1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * Copyright (C) 2016 Oracle.  All Rights Reserved.
4 * Author: Darrick J. Wong <darrick.wong@oracle.com>
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_mount.h"
13#include "xfs_defer.h"
14#include "xfs_trans.h"
15#include "xfs_buf_item.h"
16#include "xfs_inode.h"
17#include "xfs_inode_item.h"
18#include "xfs_trace.h"
19#include "xfs_icache.h"
20#include "xfs_log.h"
21
22/*
23 * Deferred Operations in XFS
24 *
25 * Due to the way locking rules work in XFS, certain transactions (block
26 * mapping and unmapping, typically) have permanent reservations so that
27 * we can roll the transaction to adhere to AG locking order rules and
28 * to unlock buffers between metadata updates.  Prior to rmap/reflink,
29 * the mapping code had a mechanism to perform these deferrals for
30 * extents that were going to be freed; this code makes that facility
31 * more generic.
32 *
33 * When adding the reverse mapping and reflink features, it became
34 * necessary to perform complex remapping multi-transactions to comply
35 * with AG locking order rules, and to be able to spread a single
36 * refcount update operation (an operation on an n-block extent can
37 * update as many as n records!) among multiple transactions.  XFS can
38 * roll a transaction to facilitate this, but using this facility
39 * requires us to log "intent" items in case log recovery needs to
40 * redo the operation, and to log "done" items to indicate that redo
41 * is not necessary.
42 *
43 * Deferred work is tracked in xfs_defer_pending items.  Each pending
44 * item tracks one type of deferred work.  Incoming work items (which
45 * have not yet had an intent logged) are attached to a pending item
46 * on the dop_intake list, where they wait for the caller to finish
47 * the deferred operations.
48 *
49 * Finishing a set of deferred operations is an involved process.  To
50 * start, we define "rolling a deferred-op transaction" as follows:
51 *
52 * > For each xfs_defer_pending item on the dop_intake list,
53 *   - Sort the work items in AG order.  XFS locking
54 *     order rules require us to lock buffers in AG order.
55 *   - Create a log intent item for that type.
56 *   - Attach it to the pending item.
57 *   - Move the pending item from the dop_intake list to the
58 *     dop_pending list.
59 * > Roll the transaction.
60 *
61 * NOTE: To avoid exceeding the transaction reservation, we limit the
62 * number of items that we attach to a given xfs_defer_pending.
63 *
64 * The actual finishing process looks like this:
65 *
66 * > For each xfs_defer_pending in the dop_pending list,
67 *   - Roll the deferred-op transaction as above.
68 *   - Create a log done item for that type, and attach it to the
69 *     log intent item.
70 *   - For each work item attached to the log intent item,
71 *     * Perform the described action.
72 *     * Attach the work item to the log done item.
73 *     * If the result of doing the work was -EAGAIN, ->finish work
74 *       wants a new transaction.  See the "Requesting a Fresh
75 *       Transaction while Finishing Deferred Work" section below for
76 *       details.
77 *
78 * The key here is that we must log an intent item for all pending
79 * work items every time we roll the transaction, and that we must log
80 * a done item as soon as the work is completed.  With this mechanism
81 * we can perform complex remapping operations, chaining intent items
82 * as needed.
83 *
84 * Requesting a Fresh Transaction while Finishing Deferred Work
85 *
86 * If ->finish_item decides that it needs a fresh transaction to
87 * finish the work, it must ask its caller (xfs_defer_finish) for a
88 * continuation.  The most likely cause of this circumstance are the
89 * refcount adjust functions deciding that they've logged enough items
90 * to be at risk of exceeding the transaction reservation.
91 *
92 * To get a fresh transaction, we want to log the existing log done
93 * item to prevent the log intent item from replaying, immediately log
94 * a new log intent item with the unfinished work items, roll the
95 * transaction, and re-call ->finish_item wherever it left off.  The
96 * log done item and the new log intent item must be in the same
97 * transaction or atomicity cannot be guaranteed; defer_finish ensures
98 * that this happens.
99 *
100 * This requires some coordination between ->finish_item and
101 * defer_finish.  Upon deciding to request a new transaction,
102 * ->finish_item should update the current work item to reflect the
103 * unfinished work.  Next, it should reset the log done item's list
104 * count to the number of items finished, and return -EAGAIN.
