1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Copyright (c) 2000-2002,2005 Silicon Graphics, Inc.
4 * All Rights Reserved.
5 */
6#include "xfs.h"
7#include "xfs_fs.h"
8#include "xfs_shared.h"
9#include "xfs_format.h"
10#include "xfs_log_format.h"
11#include "xfs_trans_resv.h"
12#include "xfs_bit.h"
13#include "xfs_mount.h"
14#include "xfs_inode.h"
15#include "xfs_trans.h"
16#include "xfs_buf_item.h"
17#include "xfs_btree.h"
18#include "xfs_errortag.h"
19#include "xfs_error.h"
20#include "xfs_trace.h"
21#include "xfs_alloc.h"
22#include "xfs_log.h"
23#include "xfs_btree_staging.h"
24
25/*
26 * Cursor allocation zone.
27 */
28kmem_zone_t	*xfs_btree_cur_zone;
29
30/*
31 * Btree magic numbers.
32 */
33static const uint32_t xfs_magics[2][XFS_BTNUM_MAX] = {
34	{ XFS_ABTB_MAGIC, XFS_ABTC_MAGIC, 0, XFS_BMAP_MAGIC, XFS_IBT_MAGIC,
35	  XFS_FIBT_MAGIC, 0 },
36	{ XFS_ABTB_CRC_MAGIC, XFS_ABTC_CRC_MAGIC, XFS_RMAP_CRC_MAGIC,
37	  XFS_BMAP_CRC_MAGIC, XFS_IBT_CRC_MAGIC, XFS_FIBT_CRC_MAGIC,
38	  XFS_REFC_CRC_MAGIC }
39};
40
41uint32_t
42xfs_btree_magic(
43	int			crc,
44	xfs_btnum_t		btnum)
45{
46	uint32_t		magic = xfs_magics[crc][btnum];
47
48	/* Ensure we asked for crc for crc-only magics. */
49	ASSERT(magic != 0);
50	return magic;
51}
52
53/*
54 * Check a long btree block header.  Return the address of the failing check,
55 * or NULL if everything is ok.
56 */
57xfs_failaddr_t
58__xfs_btree_check_lblock(
59	struct xfs_btree_cur	*cur,
60	struct xfs_btree_block	*block,
61	int			level,
62	struct xfs_buf		*bp)
63{
64	struct xfs_mount	*mp = cur->bc_mp;
65	xfs_btnum_t		btnum = cur->bc_btnum;
66	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
67
68	if (crc) {
69		if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
70			return __this_address;
71		if (block->bb_u.l.bb_blkno !=
72		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
73			return __this_address;
74		if (block->bb_u.l.bb_pad != cpu_to_be32(0))
75			return __this_address;
76	}
77
78	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
79		return __this_address;
80	if (be16_to_cpu(block->bb_level) != level)
81		return __this_address;
82	if (be16_to_cpu(block->bb_numrecs) >
83	    cur->bc_ops->get_maxrecs(cur, level))
84		return __this_address;
85	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
86	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_leftsib),
87			level + 1))
88		return __this_address;
89	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
90	    !xfs_btree_check_lptr(cur, be64_to_cpu(block->bb_u.l.bb_rightsib),
91			level + 1))
92		return __this_address;
93
94	return NULL;
95}
96
97/* Check a long btree block header. */
98static int
99xfs_btree_check_lblock(
100	struct xfs_btree_cur	*cur,
101	struct xfs_btree_block	*block,
102	int			level,
103	struct xfs_buf		*bp)
104{
105	struct xfs_mount	*mp = cur->bc_mp;
106	xfs_failaddr_t		fa;
107
108	fa = __xfs_btree_check_lblock(cur, block, level, bp);
109	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
110	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_LBLOCK)) {
111		if (bp)
112			trace_xfs_btree_corrupt(bp, _RET_IP_);
113		return -EFSCORRUPTED;
114	}
115	return 0;
116}
117
118/*
119 * Check a short btree block header.  Return the address of the failing check,
120 * or NULL if everything is ok.
121 */
122xfs_failaddr_t
123__xfs_btree_check_sblock(
124	struct xfs_btree_cur	*cur,
125	struct xfs_btree_block	*block,
126	int			level,
127	struct xfs_buf		*bp)
128{
129	struct xfs_mount	*mp = cur->bc_mp;
130	xfs_btnum_t		btnum = cur->bc_btnum;
131	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
132
133	if (crc) {
134		if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
135			return __this_address;
136		if (block->bb_u.s.bb_blkno !=
137		    cpu_to_be64(bp ? bp->b_bn : XFS_BUF_DADDR_NULL))
138			return __this_address;
139	}
140
141	if (be32_to_cpu(block->bb_magic) != xfs_btree_magic(crc, btnum))
142		return __this_address;
143	if (be16_to_cpu(block->bb_level) != level)
144		return __this_address;
145	if (be16_to_cpu(block->bb_numrecs) >
146	    cur->bc_ops->get_maxrecs(cur, level))
147		return __this_address;
148	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
149	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_leftsib),
150			level + 1))
151		return __this_address;
152	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
153	    !xfs_btree_check_sptr(cur, be32_to_cpu(block->bb_u.s.bb_rightsib),
154			level + 1))
155		return __this_address;
156
157	return NULL;
158}
159
160/* Check a short btree block header. */
161STATIC int
162xfs_btree_check_sblock(
163	struct xfs_btree_cur	*cur,
164	struct xfs_btree_block	*block,
165	int			level,
166	struct xfs_buf		*bp)
167{
168	struct xfs_mount	*mp = cur->bc_mp;
169	xfs_failaddr_t		fa;
170
171	fa = __xfs_btree_check_sblock(cur, block, level, bp);
172	if (XFS_IS_CORRUPT(mp, fa != NULL) ||
173	    XFS_TEST_ERROR(false, mp, XFS_ERRTAG_BTREE_CHECK_SBLOCK)) {
174		if (bp)
175			trace_xfs_btree_corrupt(bp, _RET_IP_);
176		return -EFSCORRUPTED;
177	}
178	return 0;
179}
180
181/*
182 * Debug routine: check that block header is ok.
