
396		return 1;
397	return 0;
398}
399
400STATIC int
401xfs_rmapbt_recs_inorder(
402	struct xfs_btree_cur	*cur,
403	union xfs_btree_rec	*r1,
404	union xfs_btree_rec	*r2)
405{
406	uint32_t		x;
407	uint32_t		y;
408	uint64_t		a;
409	uint64_t		b;
410
411	x = be32_to_cpu(r1->rmap.rm_startblock);
412	y = be32_to_cpu(r2->rmap.rm_startblock);
413	if (x < y)
414		return 1;
415	else if (x > y)
416		return 0;
417	a = be64_to_cpu(r1->rmap.rm_owner);
418	b = be64_to_cpu(r2->rmap.rm_owner);
419	if (a < b)
420		return 1;
421	else if (a > b)
422		return 0;
423	a = XFS_RMAP_OFF(be64_to_cpu(r1->rmap.rm_offset));
424	b = XFS_RMAP_OFF(be64_to_cpu(r2->rmap.rm_offset));
425	if (a <= b)
426		return 1;
427	return 0;
428}
429
430static const struct xfs_btree_ops xfs_rmapbt_ops = {
431	.rec_len		= sizeof(struct xfs_rmap_rec),
432	.key_len		= 2 * sizeof(struct xfs_rmap_key),
433
434	.dup_cursor		= xfs_rmapbt_dup_cursor,
435	.set_root		= xfs_rmapbt_set_root,
436	.alloc_block		= xfs_rmapbt_alloc_block,
437	.free_block		= xfs_rmapbt_free_block,
438	.get_minrecs		= xfs_rmapbt_get_minrecs,
439	.get_maxrecs		= xfs_rmapbt_get_maxrecs,
440	.init_key_from_rec	= xfs_rmapbt_init_key_from_rec,
441	.init_high_key_from_rec	= xfs_rmapbt_init_high_key_from_rec,
442	.init_rec_from_cur	= xfs_rmapbt_init_rec_from_cur,
443	.init_ptr_from_cur	= xfs_rmapbt_init_ptr_from_cur,
444	.key_diff		= xfs_rmapbt_key_diff,
445	.buf_ops		= &xfs_rmapbt_buf_ops,
446	.diff_two_keys		= xfs_rmapbt_diff_two_keys,
447	.keys_inorder		= xfs_rmapbt_keys_inorder,
448	.recs_inorder		= xfs_rmapbt_recs_inorder,
449};
450
451static struct xfs_btree_cur *
452xfs_rmapbt_init_common(
453	struct xfs_mount	*mp,
454	struct xfs_trans	*tp,
455	xfs_agnumber_t		agno)
456{
457	struct xfs_btree_cur	*cur;
458
459	cur = kmem_cache_zalloc(xfs_btree_cur_zone, GFP_NOFS | __GFP_NOFAIL);
460	cur->bc_tp = tp;
461	cur->bc_mp = mp;
462	/* Overlapping btree; 2 keys per pointer. */
463	cur->bc_btnum = XFS_BTNUM_RMAP;
464	cur->bc_flags = XFS_BTREE_CRC_BLOCKS | XFS_BTREE_OVERLAPPING;
465	cur->bc_blocklog = mp->m_sb.sb_blocklog;
466	cur->bc_statoff = XFS_STATS_CALC_INDEX(xs_rmap_2);
467	cur->bc_ag.agno = agno;
468	cur->bc_ops = &xfs_rmapbt_ops;
469
470	return cur;
471}
472
473/* Create a new reverse mapping btree cursor. */
474struct xfs_btree_cur *
475xfs_rmapbt_init_cursor(
476	struct xfs_mount	*mp,
477	struct xfs_trans	*tp,
478	struct xfs_buf		*agbp,
479	xfs_agnumber_t		agno)
480{
481	struct xfs_agf		*agf = agbp->b_addr;
482	struct xfs_btree_cur	*cur;
483
484	cur = xfs_rmapbt_init_common(mp, tp, agno);
485	cur->bc_nlevels = be32_to_cpu(agf->agf_levels[XFS_BTNUM_RMAP]);
486	cur->bc_ag.agbp = agbp;
487	return cur;
488}
489
490/* Create a new reverse mapping btree cursor with a fake root for staging. */
491struct xfs_btree_cur *
492xfs_rmapbt_stage_cursor(
493	struct xfs_mount	*mp,
494	struct xbtree_afakeroot	*afake,
495	xfs_agnumber_t		agno)
496{
497	struct xfs_btree_cur	*cur;
498
499	cur = xfs_rmapbt_init_common(mp, NULL, agno);
500	xfs_btree_stage_afakeroot(cur, afake);
501	return cur;
502}
503
504/*
505 * Install a new reverse mapping btree root.  Caller is responsible for
506 * invalidating and freeing the old btree blocks.