105 * defer_finish sees the -EAGAIN, logs the new log intent item
106 * with the remaining work items, and leaves the xfs_defer_pending
107 * item at the head of the dop_work queue.  Then it rolls the
108 * transaction and picks up processing where it left off.  It is
109 * required that ->finish_item must be careful to leave enough
110 * transaction reservation to fit the new log intent item.
111 *
112 * This is an example of remapping the extent (E, E+B) into file X at
113 * offset A and dealing with the extent (C, C+B) already being mapped
114 * there:
115 * +-------------------------------------------------+
116 * | Unmap file X startblock C offset A length B     | t0
117 * | Intent to reduce refcount for extent (C, B)     |
118 * | Intent to remove rmap (X, C, A, B)              |
119 * | Intent to free extent (D, 1) (bmbt block)       |
120 * | Intent to map (X, A, B) at startblock E         |
121 * +-------------------------------------------------+
122 * | Map file X startblock E offset A length B       | t1
123 * | Done mapping (X, E, A, B)                       |
124 * | Intent to increase refcount for extent (E, B)   |
125 * | Intent to add rmap (X, E, A, B)                 |
126 * +-------------------------------------------------+
127 * | Reduce refcount for extent (C, B)               | t2
128 * | Done reducing refcount for extent (C, 9)        |
129 * | Intent to reduce refcount for extent (C+9, B-9) |
130 * | (ran out of space after 9 refcount updates)     |
131 * +-------------------------------------------------+
132 * | Reduce refcount for extent (C+9, B+9)           | t3
133 * | Done reducing refcount for extent (C+9, B-9)    |
134 * | Increase refcount for extent (E, B)             |
135 * | Done increasing refcount for extent (E, B)      |
136 * | Intent to free extent (C, B)                    |
137 * | Intent to free extent (F, 1) (refcountbt block) |
138 * | Intent to remove rmap (F, 1, REFC)              |
139 * +-------------------------------------------------+
140 * | Remove rmap (X, C, A, B)                        | t4
141 * | Done removing rmap (X, C, A, B)                 |
142 * | Add rmap (X, E, A, B)                           |
143 * | Done adding rmap (X, E, A, B)                   |
144 * | Remove rmap (F, 1, REFC)                        |
145 * | Done removing rmap (F, 1, REFC)                 |
146 * +-------------------------------------------------+
147 * | Free extent (C, B)                              | t5
148 * | Done freeing extent (C, B)                      |
149 * | Free extent (D, 1)                              |
150 * | Done freeing extent (D, 1)                      |
151 * | Free extent (F, 1)                              |
152 * | Done freeing extent (F, 1)                      |
153 * +-------------------------------------------------+
154 *
155 * If we should crash before t2 commits, log recovery replays
156 * the following intent items:
157 *
158 * - Intent to reduce refcount for extent (C, B)
159 * - Intent to remove rmap (X, C, A, B)
160 * - Intent to free extent (D, 1) (bmbt block)
161 * - Intent to increase refcount for extent (E, B)
162 * - Intent to add rmap (X, E, A, B)
163 *
164 * In the process of recovering, it should also generate and take care
165 * of these intent items:
166 *
167 * - Intent to free extent (C, B)
168 * - Intent to free extent (F, 1) (refcountbt block)
169 * - Intent to remove rmap (F, 1, REFC)
170 *
171 * Note that the continuation requested between t2 and t3 is likely to
172 * reoccur.
173 */
174
175static const struct xfs_defer_op_type *defer_op_types[] = {
176	[XFS_DEFER_OPS_TYPE_BMAP]	= &xfs_bmap_update_defer_type,
177	[XFS_DEFER_OPS_TYPE_REFCOUNT]	= &xfs_refcount_update_defer_type,
178	[XFS_DEFER_OPS_TYPE_RMAP]	= &xfs_rmap_update_defer_type,
179	[XFS_DEFER_OPS_TYPE_FREE]	= &xfs_extent_free_defer_type,
180	[XFS_DEFER_OPS_TYPE_AGFL_FREE]	= &xfs_agfl_free_defer_type,
181};
182
183static void
184xfs_defer_create_intent(
185	struct xfs_trans		*tp,
186	struct xfs_defer_pending	*dfp,
187	bool				sort)
188{
189	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
190
191	if (!dfp->dfp_intent)
192		dfp->dfp_intent = ops->create_intent(tp, &dfp->dfp_work,
193						     dfp->dfp_count, sort);
194}
195
196/*
197 * For each pending item in the intake list, log its intent item and the
198 * associated extents, then add the entire intake list to the end of
199 * the pending list.