183 */
184int
185xfs_btree_check_block(
186	struct xfs_btree_cur	*cur,	/* btree cursor */
187	struct xfs_btree_block	*block,	/* generic btree block pointer */
188	int			level,	/* level of the btree block */
189	struct xfs_buf		*bp)	/* buffer containing block, if any */
190{
191	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
192		return xfs_btree_check_lblock(cur, block, level, bp);
193	else
194		return xfs_btree_check_sblock(cur, block, level, bp);
195}
196
197/* Check that this long pointer is valid and points within the fs. */
198bool
199xfs_btree_check_lptr(
200	struct xfs_btree_cur	*cur,
201	xfs_fsblock_t		fsbno,
202	int			level)
203{
204	if (level <= 0)
205		return false;
206	return xfs_verify_fsbno(cur->bc_mp, fsbno);
207}
208
209/* Check that this short pointer is valid and points within the AG. */
210bool
211xfs_btree_check_sptr(
212	struct xfs_btree_cur	*cur,
213	xfs_agblock_t		agbno,
214	int			level)
215{
216	if (level <= 0)
217		return false;
218	return xfs_verify_agbno(cur->bc_mp, cur->bc_ag.agno, agbno);
219}
220
221/*
222 * Check that a given (indexed) btree pointer at a certain level of a
223 * btree is valid and doesn't point past where it should.
224 */
225static int
226xfs_btree_check_ptr(
227	struct xfs_btree_cur	*cur,
228	union xfs_btree_ptr	*ptr,
229	int			index,
230	int			level)
231{
232	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
233		if (xfs_btree_check_lptr(cur, be64_to_cpu((&ptr->l)[index]),
234				level))
235			return 0;
236		xfs_err(cur->bc_mp,
237"Inode %llu fork %d: Corrupt btree %d pointer at level %d index %d.",
238				cur->bc_ino.ip->i_ino,
239				cur->bc_ino.whichfork, cur->bc_btnum,
240				level, index);
241	} else {
242		if (xfs_btree_check_sptr(cur, be32_to_cpu((&ptr->s)[index]),
243				level))
244			return 0;
245		xfs_err(cur->bc_mp,
246"AG %u: Corrupt btree %d pointer at level %d index %d.",
247				cur->bc_ag.agno, cur->bc_btnum,
248				level, index);
249	}
250
251	return -EFSCORRUPTED;
252}
253
254#ifdef DEBUG
255# define xfs_btree_debug_check_ptr	xfs_btree_check_ptr
256#else
257# define xfs_btree_debug_check_ptr(...)	(0)
258#endif
259
260/*
261 * Calculate CRC on the whole btree block and stuff it into the
262 * long-form btree header.
263 *
264 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
265 * it into the buffer so recovery knows what the last modification was that made
266 * it to disk.
267 */
268void
269xfs_btree_lblock_calc_crc(
270	struct xfs_buf		*bp)
271{
272	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
273	struct xfs_buf_log_item	*bip = bp->b_log_item;
274
275	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
276		return;
277	if (bip)
278		block->bb_u.l.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
279	xfs_buf_update_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
280}
281
282bool
283xfs_btree_lblock_verify_crc(
284	struct xfs_buf		*bp)
285{
286	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
287	struct xfs_mount	*mp = bp->b_mount;
288
289	if (xfs_sb_version_hascrc(&mp->m_sb)) {
290		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.l.bb_lsn)))
291			return false;
292		return xfs_buf_verify_cksum(bp, XFS_BTREE_LBLOCK_CRC_OFF);
293	}
294
295	return true;
296}
297
298/*
299 * Calculate CRC on the whole btree block and stuff it into the
300 * short-form btree header.
301 *
302 * Prior to calculting the CRC, pull the LSN out of the buffer log item and put
303 * it into the buffer so recovery knows what the last modification was that made
304 * it to disk.
305 */
306void
307xfs_btree_sblock_calc_crc(
308	struct xfs_buf		*bp)
309{
310	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
311	struct xfs_buf_log_item	*bip = bp->b_log_item;
312
313	if (!xfs_sb_version_hascrc(&bp->b_mount->m_sb))
314		return;
315	if (bip)
316		block->bb_u.s.bb_lsn = cpu_to_be64(bip->bli_item.li_lsn);
317	xfs_buf_update_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
318}
319
320bool
321xfs_btree_sblock_verify_crc(
322	struct xfs_buf		*bp)
323{
324	struct xfs_btree_block  *block = XFS_BUF_TO_BLOCK(bp);
325	struct xfs_mount	*mp = bp->b_mount;
326
327	if (xfs_sb_version_hascrc(&mp->m_sb)) {
328		if (!xfs_log_check_lsn(mp, be64_to_cpu(block->bb_u.s.bb_lsn)))
329			return false;
330		return xfs_buf_verify_cksum(bp, XFS_BTREE_SBLOCK_CRC_OFF);
331	}
332
333	return true;
334}
335
336static int
337xfs_btree_free_block(
338	struct xfs_btree_cur	*cur,
339	struct xfs_buf		*bp)
340{
341	int			error;
342
343	error = cur->bc_ops->free_block(cur, bp);
344	if (!error) {
345		xfs_trans_binval(cur->bc_tp, bp);
346		XFS_BTREE_STATS_INC(cur, free);
347	}
348	return error;
349}
350
351/*
352 * Delete the btree cursor.
353 */
354void
355xfs_btree_del_cursor(
356	struct xfs_btree_cur	*cur,		/* btree cursor */
357	int			error)		/* del because of error */
358{
359	int			i;		/* btree level */
360
361	/*
362	 * Clear the buffer pointers and release the buffers. If we're doing
363	 * this because of an error, inspect all of the entries in the bc_bufs
364	 * array for buffers to be unlocked. This is because some of the btree
365	 * code works from level n down to 0, and if we get an error along the
366	 * way we won't have initialized all the entries down to 0.
