1// SPDX-License-Identifier: GPL-2.0 2/* 3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc. 4 * All Rights Reserved. 5 */ 6#include "xfs.h" 7#include "xfs_fs.h" 8#include "xfs_shared.h" 9#include "xfs_format.h" 10#include "xfs_log_format.h" 11#include "xfs_trans_resv.h" 12#include "xfs_bit.h" 13#include "xfs_mount.h" 14#include "xfs_inode.h" 15#include "xfs_trans.h" 16#include "xfs_buf_item.h" 17#include "xfs_btree.h" 18#include "xfs_errortag.h" 19#include "xfs_error.h" 20#include "xfs_trace.h" 21#include "xfs_alloc.h" 22#include "xfs_log.h" 23#include "xfs_btree_staging.h" 24 25/* 26 * Cursor allocation zone. 27 */ 28kmem_zone_t *xfs_btree_cur_zone; 29 30/* 31 * Btree magic numbers. 32 */ 33static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = { 34 { XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC, 35 XFS_FIBT_MAGIC, 0 }, 36 { XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC, 37 XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC, 38 XFS_REFC_CRC_MAGIC } 39}; 40 41uint32_t 42xfs_btree_magic( 43 int crc, 44 xfs_btnum_t btnum) 45{ 46 uint32_t magic = xfs_magics[crc][btnum]; 47 48 /* Ensure we asked for crc for crc-only magics. */ 49 ASSERT(magic != 0); 50 return magic; 51} 52 53/* 54 * Check a long btree block header. Return the address of the failing check, 55 * or NULL if everything is ok. 56 */ 57xfs_failaddr_t 58__xfs_btree_check_lblock( 59 struct xfs_btree_cur *cur, 60 struct xfs_btree_block *block, 61 int level, 62 struct xfs_buf *bp) 63{ 64 struct xfs_mount *mp = cur->bc_mp; 65 xfs_btnum_t btnum = cur->bc_btnum; 66 int crc = xfs_sb_version_hascrc(&mp->m_sb); 67 68 if (crc) { 69 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 70 return __this_address; 71 if (block->bb_u.l.bb_blkno != 72 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 73 return __this_address; 74 if (block->bb_u.l.bb_pad != cpu_to_be32(0)) 75 return __this_address; 76 } 77 78 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 79 return __this_address; 80 if (be16_to_cpu(block->bb_level) != level) 81 return __this_address; 82 if (be16_to_cpu(block->bb_numrecs) > 83 cur->bc_ops->get_maxrecs(cur, level)) 84 return __this_address; 85 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 86 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib), 87 level + 1)) 88 return __this_address; 89 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 90 !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib), 91 level + 1)) 92 return __this_address; 93 94 return NULL; 95} 96 97/* Check a long btree block header. */ 98static int 99xfs_btree_check_lblock( 100 struct xfs_btree_cur *cur, 101 struct xfs_btree_block *block, 102 int level, 103 struct xfs_buf *bp) 104{ 105 struct xfs_mount *mp = cur->bc_mp; 106 xfs_failaddr_t fa; 107 108 fa = __xfs_btree_check_lblock(cur, block, level, bp); 109 if (XFS_IS_CORRUPT(mp, fa != NULL) || 110 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) { 111 if (bp) 112 trace_xfs_btree_corrupt(bp, _RET_IP_); 113 return -EFSCORRUPTED; 114 } 115 return 0; 116} 117 118/* 119 * Check a short btree block header. Return the address of the failing check, 120 * or NULL if everything is ok. 121 */ 122xfs_failaddr_t 123__xfs_btree_check_sblock( 124 struct xfs_btree_cur *cur, 125 struct xfs_btree_block *block, 126 int level, 127 struct xfs_buf *bp) 128{ 129 struct xfs_mount *mp = cur->bc_mp; 130 xfs_btnum_t btnum = cur->bc_btnum; 131 int crc = xfs_sb_version_hascrc(&mp->m_sb); 132 133 if (crc) { 134 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 135 return __this_address; 136 if (block->bb_u.s.bb_blkno != 137 cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL)) 138 return __this_address; 139 } 140 141 if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum)) 142 return __this_address; 143 if (be16_to_cpu(block->bb_level) != level) 144 return __this_address; 145 if (be16_to_cpu(block->bb_numrecs) > 146 cur->bc_ops->get_maxrecs(cur, level)) 147 return __this_address; 148 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 149 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib), 150 level + 1)) 151 return __this_address; 152 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 153 !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib), 154 level + 1)) 155 return __this_address; 156 157 return NULL; 158} 159 160/* Check a short btree block header. */ 161STATIC int 162xfs_btree_check_sblock( 163 struct xfs_btree_cur *cur, 164 struct xfs_btree_block *block, 165 int level, 166 struct xfs_buf *bp) 167{ 168 struct xfs_mount *mp = cur->bc_mp; 169 xfs_failaddr_t fa; 170 171 fa = __xfs_btree_check_sblock(cur, block, level, bp); 172 if (XFS_IS_CORRUPT(mp, fa != NULL) || 173 XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) { 174 if (bp) 175 trace_xfs_btree_corrupt(bp, _RET_IP_); 176 return -EFSCORRUPTED; 177 } 178 return 0; 179} 180 181/* 182 * Debug routine: check that block header is ok. 183 */ 184int 185xfs_btree_check_block( 186 struct xfs_btree_cur *cur, /* btree cursor */ 187 struct xfs_btree_block *block, /* generic btree block pointer */ 188 int level, /* level of the btree block */ 189 struct xfs_buf *bp) /* buffer containing block, if any */ 190{ 191 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 192 return xfs_btree_check_lblock(cur, block, level, bp); 193 else 194 return xfs_btree_check_sblock(cur, block, level, bp); 195} 196 197/* Check that this long pointer is valid and points within the fs. */ 198bool 199xfs_btree_check_lptr( 200 struct xfs_btree_cur *cur, 201 xfs_fsblock_t fsbno, 202 int level) 203{ 204 if (level <= 0) 205 return false; 206 return xfs_verify_fsbno(cur->bc_mp, fsbno); 207} 208 209/* Check that this short pointer is valid and points within the AG. */ 210bool 211xfs_btree_check_sptr( 212 struct xfs_btree_cur *cur, 213 xfs_agblock_t agbno, 214 int level) 215{ 216 if (level <= 0) 217 return false; 218 return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno); 219} 220 221/* 222 * Check that a given (indexed) btree pointer at a certain level of a 223 * btree is valid and doesn't point past where it should. 224 */ 225static int 226xfs_btree_check_ptr( 227 struct xfs_btree_cur *cur, 228 union xfs_btree_ptr *ptr, 229 int index, 230 int level) 231{ 232 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 233 if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]), 234 level)) 235 return 0; 236 xfs_err(cur->bc_mp, 237"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.", 238 cur->bc_ino.ip->i_ino, 239 cur->bc_ino.whichfork, cur->bc_btnum, 240 level, index); 241 } else { 242 if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]), 243 level)) 244 return 0; 245 xfs_err(cur->bc_mp, 246"AG %u: Corrupt btree %d pointer at level %d index %d.", 247 cur->bc_ag.agno, cur->bc_btnum, 248 level, index); 249 } 250 251 return -EFSCORRUPTED; 252} 253 254#ifdef DEBUG 255# define xfs_btree_debug_check_ptr xfs_btree_check_ptr 256#else 257# define xfs_btree_debug_check_ptr(...) (0) 258#endif 259 260/* 261 * Calculate CRC on the whole btree block and stuff it into the 262 * long-form btree header. 263 * 264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 265 * it into the buffer so recovery knows what the last modification was that made 266 * it to disk. 267 */ 268void 269xfs_btree_lblock_calc_crc( 270 struct xfs_buf *bp) 271{ 272 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 273 struct xfs_buf_log_item *bip = bp->b_log_item; 274 275 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 276 return; 277 if (bip) 278 block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 279 xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 280} 281 282bool 283xfs_btree_lblock_verify_crc( 284 struct xfs_buf *bp) 285{ 286 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 287 struct xfs_mount *mp = bp->b_mount; 288 289 if (xfs_sb_version_hascrc(&mp->m_sb)) { 290 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn))) 291 return false; 292 return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF); 293 } 294 295 return true; 296} 297 298/* 299 * Calculate CRC on the whole btree block and stuff it into the 300 * short-form btree header. 301 * 302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put 303 * it into the buffer so recovery knows what the last modification was that made 304 * it to disk. 305 */ 306void 307xfs_btree_sblock_calc_crc( 308 struct xfs_buf *bp) 309{ 310 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 311 struct xfs_buf_log_item *bip = bp->b_log_item; 312 313 if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb)) 314 return; 315 if (bip) 316 block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn); 317 xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 318} 319 320bool 321xfs_btree_sblock_verify_crc( 322 struct xfs_buf *bp) 323{ 324 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 325 struct xfs_mount *mp = bp->b_mount; 326 327 if (xfs_sb_version_hascrc(&mp->m_sb)) { 328 if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn))) 329 return false; 330 return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF); 331 } 332 333 return true; 334} 335 336static int 337xfs_btree_free_block( 338 struct xfs_btree_cur *cur, 339 struct xfs_buf *bp) 340{ 341 int error; 342 343 error = cur->bc_ops->free_block(cur, bp); 344 if (!error) { 345 xfs_trans_binval(cur->bc_tp, bp); 346 XFS_BTREE_STATS_INC(cur, free); 347 } 348 return error; 349} 350 351/* 352 * Delete the btree cursor. 353 */ 354void 355xfs_btree_del_cursor( 356 struct xfs_btree_cur *cur, /* btree cursor */ 357 int error) /* del because of error */ 358{ 359 int i; /* btree level */ 360 361 /* 362 * Clear the buffer pointers and release the buffers. If we're doing 363 * this because of an error, inspect all of the entries in the bc_bufs 364 * array for buffers to be unlocked. This is because some of the btree 365 * code works from level n down to 0, and if we get an error along the 366 * way we won't have initialized all the entries down to 0. 367 */ 368 for (i = 0; i < cur->bc_nlevels; i++) { 369 if (cur->bc_bufs[i]) 370 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 371 else if (!error) 372 break; 373 } 374 375 /* 376 * If we are doing a BMBT update, the number of unaccounted blocks 377 * allocated during this cursor life time should be zero. If it's not 378 * zero, then we should be shut down or on our way to shutdown due to 379 * cancelling a dirty transaction on error. 380 */ 381 ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 || 382 XFS_FORCED_SHUTDOWN(cur->bc_mp) || error != 0); 383 if (unlikely(cur->bc_flags & XFS_BTREE_STAGING)) 384 kmem_free(cur->bc_ops); 385 kmem_cache_free(xfs_btree_cur_zone, cur); 386} 387 388/* 389 * Duplicate the btree cursor. 390 * Allocate a new one, copy the record, re-get the buffers. 391 */ 392int /* error */ 393xfs_btree_dup_cursor( 394 xfs_btree_cur_t *cur, /* input cursor */ 395 xfs_btree_cur_t **ncur) /* output cursor */ 396{ 397 xfs_buf_t *bp; /* btree block's buffer pointer */ 398 int error; /* error return value */ 399 int i; /* level number of btree block */ 400 xfs_mount_t *mp; /* mount structure for filesystem */ 401 xfs_btree_cur_t *new; /* new cursor value */ 402 xfs_trans_t *tp; /* transaction pointer, can be NULL */ 403 404 tp = cur->bc_tp; 405 mp = cur->bc_mp; 406 407 /* 408 * Allocate a new cursor like the old one. 409 */ 410 new = cur->bc_ops->dup_cursor(cur); 411 412 /* 413 * Copy the record currently in the cursor. 414 */ 415 new->bc_rec = cur->bc_rec; 416 417 /* 418 * For each level current, re-get the buffer and copy the ptr value. 419 */ 420 for (i = 0; i < new->bc_nlevels; i++) { 421 new->bc_ptrs[i] = cur->bc_ptrs[i]; 422 new->bc_ra[i] = cur->bc_ra[i]; 423 bp = cur->bc_bufs[i]; 424 if (bp) { 425 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, 426 XFS_BUF_ADDR(bp), mp->m_bsize, 427 0, &bp, 428 cur->bc_ops->buf_ops); 429 if (error) { 430 xfs_btree_del_cursor(new, error); 431 *ncur = NULL; 432 return error; 433 } 434 } 435 new->bc_bufs[i] = bp; 436 } 437 *ncur = new; 438 return 0; 439} 440 441/* 442 * XFS btree block layout and addressing: 443 * 444 * There are two types of blocks in the btree: leaf and non-leaf blocks. 445 * 446 * The leaf record start with a header then followed by records containing 447 * the values. A non-leaf block also starts with the same header, and 448 * then first contains lookup keys followed by an equal number of pointers 449 * to the btree blocks at the previous level. 450 * 451 * +--------+-------+-------+-------+-------+-------+-------+ 452 * Leaf: | header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N | 453 * +--------+-------+-------+-------+-------+-------+-------+ 454 * 455 * +--------+-------+-------+-------+-------+-------+-------+ 456 * Non-Leaf: | header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N | 457 * +--------+-------+-------+-------+-------+-------+-------+ 458 * 459 * The header is called struct xfs_btree_block for reasons better left unknown 460 * and comes in different versions for short (32bit) and long (64bit) block 461 * pointers. The record and key structures are defined by the btree instances 462 * and opaque to the btree core. The block pointers are simple disk endian 463 * integers, available in a short (32bit) and long (64bit) variant. 464 * 465 * The helpers below calculate the offset of a given record, key or pointer 466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given 467 * record, key or pointer (xfs_btree_*_addr). Note that all addressing 468 * inside the btree block is done using indices starting at one, not zero! 469 * 470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing 471 * overlapping intervals. In such a tree, records are still sorted lowest to 472 * highest and indexed by the smallest key value that refers to the record. 473 * However, nodes are different: each pointer has two associated keys -- one 474 * indexing the lowest key available in the block(s) below (the same behavior 475 * as the key in a regular btree) and another indexing the highest key 476 * available in the block(s) below. Because records are /not/ sorted by the 477 * highest key, all leaf block updates require us to compute the highest key 478 * that matches any record in the leaf and to recursively update the high keys 479 * in the nodes going further up in the tree, if necessary. Nodes look like 480 * this: 481 * 482 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 483 * Non-Leaf: | header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... | 484 * +--------+-----+-----+-----+-----+-----+-------+-------+-----+ 485 * 486 * To perform an interval query on an overlapped tree, perform the usual 487 * depth-first search and use the low and high keys to decide if we can skip 488 * that particular node. If a leaf node is reached, return the records that 489 * intersect the interval. Note that an interval query may return numerous 490 * entries. For a non-overlapped tree, simply search for the record associated 491 * with the lowest key and iterate forward until a non-matching record is 492 * found. Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by 493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in 494 * more detail. 495 * 496 * Why do we care about overlapping intervals? Let's say you have a bunch of 497 * reverse mapping records on a reflink filesystem: 498 * 499 * 1: +- file A startblock B offset C length D -----------+ 500 * 2: +- file E startblock F offset G length H --------------+ 501 * 3: +- file I startblock F offset J length K --+ 502 * 4: +- file L... --+ 503 * 504 * Now say we want to map block (B+D) into file A at offset (C+D). Ideally, 505 * we'd simply increment the length of record 1. But how do we find the record 506 * that ends at (B+D-1) (i.e. record 1)? A LE lookup of (B+D-1) would return 507 * record 3 because the keys are ordered first by startblock. An interval 508 * query would return records 1 and 2 because they both overlap (B+D-1), and 509 * from that we can pick out record 1 as the appropriate left neighbor. 510 * 511 * In the non-overlapped case you can do a LE lookup and decrement the cursor 512 * because a record's interval must end before the next record. 513 */ 514 515/* 516 * Return size of the btree block header for this btree instance. 517 */ 518static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur) 519{ 520 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 521 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 522 return XFS_BTREE_LBLOCK_CRC_LEN; 523 return XFS_BTREE_LBLOCK_LEN; 524 } 525 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) 526 return XFS_BTREE_SBLOCK_CRC_LEN; 527 return XFS_BTREE_SBLOCK_LEN; 528} 529 530/* 531 * Return size of btree block pointers for this btree instance. 532 */ 533static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur) 534{ 535 return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 536 sizeof(__be64) : sizeof(__be32); 537} 538 539/* 540 * Calculate offset of the n-th record in a btree block. 541 */ 542STATIC size_t 543xfs_btree_rec_offset( 544 struct xfs_btree_cur *cur, 545 int n) 546{ 547 return xfs_btree_block_len(cur) + 548 (n - 1) * cur->bc_ops->rec_len; 549} 550 551/* 552 * Calculate offset of the n-th key in a btree block. 553 */ 554STATIC size_t 555xfs_btree_key_offset( 556 struct xfs_btree_cur *cur, 557 int n) 558{ 559 return xfs_btree_block_len(cur) + 560 (n - 1) * cur->bc_ops->key_len; 561} 562 563/* 564 * Calculate offset of the n-th high key in a btree block. 565 */ 566STATIC size_t 567xfs_btree_high_key_offset( 568 struct xfs_btree_cur *cur, 569 int n) 570{ 571 return xfs_btree_block_len(cur) + 572 (n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2); 573} 574 575/* 576 * Calculate offset of the n-th block pointer in a btree block. 577 */ 578STATIC size_t 579xfs_btree_ptr_offset( 580 struct xfs_btree_cur *cur, 581 int n, 582 int level) 583{ 584 return xfs_btree_block_len(cur) + 585 cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len + 586 (n - 1) * xfs_btree_ptr_len(cur); 587} 588 589/* 590 * Return a pointer to the n-th record in the btree block. 