200 */
201STATIC void
202xfs_defer_create_intents(
203	struct xfs_trans		*tp)
204{
205	struct xfs_defer_pending	*dfp;
206
207	list_for_each_entry(dfp, &tp->t_dfops, dfp_list) {
208		trace_xfs_defer_create_intent(tp->t_mountp, dfp);
209		xfs_defer_create_intent(tp, dfp, true);
210	}
211}
212
213/* Abort all the intents that were committed. */
214STATIC void
215xfs_defer_trans_abort(
216	struct xfs_trans		*tp,
217	struct list_head		*dop_pending)
218{
219	struct xfs_defer_pending	*dfp;
220	const struct xfs_defer_op_type	*ops;
221
222	trace_xfs_defer_trans_abort(tp, _RET_IP_);
223
224	/* Abort intent items that don't have a done item. */
225	list_for_each_entry(dfp, dop_pending, dfp_list) {
226		ops = defer_op_types[dfp->dfp_type];
227		trace_xfs_defer_pending_abort(tp->t_mountp, dfp);
228		if (dfp->dfp_intent && !dfp->dfp_done) {
229			ops->abort_intent(dfp->dfp_intent);
230			dfp->dfp_intent = NULL;
231		}
232	}
233}
234
235/* Roll a transaction so we can do some deferred op processing. */
236STATIC int
237xfs_defer_trans_roll(
238	struct xfs_trans		**tpp)
239{
240	struct xfs_trans		*tp = *tpp;
241	struct xfs_buf_log_item		*bli;
242	struct xfs_inode_log_item	*ili;
243	struct xfs_log_item		*lip;
244	struct xfs_buf			*bplist[XFS_DEFER_OPS_NR_BUFS];
245	struct xfs_inode		*iplist[XFS_DEFER_OPS_NR_INODES];
246	unsigned int			ordered = 0; /* bitmap */
247	int				bpcount = 0, ipcount = 0;
248	int				i;
249	int				error;
250
251	BUILD_BUG_ON(NBBY * sizeof(ordered) < XFS_DEFER_OPS_NR_BUFS);
252
253	list_for_each_entry(lip, &tp->t_items, li_trans) {
254		switch (lip->li_type) {
255		case XFS_LI_BUF:
256			bli = container_of(lip, struct xfs_buf_log_item,
257					   bli_item);
258			if (bli->bli_flags & XFS_BLI_HOLD) {
259				if (bpcount >= XFS_DEFER_OPS_NR_BUFS) {
260					ASSERT(0);
261					return -EFSCORRUPTED;
262				}
263				if (bli->bli_flags & XFS_BLI_ORDERED)
264					ordered |= (1U << bpcount);
265				else
266					xfs_trans_dirty_buf(tp, bli->bli_buf);
267				bplist[bpcount++] = bli->bli_buf;
268			}
269			break;
270		case XFS_LI_INODE:
271			ili = container_of(lip, struct xfs_inode_log_item,
272					   ili_item);
273			if (ili->ili_lock_flags == 0) {
274				if (ipcount >= XFS_DEFER_OPS_NR_INODES) {
275					ASSERT(0);
276					return -EFSCORRUPTED;
277				}
278				xfs_trans_log_inode(tp, ili->ili_inode,
279						    XFS_ILOG_CORE);
280				iplist[ipcount++] = ili->ili_inode;
281			}
282			break;
283		default:
284			break;
285		}
286	}
287
288	trace_xfs_defer_trans_roll(tp, _RET_IP_);
289
290	/*
291	 * Roll the transaction.  Rolling always given a new transaction (even
292	 * if committing the old one fails!) to hand back to the caller, so we
293	 * join the held resources to the new transaction so that we always
294	 * return with the held resources joined to @tpp, no matter what
295	 * happened.