367	 */
368	for (i = 0; i < cur->bc_nlevels; i++) {
369		if (cur->bc_bufs[i])
370			xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
371		else if (!error)
372			break;
373	}
374
375	/*
376	 * If we are doing a BMBT update, the number of unaccounted blocks
377	 * allocated during this cursor life time should be zero. If it's not
378	 * zero, then we should be shut down or on our way to shutdown due to
379	 * cancelling a dirty transaction on error.
380	 */
381	ASSERT(cur->bc_btnum != XFS_BTNUM_BMAP || cur->bc_ino.allocated == 0 ||
382	       XFS_FORCED_SHUTDOWN(cur->bc_mp) || error != 0);
383	if (unlikely(cur->bc_flags & XFS_BTREE_STAGING))
384		kmem_free(cur->bc_ops);
385	kmem_cache_free(xfs_btree_cur_zone, cur);
386}
387
388/*
389 * Duplicate the btree cursor.
390 * Allocate a new one, copy the record, re-get the buffers.
391 */
392int					/* error */
393xfs_btree_dup_cursor(
394	xfs_btree_cur_t	*cur,		/* input cursor */
395	xfs_btree_cur_t	**ncur)		/* output cursor */
396{
397	xfs_buf_t	*bp;		/* btree block's buffer pointer */
398	int		error;		/* error return value */
399	int		i;		/* level number of btree block */
400	xfs_mount_t	*mp;		/* mount structure for filesystem */
401	xfs_btree_cur_t	*new;		/* new cursor value */
402	xfs_trans_t	*tp;		/* transaction pointer, can be NULL */
403
404	tp = cur->bc_tp;
405	mp = cur->bc_mp;
406
407	/*
408	 * Allocate a new cursor like the old one.
409	 */
410	new = cur->bc_ops->dup_cursor(cur);
411
412	/*
413	 * Copy the record currently in the cursor.
414	 */
415	new->bc_rec = cur->bc_rec;
416
417	/*
418	 * For each level current, re-get the buffer and copy the ptr value.
419	 */
420	for (i = 0; i < new->bc_nlevels; i++) {
421		new->bc_ptrs[i] = cur->bc_ptrs[i];
422		new->bc_ra[i] = cur->bc_ra[i];
423		bp = cur->bc_bufs[i];
424		if (bp) {
425			error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp,
426						   XFS_BUF_ADDR(bp), mp->m_bsize,
427						   0, &bp,
428						   cur->bc_ops->buf_ops);
429			if (error) {
430				xfs_btree_del_cursor(new, error);
431				*ncur = NULL;
432				return error;
433			}
434		}
435		new->bc_bufs[i] = bp;
436	}
437	*ncur = new;
438	return 0;
439}
440
441/*
442 * XFS btree block layout and addressing:
443 *
444 * There are two types of blocks in the btree: leaf and non-leaf blocks.
445 *
446 * The leaf record start with a header then followed by records containing
447 * the values.  A non-leaf block also starts with the same header, and
448 * then first contains lookup keys followed by an equal number of pointers
449 * to the btree blocks at the previous level.
450 *
451 *		+--------+-------+-------+-------+-------+-------+-------+
452 * Leaf:	| header | rec 1 | rec 2 | rec 3 | rec 4 | rec 5 | rec N |
453 *		+--------+-------+-------+-------+-------+-------+-------+
454 *
455 *		+--------+-------+-------+-------+-------+-------+-------+
456 * Non-Leaf:	| header | key 1 | key 2 | key N | ptr 1 | ptr 2 | ptr N |
457 *		+--------+-------+-------+-------+-------+-------+-------+
458 *
459 * The header is called struct xfs_btree_block for reasons better left unknown
460 * and comes in different versions for short (32bit) and long (64bit) block
461 * pointers.  The record and key structures are defined by the btree instances
462 * and opaque to the btree core.  The block pointers are simple disk endian
463 * integers, available in a short (32bit) and long (64bit) variant.
464 *
465 * The helpers below calculate the offset of a given record, key or pointer
466 * into a btree block (xfs_btree_*_offset) or return a pointer to the given
467 * record, key or pointer (xfs_btree_*_addr).  Note that all addressing
468 * inside the btree block is done using indices starting at one, not zero!
469 *
470 * If XFS_BTREE_OVERLAPPING is set, then this btree supports keys containing
471 * overlapping intervals.  In such a tree, records are still sorted lowest to
472 * highest and indexed by the smallest key value that refers to the record.
473 * However, nodes are different: each pointer has two associated keys -- one
474 * indexing the lowest key available in the block(s) below (the same behavior
475 * as the key in a regular btree) and another indexing the highest key
476 * available in the block(s) below.  Because records are /not/ sorted by the
477 * highest key, all leaf block updates require us to compute the highest key
478 * that matches any record in the leaf and to recursively update the high keys
479 * in the nodes going further up in the tree, if necessary.  Nodes look like
480 * this:
481 *
482 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
483 * Non-Leaf:	| header | lo1 | hi1 | lo2 | hi2 | ... | ptr 1 | ptr 2 | ... |
484 *		+--------+-----+-----+-----+-----+-----+-------+-------+-----+
485 *
486 * To perform an interval query on an overlapped tree, perform the usual
487 * depth-first search and use the low and high keys to decide if we can skip
488 * that particular node.  If a leaf node is reached, return the records that
489 * intersect the interval.  Note that an interval query may return numerous
490 * entries.  For a non-overlapped tree, simply search for the record associated
491 * with the lowest key and iterate forward until a non-matching record is
492 * found.  Section 14.3 ("Interval Trees") of _Introduction to Algorithms_ by
493 * Cormen, Leiserson, Rivest, and Stein (2nd or 3rd ed. only) discuss this in
494 * more detail.