591 */ 592union xfs_btree_rec * 593xfs_btree_rec_addr( 594 struct xfs_btree_cur *cur, 595 int n, 596 struct xfs_btree_block *block) 597{ 598 return (union xfs_btree_rec *) 599 ((char *)block + xfs_btree_rec_offset(cur, n)); 600} 601 602/* 603 * Return a pointer to the n-th key in the btree block. 604 */ 605union xfs_btree_key * 606xfs_btree_key_addr( 607 struct xfs_btree_cur *cur, 608 int n, 609 struct xfs_btree_block *block) 610{ 611 return (union xfs_btree_key *) 612 ((char *)block + xfs_btree_key_offset(cur, n)); 613} 614 615/* 616 * Return a pointer to the n-th high key in the btree block. 617 */ 618union xfs_btree_key * 619xfs_btree_high_key_addr( 620 struct xfs_btree_cur *cur, 621 int n, 622 struct xfs_btree_block *block) 623{ 624 return (union xfs_btree_key *) 625 ((char *)block + xfs_btree_high_key_offset(cur, n)); 626} 627 628/* 629 * Return a pointer to the n-th block pointer in the btree block. 630 */ 631union xfs_btree_ptr * 632xfs_btree_ptr_addr( 633 struct xfs_btree_cur *cur, 634 int n, 635 struct xfs_btree_block *block) 636{ 637 int level = xfs_btree_get_level(block); 638 639 ASSERT(block->bb_level != 0); 640 641 return (union xfs_btree_ptr *) 642 ((char *)block + xfs_btree_ptr_offset(cur, n, level)); 643} 644 645struct xfs_ifork * 646xfs_btree_ifork_ptr( 647 struct xfs_btree_cur *cur) 648{ 649 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 650 651 if (cur->bc_flags & XFS_BTREE_STAGING) 652 return cur->bc_ino.ifake->if_fork; 653 return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork); 654} 655 656/* 657 * Get the root block which is stored in the inode. 658 * 659 * For now this btree implementation assumes the btree root is always 660 * stored in the if_broot field of an inode fork. 661 */ 662STATIC struct xfs_btree_block * 663xfs_btree_get_iroot( 664 struct xfs_btree_cur *cur) 665{ 666 struct xfs_ifork *ifp = xfs_btree_ifork_ptr(cur); 667 668 return (struct xfs_btree_block *)ifp->if_broot; 669} 670 671/* 672 * Retrieve the block pointer from the cursor at the given level. 673 * This may be an inode btree root or from a buffer. 674 */ 675struct xfs_btree_block * /* generic btree block pointer */ 676xfs_btree_get_block( 677 struct xfs_btree_cur *cur, /* btree cursor */ 678 int level, /* level in btree */ 679 struct xfs_buf **bpp) /* buffer containing the block */ 680{ 681 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 682 (level == cur->bc_nlevels - 1)) { 683 *bpp = NULL; 684 return xfs_btree_get_iroot(cur); 685 } 686 687 *bpp = cur->bc_bufs[level]; 688 return XFS_BUF_TO_BLOCK(*bpp); 689} 690 691/* 692 * Change the cursor to point to the first record at the given level. 693 * Other levels are unaffected. 694 */ 695STATIC int /* success=1, failure=0 */ 696xfs_btree_firstrec( 697 xfs_btree_cur_t *cur, /* btree cursor */ 698 int level) /* level to change */ 699{ 700 struct xfs_btree_block *block; /* generic btree block pointer */ 701 xfs_buf_t *bp; /* buffer containing block */ 702 703 /* 704 * Get the block pointer for this level. 705 */ 706 block = xfs_btree_get_block(cur, level, &bp); 707 if (xfs_btree_check_block(cur, block, level, bp)) 708 return 0; 709 /* 710 * It's empty, there is no such record. 711 */ 712 if (!block->bb_numrecs) 713 return 0; 714 /* 715 * Set the ptr value to 1, that's the first record/key. 716 */ 717 cur->bc_ptrs[level] = 1; 718 return 1; 719} 720 721/* 722 * Change the cursor to point to the last record in the current block 723 * at the given level. Other levels are unaffected. 724 */ 725STATIC int /* success=1, failure=0 */ 726xfs_btree_lastrec( 727 xfs_btree_cur_t *cur, /* btree cursor */ 728 int level) /* level to change */ 729{ 730 struct xfs_btree_block *block; /* generic btree block pointer */ 731 xfs_buf_t *bp; /* buffer containing block */ 732 733 /* 734 * Get the block pointer for this level. 735 */ 736 block = xfs_btree_get_block(cur, level, &bp); 737 if (xfs_btree_check_block(cur, block, level, bp)) 738 return 0; 739 /* 740 * It's empty, there is no such record. 741 */ 742 if (!block->bb_numrecs) 743 return 0; 744 /* 745 * Set the ptr value to numrecs, that's the last record/key. 746 */ 747 cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs); 748 return 1; 749} 750 751/* 752 * Compute first and last byte offsets for the fields given. 753 * Interprets the offsets table, which contains struct field offsets. 754 */ 755void 756xfs_btree_offsets( 757 int64_t fields, /* bitmask of fields */ 758 const short *offsets, /* table of field offsets */ 759 int nbits, /* number of bits to inspect */ 760 int *first, /* output: first byte offset */ 761 int *last) /* output: last byte offset */ 762{ 763 int i; /* current bit number */ 764 int64_t imask; /* mask for current bit number */ 765 766 ASSERT(fields != 0); 767 /* 768 * Find the lowest bit, so the first byte offset. 769 */ 770 for (i = 0, imask = 1LL; ; i++, imask <<= 1) { 771 if (imask & fields) { 772 *first = offsets[i]; 773 break; 774 } 775 } 776 /* 777 * Find the highest bit, so the last byte offset. 778 */ 779 for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) { 780 if (imask & fields) { 781 *last = offsets[i + 1] - 1; 782 break; 783 } 784 } 785} 786 787/* 788 * Get a buffer for the block, return it read in. 789 * Long-form addressing. 790 */ 791int 792xfs_btree_read_bufl( 793 struct xfs_mount *mp, /* file system mount point */ 794 struct xfs_trans *tp, /* transaction pointer */ 795 xfs_fsblock_t fsbno, /* file system block number */ 796 struct xfs_buf **bpp, /* buffer for fsbno */ 797 int refval, /* ref count value for buffer */ 798 const struct xfs_buf_ops *ops) 799{ 800 struct xfs_buf *bp; /* return value */ 801 xfs_daddr_t d; /* real disk block address */ 802 int error; 803 804 if (!xfs_verify_fsbno(mp, fsbno)) 805 return -EFSCORRUPTED; 806 d = XFS_FSB_TO_DADDR(mp, fsbno); 807 error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d, 808 mp->m_bsize, 0, &bp, ops); 809 if (error) 810 return error; 811 if (bp) 812 xfs_buf_set_ref(bp, refval); 813 *bpp = bp; 814 return 0; 815} 816 817/* 818 * Read-ahead the block, don't wait for it, don't return a buffer. 819 * Long-form addressing. 820 */ 821/* ARGSUSED */ 822void 823xfs_btree_reada_bufl( 824 struct xfs_mount *mp, /* file system mount point */ 825 xfs_fsblock_t fsbno, /* file system block number */ 826 xfs_extlen_t count, /* count of filesystem blocks */ 827 const struct xfs_buf_ops *ops) 828{ 829 xfs_daddr_t d; 830 831 ASSERT(fsbno != NULLFSBLOCK); 832 d = XFS_FSB_TO_DADDR(mp, fsbno); 833 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 834} 835 836/* 837 * Read-ahead the block, don't wait for it, don't return a buffer. 838 * Short-form addressing. 839 */ 840/* ARGSUSED */ 841void 842xfs_btree_reada_bufs( 843 struct xfs_mount *mp, /* file system mount point */ 844 xfs_agnumber_t agno, /* allocation group number */ 845 xfs_agblock_t agbno, /* allocation group block number */ 846 xfs_extlen_t count, /* count of filesystem blocks */ 847 const struct xfs_buf_ops *ops) 848{ 849 xfs_daddr_t d; 850 851 ASSERT(agno != NULLAGNUMBER); 852 ASSERT(agbno != NULLAGBLOCK); 853 d = XFS_AGB_TO_DADDR(mp, agno, agbno); 854 xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops); 855} 856 857STATIC int 858xfs_btree_readahead_lblock( 859 struct xfs_btree_cur *cur, 860 int lr, 861 struct xfs_btree_block *block) 862{ 863 int rval = 0; 864 xfs_fsblock_t left = be64_to_cpu(block->bb_u.l.bb_leftsib); 865 xfs_fsblock_t right = be64_to_cpu(block->bb_u.l.bb_rightsib); 866 867 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) { 868 xfs_btree_reada_bufl(cur->bc_mp, left, 1, 869 cur->bc_ops->buf_ops); 870 rval++; 871 } 872 873 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) { 874 xfs_btree_reada_bufl(cur->bc_mp, right, 1, 875 cur->bc_ops->buf_ops); 876 rval++; 877 } 878 879 return rval; 880} 881 882STATIC int 883xfs_btree_readahead_sblock( 884 struct xfs_btree_cur *cur, 885 int lr, 886 struct xfs_btree_block *block) 887{ 888 int rval = 0; 889 xfs_agblock_t left = be32_to_cpu(block->bb_u.s.bb_leftsib); 890 xfs_agblock_t right = be32_to_cpu(block->bb_u.s.bb_rightsib); 891 892 893 if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) { 894 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno, 895 left, 1, cur->bc_ops->buf_ops); 896 rval++; 897 } 898 899 if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) { 900 xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno, 901 right, 1, cur->bc_ops->buf_ops); 902 rval++; 903 } 904 905 return rval; 906} 907 908/* 909 * Read-ahead btree blocks, at the given level. 910 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA. 911 */ 912STATIC int 913xfs_btree_readahead( 914 struct xfs_btree_cur *cur, /* btree cursor */ 915 int lev, /* level in btree */ 916 int lr) /* left/right bits */ 917{ 918 struct xfs_btree_block *block; 919 920 /* 921 * No readahead needed if we are at the root level and the 922 * btree root is stored in the inode. 923 */ 924 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 925 (lev == cur->bc_nlevels - 1)) 926 return 0; 927 928 if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev]) 929 return 0; 930 931 cur->bc_ra[lev] |= lr; 932 block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]); 933 934 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 935 return xfs_btree_readahead_lblock(cur, lr, block); 936 return xfs_btree_readahead_sblock(cur, lr, block); 937} 938 939STATIC int 940xfs_btree_ptr_to_daddr( 941 struct xfs_btree_cur *cur, 942 union xfs_btree_ptr *ptr, 943 xfs_daddr_t *daddr) 944{ 945 xfs_fsblock_t fsbno; 946 xfs_agblock_t agbno; 947 int error; 948 949 error = xfs_btree_check_ptr(cur, ptr, 0, 1); 950 if (error) 951 return error; 952 953 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 954 fsbno = be64_to_cpu(ptr->l); 955 *daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno); 956 } else { 957 agbno = be32_to_cpu(ptr->s); 958 *daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno, 959 agbno); 960 } 961 962 return 0; 963} 964 965/* 966 * Readahead @count btree blocks at the given @ptr location. 967 * 968 * We don't need to care about long or short form btrees here as we have a 969 * method of converting the ptr directly to a daddr available to us. 970 */ 971STATIC void 972xfs_btree_readahead_ptr( 973 struct xfs_btree_cur *cur, 974 union xfs_btree_ptr *ptr, 975 xfs_extlen_t count) 976{ 977 xfs_daddr_t daddr; 978 979 if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr)) 980 return; 981 xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr, 982 cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops); 983} 984 985/* 986 * Set the buffer for level "lev" in the cursor to bp, releasing 987 * any previous buffer. 988 */ 989STATIC void 990xfs_btree_setbuf( 991 xfs_btree_cur_t *cur, /* btree cursor */ 992 int lev, /* level in btree */ 993 xfs_buf_t *bp) /* new buffer to set */ 994{ 995 struct xfs_btree_block *b; /* btree block */ 996 997 if (cur->bc_bufs[lev]) 998 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]); 999 cur->bc_bufs[lev] = bp; 1000 cur->bc_ra[lev] = 0; 1001 1002 b = XFS_BUF_TO_BLOCK(bp); 1003 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1004 if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK)) 1005 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1006 if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK)) 1007 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1008 } else { 1009 if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK)) 1010 cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA; 1011 if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK)) 1012 cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA; 1013 } 1014} 1015 1016bool 1017xfs_btree_ptr_is_null( 1018 struct xfs_btree_cur *cur, 1019 union xfs_btree_ptr *ptr) 1020{ 1021 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1022 return ptr->l == cpu_to_be64(NULLFSBLOCK); 1023 else 1024 return ptr->s == cpu_to_be32(NULLAGBLOCK); 1025} 1026 1027void 1028xfs_btree_set_ptr_null( 1029 struct xfs_btree_cur *cur, 1030 union xfs_btree_ptr *ptr) 1031{ 1032 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1033 ptr->l = cpu_to_be64(NULLFSBLOCK); 1034 else 1035 ptr->s = cpu_to_be32(NULLAGBLOCK); 1036} 1037 1038/* 1039 * Get/set/init sibling pointers 1040 */ 1041void 1042xfs_btree_get_sibling( 1043 struct xfs_btree_cur *cur, 1044 struct xfs_btree_block *block, 1045 union xfs_btree_ptr *ptr, 1046 int lr) 1047{ 1048 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1049 1050 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1051 if (lr == XFS_BB_RIGHTSIB) 1052 ptr->l = block->bb_u.l.bb_rightsib; 1053 else 1054 ptr->l = block->bb_u.l.bb_leftsib; 1055 } else { 1056 if (lr == XFS_BB_RIGHTSIB) 1057 ptr->s = block->bb_u.s.bb_rightsib; 1058 else 1059 ptr->s = block->bb_u.s.bb_leftsib; 1060 } 1061} 1062 1063void 1064xfs_btree_set_sibling( 1065 struct xfs_btree_cur *cur, 1066 struct xfs_btree_block *block, 1067 union xfs_btree_ptr *ptr, 1068 int lr) 1069{ 1070 ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB); 1071 1072 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 1073 if (lr == XFS_BB_RIGHTSIB) 1074 block->bb_u.l.bb_rightsib = ptr->l; 1075 else 1076 block->bb_u.l.bb_leftsib = ptr->l; 1077 } else { 1078 if (lr == XFS_BB_RIGHTSIB) 1079 block->bb_u.s.bb_rightsib = ptr->s; 1080 else 1081 block->bb_u.s.bb_leftsib = ptr->s; 1082 } 1083} 1084 1085void 1086xfs_btree_init_block_int( 1087 struct xfs_mount *mp, 1088 struct xfs_btree_block *buf, 1089 xfs_daddr_t blkno, 1090 xfs_btnum_t btnum, 1091 __u16 level, 1092 __u16 numrecs, 1093 __u64 owner, 1094 unsigned int flags) 1095{ 1096 int crc = xfs_sb_version_hascrc(&mp->m_sb); 1097 __u32 magic = xfs_btree_magic(crc, btnum); 1098 1099 buf->bb_magic = cpu_to_be32(magic); 1100 buf->bb_level = cpu_to_be16(level); 1101 buf->bb_numrecs = cpu_to_be16(numrecs); 1102 1103 if (flags & XFS_BTREE_LONG_PTRS) { 1104 buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK); 1105 buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK); 1106 if (crc) { 1107 buf->bb_u.l.bb_blkno = cpu_to_be64(blkno); 1108 buf->bb_u.l.bb_owner = cpu_to_be64(owner); 1109 uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid); 1110 buf->bb_u.l.bb_pad = 0; 1111 buf->bb_u.l.bb_lsn = 0; 1112 } 1113 } else { 1114 /* owner is a 32 bit value on short blocks */ 1115 __u32 __owner = (__u32)owner; 1116 1117 buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK); 1118 buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK); 1119 if (crc) { 1120 buf->bb_u.s.bb_blkno = cpu_to_be64(blkno); 1121 buf->bb_u.s.bb_owner = cpu_to_be32(__owner); 1122 uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid); 1123 buf->bb_u.s.bb_lsn = 0; 1124 } 1125 } 1126} 1127 1128void 1129xfs_btree_init_block( 1130 struct xfs_mount *mp, 1131 struct xfs_buf *bp, 1132 xfs_btnum_t btnum, 1133 __u16 level, 1134 __u16 numrecs, 1135 __u64 owner) 1136{ 1137 xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1138 btnum, level, numrecs, owner, 0); 1139} 1140 1141void 1142xfs_btree_init_block_cur( 1143 struct xfs_btree_cur *cur, 1144 struct xfs_buf *bp, 1145 int level, 1146 int numrecs) 1147{ 1148 __u64 owner; 1149 1150 /* 1151 * we can pull the owner from the cursor right now as the different 1152 * owners align directly with the pointer size of the btree. This may 1153 * change in future, but is safe for current users of the generic btree 1154 * code. 1155 */ 1156 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1157 owner = cur->bc_ino.ip->i_ino; 1158 else 1159 owner = cur->bc_ag.agno; 1160 1161 xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn, 1162 cur->bc_btnum, level, numrecs, 1163 owner, cur->bc_flags); 1164} 1165 1166/* 1167 * Return true if ptr is the last record in the btree and 1168 * we need to track updates to this record. The decision 1169 * will be further refined in the update_lastrec method. 1170 */ 1171STATIC int 1172xfs_btree_is_lastrec( 1173 struct xfs_btree_cur *cur, 1174 struct xfs_btree_block *block, 1175 int level) 1176{ 1177 union xfs_btree_ptr ptr; 1178 1179 if (level > 0) 1180 return 0; 1181 if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE)) 1182 return 0; 1183 1184 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1185 if (!xfs_btree_ptr_is_null(cur, &ptr)) 1186 return 0; 1187 return 1; 1188} 1189 1190STATIC void 1191xfs_btree_buf_to_ptr( 1192 struct xfs_btree_cur *cur, 1193 struct xfs_buf *bp, 1194 union xfs_btree_ptr *ptr) 1195{ 1196 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 1197 ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp, 1198 XFS_BUF_ADDR(bp))); 1199 else { 1200 ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp, 1201 XFS_BUF_ADDR(bp))); 1202 } 1203} 1204 1205STATIC void 1206xfs_btree_set_refs( 1207 struct xfs_btree_cur *cur, 1208 struct xfs_buf *bp) 1209{ 1210 switch (cur->bc_btnum) { 1211 case XFS_BTNUM_BNO: 1212 case XFS_BTNUM_CNT: 1213 xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF); 1214 break; 1215 case XFS_BTNUM_INO: 1216 case XFS_BTNUM_FINO: 1217 xfs_buf_set_ref(bp, XFS_INO_BTREE_REF); 1218 break; 1219 case XFS_BTNUM_BMAP: 1220 xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF); 1221 break; 1222 case XFS_BTNUM_RMAP: 1223 xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF); 1224 break; 1225 case XFS_BTNUM_REFC: 1226 xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF); 1227 break; 1228 default: 1229 ASSERT(0); 1230 } 1231} 1232 1233int 1234xfs_btree_get_buf_block( 1235 struct xfs_btree_cur *cur, 1236 union xfs_btree_ptr *ptr, 1237 struct xfs_btree_block **block, 1238 struct xfs_buf **bpp) 1239{ 1240 struct xfs_mount *mp = cur->bc_mp; 1241 xfs_daddr_t d; 1242 int error; 1243 1244 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1245 if (error) 1246 return error; 1247 error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize, 1248 0, bpp); 1249 if (error) 1250 return error; 1251 1252 (*bpp)->b_ops = cur->bc_ops->buf_ops; 1253 *block = XFS_BUF_TO_BLOCK(*bpp); 1254 return 0; 1255} 1256 1257/* 1258 * Read in the buffer at the given ptr and return the buffer and 1259 * the block pointer within the buffer. 