296	 */
297	error = xfs_trans_roll(tpp);
298	tp = *tpp;
299
300	/* Rejoin the joined inodes. */
301	for (i = 0; i < ipcount; i++)
302		xfs_trans_ijoin(tp, iplist[i], 0);
303
304	/* Rejoin the buffers and dirty them so the log moves forward. */
305	for (i = 0; i < bpcount; i++) {
306		xfs_trans_bjoin(tp, bplist[i]);
307		if (ordered & (1U << i))
308			xfs_trans_ordered_buf(tp, bplist[i]);
309		xfs_trans_bhold(tp, bplist[i]);
310	}
311
312	if (error)
313		trace_xfs_defer_trans_roll_error(tp, error);
314	return error;
315}
316
317/*
318 * Free up any items left in the list.
319 */
320static void
321xfs_defer_cancel_list(
322	struct xfs_mount		*mp,
323	struct list_head		*dop_list)
324{
325	struct xfs_defer_pending	*dfp;
326	struct xfs_defer_pending	*pli;
327	struct list_head		*pwi;
328	struct list_head		*n;
329	const struct xfs_defer_op_type	*ops;
330
331	/*
332	 * Free the pending items.  Caller should already have arranged
333	 * for the intent items to be released.
334	 */
335	list_for_each_entry_safe(dfp, pli, dop_list, dfp_list) {
336		ops = defer_op_types[dfp->dfp_type];
337		trace_xfs_defer_cancel_list(mp, dfp);
338		list_del(&dfp->dfp_list);
339		list_for_each_safe(pwi, n, &dfp->dfp_work) {
340			list_del(pwi);
341			dfp->dfp_count--;
342			ops->cancel_item(pwi);
343		}
344		ASSERT(dfp->dfp_count == 0);
345		kmem_free(dfp);
346	}
347}
348
349/*
350 * Prevent a log intent item from pinning the tail of the log by logging a
351 * done item to release the intent item; and then log a new intent item.
352 * The caller should provide a fresh transaction and roll it after we're done.
353 */
354static int
355xfs_defer_relog(
356	struct xfs_trans		**tpp,
357	struct list_head		*dfops)
358{
359	struct xlog			*log = (*tpp)->t_mountp->m_log;
360	struct xfs_defer_pending	*dfp;
361	xfs_lsn_t			threshold_lsn = NULLCOMMITLSN;
362
363
364	ASSERT((*tpp)->t_flags & XFS_TRANS_PERM_LOG_RES);
365
366	list_for_each_entry(dfp, dfops, dfp_list) {
367		/*
368		 * If the log intent item for this deferred op is not a part of
369		 * the current log checkpoint, relog the intent item to keep
370		 * the log tail moving forward.  We're ok with this being racy
371		 * because an incorrect decision means we'll be a little slower
372		 * at pushing the tail.
373		 */
374		if (dfp->dfp_intent == NULL ||
375		    xfs_log_item_in_current_chkpt(dfp->dfp_intent))
376			continue;
377
378		/*
379		 * Figure out where we need the tail to be in order to maintain
380		 * the minimum required free space in the log.  Only sample
381		 * the log threshold once per call.
382		 */
383		if (threshold_lsn == NULLCOMMITLSN) {
384			threshold_lsn = xlog_grant_push_threshold(log, 0);
385			if (threshold_lsn == NULLCOMMITLSN)
386				break;
387		}
388		if (XFS_LSN_CMP(dfp->dfp_intent->li_lsn, threshold_lsn) >= 0)
389			continue;
390
391		trace_xfs_defer_relog_intent((*tpp)->t_mountp, dfp);
392		XFS_STATS_INC((*tpp)->t_mountp, defer_relog);
393		dfp->dfp_intent = xfs_trans_item_relog(dfp->dfp_intent, *tpp);
394	}
395
396	if ((*tpp)->t_flags & XFS_TRANS_DIRTY)
397		return xfs_defer_trans_roll(tpp);
398	return 0;
399}
400
401/*
402 * Log an intent-done item for the first pending intent, and finish the work
403 * items.