495 *
496 * Why do we care about overlapping intervals?  Let's say you have a bunch of
497 * reverse mapping records on a reflink filesystem:
498 *
499 * 1: +- file A startblock B offset C length D -----------+
500 * 2:      +- file E startblock F offset G length H --------------+
501 * 3:      +- file I startblock F offset J length K --+
502 * 4:                                                        +- file L... --+
503 *
504 * Now say we want to map block (B+D) into file A at offset (C+D).  Ideally,
505 * we'd simply increment the length of record 1.  But how do we find the record
506 * that ends at (B+D-1) (i.e. record 1)?  A LE lookup of (B+D-1) would return
507 * record 3 because the keys are ordered first by startblock.  An interval
508 * query would return records 1 and 2 because they both overlap (B+D-1), and
509 * from that we can pick out record 1 as the appropriate left neighbor.
510 *
511 * In the non-overlapped case you can do a LE lookup and decrement the cursor
512 * because a record's interval must end before the next record.
513 */
514
515/*
516 * Return size of the btree block header for this btree instance.
517 */
518static inline size_t xfs_btree_block_len(struct xfs_btree_cur *cur)
519{
520	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
521		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
522			return XFS_BTREE_LBLOCK_CRC_LEN;
523		return XFS_BTREE_LBLOCK_LEN;
524	}
525	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS)
526		return XFS_BTREE_SBLOCK_CRC_LEN;
527	return XFS_BTREE_SBLOCK_LEN;
528}
529
530/*
531 * Return size of btree block pointers for this btree instance.
532 */
533static inline size_t xfs_btree_ptr_len(struct xfs_btree_cur *cur)
534{
535	return (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
536		sizeof(__be64) : sizeof(__be32);
537}
538
539/*
540 * Calculate offset of the n-th record in a btree block.
541 */
542STATIC size_t
543xfs_btree_rec_offset(
544	struct xfs_btree_cur	*cur,
545	int			n)
546{
547	return xfs_btree_block_len(cur) +
548		(n - 1) * cur->bc_ops->rec_len;
549}
550
551/*
552 * Calculate offset of the n-th key in a btree block.
553 */
554STATIC size_t
555xfs_btree_key_offset(
556	struct xfs_btree_cur	*cur,
557	int			n)
558{
559	return xfs_btree_block_len(cur) +
560		(n - 1) * cur->bc_ops->key_len;
561}
562
563/*
564 * Calculate offset of the n-th high key in a btree block.
565 */
566STATIC size_t
567xfs_btree_high_key_offset(
568	struct xfs_btree_cur	*cur,
569	int			n)
570{
571	return xfs_btree_block_len(cur) +
572		(n - 1) * cur->bc_ops->key_len + (cur->bc_ops->key_len / 2);
573}
574
575/*
576 * Calculate offset of the n-th block pointer in a btree block.
577 */
578STATIC size_t
579xfs_btree_ptr_offset(
580	struct xfs_btree_cur	*cur,
581	int			n,
582	int			level)
583{
584	return xfs_btree_block_len(cur) +
585		cur->bc_ops->get_maxrecs(cur, level) * cur->bc_ops->key_len +
586		(n - 1) * xfs_btree_ptr_len(cur);
587}
588
589/*
590 * Return a pointer to the n-th record in the btree block.
591 */
592union xfs_btree_rec *
593xfs_btree_rec_addr(
594	struct xfs_btree_cur	*cur,
595	int			n,
596	struct xfs_btree_block	*block)
597{
598	return (union xfs_btree_rec *)
599		((char *)block + xfs_btree_rec_offset(cur, n));
600}
601
602/*
603 * Return a pointer to the n-th key in the btree block.
604 */
605union xfs_btree_key *
606xfs_btree_key_addr(
607	struct xfs_btree_cur	*cur,
608	int			n,
609	struct xfs_btree_block	*block)
610{
611	return (union xfs_btree_key *)
612		((char *)block + xfs_btree_key_offset(cur, n));
613}
614
615/*
616 * Return a pointer to the n-th high key in the btree block.
617 */
618union xfs_btree_key *
619xfs_btree_high_key_addr(
620	struct xfs_btree_cur	*cur,
621	int			n,
622	struct xfs_btree_block	*block)
623{
624	return (union xfs_btree_key *)
625		((char *)block + xfs_btree_high_key_offset(cur, n));
626}
627
628/*
629 * Return a pointer to the n-th block pointer in the btree block.
630 */
631union xfs_btree_ptr *
632xfs_btree_ptr_addr(
633	struct xfs_btree_cur	*cur,
634	int			n,
635	struct xfs_btree_block	*block)
636{
637	int			level = xfs_btree_get_level(block);
638
639	ASSERT(block->bb_level != 0);
640
641	return (union xfs_btree_ptr *)
642		((char *)block + xfs_btree_ptr_offset(cur, n, level));
643}
644
645struct xfs_ifork *
646xfs_btree_ifork_ptr(
647	struct xfs_btree_cur	*cur)
648{
649	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
650
651	if (cur->bc_flags & XFS_BTREE_STAGING)
652		return cur->bc_ino.ifake->if_fork;
653	return XFS_IFORK_PTR(cur->bc_ino.ip, cur->bc_ino.whichfork);
654}
655
656/*
657 * Get the root block which is stored in the inode.
658 *
659 * For now this btree implementation assumes the btree root is always
660 * stored in the if_broot field of an inode fork.
661 */
662STATIC struct xfs_btree_block *
663xfs_btree_get_iroot(
664	struct xfs_btree_cur	*cur)
665{
666	struct xfs_ifork	*ifp = xfs_btree_ifork_ptr(cur);
667
668	return (struct xfs_btree_block *)ifp->if_broot;
669}
670
671/*
672 * Retrieve the block pointer from the cursor at the given level.
673 * This may be an inode btree root or from a buffer.