1260 */ 1261STATIC int 1262xfs_btree_read_buf_block( 1263 struct xfs_btree_cur *cur, 1264 union xfs_btree_ptr *ptr, 1265 int flags, 1266 struct xfs_btree_block **block, 1267 struct xfs_buf **bpp) 1268{ 1269 struct xfs_mount *mp = cur->bc_mp; 1270 xfs_daddr_t d; 1271 int error; 1272 1273 /* need to sort out how callers deal with failures first */ 1274 ASSERT(!(flags & XBF_TRYLOCK)); 1275 1276 error = xfs_btree_ptr_to_daddr(cur, ptr, &d); 1277 if (error) 1278 return error; 1279 error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d, 1280 mp->m_bsize, flags, bpp, 1281 cur->bc_ops->buf_ops); 1282 if (error) 1283 return error; 1284 1285 xfs_btree_set_refs(cur, *bpp); 1286 *block = XFS_BUF_TO_BLOCK(*bpp); 1287 return 0; 1288} 1289 1290/* 1291 * Copy keys from one btree block to another. 1292 */ 1293void 1294xfs_btree_copy_keys( 1295 struct xfs_btree_cur *cur, 1296 union xfs_btree_key *dst_key, 1297 union xfs_btree_key *src_key, 1298 int numkeys) 1299{ 1300 ASSERT(numkeys >= 0); 1301 memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len); 1302} 1303 1304/* 1305 * Copy records from one btree block to another. 1306 */ 1307STATIC void 1308xfs_btree_copy_recs( 1309 struct xfs_btree_cur *cur, 1310 union xfs_btree_rec *dst_rec, 1311 union xfs_btree_rec *src_rec, 1312 int numrecs) 1313{ 1314 ASSERT(numrecs >= 0); 1315 memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len); 1316} 1317 1318/* 1319 * Copy block pointers from one btree block to another. 1320 */ 1321void 1322xfs_btree_copy_ptrs( 1323 struct xfs_btree_cur *cur, 1324 union xfs_btree_ptr *dst_ptr, 1325 const union xfs_btree_ptr *src_ptr, 1326 int numptrs) 1327{ 1328 ASSERT(numptrs >= 0); 1329 memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur)); 1330} 1331 1332/* 1333 * Shift keys one index left/right inside a single btree block. 1334 */ 1335STATIC void 1336xfs_btree_shift_keys( 1337 struct xfs_btree_cur *cur, 1338 union xfs_btree_key *key, 1339 int dir, 1340 int numkeys) 1341{ 1342 char *dst_key; 1343 1344 ASSERT(numkeys >= 0); 1345 ASSERT(dir == 1 || dir == -1); 1346 1347 dst_key = (char *)key + (dir * cur->bc_ops->key_len); 1348 memmove(dst_key, key, numkeys * cur->bc_ops->key_len); 1349} 1350 1351/* 1352 * Shift records one index left/right inside a single btree block. 1353 */ 1354STATIC void 1355xfs_btree_shift_recs( 1356 struct xfs_btree_cur *cur, 1357 union xfs_btree_rec *rec, 1358 int dir, 1359 int numrecs) 1360{ 1361 char *dst_rec; 1362 1363 ASSERT(numrecs >= 0); 1364 ASSERT(dir == 1 || dir == -1); 1365 1366 dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len); 1367 memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len); 1368} 1369 1370/* 1371 * Shift block pointers one index left/right inside a single btree block. 1372 */ 1373STATIC void 1374xfs_btree_shift_ptrs( 1375 struct xfs_btree_cur *cur, 1376 union xfs_btree_ptr *ptr, 1377 int dir, 1378 int numptrs) 1379{ 1380 char *dst_ptr; 1381 1382 ASSERT(numptrs >= 0); 1383 ASSERT(dir == 1 || dir == -1); 1384 1385 dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur)); 1386 memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur)); 1387} 1388 1389/* 1390 * Log key values from the btree block. 1391 */ 1392STATIC void 1393xfs_btree_log_keys( 1394 struct xfs_btree_cur *cur, 1395 struct xfs_buf *bp, 1396 int first, 1397 int last) 1398{ 1399 1400 if (bp) { 1401 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1402 xfs_trans_log_buf(cur->bc_tp, bp, 1403 xfs_btree_key_offset(cur, first), 1404 xfs_btree_key_offset(cur, last + 1) - 1); 1405 } else { 1406 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1407 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1408 } 1409} 1410 1411/* 1412 * Log record values from the btree block. 1413 */ 1414void 1415xfs_btree_log_recs( 1416 struct xfs_btree_cur *cur, 1417 struct xfs_buf *bp, 1418 int first, 1419 int last) 1420{ 1421 1422 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1423 xfs_trans_log_buf(cur->bc_tp, bp, 1424 xfs_btree_rec_offset(cur, first), 1425 xfs_btree_rec_offset(cur, last + 1) - 1); 1426 1427} 1428 1429/* 1430 * Log block pointer fields from a btree block (nonleaf). 1431 */ 1432STATIC void 1433xfs_btree_log_ptrs( 1434 struct xfs_btree_cur *cur, /* btree cursor */ 1435 struct xfs_buf *bp, /* buffer containing btree block */ 1436 int first, /* index of first pointer to log */ 1437 int last) /* index of last pointer to log */ 1438{ 1439 1440 if (bp) { 1441 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 1442 int level = xfs_btree_get_level(block); 1443 1444 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1445 xfs_trans_log_buf(cur->bc_tp, bp, 1446 xfs_btree_ptr_offset(cur, first, level), 1447 xfs_btree_ptr_offset(cur, last + 1, level) - 1); 1448 } else { 1449 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1450 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1451 } 1452 1453} 1454 1455/* 1456 * Log fields from a btree block header. 1457 */ 1458void 1459xfs_btree_log_block( 1460 struct xfs_btree_cur *cur, /* btree cursor */ 1461 struct xfs_buf *bp, /* buffer containing btree block */ 1462 int fields) /* mask of fields: XFS_BB_... */ 1463{ 1464 int first; /* first byte offset logged */ 1465 int last; /* last byte offset logged */ 1466 static const short soffsets[] = { /* table of offsets (short) */ 1467 offsetof(struct xfs_btree_block, bb_magic), 1468 offsetof(struct xfs_btree_block, bb_level), 1469 offsetof(struct xfs_btree_block, bb_numrecs), 1470 offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib), 1471 offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib), 1472 offsetof(struct xfs_btree_block, bb_u.s.bb_blkno), 1473 offsetof(struct xfs_btree_block, bb_u.s.bb_lsn), 1474 offsetof(struct xfs_btree_block, bb_u.s.bb_uuid), 1475 offsetof(struct xfs_btree_block, bb_u.s.bb_owner), 1476 offsetof(struct xfs_btree_block, bb_u.s.bb_crc), 1477 XFS_BTREE_SBLOCK_CRC_LEN 1478 }; 1479 static const short loffsets[] = { /* table of offsets (long) */ 1480 offsetof(struct xfs_btree_block, bb_magic), 1481 offsetof(struct xfs_btree_block, bb_level), 1482 offsetof(struct xfs_btree_block, bb_numrecs), 1483 offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib), 1484 offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib), 1485 offsetof(struct xfs_btree_block, bb_u.l.bb_blkno), 1486 offsetof(struct xfs_btree_block, bb_u.l.bb_lsn), 1487 offsetof(struct xfs_btree_block, bb_u.l.bb_uuid), 1488 offsetof(struct xfs_btree_block, bb_u.l.bb_owner), 1489 offsetof(struct xfs_btree_block, bb_u.l.bb_crc), 1490 offsetof(struct xfs_btree_block, bb_u.l.bb_pad), 1491 XFS_BTREE_LBLOCK_CRC_LEN 1492 }; 1493 1494 if (bp) { 1495 int nbits; 1496 1497 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 1498 /* 1499 * We don't log the CRC when updating a btree 1500 * block but instead recreate it during log 1501 * recovery. As the log buffers have checksums 1502 * of their own this is safe and avoids logging a crc 1503 * update in a lot of places. 1504 */ 1505 if (fields == XFS_BB_ALL_BITS) 1506 fields = XFS_BB_ALL_BITS_CRC; 1507 nbits = XFS_BB_NUM_BITS_CRC; 1508 } else { 1509 nbits = XFS_BB_NUM_BITS; 1510 } 1511 xfs_btree_offsets(fields, 1512 (cur->bc_flags & XFS_BTREE_LONG_PTRS) ? 1513 loffsets : soffsets, 1514 nbits, &first, &last); 1515 xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF); 1516 xfs_trans_log_buf(cur->bc_tp, bp, first, last); 1517 } else { 1518 xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip, 1519 xfs_ilog_fbroot(cur->bc_ino.whichfork)); 1520 } 1521} 1522 1523/* 1524 * Increment cursor by one record at the level. 1525 * For nonzero levels the leaf-ward information is untouched. 1526 */ 1527int /* error */ 1528xfs_btree_increment( 1529 struct xfs_btree_cur *cur, 1530 int level, 1531 int *stat) /* success/failure */ 1532{ 1533 struct xfs_btree_block *block; 1534 union xfs_btree_ptr ptr; 1535 struct xfs_buf *bp; 1536 int error; /* error return value */ 1537 int lev; 1538 1539 ASSERT(level < cur->bc_nlevels); 1540 1541 /* Read-ahead to the right at this level. */ 1542 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 1543 1544 /* Get a pointer to the btree block. */ 1545 block = xfs_btree_get_block(cur, level, &bp); 1546 1547#ifdef DEBUG 1548 error = xfs_btree_check_block(cur, block, level, bp); 1549 if (error) 1550 goto error0; 1551#endif 1552 1553 /* We're done if we remain in the block after the increment. */ 1554 if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block)) 1555 goto out1; 1556 1557 /* Fail if we just went off the right edge of the tree. */ 1558 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1559 if (xfs_btree_ptr_is_null(cur, &ptr)) 1560 goto out0; 1561 1562 XFS_BTREE_STATS_INC(cur, increment); 1563 1564 /* 1565 * March up the tree incrementing pointers. 1566 * Stop when we don't go off the right edge of a block. 1567 */ 1568 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1569 block = xfs_btree_get_block(cur, lev, &bp); 1570 1571#ifdef DEBUG 1572 error = xfs_btree_check_block(cur, block, lev, bp); 1573 if (error) 1574 goto error0; 1575#endif 1576 1577 if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block)) 1578 break; 1579 1580 /* Read-ahead the right block for the next loop. */ 1581 xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA); 1582 } 1583 1584 /* 1585 * If we went off the root then we are either seriously 1586 * confused or have the tree root in an inode. 1587 */ 1588 if (lev == cur->bc_nlevels) { 1589 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1590 goto out0; 1591 ASSERT(0); 1592 error = -EFSCORRUPTED; 1593 goto error0; 1594 } 1595 ASSERT(lev < cur->bc_nlevels); 1596 1597 /* 1598 * Now walk back down the tree, fixing up the cursor's buffer 1599 * pointers and key numbers. 1600 */ 1601 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1602 union xfs_btree_ptr *ptrp; 1603 1604 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1605 --lev; 1606 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1607 if (error) 1608 goto error0; 1609 1610 xfs_btree_setbuf(cur, lev, bp); 1611 cur->bc_ptrs[lev] = 1; 1612 } 1613out1: 1614 *stat = 1; 1615 return 0; 1616 1617out0: 1618 *stat = 0; 1619 return 0; 1620 1621error0: 1622 return error; 1623} 1624 1625/* 1626 * Decrement cursor by one record at the level. 1627 * For nonzero levels the leaf-ward information is untouched. 1628 */ 1629int /* error */ 1630xfs_btree_decrement( 1631 struct xfs_btree_cur *cur, 1632 int level, 1633 int *stat) /* success/failure */ 1634{ 1635 struct xfs_btree_block *block; 1636 xfs_buf_t *bp; 1637 int error; /* error return value */ 1638 int lev; 1639 union xfs_btree_ptr ptr; 1640 1641 ASSERT(level < cur->bc_nlevels); 1642 1643 /* Read-ahead to the left at this level. */ 1644 xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA); 1645 1646 /* We're done if we remain in the block after the decrement. */ 1647 if (--cur->bc_ptrs[level] > 0) 1648 goto out1; 1649 1650 /* Get a pointer to the btree block. */ 1651 block = xfs_btree_get_block(cur, level, &bp); 1652 1653#ifdef DEBUG 1654 error = xfs_btree_check_block(cur, block, level, bp); 1655 if (error) 1656 goto error0; 1657#endif 1658 1659 /* Fail if we just went off the left edge of the tree. */ 1660 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 1661 if (xfs_btree_ptr_is_null(cur, &ptr)) 1662 goto out0; 1663 1664 XFS_BTREE_STATS_INC(cur, decrement); 1665 1666 /* 1667 * March up the tree decrementing pointers. 1668 * Stop when we don't go off the left edge of a block. 1669 */ 1670 for (lev = level + 1; lev < cur->bc_nlevels; lev++) { 1671 if (--cur->bc_ptrs[lev] > 0) 1672 break; 1673 /* Read-ahead the left block for the next loop. */ 1674 xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA); 1675 } 1676 1677 /* 1678 * If we went off the root then we are seriously confused. 1679 * or the root of the tree is in an inode. 1680 */ 1681 if (lev == cur->bc_nlevels) { 1682 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) 1683 goto out0; 1684 ASSERT(0); 1685 error = -EFSCORRUPTED; 1686 goto error0; 1687 } 1688 ASSERT(lev < cur->bc_nlevels); 1689 1690 /* 1691 * Now walk back down the tree, fixing up the cursor's buffer 1692 * pointers and key numbers. 1693 */ 1694 for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) { 1695 union xfs_btree_ptr *ptrp; 1696 1697 ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block); 1698 --lev; 1699 error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp); 1700 if (error) 1701 goto error0; 1702 xfs_btree_setbuf(cur, lev, bp); 1703 cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block); 1704 } 1705out1: 1706 *stat = 1; 1707 return 0; 1708 1709out0: 1710 *stat = 0; 1711 return 0; 1712 1713error0: 1714 return error; 1715} 1716 1717int 1718xfs_btree_lookup_get_block( 1719 struct xfs_btree_cur *cur, /* btree cursor */ 1720 int level, /* level in the btree */ 1721 union xfs_btree_ptr *pp, /* ptr to btree block */ 1722 struct xfs_btree_block **blkp) /* return btree block */ 1723{ 1724 struct xfs_buf *bp; /* buffer pointer for btree block */ 1725 xfs_daddr_t daddr; 1726 int error = 0; 1727 1728 /* special case the root block if in an inode */ 1729 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 1730 (level == cur->bc_nlevels - 1)) { 1731 *blkp = xfs_btree_get_iroot(cur); 1732 return 0; 1733 } 1734 1735 /* 1736 * If the old buffer at this level for the disk address we are 1737 * looking for re-use it. 1738 * 1739 * Otherwise throw it away and get a new one. 1740 */ 1741 bp = cur->bc_bufs[level]; 1742 error = xfs_btree_ptr_to_daddr(cur, pp, &daddr); 1743 if (error) 1744 return error; 1745 if (bp && XFS_BUF_ADDR(bp) == daddr) { 1746 *blkp = XFS_BUF_TO_BLOCK(bp); 1747 return 0; 1748 } 1749 1750 error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp); 1751 if (error) 1752 return error; 1753 1754 /* Check the inode owner since the verifiers don't. */ 1755 if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) && 1756 !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) && 1757 (cur->bc_flags & XFS_BTREE_LONG_PTRS) && 1758 be64_to_cpu((*blkp)->bb_u.l.bb_owner) != 1759 cur->bc_ino.ip->i_ino) 1760 goto out_bad; 1761 1762 /* Did we get the level we were looking for? */ 1763 if (be16_to_cpu((*blkp)->bb_level) != level) 1764 goto out_bad; 1765 1766 /* Check that internal nodes have at least one record. */ 1767 if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0) 1768 goto out_bad; 1769 1770 xfs_btree_setbuf(cur, level, bp); 1771 return 0; 1772 1773out_bad: 1774 *blkp = NULL; 1775 xfs_buf_mark_corrupt(bp); 1776 xfs_trans_brelse(cur->bc_tp, bp); 1777 return -EFSCORRUPTED; 1778} 1779 1780/* 1781 * Get current search key. For level 0 we don't actually have a key 1782 * structure so we make one up from the record. For all other levels 1783 * we just return the right key. 1784 */ 1785STATIC union xfs_btree_key * 1786xfs_lookup_get_search_key( 1787 struct xfs_btree_cur *cur, 1788 int level, 1789 int keyno, 1790 struct xfs_btree_block *block, 1791 union xfs_btree_key *kp) 1792{ 1793 if (level == 0) { 1794 cur->bc_ops->init_key_from_rec(kp, 1795 xfs_btree_rec_addr(cur, keyno, block)); 1796 return kp; 1797 } 1798 1799 return xfs_btree_key_addr(cur, keyno, block); 1800} 1801 1802/* 1803 * Lookup the record. The cursor is made to point to it, based on dir. 1804 * stat is set to 0 if can't find any such record, 1 for success. 1805 */ 1806int /* error */ 1807xfs_btree_lookup( 1808 struct xfs_btree_cur *cur, /* btree cursor */ 1809 xfs_lookup_t dir, /* <=, ==, or >= */ 1810 int *stat) /* success/failure */ 1811{ 1812 struct xfs_btree_block *block; /* current btree block */ 1813 int64_t diff; /* difference for the current key */ 1814 int error; /* error return value */ 1815 int keyno; /* current key number */ 1816 int level; /* level in the btree */ 1817 union xfs_btree_ptr *pp; /* ptr to btree block */ 1818 union xfs_btree_ptr ptr; /* ptr to btree block */ 1819 1820 XFS_BTREE_STATS_INC(cur, lookup); 1821 1822 /* No such thing as a zero-level tree. */ 1823 if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0)) 1824 return -EFSCORRUPTED; 1825 1826 block = NULL; 1827 keyno = 0; 1828 1829 /* initialise start pointer from cursor */ 1830 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 1831 pp = &ptr; 1832 1833 /* 1834 * Iterate over each level in the btree, starting at the root. 1835 * For each level above the leaves, find the key we need, based 1836 * on the lookup record, then follow the corresponding block 1837 * pointer down to the next level. 1838 */ 1839 for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) { 1840 /* Get the block we need to do the lookup on. */ 1841 error = xfs_btree_lookup_get_block(cur, level, pp, &block); 1842 if (error) 1843 goto error0; 1844 1845 if (diff == 0) { 1846 /* 1847 * If we already had a key match at a higher level, we 1848 * know we need to use the first entry in this block. 1849 */ 1850 keyno = 1; 1851 } else { 1852 /* Otherwise search this block. Do a binary search. */ 1853 1854 int high; /* high entry number */ 1855 int low; /* low entry number */ 1856 1857 /* Set low and high entry numbers, 1-based. */ 1858 low = 1; 1859 high = xfs_btree_get_numrecs(block); 1860 if (!high) { 1861 /* Block is empty, must be an empty leaf. */ 1862 if (level != 0 || cur->bc_nlevels != 1) { 1863 XFS_CORRUPTION_ERROR(__func__, 1864 XFS_ERRLEVEL_LOW, 1865 cur->bc_mp, block, 1866 sizeof(*block)); 1867 return -EFSCORRUPTED; 1868 } 1869 1870 cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE; 1871 *stat = 0; 1872 return 0; 1873 } 1874 1875 /* Binary search the block. */ 1876 while (low <= high) { 1877 union xfs_btree_key key; 1878 union xfs_btree_key *kp; 1879 1880 XFS_BTREE_STATS_INC(cur, compare); 1881 1882 /* keyno is average of low and high. */ 1883 keyno = (low + high) >> 1; 1884 1885 /* Get current search key */ 1886 kp = xfs_lookup_get_search_key(cur, level, 1887 keyno, block, &key); 1888 1889 /* 1890 * Compute difference to get next direction: 1891 * - less than, move right 1892 * - greater than, move left 1893 * - equal, we're done 1894 */ 1895 diff = cur->bc_ops->key_diff(cur, kp); 1896 if (diff < 0) 1897 low = keyno + 1; 1898 else if (diff > 0) 1899 high = keyno - 1; 1900 else 1901 break; 1902 } 1903 } 1904 1905 /* 1906 * If there are more levels, set up for the next level 1907 * by getting the block number and filling in the cursor. 