404 */
405static int
406xfs_defer_finish_one(
407	struct xfs_trans		*tp,
408	struct xfs_defer_pending	*dfp)
409{
410	const struct xfs_defer_op_type	*ops = defer_op_types[dfp->dfp_type];
411	struct xfs_btree_cur		*state = NULL;
412	struct list_head		*li, *n;
413	int				error;
414
415	trace_xfs_defer_pending_finish(tp->t_mountp, dfp);
416
417	dfp->dfp_done = ops->create_done(tp, dfp->dfp_intent, dfp->dfp_count);
418	list_for_each_safe(li, n, &dfp->dfp_work) {
419		list_del(li);
420		dfp->dfp_count--;
421		error = ops->finish_item(tp, dfp->dfp_done, li, &state);
422		if (error == -EAGAIN) {
423			/*
424			 * Caller wants a fresh transaction; put the work item
425			 * back on the list and log a new log intent item to
426			 * replace the old one.  See "Requesting a Fresh
427			 * Transaction while Finishing Deferred Work" above.
428			 */
429			list_add(li, &dfp->dfp_work);
430			dfp->dfp_count++;
431			dfp->dfp_done = NULL;
432			dfp->dfp_intent = NULL;
433			xfs_defer_create_intent(tp, dfp, false);
434		}
435
436		if (error)
437			goto out;
438	}
439
440	/* Done with the dfp, free it. */
441	list_del(&dfp->dfp_list);
442	kmem_free(dfp);
443out:
444	if (ops->finish_cleanup)
445		ops->finish_cleanup(tp, state, error);
446	return error;
447}
448
449/*
450 * Finish all the pending work.  This involves logging intent items for
451 * any work items that wandered in since the last transaction roll (if
452 * one has even happened), rolling the transaction, and finishing the
453 * work items in the first item on the logged-and-pending list.
454 *
455 * If an inode is provided, relog it to the new transaction.
456 */
457int
458xfs_defer_finish_noroll(
459	struct xfs_trans		**tp)
460{
461	struct xfs_defer_pending	*dfp;
462	int				error = 0;
463	LIST_HEAD(dop_pending);
464
465	ASSERT((*tp)->t_flags & XFS_TRANS_PERM_LOG_RES);
466
467	trace_xfs_defer_finish(*tp, _RET_IP_);
468
469	/* Until we run out of pending work to finish... */
470	while (!list_empty(&dop_pending) || !list_empty(&(*tp)->t_dfops)) {
471		/*
472		 * Deferred items that are created in the process of finishing
473		 * other deferred work items should be queued at the head of
474		 * the pending list, which puts them ahead of the deferred work
475		 * that was created by the caller.  This keeps the number of
476		 * pending work items to a minimum, which decreases the amount
477		 * of time that any one intent item can stick around in memory,
478		 * pinning the log tail.
479		 */
480		xfs_defer_create_intents(*tp);
481		list_splice_init(&(*tp)->t_dfops, &dop_pending);
482
483		error = xfs_defer_trans_roll(tp);
484		if (error)
485			goto out_shutdown;
486
487		/* Possibly relog intent items to keep the log moving. */
488		error = xfs_defer_relog(tp, &dop_pending);
489		if (error)
490			goto out_shutdown;
491
492		dfp = list_first_entry(&dop_pending, struct xfs_defer_pending,
493				       dfp_list);
494		error = xfs_defer_finish_one(*tp, dfp);
495		if (error && error != -EAGAIN)
496			goto out_shutdown;
497	}
498
499	trace_xfs_defer_finish_done(*tp, _RET_IP_);
500	return 0;
501
502out_shutdown:
503	xfs_defer_trans_abort(*tp, &dop_pending);
504	xfs_force_shutdown((*tp)->t_mountp, SHUTDOWN_CORRUPT_INCORE);
505	trace_xfs_defer_finish_error(*tp, error);
506	xfs_defer_cancel_list((*tp)->t_mountp, &dop_pending);
507	xfs_defer_cancel(*tp);
508	return error;
509}
510
511int
512xfs_defer_finish(
513	struct xfs_trans	**tp)
514{
515	int			error;
516
517	/*
518	 * Finish and roll the transaction once more to avoid returning to the
519	 * caller with a dirty transaction.