674 */
675struct xfs_btree_block *		/* generic btree block pointer */
676xfs_btree_get_block(
677	struct xfs_btree_cur	*cur,	/* btree cursor */
678	int			level,	/* level in btree */
679	struct xfs_buf		**bpp)	/* buffer containing the block */
680{
681	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
682	    (level == cur->bc_nlevels - 1)) {
683		*bpp = NULL;
684		return xfs_btree_get_iroot(cur);
685	}
686
687	*bpp = cur->bc_bufs[level];
688	return XFS_BUF_TO_BLOCK(*bpp);
689}
690
691/*
692 * Change the cursor to point to the first record at the given level.
693 * Other levels are unaffected.
694 */
695STATIC int				/* success=1, failure=0 */
696xfs_btree_firstrec(
697	xfs_btree_cur_t		*cur,	/* btree cursor */
698	int			level)	/* level to change */
699{
700	struct xfs_btree_block	*block;	/* generic btree block pointer */
701	xfs_buf_t		*bp;	/* buffer containing block */
702
703	/*
704	 * Get the block pointer for this level.
705	 */
706	block = xfs_btree_get_block(cur, level, &bp);
707	if (xfs_btree_check_block(cur, block, level, bp))
708		return 0;
709	/*
710	 * It's empty, there is no such record.
711	 */
712	if (!block->bb_numrecs)
713		return 0;
714	/*
715	 * Set the ptr value to 1, that's the first record/key.
716	 */
717	cur->bc_ptrs[level] = 1;
718	return 1;
719}
720
721/*
722 * Change the cursor to point to the last record in the current block
723 * at the given level.  Other levels are unaffected.
724 */
725STATIC int				/* success=1, failure=0 */
726xfs_btree_lastrec(
727	xfs_btree_cur_t		*cur,	/* btree cursor */
728	int			level)	/* level to change */
729{
730	struct xfs_btree_block	*block;	/* generic btree block pointer */
731	xfs_buf_t		*bp;	/* buffer containing block */
732
733	/*
734	 * Get the block pointer for this level.
735	 */
736	block = xfs_btree_get_block(cur, level, &bp);
737	if (xfs_btree_check_block(cur, block, level, bp))
738		return 0;
739	/*
740	 * It's empty, there is no such record.
741	 */
742	if (!block->bb_numrecs)
743		return 0;
744	/*
745	 * Set the ptr value to numrecs, that's the last record/key.
746	 */
747	cur->bc_ptrs[level] = be16_to_cpu(block->bb_numrecs);
748	return 1;
749}
750
751/*
752 * Compute first and last byte offsets for the fields given.
753 * Interprets the offsets table, which contains struct field offsets.
754 */
755void
756xfs_btree_offsets(
757	int64_t		fields,		/* bitmask of fields */
758	const short	*offsets,	/* table of field offsets */
759	int		nbits,		/* number of bits to inspect */
760	int		*first,		/* output: first byte offset */
761	int		*last)		/* output: last byte offset */
762{
763	int		i;		/* current bit number */
764	int64_t		imask;		/* mask for current bit number */
765
766	ASSERT(fields != 0);
767	/*
768	 * Find the lowest bit, so the first byte offset.
769	 */
770	for (i = 0, imask = 1LL; ; i++, imask <<= 1) {
771		if (imask & fields) {
772			*first = offsets[i];
773			break;
774		}
775	}
776	/*
777	 * Find the highest bit, so the last byte offset.
778	 */
779	for (i = nbits - 1, imask = 1LL << i; ; i--, imask >>= 1) {
780		if (imask & fields) {
781			*last = offsets[i + 1] - 1;
782			break;
783		}
784	}
785}
786
787/*
788 * Get a buffer for the block, return it read in.
789 * Long-form addressing.
790 */
791int
792xfs_btree_read_bufl(
793	struct xfs_mount	*mp,		/* file system mount point */
794	struct xfs_trans	*tp,		/* transaction pointer */
795	xfs_fsblock_t		fsbno,		/* file system block number */
796	struct xfs_buf		**bpp,		/* buffer for fsbno */
797	int			refval,		/* ref count value for buffer */
798	const struct xfs_buf_ops *ops)
799{
800	struct xfs_buf		*bp;		/* return value */
801	xfs_daddr_t		d;		/* real disk block address */
802	int			error;
803
804	if (!xfs_verify_fsbno(mp, fsbno))
805		return -EFSCORRUPTED;
806	d = XFS_FSB_TO_DADDR(mp, fsbno);
807	error = xfs_trans_read_buf(mp, tp, mp->m_ddev_targp, d,
808				   mp->m_bsize, 0, &bp, ops);
809	if (error)
810		return error;
811	if (bp)
812		xfs_buf_set_ref(bp, refval);
813	*bpp = bp;
814	return 0;
815}
816
817/*
818 * Read-ahead the block, don't wait for it, don't return a buffer.
819 * Long-form addressing.
820 */
821/* ARGSUSED */
822void
823xfs_btree_reada_bufl(
824	struct xfs_mount	*mp,		/* file system mount point */
825	xfs_fsblock_t		fsbno,		/* file system block number */
826	xfs_extlen_t		count,		/* count of filesystem blocks */
827	const struct xfs_buf_ops *ops)
828{
829	xfs_daddr_t		d;
830
831	ASSERT(fsbno != NULLFSBLOCK);
832	d = XFS_FSB_TO_DADDR(mp, fsbno);
833	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
834}
835
836/*
837 * Read-ahead the block, don't wait for it, don't return a buffer.
838 * Short-form addressing.