1908 */ 1909 if (level > 0) { 1910 /* 1911 * If we moved left, need the previous key number, 1912 * unless there isn't one. 1913 */ 1914 if (diff > 0 && --keyno < 1) 1915 keyno = 1; 1916 pp = xfs_btree_ptr_addr(cur, keyno, block); 1917 1918 error = xfs_btree_debug_check_ptr(cur, pp, 0, level); 1919 if (error) 1920 goto error0; 1921 1922 cur->bc_ptrs[level] = keyno; 1923 } 1924 } 1925 1926 /* Done with the search. See if we need to adjust the results. */ 1927 if (dir != XFS_LOOKUP_LE && diff < 0) { 1928 keyno++; 1929 /* 1930 * If ge search and we went off the end of the block, but it's 1931 * not the last block, we're in the wrong block. 1932 */ 1933 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 1934 if (dir == XFS_LOOKUP_GE && 1935 keyno > xfs_btree_get_numrecs(block) && 1936 !xfs_btree_ptr_is_null(cur, &ptr)) { 1937 int i; 1938 1939 cur->bc_ptrs[0] = keyno; 1940 error = xfs_btree_increment(cur, 0, &i); 1941 if (error) 1942 goto error0; 1943 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) 1944 return -EFSCORRUPTED; 1945 *stat = 1; 1946 return 0; 1947 } 1948 } else if (dir == XFS_LOOKUP_LE && diff > 0) 1949 keyno--; 1950 cur->bc_ptrs[0] = keyno; 1951 1952 /* Return if we succeeded or not. */ 1953 if (keyno == 0 || keyno > xfs_btree_get_numrecs(block)) 1954 *stat = 0; 1955 else if (dir != XFS_LOOKUP_EQ || diff == 0) 1956 *stat = 1; 1957 else 1958 *stat = 0; 1959 return 0; 1960 1961error0: 1962 return error; 1963} 1964 1965/* Find the high key storage area from a regular key. */ 1966union xfs_btree_key * 1967xfs_btree_high_key_from_key( 1968 struct xfs_btree_cur *cur, 1969 union xfs_btree_key *key) 1970{ 1971 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 1972 return (union xfs_btree_key *)((char *)key + 1973 (cur->bc_ops->key_len / 2)); 1974} 1975 1976/* Determine the low (and high if overlapped) keys of a leaf block */ 1977STATIC void 1978xfs_btree_get_leaf_keys( 1979 struct xfs_btree_cur *cur, 1980 struct xfs_btree_block *block, 1981 union xfs_btree_key *key) 1982{ 1983 union xfs_btree_key max_hkey; 1984 union xfs_btree_key hkey; 1985 union xfs_btree_rec *rec; 1986 union xfs_btree_key *high; 1987 int n; 1988 1989 rec = xfs_btree_rec_addr(cur, 1, block); 1990 cur->bc_ops->init_key_from_rec(key, rec); 1991 1992 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 1993 1994 cur->bc_ops->init_high_key_from_rec(&max_hkey, rec); 1995 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 1996 rec = xfs_btree_rec_addr(cur, n, block); 1997 cur->bc_ops->init_high_key_from_rec(&hkey, rec); 1998 if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey) 1999 > 0) 2000 max_hkey = hkey; 2001 } 2002 2003 high = xfs_btree_high_key_from_key(cur, key); 2004 memcpy(high, &max_hkey, cur->bc_ops->key_len / 2); 2005 } 2006} 2007 2008/* Determine the low (and high if overlapped) keys of a node block */ 2009STATIC void 2010xfs_btree_get_node_keys( 2011 struct xfs_btree_cur *cur, 2012 struct xfs_btree_block *block, 2013 union xfs_btree_key *key) 2014{ 2015 union xfs_btree_key *hkey; 2016 union xfs_btree_key *max_hkey; 2017 union xfs_btree_key *high; 2018 int n; 2019 2020 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2021 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2022 cur->bc_ops->key_len / 2); 2023 2024 max_hkey = xfs_btree_high_key_addr(cur, 1, block); 2025 for (n = 2; n <= xfs_btree_get_numrecs(block); n++) { 2026 hkey = xfs_btree_high_key_addr(cur, n, block); 2027 if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0) 2028 max_hkey = hkey; 2029 } 2030 2031 high = xfs_btree_high_key_from_key(cur, key); 2032 memcpy(high, max_hkey, cur->bc_ops->key_len / 2); 2033 } else { 2034 memcpy(key, xfs_btree_key_addr(cur, 1, block), 2035 cur->bc_ops->key_len); 2036 } 2037} 2038 2039/* Derive the keys for any btree block. */ 2040void 2041xfs_btree_get_keys( 2042 struct xfs_btree_cur *cur, 2043 struct xfs_btree_block *block, 2044 union xfs_btree_key *key) 2045{ 2046 if (be16_to_cpu(block->bb_level) == 0) 2047 xfs_btree_get_leaf_keys(cur, block, key); 2048 else 2049 xfs_btree_get_node_keys(cur, block, key); 2050} 2051 2052/* 2053 * Decide if we need to update the parent keys of a btree block. For 2054 * a standard btree this is only necessary if we're updating the first 2055 * record/key. For an overlapping btree, we must always update the 2056 * keys because the highest key can be in any of the records or keys 2057 * in the block. 2058 */ 2059static inline bool 2060xfs_btree_needs_key_update( 2061 struct xfs_btree_cur *cur, 2062 int ptr) 2063{ 2064 return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1; 2065} 2066 2067/* 2068 * Update the low and high parent keys of the given level, progressing 2069 * towards the root. If force_all is false, stop if the keys for a given 2070 * level do not need updating. 2071 */ 2072STATIC int 2073__xfs_btree_updkeys( 2074 struct xfs_btree_cur *cur, 2075 int level, 2076 struct xfs_btree_block *block, 2077 struct xfs_buf *bp0, 2078 bool force_all) 2079{ 2080 union xfs_btree_key key; /* keys from current level */ 2081 union xfs_btree_key *lkey; /* keys from the next level up */ 2082 union xfs_btree_key *hkey; 2083 union xfs_btree_key *nlkey; /* keys from the next level up */ 2084 union xfs_btree_key *nhkey; 2085 struct xfs_buf *bp; 2086 int ptr; 2087 2088 ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING); 2089 2090 /* Exit if there aren't any parent levels to update. */ 2091 if (level + 1 >= cur->bc_nlevels) 2092 return 0; 2093 2094 trace_xfs_btree_updkeys(cur, level, bp0); 2095 2096 lkey = &key; 2097 hkey = xfs_btree_high_key_from_key(cur, lkey); 2098 xfs_btree_get_keys(cur, block, lkey); 2099 for (level++; level < cur->bc_nlevels; level++) { 2100#ifdef DEBUG 2101 int error; 2102#endif 2103 block = xfs_btree_get_block(cur, level, &bp); 2104 trace_xfs_btree_updkeys(cur, level, bp); 2105#ifdef DEBUG 2106 error = xfs_btree_check_block(cur, block, level, bp); 2107 if (error) 2108 return error; 2109#endif 2110 ptr = cur->bc_ptrs[level]; 2111 nlkey = xfs_btree_key_addr(cur, ptr, block); 2112 nhkey = xfs_btree_high_key_addr(cur, ptr, block); 2113 if (!force_all && 2114 !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 || 2115 cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0)) 2116 break; 2117 xfs_btree_copy_keys(cur, nlkey, lkey, 1); 2118 xfs_btree_log_keys(cur, bp, ptr, ptr); 2119 if (level + 1 >= cur->bc_nlevels) 2120 break; 2121 xfs_btree_get_node_keys(cur, block, lkey); 2122 } 2123 2124 return 0; 2125} 2126 2127/* Update all the keys from some level in cursor back to the root. */ 2128STATIC int 2129xfs_btree_updkeys_force( 2130 struct xfs_btree_cur *cur, 2131 int level) 2132{ 2133 struct xfs_buf *bp; 2134 struct xfs_btree_block *block; 2135 2136 block = xfs_btree_get_block(cur, level, &bp); 2137 return __xfs_btree_updkeys(cur, level, block, bp, true); 2138} 2139 2140/* 2141 * Update the parent keys of the given level, progressing towards the root. 2142 */ 2143STATIC int 2144xfs_btree_update_keys( 2145 struct xfs_btree_cur *cur, 2146 int level) 2147{ 2148 struct xfs_btree_block *block; 2149 struct xfs_buf *bp; 2150 union xfs_btree_key *kp; 2151 union xfs_btree_key key; 2152 int ptr; 2153 2154 ASSERT(level >= 0); 2155 2156 block = xfs_btree_get_block(cur, level, &bp); 2157 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) 2158 return __xfs_btree_updkeys(cur, level, block, bp, false); 2159 2160 /* 2161 * Go up the tree from this level toward the root. 2162 * At each level, update the key value to the value input. 2163 * Stop when we reach a level where the cursor isn't pointing 2164 * at the first entry in the block. 2165 */ 2166 xfs_btree_get_keys(cur, block, &key); 2167 for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) { 2168#ifdef DEBUG 2169 int error; 2170#endif 2171 block = xfs_btree_get_block(cur, level, &bp); 2172#ifdef DEBUG 2173 error = xfs_btree_check_block(cur, block, level, bp); 2174 if (error) 2175 return error; 2176#endif 2177 ptr = cur->bc_ptrs[level]; 2178 kp = xfs_btree_key_addr(cur, ptr, block); 2179 xfs_btree_copy_keys(cur, kp, &key, 1); 2180 xfs_btree_log_keys(cur, bp, ptr, ptr); 2181 } 2182 2183 return 0; 2184} 2185 2186/* 2187 * Update the record referred to by cur to the value in the 2188 * given record. This either works (return 0) or gets an 2189 * EFSCORRUPTED error. 2190 */ 2191int 2192xfs_btree_update( 2193 struct xfs_btree_cur *cur, 2194 union xfs_btree_rec *rec) 2195{ 2196 struct xfs_btree_block *block; 2197 struct xfs_buf *bp; 2198 int error; 2199 int ptr; 2200 union xfs_btree_rec *rp; 2201 2202 /* Pick up the current block. */ 2203 block = xfs_btree_get_block(cur, 0, &bp); 2204 2205#ifdef DEBUG 2206 error = xfs_btree_check_block(cur, block, 0, bp); 2207 if (error) 2208 goto error0; 2209#endif 2210 /* Get the address of the rec to be updated. */ 2211 ptr = cur->bc_ptrs[0]; 2212 rp = xfs_btree_rec_addr(cur, ptr, block); 2213 2214 /* Fill in the new contents and log them. */ 2215 xfs_btree_copy_recs(cur, rp, rec, 1); 2216 xfs_btree_log_recs(cur, bp, ptr, ptr); 2217 2218 /* 2219 * If we are tracking the last record in the tree and 2220 * we are at the far right edge of the tree, update it. 2221 */ 2222 if (xfs_btree_is_lastrec(cur, block, 0)) { 2223 cur->bc_ops->update_lastrec(cur, block, rec, 2224 ptr, LASTREC_UPDATE); 2225 } 2226 2227 /* Pass new key value up to our parent. */ 2228 if (xfs_btree_needs_key_update(cur, ptr)) { 2229 error = xfs_btree_update_keys(cur, 0); 2230 if (error) 2231 goto error0; 2232 } 2233 2234 return 0; 2235 2236error0: 2237 return error; 2238} 2239 2240/* 2241 * Move 1 record left from cur/level if possible. 2242 * Update cur to reflect the new path. 2243 */ 2244STATIC int /* error */ 2245xfs_btree_lshift( 2246 struct xfs_btree_cur *cur, 2247 int level, 2248 int *stat) /* success/failure */ 2249{ 2250 struct xfs_buf *lbp; /* left buffer pointer */ 2251 struct xfs_btree_block *left; /* left btree block */ 2252 int lrecs; /* left record count */ 2253 struct xfs_buf *rbp; /* right buffer pointer */ 2254 struct xfs_btree_block *right; /* right btree block */ 2255 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2256 int rrecs; /* right record count */ 2257 union xfs_btree_ptr lptr; /* left btree pointer */ 2258 union xfs_btree_key *rkp = NULL; /* right btree key */ 2259 union xfs_btree_ptr *rpp = NULL; /* right address pointer */ 2260 union xfs_btree_rec *rrp = NULL; /* right record pointer */ 2261 int error; /* error return value */ 2262 int i; 2263 2264 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2265 level == cur->bc_nlevels - 1) 2266 goto out0; 2267 2268 /* Set up variables for this block as "right". */ 2269 right = xfs_btree_get_block(cur, level, &rbp); 2270 2271#ifdef DEBUG 2272 error = xfs_btree_check_block(cur, right, level, rbp); 2273 if (error) 2274 goto error0; 2275#endif 2276 2277 /* If we've got no left sibling then we can't shift an entry left. */ 2278 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2279 if (xfs_btree_ptr_is_null(cur, &lptr)) 2280 goto out0; 2281 2282 /* 2283 * If the cursor entry is the one that would be moved, don't 2284 * do it... it's too complicated. 2285 */ 2286 if (cur->bc_ptrs[level] <= 1) 2287 goto out0; 2288 2289 /* Set up the left neighbor as "left". */ 2290 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 2291 if (error) 2292 goto error0; 2293 2294 /* If it's full, it can't take another entry. */ 2295 lrecs = xfs_btree_get_numrecs(left); 2296 if (lrecs == cur->bc_ops->get_maxrecs(cur, level)) 2297 goto out0; 2298 2299 rrecs = xfs_btree_get_numrecs(right); 2300 2301 /* 2302 * We add one entry to the left side and remove one for the right side. 2303 * Account for it here, the changes will be updated on disk and logged 2304 * later. 2305 */ 2306 lrecs++; 2307 rrecs--; 2308 2309 XFS_BTREE_STATS_INC(cur, lshift); 2310 XFS_BTREE_STATS_ADD(cur, moves, 1); 2311 2312 /* 2313 * If non-leaf, copy a key and a ptr to the left block. 2314 * Log the changes to the left block. 2315 */ 2316 if (level > 0) { 2317 /* It's a non-leaf. Move keys and pointers. */ 2318 union xfs_btree_key *lkp; /* left btree key */ 2319 union xfs_btree_ptr *lpp; /* left address pointer */ 2320 2321 lkp = xfs_btree_key_addr(cur, lrecs, left); 2322 rkp = xfs_btree_key_addr(cur, 1, right); 2323 2324 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2325 rpp = xfs_btree_ptr_addr(cur, 1, right); 2326 2327 error = xfs_btree_debug_check_ptr(cur, rpp, 0, level); 2328 if (error) 2329 goto error0; 2330 2331 xfs_btree_copy_keys(cur, lkp, rkp, 1); 2332 xfs_btree_copy_ptrs(cur, lpp, rpp, 1); 2333 2334 xfs_btree_log_keys(cur, lbp, lrecs, lrecs); 2335 xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs); 2336 2337 ASSERT(cur->bc_ops->keys_inorder(cur, 2338 xfs_btree_key_addr(cur, lrecs - 1, left), lkp)); 2339 } else { 2340 /* It's a leaf. Move records. */ 2341 union xfs_btree_rec *lrp; /* left record pointer */ 2342 2343 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2344 rrp = xfs_btree_rec_addr(cur, 1, right); 2345 2346 xfs_btree_copy_recs(cur, lrp, rrp, 1); 2347 xfs_btree_log_recs(cur, lbp, lrecs, lrecs); 2348 2349 ASSERT(cur->bc_ops->recs_inorder(cur, 2350 xfs_btree_rec_addr(cur, lrecs - 1, left), lrp)); 2351 } 2352 2353 xfs_btree_set_numrecs(left, lrecs); 2354 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2355 2356 xfs_btree_set_numrecs(right, rrecs); 2357 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2358 2359 /* 2360 * Slide the contents of right down one entry. 2361 */ 2362 XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1); 2363 if (level > 0) { 2364 /* It's a nonleaf. operate on keys and ptrs */ 2365 for (i = 0; i < rrecs; i++) { 2366 error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level); 2367 if (error) 2368 goto error0; 2369 } 2370 2371 xfs_btree_shift_keys(cur, 2372 xfs_btree_key_addr(cur, 2, right), 2373 -1, rrecs); 2374 xfs_btree_shift_ptrs(cur, 2375 xfs_btree_ptr_addr(cur, 2, right), 2376 -1, rrecs); 2377 2378 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2379 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2380 } else { 2381 /* It's a leaf. operate on records */ 2382 xfs_btree_shift_recs(cur, 2383 xfs_btree_rec_addr(cur, 2, right), 2384 -1, rrecs); 2385 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2386 } 2387 2388 /* 2389 * Using a temporary cursor, update the parent key values of the 2390 * block on the left. 2391 */ 2392 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2393 error = xfs_btree_dup_cursor(cur, &tcur); 2394 if (error) 2395 goto error0; 2396 i = xfs_btree_firstrec(tcur, level); 2397 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2398 error = -EFSCORRUPTED; 2399 goto error0; 2400 } 2401 2402 error = xfs_btree_decrement(tcur, level, &i); 2403 if (error) 2404 goto error1; 2405 2406 /* Update the parent high keys of the left block, if needed. */ 2407 error = xfs_btree_update_keys(tcur, level); 2408 if (error) 2409 goto error1; 2410 2411 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2412 } 2413 2414 /* Update the parent keys of the right block. */ 2415 error = xfs_btree_update_keys(cur, level); 2416 if (error) 2417 goto error0; 2418 2419 /* Slide the cursor value left one. */ 2420 cur->bc_ptrs[level]--; 2421 2422 *stat = 1; 2423 return 0; 2424 2425out0: 2426 *stat = 0; 2427 return 0; 2428 2429error0: 2430 return error; 2431 2432error1: 2433 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2434 return error; 2435} 2436 2437/* 2438 * Move 1 record right from cur/level if possible. 2439 * Update cur to reflect the new path. 2440 */ 2441STATIC int /* error */ 2442xfs_btree_rshift( 2443 struct xfs_btree_cur *cur, 2444 int level, 2445 int *stat) /* success/failure */ 2446{ 2447 struct xfs_buf *lbp; /* left buffer pointer */ 2448 struct xfs_btree_block *left; /* left btree block */ 2449 struct xfs_buf *rbp; /* right buffer pointer */ 2450 struct xfs_btree_block *right; /* right btree block */ 2451 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 2452 union xfs_btree_ptr rptr; /* right block pointer */ 2453 union xfs_btree_key *rkp; /* right btree key */ 2454 int rrecs; /* right record count */ 2455 int lrecs; /* left record count */ 2456 int error; /* error return value */ 2457 int i; /* loop counter */ 2458 2459 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 2460 (level == cur->bc_nlevels - 1)) 2461 goto out0; 2462 2463 /* Set up variables for this block as "left". */ 2464 left = xfs_btree_get_block(cur, level, &lbp); 2465 2466#ifdef DEBUG 2467 error = xfs_btree_check_block(cur, left, level, lbp); 2468 if (error) 2469 goto error0; 2470#endif 2471 2472 /* If we've got no right sibling then we can't shift an entry right. */ 2473 xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2474 if (xfs_btree_ptr_is_null(cur, &rptr)) 2475 goto out0; 2476 2477 /* 2478 * If the cursor entry is the one that would be moved, don't 2479 * do it... it's too complicated. 2480 */ 2481 lrecs = xfs_btree_get_numrecs(left); 2482 if (cur->bc_ptrs[level] >= lrecs) 2483 goto out0; 2484 2485 /* Set up the right neighbor as "right". */ 2486 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 2487 if (error) 2488 goto error0; 2489 2490 /* If it's full, it can't take another entry. */ 2491 rrecs = xfs_btree_get_numrecs(right); 2492 if (rrecs == cur->bc_ops->get_maxrecs(cur, level)) 2493 goto out0; 2494 2495 XFS_BTREE_STATS_INC(cur, rshift); 2496 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2497 2498 /* 2499 * Make a hole at the start of the right neighbor block, then 2500 * copy the last left block entry to the hole. 2501 */ 2502 if (level > 0) { 2503 /* It's a nonleaf. make a hole in the keys and ptrs */ 2504 union xfs_btree_key *lkp; 2505 union xfs_btree_ptr *lpp; 2506 union xfs_btree_ptr *rpp; 2507 2508 lkp = xfs_btree_key_addr(cur, lrecs, left); 2509 lpp = xfs_btree_ptr_addr(cur, lrecs, left); 2510 rkp = xfs_btree_key_addr(cur, 1, right); 2511 rpp = xfs_btree_ptr_addr(cur, 1, right); 2512 2513 for (i = rrecs - 1; i >= 0; i--) { 2514 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 2515 if (error) 2516 goto error0; 2517 } 2518 2519 xfs_btree_shift_keys(cur, rkp, 1, rrecs); 2520 xfs_btree_shift_ptrs(cur, rpp, 1, rrecs); 2521 2522 error = xfs_btree_debug_check_ptr(cur, lpp, 0, level); 2523 if (error) 2524 goto error0; 2525 2526 /* Now put the new data in, and log it. */ 2527 xfs_btree_copy_keys(cur, rkp, lkp, 1); 2528 xfs_btree_copy_ptrs(cur, rpp, lpp, 1); 2529 2530 xfs_btree_log_keys(cur, rbp, 1, rrecs + 1); 2531 xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1); 2532 2533 ASSERT(cur->bc_ops->keys_inorder(cur, rkp, 2534 xfs_btree_key_addr(cur, 2, right))); 2535 } else { 2536 /* It's a leaf. make a hole in the records */ 2537 union xfs_btree_rec *lrp; 2538 union xfs_btree_rec *rrp; 2539 2540 lrp = xfs_btree_rec_addr(cur, lrecs, left); 2541 rrp = xfs_btree_rec_addr(cur, 1, right); 2542 2543 xfs_btree_shift_recs(cur, rrp, 1, rrecs); 2544 2545 /* Now put the new data in, and log it. */ 2546 xfs_btree_copy_recs(cur, rrp, lrp, 1); 2547 xfs_btree_log_recs(cur, rbp, 1, rrecs + 1); 2548 } 2549 2550 /* 2551 * Decrement and log left's numrecs, bump and log right's numrecs. 