520	 */
521	error = xfs_defer_finish_noroll(tp);
522	if (error)
523		return error;
524	if ((*tp)->t_flags & XFS_TRANS_DIRTY) {
525		error = xfs_defer_trans_roll(tp);
526		if (error) {
527			xfs_force_shutdown((*tp)->t_mountp,
528					   SHUTDOWN_CORRUPT_INCORE);
529			return error;
530		}
531	}
532
533	/* Reset LOWMODE now that we've finished all the dfops. */
534	ASSERT(list_empty(&(*tp)->t_dfops));
535	(*tp)->t_flags &= ~XFS_TRANS_LOWMODE;
536	return 0;
537}
538
539void
540xfs_defer_cancel(
541	struct xfs_trans	*tp)
542{
543	struct xfs_mount	*mp = tp->t_mountp;
544
545	trace_xfs_defer_cancel(tp, _RET_IP_);
546	xfs_defer_cancel_list(mp, &tp->t_dfops);
547}
548
549/* Add an item for later deferred processing. */
550void
551xfs_defer_add(
552	struct xfs_trans		*tp,
553	enum xfs_defer_ops_type		type,
554	struct list_head		*li)
555{
556	struct xfs_defer_pending	*dfp = NULL;
557	const struct xfs_defer_op_type	*ops;
558
559	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
560	BUILD_BUG_ON(ARRAY_SIZE(defer_op_types) != XFS_DEFER_OPS_TYPE_MAX);
561
562	/*
563	 * Add the item to a pending item at the end of the intake list.
564	 * If the last pending item has the same type, reuse it.  Else,
565	 * create a new pending item at the end of the intake list.
566	 */
567	if (!list_empty(&tp->t_dfops)) {
568		dfp = list_last_entry(&tp->t_dfops,
569				struct xfs_defer_pending, dfp_list);
570		ops = defer_op_types[dfp->dfp_type];
571		if (dfp->dfp_type != type ||
572		    (ops->max_items && dfp->dfp_count >= ops->max_items))
573			dfp = NULL;
574	}
575	if (!dfp) {
576		dfp = kmem_alloc(sizeof(struct xfs_defer_pending),
577				KM_NOFS);
578		dfp->dfp_type = type;
579		dfp->dfp_intent = NULL;
580		dfp->dfp_done = NULL;
581		dfp->dfp_count = 0;
582		INIT_LIST_HEAD(&dfp->dfp_work);
583		list_add_tail(&dfp->dfp_list, &tp->t_dfops);
584	}
585
586	list_add_tail(li, &dfp->dfp_work);
587	dfp->dfp_count++;
588}
589
590/*
591 * Move deferred ops from one transaction to another and reset the source to
592 * initial state. This is primarily used to carry state forward across
593 * transaction rolls with pending dfops.
594 */
595void
596xfs_defer_move(
597	struct xfs_trans	*dtp,
598	struct xfs_trans	*stp)
599{
600	list_splice_init(&stp->t_dfops, &dtp->t_dfops);
601
602	/*
603	 * Low free space mode was historically controlled by a dfops field.
604	 * This meant that low mode state potentially carried across multiple
605	 * transaction rolls. Transfer low mode on a dfops move to preserve
606	 * that behavior.
607	 */
608	dtp->t_flags |= (stp->t_flags & XFS_TRANS_LOWMODE);
609	stp->t_flags &= ~XFS_TRANS_LOWMODE;
610}
611
612/*
613 * Prepare a chain of fresh deferred ops work items to be completed later.  Log
614 * recovery requires the ability to put off until later the actual finishing
615 * work so that it can process unfinished items recovered from the log in
616 * correct order.
617 *
618 * Create and log intent items for all the work that we're capturing so that we
619 * can be assured that the items will get replayed if the system goes down
620 * before log recovery gets a chance to finish the work it put off.  The entire
621 * deferred ops state is transferred to the capture structure and the
622 * transaction is then ready for the caller to commit it.  If there are no
623 * intent items to capture, this function returns NULL.
624 *
625 * If capture_ip is not NULL, the capture structure will obtain an extra
626 * reference to the inode.