507 */
508void
509xfs_rmapbt_commit_staged_btree(
510	struct xfs_btree_cur	*cur,
511	struct xfs_trans	*tp,
512	struct xfs_buf		*agbp)
513{
514	struct xfs_agf		*agf = agbp->b_addr;
515	struct xbtree_afakeroot	*afake = cur->bc_ag.afake;
516
517	ASSERT(cur->bc_flags & XFS_BTREE_STAGING);
518
519	agf->agf_roots[cur->bc_btnum] = cpu_to_be32(afake->af_root);
520	agf->agf_levels[cur->bc_btnum] = cpu_to_be32(afake->af_levels);
521	agf->agf_rmap_blocks = cpu_to_be32(afake->af_blocks);
522	xfs_alloc_log_agf(tp, agbp, XFS_AGF_ROOTS | XFS_AGF_LEVELS |
523				    XFS_AGF_RMAP_BLOCKS);
524	xfs_btree_commit_afakeroot(cur, tp, agbp, &xfs_rmapbt_ops);
525}
526
527/*
528 * Calculate number of records in an rmap btree block.
529 */
530int
531xfs_rmapbt_maxrecs(
532	int			blocklen,
533	int			leaf)
534{
535	blocklen -= XFS_RMAP_BLOCK_LEN;
536
537	if (leaf)
538		return blocklen / sizeof(struct xfs_rmap_rec);
539	return blocklen /
540		(2 * sizeof(struct xfs_rmap_key) + sizeof(xfs_rmap_ptr_t));
541}
542
543/* Compute the maximum height of an rmap btree. */
544void
545xfs_rmapbt_compute_maxlevels(
546	struct xfs_mount		*mp)
547{
548	/*
549	 * On a non-reflink filesystem, the maximum number of rmap
550	 * records is the number of blocks in the AG, hence the max
551	 * rmapbt height is log_$maxrecs($agblocks).  However, with
552	 * reflink each AG block can have up to 2^32 (per the refcount
553	 * record format) owners, which means that theoretically we
554	 * could face up to 2^64 rmap records.
555	 *
556	 * That effectively means that the max rmapbt height must be
557	 * XFS_BTREE_MAXLEVELS.  "Fortunately" we'll run out of AG
558	 * blocks to feed the rmapbt long before the rmapbt reaches
559	 * maximum height.  The reflink code uses ag_resv_critical to
560	 * disallow reflinking when less than 10% of the per-AG metadata
561	 * block reservation since the fallback is a regular file copy.
562	 */
563	if (xfs_sb_version_hasreflink(&mp->m_sb))
564		mp->m_rmap_maxlevels = XFS_BTREE_MAXLEVELS;
565	else
566		mp->m_rmap_maxlevels = xfs_btree_compute_maxlevels(
567				mp->m_rmap_mnr, mp->m_sb.sb_agblocks);
568}
569
570/* Calculate the refcount btree size for some records. */
571xfs_extlen_t
572xfs_rmapbt_calc_size(
573	struct xfs_mount	*mp,
574	unsigned long long	len)
575{
576	return xfs_btree_calc_size(mp->m_rmap_mnr, len);
577}
578
579/*
580 * Calculate the maximum refcount btree size.
581 */
582xfs_extlen_t
583xfs_rmapbt_max_size(
584	struct xfs_mount	*mp,
585	xfs_agblock_t		agblocks)
586{
587	/* Bail out if we're uninitialized, which can happen in mkfs. */
588	if (mp->m_rmap_mxr[0] == 0)
589		return 0;
590
591	return xfs_rmapbt_calc_size(mp, agblocks);
592}
593
594/*
595 * Figure out how many blocks to reserve and how many are used by this btree.
596 */
597int
598xfs_rmapbt_calc_reserves(
599	struct xfs_mount	*mp,
600	struct xfs_trans	*tp,
601	xfs_agnumber_t		agno,
602	xfs_extlen_t		*ask,
603	xfs_extlen_t		*used)
604{
605	struct xfs_buf		*agbp;
606	struct xfs_agf		*agf;
607	xfs_agblock_t		agblocks;
608	xfs_extlen_t		tree_len;
609	int			error;
610
611	if (!xfs_sb_version_hasrmapbt(&mp->m_sb))
612		return 0;
613
614	error = xfs_alloc_read_agf(mp, tp, agno, 0, &agbp);
615	if (error)
616		return error;
617
618	agf = agbp->b_addr;
619	agblocks = be32_to_cpu(agf->agf_length);
620	tree_len = be32_to_cpu(agf->agf_rmap_blocks);
621	xfs_trans_brelse(tp, agbp);
622
623	/*
624	 * The log is permanently allocated, so the space it occupies will
625	 * never be available for the kinds of things that would require btree
626	 * expansion.  We therefore can pretend the space isn't there.
627	 */
628	if (mp->m_sb.sb_logstart &&
629	    XFS_FSB_TO_AGNO(mp, mp->m_sb.sb_logstart) == agno)
630		agblocks -= mp->m_sb.sb_logblocks;
631
632	/* Reserve 1% of the AG or enough for 1 block per record. */
633	*ask += max(agblocks / 100, xfs_rmapbt_max_size(mp, agblocks));
634	*used += tree_len;
635
636	return error;
637}
638