2552 */ 2553 xfs_btree_set_numrecs(left, --lrecs); 2554 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS); 2555 2556 xfs_btree_set_numrecs(right, ++rrecs); 2557 xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS); 2558 2559 /* 2560 * Using a temporary cursor, update the parent key values of the 2561 * block on the right. 2562 */ 2563 error = xfs_btree_dup_cursor(cur, &tcur); 2564 if (error) 2565 goto error0; 2566 i = xfs_btree_lastrec(tcur, level); 2567 if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) { 2568 error = -EFSCORRUPTED; 2569 goto error0; 2570 } 2571 2572 error = xfs_btree_increment(tcur, level, &i); 2573 if (error) 2574 goto error1; 2575 2576 /* Update the parent high keys of the left block, if needed. */ 2577 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2578 error = xfs_btree_update_keys(cur, level); 2579 if (error) 2580 goto error1; 2581 } 2582 2583 /* Update the parent keys of the right block. */ 2584 error = xfs_btree_update_keys(tcur, level); 2585 if (error) 2586 goto error1; 2587 2588 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 2589 2590 *stat = 1; 2591 return 0; 2592 2593out0: 2594 *stat = 0; 2595 return 0; 2596 2597error0: 2598 return error; 2599 2600error1: 2601 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 2602 return error; 2603} 2604 2605/* 2606 * Split cur/level block in half. 2607 * Return new block number and the key to its first 2608 * record (to be inserted into parent). 2609 */ 2610STATIC int /* error */ 2611__xfs_btree_split( 2612 struct xfs_btree_cur *cur, 2613 int level, 2614 union xfs_btree_ptr *ptrp, 2615 union xfs_btree_key *key, 2616 struct xfs_btree_cur **curp, 2617 int *stat) /* success/failure */ 2618{ 2619 union xfs_btree_ptr lptr; /* left sibling block ptr */ 2620 struct xfs_buf *lbp; /* left buffer pointer */ 2621 struct xfs_btree_block *left; /* left btree block */ 2622 union xfs_btree_ptr rptr; /* right sibling block ptr */ 2623 struct xfs_buf *rbp; /* right buffer pointer */ 2624 struct xfs_btree_block *right; /* right btree block */ 2625 union xfs_btree_ptr rrptr; /* right-right sibling ptr */ 2626 struct xfs_buf *rrbp; /* right-right buffer pointer */ 2627 struct xfs_btree_block *rrblock; /* right-right btree block */ 2628 int lrecs; 2629 int rrecs; 2630 int src_index; 2631 int error; /* error return value */ 2632 int i; 2633 2634 XFS_BTREE_STATS_INC(cur, split); 2635 2636 /* Set up left block (current one). */ 2637 left = xfs_btree_get_block(cur, level, &lbp); 2638 2639#ifdef DEBUG 2640 error = xfs_btree_check_block(cur, left, level, lbp); 2641 if (error) 2642 goto error0; 2643#endif 2644 2645 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 2646 2647 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2648 error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat); 2649 if (error) 2650 goto error0; 2651 if (*stat == 0) 2652 goto out0; 2653 XFS_BTREE_STATS_INC(cur, alloc); 2654 2655 /* Set up the new block as "right". */ 2656 error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp); 2657 if (error) 2658 goto error0; 2659 2660 /* Fill in the btree header for the new right block. */ 2661 xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0); 2662 2663 /* 2664 * Split the entries between the old and the new block evenly. 2665 * Make sure that if there's an odd number of entries now, that 2666 * each new block will have the same number of entries. 2667 */ 2668 lrecs = xfs_btree_get_numrecs(left); 2669 rrecs = lrecs / 2; 2670 if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1) 2671 rrecs++; 2672 src_index = (lrecs - rrecs + 1); 2673 2674 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 2675 2676 /* Adjust numrecs for the later get_*_keys() calls. */ 2677 lrecs -= rrecs; 2678 xfs_btree_set_numrecs(left, lrecs); 2679 xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs); 2680 2681 /* 2682 * Copy btree block entries from the left block over to the 2683 * new block, the right. Update the right block and log the 2684 * changes. 2685 */ 2686 if (level > 0) { 2687 /* It's a non-leaf. Move keys and pointers. */ 2688 union xfs_btree_key *lkp; /* left btree key */ 2689 union xfs_btree_ptr *lpp; /* left address pointer */ 2690 union xfs_btree_key *rkp; /* right btree key */ 2691 union xfs_btree_ptr *rpp; /* right address pointer */ 2692 2693 lkp = xfs_btree_key_addr(cur, src_index, left); 2694 lpp = xfs_btree_ptr_addr(cur, src_index, left); 2695 rkp = xfs_btree_key_addr(cur, 1, right); 2696 rpp = xfs_btree_ptr_addr(cur, 1, right); 2697 2698 for (i = src_index; i < rrecs; i++) { 2699 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 2700 if (error) 2701 goto error0; 2702 } 2703 2704 /* Copy the keys & pointers to the new block. */ 2705 xfs_btree_copy_keys(cur, rkp, lkp, rrecs); 2706 xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs); 2707 2708 xfs_btree_log_keys(cur, rbp, 1, rrecs); 2709 xfs_btree_log_ptrs(cur, rbp, 1, rrecs); 2710 2711 /* Stash the keys of the new block for later insertion. */ 2712 xfs_btree_get_node_keys(cur, right, key); 2713 } else { 2714 /* It's a leaf. Move records. */ 2715 union xfs_btree_rec *lrp; /* left record pointer */ 2716 union xfs_btree_rec *rrp; /* right record pointer */ 2717 2718 lrp = xfs_btree_rec_addr(cur, src_index, left); 2719 rrp = xfs_btree_rec_addr(cur, 1, right); 2720 2721 /* Copy records to the new block. */ 2722 xfs_btree_copy_recs(cur, rrp, lrp, rrecs); 2723 xfs_btree_log_recs(cur, rbp, 1, rrecs); 2724 2725 /* Stash the keys of the new block for later insertion. */ 2726 xfs_btree_get_leaf_keys(cur, right, key); 2727 } 2728 2729 /* 2730 * Find the left block number by looking in the buffer. 2731 * Adjust sibling pointers. 2732 */ 2733 xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB); 2734 xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB); 2735 xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 2736 xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB); 2737 2738 xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS); 2739 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 2740 2741 /* 2742 * If there's a block to the new block's right, make that block 2743 * point back to right instead of to left. 2744 */ 2745 if (!xfs_btree_ptr_is_null(cur, &rrptr)) { 2746 error = xfs_btree_read_buf_block(cur, &rrptr, 2747 0, &rrblock, &rrbp); 2748 if (error) 2749 goto error0; 2750 xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB); 2751 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 2752 } 2753 2754 /* Update the parent high keys of the left block, if needed. */ 2755 if (cur->bc_flags & XFS_BTREE_OVERLAPPING) { 2756 error = xfs_btree_update_keys(cur, level); 2757 if (error) 2758 goto error0; 2759 } 2760 2761 /* 2762 * If the cursor is really in the right block, move it there. 2763 * If it's just pointing past the last entry in left, then we'll 2764 * insert there, so don't change anything in that case. 2765 */ 2766 if (cur->bc_ptrs[level] > lrecs + 1) { 2767 xfs_btree_setbuf(cur, level, rbp); 2768 cur->bc_ptrs[level] -= lrecs; 2769 } 2770 /* 2771 * If there are more levels, we'll need another cursor which refers 2772 * the right block, no matter where this cursor was. 2773 */ 2774 if (level + 1 < cur->bc_nlevels) { 2775 error = xfs_btree_dup_cursor(cur, curp); 2776 if (error) 2777 goto error0; 2778 (*curp)->bc_ptrs[level + 1]++; 2779 } 2780 *ptrp = rptr; 2781 *stat = 1; 2782 return 0; 2783out0: 2784 *stat = 0; 2785 return 0; 2786 2787error0: 2788 return error; 2789} 2790 2791struct xfs_btree_split_args { 2792 struct xfs_btree_cur *cur; 2793 int level; 2794 union xfs_btree_ptr *ptrp; 2795 union xfs_btree_key *key; 2796 struct xfs_btree_cur **curp; 2797 int *stat; /* success/failure */ 2798 int result; 2799 bool kswapd; /* allocation in kswapd context */ 2800 struct completion *done; 2801 struct work_struct work; 2802}; 2803 2804/* 2805 * Stack switching interfaces for allocation 2806 */ 2807static void 2808xfs_btree_split_worker( 2809 struct work_struct *work) 2810{ 2811 struct xfs_btree_split_args *args = container_of(work, 2812 struct xfs_btree_split_args, work); 2813 unsigned long pflags; 2814 unsigned long new_pflags = 0; 2815 2816 /* 2817 * we are in a transaction context here, but may also be doing work 2818 * in kswapd context, and hence we may need to inherit that state 2819 * temporarily to ensure that we don't block waiting for memory reclaim 2820 * in any way. 2821 */ 2822 if (args->kswapd) 2823 new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD; 2824 2825 current_set_flags_nested(&pflags, new_pflags); 2826 xfs_trans_set_context(args->cur->bc_tp); 2827 2828 args->result = __xfs_btree_split(args->cur, args->level, args->ptrp, 2829 args->key, args->curp, args->stat); 2830 2831 xfs_trans_clear_context(args->cur->bc_tp); 2832 current_restore_flags_nested(&pflags, new_pflags); 2833 2834 /* 2835 * Do not access args after complete() has run here. We don't own args 2836 * and the owner may run and free args before we return here. 2837 */ 2838 complete(args->done); 2839 2840} 2841 2842/* 2843 * BMBT split requests often come in with little stack to work on. Push 2844 * them off to a worker thread so there is lots of stack to use. For the other 2845 * btree types, just call directly to avoid the context switch overhead here. 2846 */ 2847STATIC int /* error */ 2848xfs_btree_split( 2849 struct xfs_btree_cur *cur, 2850 int level, 2851 union xfs_btree_ptr *ptrp, 2852 union xfs_btree_key *key, 2853 struct xfs_btree_cur **curp, 2854 int *stat) /* success/failure */ 2855{ 2856 struct xfs_btree_split_args args; 2857 DECLARE_COMPLETION_ONSTACK(done); 2858 2859 if (cur->bc_btnum != XFS_BTNUM_BMAP) 2860 return __xfs_btree_split(cur, level, ptrp, key, curp, stat); 2861 2862 args.cur = cur; 2863 args.level = level; 2864 args.ptrp = ptrp; 2865 args.key = key; 2866 args.curp = curp; 2867 args.stat = stat; 2868 args.done = &done; 2869 args.kswapd = current_is_kswapd(); 2870 INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker); 2871 queue_work(xfs_alloc_wq, &args.work); 2872 wait_for_completion(&done); 2873 destroy_work_on_stack(&args.work); 2874 return args.result; 2875} 2876 2877 2878/* 2879 * Copy the old inode root contents into a real block and make the 2880 * broot point to it. 2881 */ 2882int /* error */ 2883xfs_btree_new_iroot( 2884 struct xfs_btree_cur *cur, /* btree cursor */ 2885 int *logflags, /* logging flags for inode */ 2886 int *stat) /* return status - 0 fail */ 2887{ 2888 struct xfs_buf *cbp; /* buffer for cblock */ 2889 struct xfs_btree_block *block; /* btree block */ 2890 struct xfs_btree_block *cblock; /* child btree block */ 2891 union xfs_btree_key *ckp; /* child key pointer */ 2892 union xfs_btree_ptr *cpp; /* child ptr pointer */ 2893 union xfs_btree_key *kp; /* pointer to btree key */ 2894 union xfs_btree_ptr *pp; /* pointer to block addr */ 2895 union xfs_btree_ptr nptr; /* new block addr */ 2896 int level; /* btree level */ 2897 int error; /* error return code */ 2898 int i; /* loop counter */ 2899 2900 XFS_BTREE_STATS_INC(cur, newroot); 2901 2902 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 2903 2904 level = cur->bc_nlevels - 1; 2905 2906 block = xfs_btree_get_iroot(cur); 2907 pp = xfs_btree_ptr_addr(cur, 1, block); 2908 2909 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 2910 error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat); 2911 if (error) 2912 goto error0; 2913 if (*stat == 0) 2914 return 0; 2915 2916 XFS_BTREE_STATS_INC(cur, alloc); 2917 2918 /* Copy the root into a real block. */ 2919 error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp); 2920 if (error) 2921 goto error0; 2922 2923 /* 2924 * we can't just memcpy() the root in for CRC enabled btree blocks. 2925 * In that case have to also ensure the blkno remains correct 2926 */ 2927 memcpy(cblock, block, xfs_btree_block_len(cur)); 2928 if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) { 2929 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 2930 cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn); 2931 else 2932 cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn); 2933 } 2934 2935 be16_add_cpu(&block->bb_level, 1); 2936 xfs_btree_set_numrecs(block, 1); 2937 cur->bc_nlevels++; 2938 cur->bc_ptrs[level + 1] = 1; 2939 2940 kp = xfs_btree_key_addr(cur, 1, block); 2941 ckp = xfs_btree_key_addr(cur, 1, cblock); 2942 xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock)); 2943 2944 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 2945 for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) { 2946 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 2947 if (error) 2948 goto error0; 2949 } 2950 2951 xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock)); 2952 2953 error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level); 2954 if (error) 2955 goto error0; 2956 2957 xfs_btree_copy_ptrs(cur, pp, &nptr, 1); 2958 2959 xfs_iroot_realloc(cur->bc_ino.ip, 2960 1 - xfs_btree_get_numrecs(cblock), 2961 cur->bc_ino.whichfork); 2962 2963 xfs_btree_setbuf(cur, level, cbp); 2964 2965 /* 2966 * Do all this logging at the end so that 2967 * the root is at the right level. 2968 */ 2969 xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS); 2970 xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2971 xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs)); 2972 2973 *logflags |= 2974 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork); 2975 *stat = 1; 2976 return 0; 2977error0: 2978 return error; 2979} 2980 2981/* 2982 * Allocate a new root block, fill it in. 2983 */ 2984STATIC int /* error */ 2985xfs_btree_new_root( 2986 struct xfs_btree_cur *cur, /* btree cursor */ 2987 int *stat) /* success/failure */ 2988{ 2989 struct xfs_btree_block *block; /* one half of the old root block */ 2990 struct xfs_buf *bp; /* buffer containing block */ 2991 int error; /* error return value */ 2992 struct xfs_buf *lbp; /* left buffer pointer */ 2993 struct xfs_btree_block *left; /* left btree block */ 2994 struct xfs_buf *nbp; /* new (root) buffer */ 2995 struct xfs_btree_block *new; /* new (root) btree block */ 2996 int nptr; /* new value for key index, 1 or 2 */ 2997 struct xfs_buf *rbp; /* right buffer pointer */ 2998 struct xfs_btree_block *right; /* right btree block */ 2999 union xfs_btree_ptr rptr; 3000 union xfs_btree_ptr lptr; 3001 3002 XFS_BTREE_STATS_INC(cur, newroot); 3003 3004 /* initialise our start point from the cursor */ 3005 cur->bc_ops->init_ptr_from_cur(cur, &rptr); 3006 3007 /* Allocate the new block. If we can't do it, we're toast. Give up. */ 3008 error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat); 3009 if (error) 3010 goto error0; 3011 if (*stat == 0) 3012 goto out0; 3013 XFS_BTREE_STATS_INC(cur, alloc); 3014 3015 /* Set up the new block. */ 3016 error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp); 3017 if (error) 3018 goto error0; 3019 3020 /* Set the root in the holding structure increasing the level by 1. */ 3021 cur->bc_ops->set_root(cur, &lptr, 1); 3022 3023 /* 3024 * At the previous root level there are now two blocks: the old root, 3025 * and the new block generated when it was split. We don't know which 3026 * one the cursor is pointing at, so we set up variables "left" and 3027 * "right" for each case. 3028 */ 3029 block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp); 3030 3031#ifdef DEBUG 3032 error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp); 3033 if (error) 3034 goto error0; 3035#endif 3036 3037 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3038 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3039 /* Our block is left, pick up the right block. */ 3040 lbp = bp; 3041 xfs_btree_buf_to_ptr(cur, lbp, &lptr); 3042 left = block; 3043 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 3044 if (error) 3045 goto error0; 3046 bp = rbp; 3047 nptr = 1; 3048 } else { 3049 /* Our block is right, pick up the left block. */ 3050 rbp = bp; 3051 xfs_btree_buf_to_ptr(cur, rbp, &rptr); 3052 right = block; 3053 xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB); 3054 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3055 if (error) 3056 goto error0; 3057 bp = lbp; 3058 nptr = 2; 3059 } 3060 3061 /* Fill in the new block's btree header and log it. */ 3062 xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2); 3063 xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS); 3064 ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) && 3065 !xfs_btree_ptr_is_null(cur, &rptr)); 3066 3067 /* Fill in the key data in the new root. */ 3068 if (xfs_btree_get_level(left) > 0) { 3069 /* 3070 * Get the keys for the left block's keys and put them directly 3071 * in the parent block. Do the same for the right block. 3072 */ 3073 xfs_btree_get_node_keys(cur, left, 3074 xfs_btree_key_addr(cur, 1, new)); 3075 xfs_btree_get_node_keys(cur, right, 3076 xfs_btree_key_addr(cur, 2, new)); 3077 } else { 3078 /* 3079 * Get the keys for the left block's records and put them 3080 * directly in the parent block. Do the same for the right 3081 * block. 