839 */
840/* ARGSUSED */
841void
842xfs_btree_reada_bufs(
843	struct xfs_mount	*mp,		/* file system mount point */
844	xfs_agnumber_t		agno,		/* allocation group number */
845	xfs_agblock_t		agbno,		/* allocation group block number */
846	xfs_extlen_t		count,		/* count of filesystem blocks */
847	const struct xfs_buf_ops *ops)
848{
849	xfs_daddr_t		d;
850
851	ASSERT(agno != NULLAGNUMBER);
852	ASSERT(agbno != NULLAGBLOCK);
853	d = XFS_AGB_TO_DADDR(mp, agno, agbno);
854	xfs_buf_readahead(mp->m_ddev_targp, d, mp->m_bsize * count, ops);
855}
856
857STATIC int
858xfs_btree_readahead_lblock(
859	struct xfs_btree_cur	*cur,
860	int			lr,
861	struct xfs_btree_block	*block)
862{
863	int			rval = 0;
864	xfs_fsblock_t		left = be64_to_cpu(block->bb_u.l.bb_leftsib);
865	xfs_fsblock_t		right = be64_to_cpu(block->bb_u.l.bb_rightsib);
866
867	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLFSBLOCK) {
868		xfs_btree_reada_bufl(cur->bc_mp, left, 1,
869				     cur->bc_ops->buf_ops);
870		rval++;
871	}
872
873	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLFSBLOCK) {
874		xfs_btree_reada_bufl(cur->bc_mp, right, 1,
875				     cur->bc_ops->buf_ops);
876		rval++;
877	}
878
879	return rval;
880}
881
882STATIC int
883xfs_btree_readahead_sblock(
884	struct xfs_btree_cur	*cur,
885	int			lr,
886	struct xfs_btree_block *block)
887{
888	int			rval = 0;
889	xfs_agblock_t		left = be32_to_cpu(block->bb_u.s.bb_leftsib);
890	xfs_agblock_t		right = be32_to_cpu(block->bb_u.s.bb_rightsib);
891
892
893	if ((lr & XFS_BTCUR_LEFTRA) && left != NULLAGBLOCK) {
894		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
895				     left, 1, cur->bc_ops->buf_ops);
896		rval++;
897	}
898
899	if ((lr & XFS_BTCUR_RIGHTRA) && right != NULLAGBLOCK) {
900		xfs_btree_reada_bufs(cur->bc_mp, cur->bc_ag.agno,
901				     right, 1, cur->bc_ops->buf_ops);
902		rval++;
903	}
904
905	return rval;
906}
907
908/*
909 * Read-ahead btree blocks, at the given level.
910 * Bits in lr are set from XFS_BTCUR_{LEFT,RIGHT}RA.
911 */
912STATIC int
913xfs_btree_readahead(
914	struct xfs_btree_cur	*cur,		/* btree cursor */
915	int			lev,		/* level in btree */
916	int			lr)		/* left/right bits */
917{
918	struct xfs_btree_block	*block;
919
920	/*
921	 * No readahead needed if we are at the root level and the
922	 * btree root is stored in the inode.
923	 */
924	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
925	    (lev == cur->bc_nlevels - 1))
926		return 0;
927
928	if ((cur->bc_ra[lev] | lr) == cur->bc_ra[lev])
929		return 0;
930
931	cur->bc_ra[lev] |= lr;
932	block = XFS_BUF_TO_BLOCK(cur->bc_bufs[lev]);
933
934	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
935		return xfs_btree_readahead_lblock(cur, lr, block);
936	return xfs_btree_readahead_sblock(cur, lr, block);
937}
938
939STATIC int
940xfs_btree_ptr_to_daddr(
941	struct xfs_btree_cur	*cur,
942	union xfs_btree_ptr	*ptr,
943	xfs_daddr_t		*daddr)
944{
945	xfs_fsblock_t		fsbno;
946	xfs_agblock_t		agbno;
947	int			error;
948
949	error = xfs_btree_check_ptr(cur, ptr, 0, 1);
950	if (error)
951		return error;
952
953	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
954		fsbno = be64_to_cpu(ptr->l);
955		*daddr = XFS_FSB_TO_DADDR(cur->bc_mp, fsbno);
956	} else {
957		agbno = be32_to_cpu(ptr->s);
958		*daddr = XFS_AGB_TO_DADDR(cur->bc_mp, cur->bc_ag.agno,
959				agbno);
960	}
961
962	return 0;
963}
964
965/*
966 * Readahead @count btree blocks at the given @ptr location.
967 *
968 * We don't need to care about long or short form btrees here as we have a
969 * method of converting the ptr directly to a daddr available to us.
970 */
971STATIC void
972xfs_btree_readahead_ptr(
973	struct xfs_btree_cur	*cur,
974	union xfs_btree_ptr	*ptr,
975	xfs_extlen_t		count)
976{
977	xfs_daddr_t		daddr;
978
979	if (xfs_btree_ptr_to_daddr(cur, ptr, &daddr))
980		return;
981	xfs_buf_readahead(cur->bc_mp->m_ddev_targp, daddr,
982			  cur->bc_mp->m_bsize * count, cur->bc_ops->buf_ops);
983}
984
985/*
986 * Set the buffer for level "lev" in the cursor to bp, releasing
987 * any previous buffer.