627 */
628static struct xfs_defer_capture *
629xfs_defer_ops_capture(
630	struct xfs_trans		*tp,
631	struct xfs_inode		*capture_ip)
632{
633	struct xfs_defer_capture	*dfc;
634
635	if (list_empty(&tp->t_dfops))
636		return NULL;
637
638	/* Create an object to capture the defer ops. */
639	dfc = kmem_zalloc(sizeof(*dfc), KM_NOFS);
640	INIT_LIST_HEAD(&dfc->dfc_list);
641	INIT_LIST_HEAD(&dfc->dfc_dfops);
642
643	xfs_defer_create_intents(tp);
644
645	/* Move the dfops chain and transaction state to the capture struct. */
646	list_splice_init(&tp->t_dfops, &dfc->dfc_dfops);
647	dfc->dfc_tpflags = tp->t_flags & XFS_TRANS_LOWMODE;
648	tp->t_flags &= ~XFS_TRANS_LOWMODE;
649
650	/* Capture the remaining block reservations along with the dfops. */
651	dfc->dfc_blkres = tp->t_blk_res - tp->t_blk_res_used;
652	dfc->dfc_rtxres = tp->t_rtx_res - tp->t_rtx_res_used;
653
654	/* Preserve the log reservation size. */
655	dfc->dfc_logres = tp->t_log_res;
656
657	/*
658	 * Grab an extra reference to this inode and attach it to the capture
659	 * structure.
660	 */
661	if (capture_ip) {
662		ihold(VFS_I(capture_ip));
663		dfc->dfc_capture_ip = capture_ip;
664	}
665
666	return dfc;
667}
668
669/* Release all resources that we used to capture deferred ops. */
670void
671xfs_defer_ops_release(
672	struct xfs_mount		*mp,
673	struct xfs_defer_capture	*dfc)
674{
675	xfs_defer_cancel_list(mp, &dfc->dfc_dfops);
676	if (dfc->dfc_capture_ip)
677		xfs_irele(dfc->dfc_capture_ip);
678	kmem_free(dfc);
679}
680
681/*
682 * Capture any deferred ops and commit the transaction.  This is the last step
683 * needed to finish a log intent item that we recovered from the log.  If any
684 * of the deferred ops operate on an inode, the caller must pass in that inode
685 * so that the reference can be transferred to the capture structure.  The
686 * caller must hold ILOCK_EXCL on the inode, and must unlock it before calling
687 * xfs_defer_ops_continue.
688 */
689int
690xfs_defer_ops_capture_and_commit(
691	struct xfs_trans		*tp,
692	struct xfs_inode		*capture_ip,
693	struct list_head		*capture_list)
694{
695	struct xfs_mount		*mp = tp->t_mountp;
696	struct xfs_defer_capture	*dfc;
697	int				error;
698
699	ASSERT(!capture_ip || xfs_isilocked(capture_ip, XFS_ILOCK_EXCL));
700
701	/* If we don't capture anything, commit transaction and exit. */
702	dfc = xfs_defer_ops_capture(tp, capture_ip);
703	if (!dfc)
704		return xfs_trans_commit(tp);
705
706	/* Commit the transaction and add the capture structure to the list. */
707	error = xfs_trans_commit(tp);
708	if (error) {
709		xfs_defer_ops_release(mp, dfc);
710		return error;
711	}
712
713	list_add_tail(&dfc->dfc_list, capture_list);
714	return 0;
715}
716
717/*
718 * Attach a chain of captured deferred ops to a new transaction and free the
719 * capture structure.  If an inode was captured, it will be passed back to the
720 * caller with ILOCK_EXCL held and joined to the transaction with lockflags==0.
721 * The caller now owns the inode reference.
722 */
723void
724xfs_defer_ops_continue(
725	struct xfs_defer_capture	*dfc,
726	struct xfs_trans		*tp,
727	struct xfs_inode		**captured_ipp)
728{
729	ASSERT(tp->t_flags & XFS_TRANS_PERM_LOG_RES);
730	ASSERT(!(tp->t_flags & XFS_TRANS_DIRTY));
731
732	/* Lock and join the captured inode to the new transaction. */
733	if (dfc->dfc_capture_ip) {
734		xfs_ilock(dfc->dfc_capture_ip, XFS_ILOCK_EXCL);
735		xfs_trans_ijoin(tp, dfc->dfc_capture_ip, 0);
736	}
737	*captured_ipp = dfc->dfc_capture_ip;
738
739	/* Move captured dfops chain and state to the transaction. */
740	list_splice_init(&dfc->dfc_dfops, &tp->t_dfops);
741	tp->t_flags |= dfc->dfc_tpflags;
742
743	kmem_free(dfc);
744}
745