3082 */ 3083 xfs_btree_get_leaf_keys(cur, left, 3084 xfs_btree_key_addr(cur, 1, new)); 3085 xfs_btree_get_leaf_keys(cur, right, 3086 xfs_btree_key_addr(cur, 2, new)); 3087 } 3088 xfs_btree_log_keys(cur, nbp, 1, 2); 3089 3090 /* Fill in the pointer data in the new root. */ 3091 xfs_btree_copy_ptrs(cur, 3092 xfs_btree_ptr_addr(cur, 1, new), &lptr, 1); 3093 xfs_btree_copy_ptrs(cur, 3094 xfs_btree_ptr_addr(cur, 2, new), &rptr, 1); 3095 xfs_btree_log_ptrs(cur, nbp, 1, 2); 3096 3097 /* Fix up the cursor. */ 3098 xfs_btree_setbuf(cur, cur->bc_nlevels, nbp); 3099 cur->bc_ptrs[cur->bc_nlevels] = nptr; 3100 cur->bc_nlevels++; 3101 *stat = 1; 3102 return 0; 3103error0: 3104 return error; 3105out0: 3106 *stat = 0; 3107 return 0; 3108} 3109 3110STATIC int 3111xfs_btree_make_block_unfull( 3112 struct xfs_btree_cur *cur, /* btree cursor */ 3113 int level, /* btree level */ 3114 int numrecs,/* # of recs in block */ 3115 int *oindex,/* old tree index */ 3116 int *index, /* new tree index */ 3117 union xfs_btree_ptr *nptr, /* new btree ptr */ 3118 struct xfs_btree_cur **ncur, /* new btree cursor */ 3119 union xfs_btree_key *key, /* key of new block */ 3120 int *stat) 3121{ 3122 int error = 0; 3123 3124 if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3125 level == cur->bc_nlevels - 1) { 3126 struct xfs_inode *ip = cur->bc_ino.ip; 3127 3128 if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) { 3129 /* A root block that can be made bigger. */ 3130 xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork); 3131 *stat = 1; 3132 } else { 3133 /* A root block that needs replacing */ 3134 int logflags = 0; 3135 3136 error = xfs_btree_new_iroot(cur, &logflags, stat); 3137 if (error || *stat == 0) 3138 return error; 3139 3140 xfs_trans_log_inode(cur->bc_tp, ip, logflags); 3141 } 3142 3143 return 0; 3144 } 3145 3146 /* First, try shifting an entry to the right neighbor. */ 3147 error = xfs_btree_rshift(cur, level, stat); 3148 if (error || *stat) 3149 return error; 3150 3151 /* Next, try shifting an entry to the left neighbor. */ 3152 error = xfs_btree_lshift(cur, level, stat); 3153 if (error) 3154 return error; 3155 3156 if (*stat) { 3157 *oindex = *index = cur->bc_ptrs[level]; 3158 return 0; 3159 } 3160 3161 /* 3162 * Next, try splitting the current block in half. 3163 * 3164 * If this works we have to re-set our variables because we 3165 * could be in a different block now. 3166 */ 3167 error = xfs_btree_split(cur, level, nptr, key, ncur, stat); 3168 if (error || *stat == 0) 3169 return error; 3170 3171 3172 *index = cur->bc_ptrs[level]; 3173 return 0; 3174} 3175 3176/* 3177 * Insert one record/level. Return information to the caller 3178 * allowing the next level up to proceed if necessary. 3179 */ 3180STATIC int 3181xfs_btree_insrec( 3182 struct xfs_btree_cur *cur, /* btree cursor */ 3183 int level, /* level to insert record at */ 3184 union xfs_btree_ptr *ptrp, /* i/o: block number inserted */ 3185 union xfs_btree_rec *rec, /* record to insert */ 3186 union xfs_btree_key *key, /* i/o: block key for ptrp */ 3187 struct xfs_btree_cur **curp, /* output: new cursor replacing cur */ 3188 int *stat) /* success/failure */ 3189{ 3190 struct xfs_btree_block *block; /* btree block */ 3191 struct xfs_buf *bp; /* buffer for block */ 3192 union xfs_btree_ptr nptr; /* new block ptr */ 3193 struct xfs_btree_cur *ncur = NULL; /* new btree cursor */ 3194 union xfs_btree_key nkey; /* new block key */ 3195 union xfs_btree_key *lkey; 3196 int optr; /* old key/record index */ 3197 int ptr; /* key/record index */ 3198 int numrecs;/* number of records */ 3199 int error; /* error return value */ 3200 int i; 3201 xfs_daddr_t old_bn; 3202 3203 ncur = NULL; 3204 lkey = &nkey; 3205 3206 /* 3207 * If we have an external root pointer, and we've made it to the 3208 * root level, allocate a new root block and we're done. 3209 */ 3210 if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) && 3211 (level >= cur->bc_nlevels)) { 3212 error = xfs_btree_new_root(cur, stat); 3213 xfs_btree_set_ptr_null(cur, ptrp); 3214 3215 return error; 3216 } 3217 3218 /* If we're off the left edge, return failure. */ 3219 ptr = cur->bc_ptrs[level]; 3220 if (ptr == 0) { 3221 *stat = 0; 3222 return 0; 3223 } 3224 3225 optr = ptr; 3226 3227 XFS_BTREE_STATS_INC(cur, insrec); 3228 3229 /* Get pointers to the btree buffer and block. */ 3230 block = xfs_btree_get_block(cur, level, &bp); 3231 old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL; 3232 numrecs = xfs_btree_get_numrecs(block); 3233 3234#ifdef DEBUG 3235 error = xfs_btree_check_block(cur, block, level, bp); 3236 if (error) 3237 goto error0; 3238 3239 /* Check that the new entry is being inserted in the right place. */ 3240 if (ptr <= numrecs) { 3241 if (level == 0) { 3242 ASSERT(cur->bc_ops->recs_inorder(cur, rec, 3243 xfs_btree_rec_addr(cur, ptr, block))); 3244 } else { 3245 ASSERT(cur->bc_ops->keys_inorder(cur, key, 3246 xfs_btree_key_addr(cur, ptr, block))); 3247 } 3248 } 3249#endif 3250 3251 /* 3252 * If the block is full, we can't insert the new entry until we 3253 * make the block un-full. 3254 */ 3255 xfs_btree_set_ptr_null(cur, &nptr); 3256 if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) { 3257 error = xfs_btree_make_block_unfull(cur, level, numrecs, 3258 &optr, &ptr, &nptr, &ncur, lkey, stat); 3259 if (error || *stat == 0) 3260 goto error0; 3261 } 3262 3263 /* 3264 * The current block may have changed if the block was 3265 * previously full and we have just made space in it. 3266 */ 3267 block = xfs_btree_get_block(cur, level, &bp); 3268 numrecs = xfs_btree_get_numrecs(block); 3269 3270#ifdef DEBUG 3271 error = xfs_btree_check_block(cur, block, level, bp); 3272 if (error) 3273 goto error0; 3274#endif 3275 3276 /* 3277 * At this point we know there's room for our new entry in the block 3278 * we're pointing at. 3279 */ 3280 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1); 3281 3282 if (level > 0) { 3283 /* It's a nonleaf. make a hole in the keys and ptrs */ 3284 union xfs_btree_key *kp; 3285 union xfs_btree_ptr *pp; 3286 3287 kp = xfs_btree_key_addr(cur, ptr, block); 3288 pp = xfs_btree_ptr_addr(cur, ptr, block); 3289 3290 for (i = numrecs - ptr; i >= 0; i--) { 3291 error = xfs_btree_debug_check_ptr(cur, pp, i, level); 3292 if (error) 3293 goto error0; 3294 } 3295 3296 xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1); 3297 xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1); 3298 3299 error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level); 3300 if (error) 3301 goto error0; 3302 3303 /* Now put the new data in, bump numrecs and log it. */ 3304 xfs_btree_copy_keys(cur, kp, key, 1); 3305 xfs_btree_copy_ptrs(cur, pp, ptrp, 1); 3306 numrecs++; 3307 xfs_btree_set_numrecs(block, numrecs); 3308 xfs_btree_log_ptrs(cur, bp, ptr, numrecs); 3309 xfs_btree_log_keys(cur, bp, ptr, numrecs); 3310#ifdef DEBUG 3311 if (ptr < numrecs) { 3312 ASSERT(cur->bc_ops->keys_inorder(cur, kp, 3313 xfs_btree_key_addr(cur, ptr + 1, block))); 3314 } 3315#endif 3316 } else { 3317 /* It's a leaf. make a hole in the records */ 3318 union xfs_btree_rec *rp; 3319 3320 rp = xfs_btree_rec_addr(cur, ptr, block); 3321 3322 xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1); 3323 3324 /* Now put the new data in, bump numrecs and log it. */ 3325 xfs_btree_copy_recs(cur, rp, rec, 1); 3326 xfs_btree_set_numrecs(block, ++numrecs); 3327 xfs_btree_log_recs(cur, bp, ptr, numrecs); 3328#ifdef DEBUG 3329 if (ptr < numrecs) { 3330 ASSERT(cur->bc_ops->recs_inorder(cur, rp, 3331 xfs_btree_rec_addr(cur, ptr + 1, block))); 3332 } 3333#endif 3334 } 3335 3336 /* Log the new number of records in the btree header. */ 3337 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3338 3339 /* 3340 * If we just inserted into a new tree block, we have to 3341 * recalculate nkey here because nkey is out of date. 3342 * 3343 * Otherwise we're just updating an existing block (having shoved 3344 * some records into the new tree block), so use the regular key 3345 * update mechanism. 3346 */ 3347 if (bp && bp->b_bn != old_bn) { 3348 xfs_btree_get_keys(cur, block, lkey); 3349 } else if (xfs_btree_needs_key_update(cur, optr)) { 3350 error = xfs_btree_update_keys(cur, level); 3351 if (error) 3352 goto error0; 3353 } 3354 3355 /* 3356 * If we are tracking the last record in the tree and 3357 * we are at the far right edge of the tree, update it. 3358 */ 3359 if (xfs_btree_is_lastrec(cur, block, level)) { 3360 cur->bc_ops->update_lastrec(cur, block, rec, 3361 ptr, LASTREC_INSREC); 3362 } 3363 3364 /* 3365 * Return the new block number, if any. 3366 * If there is one, give back a record value and a cursor too. 3367 */ 3368 *ptrp = nptr; 3369 if (!xfs_btree_ptr_is_null(cur, &nptr)) { 3370 xfs_btree_copy_keys(cur, key, lkey, 1); 3371 *curp = ncur; 3372 } 3373 3374 *stat = 1; 3375 return 0; 3376 3377error0: 3378 if (ncur) 3379 xfs_btree_del_cursor(ncur, error); 3380 return error; 3381} 3382 3383/* 3384 * Insert the record at the point referenced by cur. 3385 * 3386 * A multi-level split of the tree on insert will invalidate the original 3387 * cursor. All callers of this function should assume that the cursor is 3388 * no longer valid and revalidate it. 3389 */ 3390int 3391xfs_btree_insert( 3392 struct xfs_btree_cur *cur, 3393 int *stat) 3394{ 3395 int error; /* error return value */ 3396 int i; /* result value, 0 for failure */ 3397 int level; /* current level number in btree */ 3398 union xfs_btree_ptr nptr; /* new block number (split result) */ 3399 struct xfs_btree_cur *ncur; /* new cursor (split result) */ 3400 struct xfs_btree_cur *pcur; /* previous level's cursor */ 3401 union xfs_btree_key bkey; /* key of block to insert */ 3402 union xfs_btree_key *key; 3403 union xfs_btree_rec rec; /* record to insert */ 3404 3405 level = 0; 3406 ncur = NULL; 3407 pcur = cur; 3408 key = &bkey; 3409 3410 xfs_btree_set_ptr_null(cur, &nptr); 3411 3412 /* Make a key out of the record data to be inserted, and save it. */ 3413 cur->bc_ops->init_rec_from_cur(cur, &rec); 3414 cur->bc_ops->init_key_from_rec(key, &rec); 3415 3416 /* 3417 * Loop going up the tree, starting at the leaf level. 3418 * Stop when we don't get a split block, that must mean that 3419 * the insert is finished with this level. 3420 */ 3421 do { 3422 /* 3423 * Insert nrec/nptr into this level of the tree. 3424 * Note if we fail, nptr will be null. 3425 */ 3426 error = xfs_btree_insrec(pcur, level, &nptr, &rec, key, 3427 &ncur, &i); 3428 if (error) { 3429 if (pcur != cur) 3430 xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR); 3431 goto error0; 3432 } 3433 3434 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3435 error = -EFSCORRUPTED; 3436 goto error0; 3437 } 3438 level++; 3439 3440 /* 3441 * See if the cursor we just used is trash. 3442 * Can't trash the caller's cursor, but otherwise we should 3443 * if ncur is a new cursor or we're about to be done. 3444 */ 3445 if (pcur != cur && 3446 (ncur || xfs_btree_ptr_is_null(cur, &nptr))) { 3447 /* Save the state from the cursor before we trash it */ 3448 if (cur->bc_ops->update_cursor) 3449 cur->bc_ops->update_cursor(pcur, cur); 3450 cur->bc_nlevels = pcur->bc_nlevels; 3451 xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR); 3452 } 3453 /* If we got a new cursor, switch to it. */ 3454 if (ncur) { 3455 pcur = ncur; 3456 ncur = NULL; 3457 } 3458 } while (!xfs_btree_ptr_is_null(cur, &nptr)); 3459 3460 *stat = i; 3461 return 0; 3462error0: 3463 return error; 3464} 3465 3466/* 3467 * Try to merge a non-leaf block back into the inode root. 3468 * 3469 * Note: the killroot names comes from the fact that we're effectively 3470 * killing the old root block. But because we can't just delete the 3471 * inode we have to copy the single block it was pointing to into the 3472 * inode. 3473 */ 3474STATIC int 3475xfs_btree_kill_iroot( 3476 struct xfs_btree_cur *cur) 3477{ 3478 int whichfork = cur->bc_ino.whichfork; 3479 struct xfs_inode *ip = cur->bc_ino.ip; 3480 struct xfs_ifork *ifp = XFS_IFORK_PTR(ip, whichfork); 3481 struct xfs_btree_block *block; 3482 struct xfs_btree_block *cblock; 3483 union xfs_btree_key *kp; 3484 union xfs_btree_key *ckp; 3485 union xfs_btree_ptr *pp; 3486 union xfs_btree_ptr *cpp; 3487 struct xfs_buf *cbp; 3488 int level; 3489 int index; 3490 int numrecs; 3491 int error; 3492#ifdef DEBUG 3493 union xfs_btree_ptr ptr; 3494#endif 3495 int i; 3496 3497 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 3498 ASSERT(cur->bc_nlevels > 1); 3499 3500 /* 3501 * Don't deal with the root block needs to be a leaf case. 3502 * We're just going to turn the thing back into extents anyway. 3503 */ 3504 level = cur->bc_nlevels - 1; 3505 if (level == 1) 3506 goto out0; 3507 3508 /* 3509 * Give up if the root has multiple children. 3510 */ 3511 block = xfs_btree_get_iroot(cur); 3512 if (xfs_btree_get_numrecs(block) != 1) 3513 goto out0; 3514 3515 cblock = xfs_btree_get_block(cur, level - 1, &cbp); 3516 numrecs = xfs_btree_get_numrecs(cblock); 3517 3518 /* 3519 * Only do this if the next level will fit. 3520 * Then the data must be copied up to the inode, 3521 * instead of freeing the root you free the next level. 3522 */ 3523 if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level)) 3524 goto out0; 3525 3526 XFS_BTREE_STATS_INC(cur, killroot); 3527 3528#ifdef DEBUG 3529 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB); 3530 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3531 xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB); 3532 ASSERT(xfs_btree_ptr_is_null(cur, &ptr)); 3533#endif 3534 3535 index = numrecs - cur->bc_ops->get_maxrecs(cur, level); 3536 if (index) { 3537 xfs_iroot_realloc(cur->bc_ino.ip, index, 3538 cur->bc_ino.whichfork); 3539 block = ifp->if_broot; 3540 } 3541 3542 be16_add_cpu(&block->bb_numrecs, index); 3543 ASSERT(block->bb_numrecs == cblock->bb_numrecs); 3544 3545 kp = xfs_btree_key_addr(cur, 1, block); 3546 ckp = xfs_btree_key_addr(cur, 1, cblock); 3547 xfs_btree_copy_keys(cur, kp, ckp, numrecs); 3548 3549 pp = xfs_btree_ptr_addr(cur, 1, block); 3550 cpp = xfs_btree_ptr_addr(cur, 1, cblock); 3551 3552 for (i = 0; i < numrecs; i++) { 3553 error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1); 3554 if (error) 3555 return error; 3556 } 3557 3558 xfs_btree_copy_ptrs(cur, pp, cpp, numrecs); 3559 3560 error = xfs_btree_free_block(cur, cbp); 3561 if (error) 3562 return error; 3563 3564 cur->bc_bufs[level - 1] = NULL; 3565 be16_add_cpu(&block->bb_level, -1); 3566 xfs_trans_log_inode(cur->bc_tp, ip, 3567 XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork)); 3568 cur->bc_nlevels--; 3569out0: 3570 return 0; 3571} 3572 3573/* 3574 * Kill the current root node, and replace it with it's only child node. 3575 */ 3576STATIC int 3577xfs_btree_kill_root( 3578 struct xfs_btree_cur *cur, 3579 struct xfs_buf *bp, 3580 int level, 3581 union xfs_btree_ptr *newroot) 3582{ 3583 int error; 3584 3585 XFS_BTREE_STATS_INC(cur, killroot); 3586 3587 /* 3588 * Update the root pointer, decreasing the level by 1 and then 3589 * free the old root. 3590 */ 3591 cur->bc_ops->set_root(cur, newroot, -1); 3592 3593 error = xfs_btree_free_block(cur, bp); 3594 if (error) 3595 return error; 3596 3597 cur->bc_bufs[level] = NULL; 3598 cur->bc_ra[level] = 0; 3599 cur->bc_nlevels--; 3600 3601 return 0; 3602} 3603 3604STATIC int 3605xfs_btree_dec_cursor( 3606 struct xfs_btree_cur *cur, 3607 int level, 3608 int *stat) 3609{ 3610 int error; 3611 int i; 3612 3613 if (level > 0) { 3614 error = xfs_btree_decrement(cur, level, &i); 3615 if (error) 3616 return error; 3617 } 3618 3619 *stat = 1; 3620 return 0; 3621} 3622 3623/* 3624 * Single level of the btree record deletion routine. 3625 * Delete record pointed to by cur/level. 3626 * Remove the record from its block then rebalance the tree. 3627 * Return 0 for error, 1 for done, 2 to go on to the next level. 3628 */ 3629STATIC int /* error */ 3630xfs_btree_delrec( 3631 struct xfs_btree_cur *cur, /* btree cursor */ 3632 int level, /* level removing record from */ 3633 int *stat) /* fail/done/go-on */ 3634{ 3635 struct xfs_btree_block *block; /* btree block */ 3636 union xfs_btree_ptr cptr; /* current block ptr */ 3637 struct xfs_buf *bp; /* buffer for block */ 3638 int error; /* error return value */ 3639 int i; /* loop counter */ 3640 union xfs_btree_ptr lptr; /* left sibling block ptr */ 3641 struct xfs_buf *lbp; /* left buffer pointer */ 3642 struct xfs_btree_block *left; /* left btree block */ 3643 int lrecs = 0; /* left record count */ 3644 int ptr; /* key/record index */ 3645 union xfs_btree_ptr rptr; /* right sibling block ptr */ 3646 struct xfs_buf *rbp; /* right buffer pointer */ 3647 struct xfs_btree_block *right; /* right btree block */ 3648 struct xfs_btree_block *rrblock; /* right-right btree block */ 3649 struct xfs_buf *rrbp; /* right-right buffer pointer */ 3650 int rrecs = 0; /* right record count */ 3651 struct xfs_btree_cur *tcur; /* temporary btree cursor */ 3652 int numrecs; /* temporary numrec count */ 3653 3654 tcur = NULL; 3655 3656 /* Get the index of the entry being deleted, check for nothing there. */ 3657 ptr = cur->bc_ptrs[level]; 3658 if (ptr == 0) { 3659 *stat = 0; 3660 return 0; 3661 } 3662 3663 /* Get the buffer & block containing the record or key/ptr. */ 3664 block = xfs_btree_get_block(cur, level, &bp); 3665 numrecs = xfs_btree_get_numrecs(block); 3666 3667#ifdef DEBUG 3668 error = xfs_btree_check_block(cur, block, level, bp); 3669 if (error) 3670 goto error0; 3671#endif 3672 3673 /* Fail if we're off the end of the block. */ 3674 if (ptr > numrecs) { 3675 *stat = 0; 3676 return 0; 3677 } 3678 3679 XFS_BTREE_STATS_INC(cur, delrec); 3680 XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr); 3681 3682 /* Excise the entries being deleted. */ 3683 if (level > 0) { 3684 /* It's a nonleaf. operate on keys and ptrs */ 3685 union xfs_btree_key *lkp; 3686 union xfs_btree_ptr *lpp; 3687 3688 lkp = xfs_btree_key_addr(cur, ptr + 1, block); 3689 lpp = xfs_btree_ptr_addr(cur, ptr + 1, block); 3690 3691 for (i = 0; i < numrecs - ptr; i++) { 3692 error = xfs_btree_debug_check_ptr(cur, lpp, i, level); 3693 if (error) 3694 goto error0; 3695 } 3696 3697 if (ptr < numrecs) { 3698 xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr); 3699 xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr); 3700 xfs_btree_log_keys(cur, bp, ptr, numrecs - 1); 3701 xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1); 3702 } 3703 } else { 3704 /* It's a leaf. operate on records */ 3705 if (ptr < numrecs) { 3706 xfs_btree_shift_recs(cur, 3707 xfs_btree_rec_addr(cur, ptr + 1, block), 3708 -1, numrecs - ptr); 3709 xfs_btree_log_recs(cur, bp, ptr, numrecs - 1); 3710 } 3711 } 3712 3713 /* 3714 * Decrement and log the number of entries in the block. 