988 */
989STATIC void
990xfs_btree_setbuf(
991	xfs_btree_cur_t		*cur,	/* btree cursor */
992	int			lev,	/* level in btree */
993	xfs_buf_t		*bp)	/* new buffer to set */
994{
995	struct xfs_btree_block	*b;	/* btree block */
996
997	if (cur->bc_bufs[lev])
998		xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[lev]);
999	cur->bc_bufs[lev] = bp;
1000	cur->bc_ra[lev] = 0;
1001
1002	b = XFS_BUF_TO_BLOCK(bp);
1003	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1004		if (b->bb_u.l.bb_leftsib == cpu_to_be64(NULLFSBLOCK))
1005			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1006		if (b->bb_u.l.bb_rightsib == cpu_to_be64(NULLFSBLOCK))
1007			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1008	} else {
1009		if (b->bb_u.s.bb_leftsib == cpu_to_be32(NULLAGBLOCK))
1010			cur->bc_ra[lev] |= XFS_BTCUR_LEFTRA;
1011		if (b->bb_u.s.bb_rightsib == cpu_to_be32(NULLAGBLOCK))
1012			cur->bc_ra[lev] |= XFS_BTCUR_RIGHTRA;
1013	}
1014}
1015
1016bool
1017xfs_btree_ptr_is_null(
1018	struct xfs_btree_cur	*cur,
1019	union xfs_btree_ptr	*ptr)
1020{
1021	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1022		return ptr->l == cpu_to_be64(NULLFSBLOCK);
1023	else
1024		return ptr->s == cpu_to_be32(NULLAGBLOCK);
1025}
1026
1027void
1028xfs_btree_set_ptr_null(
1029	struct xfs_btree_cur	*cur,
1030	union xfs_btree_ptr	*ptr)
1031{
1032	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1033		ptr->l = cpu_to_be64(NULLFSBLOCK);
1034	else
1035		ptr->s = cpu_to_be32(NULLAGBLOCK);
1036}
1037
1038/*
1039 * Get/set/init sibling pointers
1040 */
1041void
1042xfs_btree_get_sibling(
1043	struct xfs_btree_cur	*cur,
1044	struct xfs_btree_block	*block,
1045	union xfs_btree_ptr	*ptr,
1046	int			lr)
1047{
1048	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1049
1050	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1051		if (lr == XFS_BB_RIGHTSIB)
1052			ptr->l = block->bb_u.l.bb_rightsib;
1053		else
1054			ptr->l = block->bb_u.l.bb_leftsib;
1055	} else {
1056		if (lr == XFS_BB_RIGHTSIB)
1057			ptr->s = block->bb_u.s.bb_rightsib;
1058		else
1059			ptr->s = block->bb_u.s.bb_leftsib;
1060	}
1061}
1062
1063void
1064xfs_btree_set_sibling(
1065	struct xfs_btree_cur	*cur,
1066	struct xfs_btree_block	*block,
1067	union xfs_btree_ptr	*ptr,
1068	int			lr)
1069{
1070	ASSERT(lr == XFS_BB_LEFTSIB || lr == XFS_BB_RIGHTSIB);
1071
1072	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
1073		if (lr == XFS_BB_RIGHTSIB)
1074			block->bb_u.l.bb_rightsib = ptr->l;
1075		else
1076			block->bb_u.l.bb_leftsib = ptr->l;
1077	} else {
1078		if (lr == XFS_BB_RIGHTSIB)
1079			block->bb_u.s.bb_rightsib = ptr->s;
1080		else
1081			block->bb_u.s.bb_leftsib = ptr->s;
1082	}
1083}
1084
1085void
1086xfs_btree_init_block_int(
1087	struct xfs_mount	*mp,
1088	struct xfs_btree_block	*buf,
1089	xfs_daddr_t		blkno,
1090	xfs_btnum_t		btnum,
1091	__u16			level,
1092	__u16			numrecs,
1093	__u64			owner,
1094	unsigned int		flags)
1095{
1096	int			crc = xfs_sb_version_hascrc(&mp->m_sb);
1097	__u32			magic = xfs_btree_magic(crc, btnum);
1098
1099	buf->bb_magic = cpu_to_be32(magic);
1100	buf->bb_level = cpu_to_be16(level);
1101	buf->bb_numrecs = cpu_to_be16(numrecs);
1102
1103	if (flags & XFS_BTREE_LONG_PTRS) {
1104		buf->bb_u.l.bb_leftsib = cpu_to_be64(NULLFSBLOCK);
1105		buf->bb_u.l.bb_rightsib = cpu_to_be64(NULLFSBLOCK);
1106		if (crc) {
1107			buf->bb_u.l.bb_blkno = cpu_to_be64(blkno);
1108			buf->bb_u.l.bb_owner = cpu_to_be64(owner);
1109			uuid_copy(&buf->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid);
1110			buf->bb_u.l.bb_pad = 0;
1111			buf->bb_u.l.bb_lsn = 0;
1112		}
1113	} else {
1114		/* owner is a 32 bit value on short blocks */
1115		__u32 __owner = (__u32)owner;
1116
1117		buf->bb_u.s.bb_leftsib = cpu_to_be32(NULLAGBLOCK);
1118		buf->bb_u.s.bb_rightsib = cpu_to_be32(NULLAGBLOCK);
1119		if (crc) {
1120			buf->bb_u.s.bb_blkno = cpu_to_be64(blkno);
1121			buf->bb_u.s.bb_owner = cpu_to_be32(__owner);
1122			uuid_copy(&buf->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid);
1123			buf->bb_u.s.bb_lsn = 0;
1124		}
1125	}
1126}
1127
1128void
1129xfs_btree_init_block(
1130	struct xfs_mount *mp,
1131	struct xfs_buf	*bp,
1132	xfs_btnum_t	btnum,
1133	__u16		level,
1134	__u16		numrecs,
1135	__u64		owner)
1136{
1137	xfs_btree_init_block_int(mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1138				 btnum, level, numrecs, owner, 0);
1139}
1140
1141void
1142xfs_btree_init_block_cur(
1143	struct xfs_btree_cur	*cur,
1144	struct xfs_buf		*bp,
1145	int			level,
1146	int			numrecs)
1147{
1148	__u64			owner;
1149
1150	/*
1151	 * we can pull the owner from the cursor right now as the different
1152	 * owners align directly with the pointer size of the btree. This may
1153	 * change in future, but is safe for current users of the generic btree
1154	 * code.
1155	 */
1156	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1157		owner = cur->bc_ino.ip->i_ino;
1158	else
1159		owner = cur->bc_ag.agno;
1160
1161	xfs_btree_init_block_int(cur->bc_mp, XFS_BUF_TO_BLOCK(bp), bp->b_bn,
1162				 cur->bc_btnum, level, numrecs,
1163				 owner, cur->bc_flags);
1164}
1165
1166/*
1167 * Return true if ptr is the last record in the btree and
1168 * we need to track updates to this record.  The decision
1169 * will be further refined in the update_lastrec method.