3715 */ 3716 xfs_btree_set_numrecs(block, --numrecs); 3717 xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS); 3718 3719 /* 3720 * If we are tracking the last record in the tree and 3721 * we are at the far right edge of the tree, update it. 3722 */ 3723 if (xfs_btree_is_lastrec(cur, block, level)) { 3724 cur->bc_ops->update_lastrec(cur, block, NULL, 3725 ptr, LASTREC_DELREC); 3726 } 3727 3728 /* 3729 * We're at the root level. First, shrink the root block in-memory. 3730 * Try to get rid of the next level down. If we can't then there's 3731 * nothing left to do. 3732 */ 3733 if (level == cur->bc_nlevels - 1) { 3734 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3735 xfs_iroot_realloc(cur->bc_ino.ip, -1, 3736 cur->bc_ino.whichfork); 3737 3738 error = xfs_btree_kill_iroot(cur); 3739 if (error) 3740 goto error0; 3741 3742 error = xfs_btree_dec_cursor(cur, level, stat); 3743 if (error) 3744 goto error0; 3745 *stat = 1; 3746 return 0; 3747 } 3748 3749 /* 3750 * If this is the root level, and there's only one entry left, 3751 * and it's NOT the leaf level, then we can get rid of this 3752 * level. 3753 */ 3754 if (numrecs == 1 && level > 0) { 3755 union xfs_btree_ptr *pp; 3756 /* 3757 * pp is still set to the first pointer in the block. 3758 * Make it the new root of the btree. 3759 */ 3760 pp = xfs_btree_ptr_addr(cur, 1, block); 3761 error = xfs_btree_kill_root(cur, bp, level, pp); 3762 if (error) 3763 goto error0; 3764 } else if (level > 0) { 3765 error = xfs_btree_dec_cursor(cur, level, stat); 3766 if (error) 3767 goto error0; 3768 } 3769 *stat = 1; 3770 return 0; 3771 } 3772 3773 /* 3774 * If we deleted the leftmost entry in the block, update the 3775 * key values above us in the tree. 3776 */ 3777 if (xfs_btree_needs_key_update(cur, ptr)) { 3778 error = xfs_btree_update_keys(cur, level); 3779 if (error) 3780 goto error0; 3781 } 3782 3783 /* 3784 * If the number of records remaining in the block is at least 3785 * the minimum, we're done. 3786 */ 3787 if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) { 3788 error = xfs_btree_dec_cursor(cur, level, stat); 3789 if (error) 3790 goto error0; 3791 return 0; 3792 } 3793 3794 /* 3795 * Otherwise, we have to move some records around to keep the 3796 * tree balanced. Look at the left and right sibling blocks to 3797 * see if we can re-balance by moving only one record. 3798 */ 3799 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 3800 xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB); 3801 3802 if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) { 3803 /* 3804 * One child of root, need to get a chance to copy its contents 3805 * into the root and delete it. Can't go up to next level, 3806 * there's nothing to delete there. 3807 */ 3808 if (xfs_btree_ptr_is_null(cur, &rptr) && 3809 xfs_btree_ptr_is_null(cur, &lptr) && 3810 level == cur->bc_nlevels - 2) { 3811 error = xfs_btree_kill_iroot(cur); 3812 if (!error) 3813 error = xfs_btree_dec_cursor(cur, level, stat); 3814 if (error) 3815 goto error0; 3816 return 0; 3817 } 3818 } 3819 3820 ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) || 3821 !xfs_btree_ptr_is_null(cur, &lptr)); 3822 3823 /* 3824 * Duplicate the cursor so our btree manipulations here won't 3825 * disrupt the next level up. 3826 */ 3827 error = xfs_btree_dup_cursor(cur, &tcur); 3828 if (error) 3829 goto error0; 3830 3831 /* 3832 * If there's a right sibling, see if it's ok to shift an entry 3833 * out of it. 3834 */ 3835 if (!xfs_btree_ptr_is_null(cur, &rptr)) { 3836 /* 3837 * Move the temp cursor to the last entry in the next block. 3838 * Actually any entry but the first would suffice. 3839 */ 3840 i = xfs_btree_lastrec(tcur, level); 3841 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3842 error = -EFSCORRUPTED; 3843 goto error0; 3844 } 3845 3846 error = xfs_btree_increment(tcur, level, &i); 3847 if (error) 3848 goto error0; 3849 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3850 error = -EFSCORRUPTED; 3851 goto error0; 3852 } 3853 3854 i = xfs_btree_lastrec(tcur, level); 3855 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3856 error = -EFSCORRUPTED; 3857 goto error0; 3858 } 3859 3860 /* Grab a pointer to the block. */ 3861 right = xfs_btree_get_block(tcur, level, &rbp); 3862#ifdef DEBUG 3863 error = xfs_btree_check_block(tcur, right, level, rbp); 3864 if (error) 3865 goto error0; 3866#endif 3867 /* Grab the current block number, for future use. */ 3868 xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB); 3869 3870 /* 3871 * If right block is full enough so that removing one entry 3872 * won't make it too empty, and left-shifting an entry out 3873 * of right to us works, we're done. 3874 */ 3875 if (xfs_btree_get_numrecs(right) - 1 >= 3876 cur->bc_ops->get_minrecs(tcur, level)) { 3877 error = xfs_btree_lshift(tcur, level, &i); 3878 if (error) 3879 goto error0; 3880 if (i) { 3881 ASSERT(xfs_btree_get_numrecs(block) >= 3882 cur->bc_ops->get_minrecs(tcur, level)); 3883 3884 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3885 tcur = NULL; 3886 3887 error = xfs_btree_dec_cursor(cur, level, stat); 3888 if (error) 3889 goto error0; 3890 return 0; 3891 } 3892 } 3893 3894 /* 3895 * Otherwise, grab the number of records in right for 3896 * future reference, and fix up the temp cursor to point 3897 * to our block again (last record). 3898 */ 3899 rrecs = xfs_btree_get_numrecs(right); 3900 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3901 i = xfs_btree_firstrec(tcur, level); 3902 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3903 error = -EFSCORRUPTED; 3904 goto error0; 3905 } 3906 3907 error = xfs_btree_decrement(tcur, level, &i); 3908 if (error) 3909 goto error0; 3910 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3911 error = -EFSCORRUPTED; 3912 goto error0; 3913 } 3914 } 3915 } 3916 3917 /* 3918 * If there's a left sibling, see if it's ok to shift an entry 3919 * out of it. 3920 */ 3921 if (!xfs_btree_ptr_is_null(cur, &lptr)) { 3922 /* 3923 * Move the temp cursor to the first entry in the 3924 * previous block. 3925 */ 3926 i = xfs_btree_firstrec(tcur, level); 3927 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3928 error = -EFSCORRUPTED; 3929 goto error0; 3930 } 3931 3932 error = xfs_btree_decrement(tcur, level, &i); 3933 if (error) 3934 goto error0; 3935 i = xfs_btree_firstrec(tcur, level); 3936 if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) { 3937 error = -EFSCORRUPTED; 3938 goto error0; 3939 } 3940 3941 /* Grab a pointer to the block. */ 3942 left = xfs_btree_get_block(tcur, level, &lbp); 3943#ifdef DEBUG 3944 error = xfs_btree_check_block(cur, left, level, lbp); 3945 if (error) 3946 goto error0; 3947#endif 3948 /* Grab the current block number, for future use. */ 3949 xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB); 3950 3951 /* 3952 * If left block is full enough so that removing one entry 3953 * won't make it too empty, and right-shifting an entry out 3954 * of left to us works, we're done. 3955 */ 3956 if (xfs_btree_get_numrecs(left) - 1 >= 3957 cur->bc_ops->get_minrecs(tcur, level)) { 3958 error = xfs_btree_rshift(tcur, level, &i); 3959 if (error) 3960 goto error0; 3961 if (i) { 3962 ASSERT(xfs_btree_get_numrecs(block) >= 3963 cur->bc_ops->get_minrecs(tcur, level)); 3964 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3965 tcur = NULL; 3966 if (level == 0) 3967 cur->bc_ptrs[0]++; 3968 3969 *stat = 1; 3970 return 0; 3971 } 3972 } 3973 3974 /* 3975 * Otherwise, grab the number of records in right for 3976 * future reference. 3977 */ 3978 lrecs = xfs_btree_get_numrecs(left); 3979 } 3980 3981 /* Delete the temp cursor, we're done with it. */ 3982 xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR); 3983 tcur = NULL; 3984 3985 /* If here, we need to do a join to keep the tree balanced. */ 3986 ASSERT(!xfs_btree_ptr_is_null(cur, &cptr)); 3987 3988 if (!xfs_btree_ptr_is_null(cur, &lptr) && 3989 lrecs + xfs_btree_get_numrecs(block) <= 3990 cur->bc_ops->get_maxrecs(cur, level)) { 3991 /* 3992 * Set "right" to be the starting block, 3993 * "left" to be the left neighbor. 3994 */ 3995 rptr = cptr; 3996 right = block; 3997 rbp = bp; 3998 error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp); 3999 if (error) 4000 goto error0; 4001 4002 /* 4003 * If that won't work, see if we can join with the right neighbor block. 4004 */ 4005 } else if (!xfs_btree_ptr_is_null(cur, &rptr) && 4006 rrecs + xfs_btree_get_numrecs(block) <= 4007 cur->bc_ops->get_maxrecs(cur, level)) { 4008 /* 4009 * Set "left" to be the starting block, 4010 * "right" to be the right neighbor. 4011 */ 4012 lptr = cptr; 4013 left = block; 4014 lbp = bp; 4015 error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp); 4016 if (error) 4017 goto error0; 4018 4019 /* 4020 * Otherwise, we can't fix the imbalance. 4021 * Just return. This is probably a logic error, but it's not fatal. 4022 */ 4023 } else { 4024 error = xfs_btree_dec_cursor(cur, level, stat); 4025 if (error) 4026 goto error0; 4027 return 0; 4028 } 4029 4030 rrecs = xfs_btree_get_numrecs(right); 4031 lrecs = xfs_btree_get_numrecs(left); 4032 4033 /* 4034 * We're now going to join "left" and "right" by moving all the stuff 4035 * in "right" to "left" and deleting "right". 4036 */ 4037 XFS_BTREE_STATS_ADD(cur, moves, rrecs); 4038 if (level > 0) { 4039 /* It's a non-leaf. Move keys and pointers. */ 4040 union xfs_btree_key *lkp; /* left btree key */ 4041 union xfs_btree_ptr *lpp; /* left address pointer */ 4042 union xfs_btree_key *rkp; /* right btree key */ 4043 union xfs_btree_ptr *rpp; /* right address pointer */ 4044 4045 lkp = xfs_btree_key_addr(cur, lrecs + 1, left); 4046 lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left); 4047 rkp = xfs_btree_key_addr(cur, 1, right); 4048 rpp = xfs_btree_ptr_addr(cur, 1, right); 4049 4050 for (i = 1; i < rrecs; i++) { 4051 error = xfs_btree_debug_check_ptr(cur, rpp, i, level); 4052 if (error) 4053 goto error0; 4054 } 4055 4056 xfs_btree_copy_keys(cur, lkp, rkp, rrecs); 4057 xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs); 4058 4059 xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs); 4060 xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs); 4061 } else { 4062 /* It's a leaf. Move records. */ 4063 union xfs_btree_rec *lrp; /* left record pointer */ 4064 union xfs_btree_rec *rrp; /* right record pointer */ 4065 4066 lrp = xfs_btree_rec_addr(cur, lrecs + 1, left); 4067 rrp = xfs_btree_rec_addr(cur, 1, right); 4068 4069 xfs_btree_copy_recs(cur, lrp, rrp, rrecs); 4070 xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs); 4071 } 4072 4073 XFS_BTREE_STATS_INC(cur, join); 4074 4075 /* 4076 * Fix up the number of records and right block pointer in the 4077 * surviving block, and log it. 4078 */ 4079 xfs_btree_set_numrecs(left, lrecs + rrecs); 4080 xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB), 4081 xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4082 xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB); 4083 4084 /* If there is a right sibling, point it to the remaining block. */ 4085 xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB); 4086 if (!xfs_btree_ptr_is_null(cur, &cptr)) { 4087 error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp); 4088 if (error) 4089 goto error0; 4090 xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB); 4091 xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB); 4092 } 4093 4094 /* Free the deleted block. */ 4095 error = xfs_btree_free_block(cur, rbp); 4096 if (error) 4097 goto error0; 4098 4099 /* 4100 * If we joined with the left neighbor, set the buffer in the 4101 * cursor to the left block, and fix up the index. 4102 */ 4103 if (bp != lbp) { 4104 cur->bc_bufs[level] = lbp; 4105 cur->bc_ptrs[level] += lrecs; 4106 cur->bc_ra[level] = 0; 4107 } 4108 /* 4109 * If we joined with the right neighbor and there's a level above 4110 * us, increment the cursor at that level. 4111 */ 4112 else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) || 4113 (level + 1 < cur->bc_nlevels)) { 4114 error = xfs_btree_increment(cur, level + 1, &i); 4115 if (error) 4116 goto error0; 4117 } 4118 4119 /* 4120 * Readjust the ptr at this level if it's not a leaf, since it's 4121 * still pointing at the deletion point, which makes the cursor 4122 * inconsistent. If this makes the ptr 0, the caller fixes it up. 4123 * We can't use decrement because it would change the next level up. 4124 */ 4125 if (level > 0) 4126 cur->bc_ptrs[level]--; 4127 4128 /* 4129 * We combined blocks, so we have to update the parent keys if the 4130 * btree supports overlapped intervals. However, bc_ptrs[level + 1] 4131 * points to the old block so that the caller knows which record to 4132 * delete. Therefore, the caller must be savvy enough to call updkeys 4133 * for us if we return stat == 2. The other exit points from this 4134 * function don't require deletions further up the tree, so they can 4135 * call updkeys directly. 4136 */ 4137 4138 /* Return value means the next level up has something to do. */ 4139 *stat = 2; 4140 return 0; 4141 4142error0: 4143 if (tcur) 4144 xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR); 4145 return error; 4146} 4147 4148/* 4149 * Delete the record pointed to by cur. 4150 * The cursor refers to the place where the record was (could be inserted) 4151 * when the operation returns. 4152 */ 4153int /* error */ 4154xfs_btree_delete( 4155 struct xfs_btree_cur *cur, 4156 int *stat) /* success/failure */ 4157{ 4158 int error; /* error return value */ 4159 int level; 4160 int i; 4161 bool joined = false; 4162 4163 /* 4164 * Go up the tree, starting at leaf level. 4165 * 4166 * If 2 is returned then a join was done; go to the next level. 4167 * Otherwise we are done. 4168 */ 4169 for (level = 0, i = 2; i == 2; level++) { 4170 error = xfs_btree_delrec(cur, level, &i); 4171 if (error) 4172 goto error0; 4173 if (i == 2) 4174 joined = true; 4175 } 4176 4177 /* 4178 * If we combined blocks as part of deleting the record, delrec won't 4179 * have updated the parent high keys so we have to do that here. 4180 */ 4181 if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) { 4182 error = xfs_btree_updkeys_force(cur, 0); 4183 if (error) 4184 goto error0; 4185 } 4186 4187 if (i == 0) { 4188 for (level = 1; level < cur->bc_nlevels; level++) { 4189 if (cur->bc_ptrs[level] == 0) { 4190 error = xfs_btree_decrement(cur, level, &i); 4191 if (error) 4192 goto error0; 4193 break; 4194 } 4195 } 4196 } 4197 4198 *stat = i; 4199 return 0; 4200error0: 4201 return error; 4202} 4203 4204/* 4205 * Get the data from the pointed-to record. 4206 */ 4207int /* error */ 4208xfs_btree_get_rec( 4209 struct xfs_btree_cur *cur, /* btree cursor */ 4210 union xfs_btree_rec **recp, /* output: btree record */ 4211 int *stat) /* output: success/failure */ 4212{ 4213 struct xfs_btree_block *block; /* btree block */ 4214 struct xfs_buf *bp; /* buffer pointer */ 4215 int ptr; /* record number */ 4216#ifdef DEBUG 4217 int error; /* error return value */ 4218#endif 4219 4220 ptr = cur->bc_ptrs[0]; 4221 block = xfs_btree_get_block(cur, 0, &bp); 4222 4223#ifdef DEBUG 4224 error = xfs_btree_check_block(cur, block, 0, bp); 4225 if (error) 4226 return error; 4227#endif 4228 4229 /* 4230 * Off the right end or left end, return failure. 4231 */ 4232 if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) { 4233 *stat = 0; 4234 return 0; 4235 } 4236 4237 /* 4238 * Point to the record and extract its data. 4239 */ 4240 *recp = xfs_btree_rec_addr(cur, ptr, block); 4241 *stat = 1; 4242 return 0; 4243} 4244 4245/* Visit a block in a btree. */ 4246STATIC int 4247xfs_btree_visit_block( 4248 struct xfs_btree_cur *cur, 4249 int level, 4250 xfs_btree_visit_blocks_fn fn, 4251 void *data) 4252{ 4253 struct xfs_btree_block *block; 4254 struct xfs_buf *bp; 4255 union xfs_btree_ptr rptr; 4256 int error; 4257 4258 /* do right sibling readahead */ 4259 xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA); 4260 block = xfs_btree_get_block(cur, level, &bp); 4261 4262 /* process the block */ 4263 error = fn(cur, level, data); 4264 if (error) 4265 return error; 4266 4267 /* now read rh sibling block for next iteration */ 4268 xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB); 4269 if (xfs_btree_ptr_is_null(cur, &rptr)) 4270 return -ENOENT; 4271 4272 return xfs_btree_lookup_get_block(cur, level, &rptr, &block); 4273} 4274 4275 4276/* Visit every block in a btree. */ 4277int 4278xfs_btree_visit_blocks( 4279 struct xfs_btree_cur *cur, 4280 xfs_btree_visit_blocks_fn fn, 4281 unsigned int flags, 4282 void *data) 4283{ 4284 union xfs_btree_ptr lptr; 4285 int level; 4286 struct xfs_btree_block *block = NULL; 4287 int error = 0; 4288 4289 cur->bc_ops->init_ptr_from_cur(cur, &lptr); 4290 4291 /* for each level */ 4292 for (level = cur->bc_nlevels - 1; level >= 0; level--) { 4293 /* grab the left hand block */ 4294 error = xfs_btree_lookup_get_block(cur, level, &lptr, &block); 4295 if (error) 4296 return error; 4297 4298 /* readahead the left most block for the next level down */ 4299 if (level > 0) { 4300 union xfs_btree_ptr *ptr; 4301 4302 ptr = xfs_btree_ptr_addr(cur, 1, block); 4303 xfs_btree_readahead_ptr(cur, ptr, 1); 4304 4305 /* save for the next iteration of the loop */ 4306 xfs_btree_copy_ptrs(cur, &lptr, ptr, 1); 4307 4308 if (!(flags & XFS_BTREE_VISIT_LEAVES)) 4309 continue; 4310 } else if (!(flags & XFS_BTREE_VISIT_RECORDS)) { 4311 continue; 4312 } 4313 4314 /* for each buffer in the level */ 4315 do { 4316 error = xfs_btree_visit_block(cur, level, fn, data); 4317 } while (!error); 4318 4319 if (error != -ENOENT) 4320 return error; 4321 } 4322 4323 return 0; 4324} 4325 4326/* 4327 * Change the owner of a btree. 4328 * 4329 * The mechanism we use here is ordered buffer logging. Because we don't know 4330 * how many buffers were are going to need to modify, we don't really want to 4331 * have to make transaction reservations for the worst case of every buffer in a 4332 * full size btree as that may be more space that we can fit in the log.... 4333 * 4334 * We do the btree walk in the most optimal manner possible - we have sibling 4335 * pointers so we can just walk all the blocks on each level from left to right 4336 * in a single pass, and then move to the next level and do the same. We can 4337 * also do readahead on the sibling pointers to get IO moving more quickly, 4338 * though for slow disks this is unlikely to make much difference to performance 4339 * as the amount of CPU work we have to do before moving to the next block is 4340 * relatively small. 4341 * 4342 * For each btree block that we load, modify the owner appropriately, set the 4343 * buffer as an ordered buffer and log it appropriately. We need to ensure that 4344 * we mark the region we change dirty so that if the buffer is relogged in 4345 * a subsequent transaction the changes we make here as an ordered buffer are 4346 * correctly relogged in that transaction. If we are in recovery context, then 4347 * just queue the modified buffer as delayed write buffer so the transaction 4348 * recovery completion writes the changes to disk. 4349 */ 4350struct xfs_btree_block_change_owner_info { 4351 uint64_t new_owner; 4352 struct list_head *buffer_list; 4353}; 4354 4355static int 4356xfs_btree_block_change_owner( 4357 struct xfs_btree_cur *cur, 4358 int level, 4359 void *data) 4360{ 4361 struct xfs_btree_block_change_owner_info *bbcoi = data; 4362 struct xfs_btree_block *block; 4363 struct xfs_buf *bp; 4364 4365 /* modify the owner */ 4366 block = xfs_btree_get_block(cur, level, &bp); 4367 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) { 4368 if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner)) 4369 return 0; 4370 block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner); 4371 } else { 4372 if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner)) 4373 return 0; 4374 block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner); 4375 } 4376 4377 /* 4378 * If the block is a root block hosted in an inode, we might not have a 4379 * buffer pointer here and we shouldn't attempt to log the change as the 4380 * information is already held in the inode and discarded when the root 4381 * block is formatted into the on-disk inode fork. We still change it, 4382 * though, so everything is consistent in memory. 4383 */ 4384 if (!bp) { 4385 ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE); 4386 ASSERT(level == cur->bc_nlevels - 1); 4387 return 0; 4388 } 4389 4390 if (cur->bc_tp) { 4391 if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) { 4392 xfs_btree_log_block(cur, bp, XFS_BB_OWNER); 4393 return -EAGAIN; 4394 } 4395 } else { 4396 xfs_buf_delwri_queue(bp, bbcoi->buffer_list); 4397 } 4398 4399 return 0; 4400} 4401 4402int 4403xfs_btree_change_owner( 4404 struct xfs_btree_cur *cur, 4405 uint64_t new_owner, 4406 struct list_head *buffer_list) 4407{ 4408 struct xfs_btree_block_change_owner_info bbcoi; 4409 4410 bbcoi.new_owner = new_owner; 4411 bbcoi.buffer_list = buffer_list; 4412 4413 return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner, 4414 XFS_BTREE_VISIT_ALL, &bbcoi); 4415} 4416 4417/* Verify the v5 fields of a long-format btree block. */ 4418xfs_failaddr_t 4419xfs_btree_lblock_v5hdr_verify( 4420 struct xfs_buf *bp, 4421 uint64_t owner) 4422{ 4423 struct xfs_mount *mp = bp->b_mount; 4424 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4425 4426 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4427 return __this_address; 4428 if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4429 return __this_address; 4430 if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn)) 4431 return __this_address; 4432 if (owner != XFS_RMAP_OWN_UNKNOWN && 4433 be64_to_cpu(block->bb_u.l.bb_owner) != owner) 4434 return __this_address; 4435 return NULL; 4436} 4437 4438/* Verify a long-format btree block. */ 4439xfs_failaddr_t 4440xfs_btree_lblock_verify( 4441 struct xfs_buf *bp, 4442 unsigned int max_recs) 4443{ 4444 struct xfs_mount *mp = bp->b_mount; 4445 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4446 4447 /* numrecs verification */ 4448 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4449 return __this_address; 4450 4451 /* sibling pointer verification */ 4452 if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) && 4453 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib))) 4454 return __this_address; 4455 if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) && 4456 !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib))) 4457 return __this_address; 4458 4459 return NULL; 4460} 4461 4462/** 4463 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format 4464 * btree block 4465 * 4466 * @bp: buffer containing the btree block 4467 */ 4468xfs_failaddr_t 4469xfs_btree_sblock_v5hdr_verify( 4470 struct xfs_buf *bp) 4471{ 4472 struct xfs_mount *mp = bp->b_mount; 4473 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4474 struct xfs_perag *pag = bp->b_pag; 4475 4476 if (!xfs_sb_version_hascrc(&mp->m_sb)) 4477 return __this_address; 4478 if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid)) 4479 return __this_address; 4480 if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn)) 4481 return __this_address; 4482 if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno) 4483 return __this_address; 4484 return NULL; 4485} 4486 4487/** 4488 * xfs_btree_sblock_verify() -- verify a short-format btree block 4489 * 4490 * @bp: buffer containing the btree block 4491 * @max_recs: maximum records allowed in this btree node 4492 */ 4493xfs_failaddr_t 4494xfs_btree_sblock_verify( 4495 struct xfs_buf *bp, 4496 unsigned int max_recs) 4497{ 4498 struct xfs_mount *mp = bp->b_mount; 4499 struct xfs_btree_block *block = XFS_BUF_TO_BLOCK(bp); 4500 xfs_agblock_t agno; 4501 4502 /* numrecs verification */ 4503 if (be16_to_cpu(block->bb_numrecs) > max_recs) 4504 return __this_address; 4505 4506 /* sibling pointer verification */ 4507 agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp)); 4508 if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) && 4509 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib))) 4510 return __this_address; 4511 if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) && 4512 !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib))) 4513 return __this_address; 4514 4515 return NULL; 4516} 4517 4518/* 4519 * Calculate the number of btree levels needed to store a given number of 4520 * records in a short-format btree. 4521 */ 4522uint 4523xfs_btree_compute_maxlevels( 4524 uint *limits, 4525 unsigned long len) 4526{ 4527 uint level; 4528 unsigned long maxblocks; 4529 4530 maxblocks = (len + limits[0] - 1) / limits[0]; 4531 for (level = 1; maxblocks > 1; level++) 4532 maxblocks = (maxblocks + limits[1] - 1) / limits[1]; 4533 return level; 4534} 4535 4536/* 4537 * Query a regular btree for all records overlapping a given interval. 4538 * Start with a LE lookup of the key of low_rec and return all records 4539 * until we find a record with a key greater than the key of high_rec. 4540 */ 4541STATIC int 4542xfs_btree_simple_query_range( 4543 struct xfs_btree_cur *cur, 4544 union xfs_btree_key *low_key, 4545 union xfs_btree_key *high_key, 4546 xfs_btree_query_range_fn fn, 4547 void *priv) 4548{ 4549 union xfs_btree_rec *recp; 4550 union xfs_btree_key rec_key; 4551 int64_t diff; 4552 int stat; 4553 bool firstrec = true; 4554 int error; 4555 4556 ASSERT(cur->bc_ops->init_high_key_from_rec); 4557 ASSERT(cur->bc_ops->diff_two_keys); 4558 4559 /* 4560 * Find the leftmost record. The btree cursor must be set 4561 * to the low record used to generate low_key. 4562 */ 4563 stat = 0; 4564 error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat); 4565 if (error) 4566 goto out; 4567 4568 /* Nothing? See if there's anything to the right. */ 4569 if (!stat) { 4570 error = xfs_btree_increment(cur, 0, &stat); 4571 if (error) 4572 goto out; 4573 } 4574 4575 while (stat) { 4576 /* Find the record. */ 4577 error = xfs_btree_get_rec(cur, &recp, &stat); 4578 if (error || !stat) 4579 break; 4580 4581 /* Skip if high_key(rec) < low_key. */ 4582 if (firstrec) { 4583 cur->bc_ops->init_high_key_from_rec(&rec_key, recp); 4584 firstrec = false; 4585 diff = cur->bc_ops->diff_two_keys(cur, low_key, 4586 &rec_key); 4587 if (diff > 0) 4588 goto advloop; 4589 } 4590 4591 /* Stop if high_key < low_key(rec). */ 4592 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4593 diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key); 4594 if (diff > 0) 4595 break; 4596 4597 /* Callback */ 4598 error = fn(cur, recp, priv); 4599 if (error) 4600 break; 4601 4602advloop: 4603 /* Move on to the next record. */ 4604 error = xfs_btree_increment(cur, 0, &stat); 4605 if (error) 4606 break; 4607 } 4608 4609out: 4610 return error; 4611} 4612 4613/* 4614 * Query an overlapped interval btree for all records overlapping a given 4615 * interval. This function roughly follows the algorithm given in 4616 * "Interval Trees" of _Introduction to Algorithms_, which is section 4617 * 14.3 in the 2nd and 3rd editions. 4618 * 4619 * First, generate keys for the low and high records passed in. 4620 * 4621 * For any leaf node, generate the high and low keys for the record. 4622 * If the record keys overlap with the query low/high keys, pass the 4623 * record to the function iterator. 4624 * 4625 * For any internal node, compare the low and high keys of each 4626 * pointer against the query low/high keys. If there's an overlap, 4627 * follow the pointer. 4628 * 4629 * As an optimization, we stop scanning a block when we find a low key 4630 * that is greater than the query's high key. 4631 */ 4632STATIC int 4633xfs_btree_overlapped_query_range( 4634 struct xfs_btree_cur *cur, 4635 union xfs_btree_key *low_key, 4636 union xfs_btree_key *high_key, 4637 xfs_btree_query_range_fn fn, 4638 void *priv) 4639{ 4640 union xfs_btree_ptr ptr; 4641 union xfs_btree_ptr *pp; 4642 union xfs_btree_key rec_key; 4643 union xfs_btree_key rec_hkey; 4644 union xfs_btree_key *lkp; 4645 union xfs_btree_key *hkp; 4646 union xfs_btree_rec *recp; 4647 struct xfs_btree_block *block; 4648 int64_t ldiff; 4649 int64_t hdiff; 4650 int level; 4651 struct xfs_buf *bp; 4652 int i; 4653 int error; 4654 4655 /* Load the root of the btree. */ 4656 level = cur->bc_nlevels - 1; 4657 cur->bc_ops->init_ptr_from_cur(cur, &ptr); 4658 error = xfs_btree_lookup_get_block(cur, level, &ptr, &block); 4659 if (error) 4660 return error; 4661 xfs_btree_get_block(cur, level, &bp); 4662 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4663#ifdef DEBUG 4664 error = xfs_btree_check_block(cur, block, level, bp); 4665 if (error) 4666 goto out; 4667#endif 4668 cur->bc_ptrs[level] = 1; 4669 4670 while (level < cur->bc_nlevels) { 4671 block = xfs_btree_get_block(cur, level, &bp); 4672 4673 /* End of node, pop back towards the root. */ 4674 if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) { 4675pop_up: 4676 if (level < cur->bc_nlevels - 1) 4677 cur->bc_ptrs[level + 1]++; 4678 level++; 4679 continue; 4680 } 4681 4682 if (level == 0) { 4683 /* Handle a leaf node. */ 4684 recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block); 4685 4686 cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp); 4687 ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey, 4688 low_key); 4689 4690 cur->bc_ops->init_key_from_rec(&rec_key, recp); 4691 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, 4692 &rec_key); 4693 4694 /* 4695 * If (record's high key >= query's low key) and 4696 * (query's high key >= record's low key), then 4697 * this record overlaps the query range; callback. 4698 */ 4699 if (ldiff >= 0 && hdiff >= 0) { 4700 error = fn(cur, recp, priv); 4701 if (error) 4702 break; 4703 } else if (hdiff < 0) { 4704 /* Record is larger than high key; pop. */ 4705 goto pop_up; 4706 } 4707 cur->bc_ptrs[level]++; 4708 continue; 4709 } 4710 4711 /* Handle an internal node. */ 4712 lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block); 4713 hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block); 4714 pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block); 4715 4716 ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key); 4717 hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp); 4718 4719 /* 4720 * If (pointer's high key >= query's low key) and 4721 * (query's high key >= pointer's low key), then 4722 * this record overlaps the query range; follow pointer. 4723 */ 4724 if (ldiff >= 0 && hdiff >= 0) { 4725 level--; 4726 error = xfs_btree_lookup_get_block(cur, level, pp, 4727 &block); 4728 if (error) 4729 goto out; 4730 xfs_btree_get_block(cur, level, &bp); 4731 trace_xfs_btree_overlapped_query_range(cur, level, bp); 4732#ifdef DEBUG 4733 error = xfs_btree_check_block(cur, block, level, bp); 4734 if (error) 4735 goto out; 4736#endif 4737 cur->bc_ptrs[level] = 1; 4738 continue; 4739 } else if (hdiff < 0) { 4740 /* The low key is larger than the upper range; pop. */ 4741 goto pop_up; 4742 } 4743 cur->bc_ptrs[level]++; 4744 } 4745 4746out: 4747 /* 4748 * If we don't end this function with the cursor pointing at a record 4749 * block, a subsequent non-error cursor deletion will not release 4750 * node-level buffers, causing a buffer leak. This is quite possible 4751 * with a zero-results range query, so release the buffers if we 4752 * failed to return any results. 4753 */ 4754 if (cur->bc_bufs[0] == NULL) { 4755 for (i = 0; i < cur->bc_nlevels; i++) { 4756 if (cur->bc_bufs[i]) { 4757 xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]); 4758 cur->bc_bufs[i] = NULL; 4759 cur->bc_ptrs[i] = 0; 4760 cur->bc_ra[i] = 0; 4761 } 4762 } 4763 } 4764 4765 return error; 4766} 4767 4768/* 4769 * Query a btree for all records overlapping a given interval of keys. The 4770 * supplied function will be called with each record found; return one of the 4771 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error 4772 * code. This function returns -ECANCELED, zero, or a negative error code. 4773 */ 4774int 4775xfs_btree_query_range( 4776 struct xfs_btree_cur *cur, 4777 union xfs_btree_irec *low_rec, 4778 union xfs_btree_irec *high_rec, 4779 xfs_btree_query_range_fn fn, 4780 void *priv) 4781{ 4782 union xfs_btree_rec rec; 4783 union xfs_btree_key low_key; 4784 union xfs_btree_key high_key; 4785 4786 /* Find the keys of both ends of the interval. */ 4787 cur->bc_rec = *high_rec; 4788 cur->bc_ops->init_rec_from_cur(cur, &rec); 4789 cur->bc_ops->init_key_from_rec(&high_key, &rec); 4790 4791 cur->bc_rec = *low_rec; 4792 cur->bc_ops->init_rec_from_cur(cur, &rec); 4793 cur->bc_ops->init_key_from_rec(&low_key, &rec); 4794 4795 /* Enforce low key < high key. */ 4796 if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0) 4797 return -EINVAL; 4798 4799 if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING)) 4800 return xfs_btree_simple_query_range(cur, &low_key, 4801 &high_key, fn, priv); 4802 return xfs_btree_overlapped_query_range(cur, &low_key, &high_key, 4803 fn, priv); 4804} 4805 4806/* Query a btree for all records. */ 4807int 4808xfs_btree_query_all( 4809 struct xfs_btree_cur *cur, 4810 xfs_btree_query_range_fn fn, 4811 void *priv) 4812{ 4813 union xfs_btree_key low_key; 4814 union xfs_btree_key high_key; 4815 4816 memset(&cur->bc_rec, 0, sizeof(cur->bc_rec)); 4817 memset(&low_key, 0, sizeof(low_key)); 4818 memset(&high_key, 0xFF, sizeof(high_key)); 4819 4820 return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv); 4821} 4822 4823/* 4824 * Calculate the number of blocks needed to store a given number of records 4825 * in a short-format (per-AG metadata) btree. 4826 */ 4827unsigned long long 4828xfs_btree_calc_size( 4829 uint *limits, 4830 unsigned long long len) 4831{ 4832 int level; 4833 int maxrecs; 4834 unsigned long long rval; 4835 4836 maxrecs = limits[0]; 4837 for (level = 0, rval = 0; len > 1; level++) { 4838 len += maxrecs - 1; 4839 do_div(len, maxrecs); 4840 maxrecs = limits[1]; 4841 rval += len; 4842 } 4843 return rval; 4844} 4845 4846static int 4847xfs_btree_count_blocks_helper( 4848 struct xfs_btree_cur *cur, 4849 int level, 4850 void *data) 4851{ 4852 xfs_extlen_t *blocks = data; 4853 (*blocks)++; 4854 4855 return 0; 4856} 4857 4858/* Count the blocks in a btree and return the result in *blocks. */ 4859int 4860xfs_btree_count_blocks( 4861 struct xfs_btree_cur *cur, 4862 xfs_extlen_t *blocks) 4863{ 4864 *blocks = 0; 4865 return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper, 4866 XFS_BTREE_VISIT_ALL, blocks); 4867} 4868 4869/* Compare two btree pointers. */ 4870int64_t 4871xfs_btree_diff_two_ptrs( 4872 struct xfs_btree_cur *cur, 4873 const union xfs_btree_ptr *a, 4874 const union xfs_btree_ptr *b) 4875{ 4876 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4877 return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l); 4878 return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s); 4879} 4880 4881/* If there's an extent, we're done. */ 4882STATIC int 4883xfs_btree_has_record_helper( 4884 struct xfs_btree_cur *cur, 4885 union xfs_btree_rec *rec, 4886 void *priv) 4887{ 4888 return -ECANCELED; 4889} 4890 4891/* Is there a record covering a given range of keys? */ 4892int 4893xfs_btree_has_record( 4894 struct xfs_btree_cur *cur, 4895 union xfs_btree_irec *low, 4896 union xfs_btree_irec *high, 4897 bool *exists) 4898{ 4899 int error; 4900 4901 error = xfs_btree_query_range(cur, low, high, 4902 &xfs_btree_has_record_helper, NULL); 4903 if (error == -ECANCELED) { 4904 *exists = true; 4905 return 0; 4906 } 4907 *exists = false; 4908 return error; 4909} 4910 4911/* Are there more records in this btree? */ 4912bool 4913xfs_btree_has_more_records( 4914 struct xfs_btree_cur *cur) 4915{ 4916 struct xfs_btree_block *block; 4917 struct xfs_buf *bp; 4918 4919 block = xfs_btree_get_block(cur, 0, &bp); 4920 4921 /* There are still records in this block. */ 4922 if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block)) 4923 return true; 4924 4925 /* There are more record blocks. */ 4926 if (cur->bc_flags & XFS_BTREE_LONG_PTRS) 4927 return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK); 4928 else 4929 return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK); 4930} 4931