1170 */
1171STATIC int
1172xfs_btree_is_lastrec(
1173	struct xfs_btree_cur	*cur,
1174	struct xfs_btree_block	*block,
1175	int			level)
1176{
1177	union xfs_btree_ptr	ptr;
1178
1179	if (level > 0)
1180		return 0;
1181	if (!(cur->bc_flags & XFS_BTREE_LASTREC_UPDATE))
1182		return 0;
1183
1184	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1185	if (!xfs_btree_ptr_is_null(cur, &ptr))
1186		return 0;
1187	return 1;
1188}
1189
1190STATIC void
1191xfs_btree_buf_to_ptr(
1192	struct xfs_btree_cur	*cur,
1193	struct xfs_buf		*bp,
1194	union xfs_btree_ptr	*ptr)
1195{
1196	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
1197		ptr->l = cpu_to_be64(XFS_DADDR_TO_FSB(cur->bc_mp,
1198					XFS_BUF_ADDR(bp)));
1199	else {
1200		ptr->s = cpu_to_be32(xfs_daddr_to_agbno(cur->bc_mp,
1201					XFS_BUF_ADDR(bp)));
1202	}
1203}
1204
1205STATIC void
1206xfs_btree_set_refs(
1207	struct xfs_btree_cur	*cur,
1208	struct xfs_buf		*bp)
1209{
1210	switch (cur->bc_btnum) {
1211	case XFS_BTNUM_BNO:
1212	case XFS_BTNUM_CNT:
1213		xfs_buf_set_ref(bp, XFS_ALLOC_BTREE_REF);
1214		break;
1215	case XFS_BTNUM_INO:
1216	case XFS_BTNUM_FINO:
1217		xfs_buf_set_ref(bp, XFS_INO_BTREE_REF);
1218		break;
1219	case XFS_BTNUM_BMAP:
1220		xfs_buf_set_ref(bp, XFS_BMAP_BTREE_REF);
1221		break;
1222	case XFS_BTNUM_RMAP:
1223		xfs_buf_set_ref(bp, XFS_RMAP_BTREE_REF);
1224		break;
1225	case XFS_BTNUM_REFC:
1226		xfs_buf_set_ref(bp, XFS_REFC_BTREE_REF);
1227		break;
1228	default:
1229		ASSERT(0);
1230	}
1231}
1232
1233int
1234xfs_btree_get_buf_block(
1235	struct xfs_btree_cur	*cur,
1236	union xfs_btree_ptr	*ptr,
1237	struct xfs_btree_block	**block,
1238	struct xfs_buf		**bpp)
1239{
1240	struct xfs_mount	*mp = cur->bc_mp;
1241	xfs_daddr_t		d;
1242	int			error;
1243
1244	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1245	if (error)
1246		return error;
1247	error = xfs_trans_get_buf(cur->bc_tp, mp->m_ddev_targp, d, mp->m_bsize,
1248			0, bpp);
1249	if (error)
1250		return error;
1251
1252	(*bpp)->b_ops = cur->bc_ops->buf_ops;
1253	*block = XFS_BUF_TO_BLOCK(*bpp);
1254	return 0;
1255}
1256
1257/*
1258 * Read in the buffer at the given ptr and return the buffer and
1259 * the block pointer within the buffer.
1260 */
1261STATIC int
1262xfs_btree_read_buf_block(
1263	struct xfs_btree_cur	*cur,
1264	union xfs_btree_ptr	*ptr,
1265	int			flags,
1266	struct xfs_btree_block	**block,
1267	struct xfs_buf		**bpp)
1268{
1269	struct xfs_mount	*mp = cur->bc_mp;
1270	xfs_daddr_t		d;
1271	int			error;
1272
1273	/* need to sort out how callers deal with failures first */
1274	ASSERT(!(flags & XBF_TRYLOCK));
1275
1276	error = xfs_btree_ptr_to_daddr(cur, ptr, &d);
1277	if (error)
1278		return error;
1279	error = xfs_trans_read_buf(mp, cur->bc_tp, mp->m_ddev_targp, d,
1280				   mp->m_bsize, flags, bpp,
1281				   cur->bc_ops->buf_ops);
1282	if (error)
1283		return error;
1284
1285	xfs_btree_set_refs(cur, *bpp);
1286	*block = XFS_BUF_TO_BLOCK(*bpp);
1287	return 0;
1288}
1289
1290/*
1291 * Copy keys from one btree block to another.
1292 */
1293void
1294xfs_btree_copy_keys(
1295	struct xfs_btree_cur	*cur,
1296	union xfs_btree_key	*dst_key,
1297	union xfs_btree_key	*src_key,
1298	int			numkeys)
1299{
1300	ASSERT(numkeys >= 0);
1301	memcpy(dst_key, src_key, numkeys * cur->bc_ops->key_len);
1302}
1303
1304/*
1305 * Copy records from one btree block to another.
1306 */
1307STATIC void
1308xfs_btree_copy_recs(
1309	struct xfs_btree_cur	*cur,
1310	union xfs_btree_rec	*dst_rec,
1311	union xfs_btree_rec	*src_rec,
1312	int			numrecs)
1313{
1314	ASSERT(numrecs >= 0);
1315	memcpy(dst_rec, src_rec, numrecs * cur->bc_ops->rec_len);
1316}
1317
1318/*
1319 * Copy block pointers from one btree block to another.
1320 */
1321void
1322xfs_btree_copy_ptrs(
1323	struct xfs_btree_cur	*cur,
1324	union xfs_btree_ptr	*dst_ptr,
1325	const union xfs_btree_ptr *src_ptr,
1326	int			numptrs)
1327{
1328	ASSERT(numptrs >= 0);
1329	memcpy(dst_ptr, src_ptr, numptrs * xfs_btree_ptr_len(cur));
1330}
1331
1332/*
1333 * Shift keys one index left/right inside a single btree block.
1334 */
1335STATIC void
1336xfs_btree_shift_keys(
1337	struct xfs_btree_cur	*cur,
1338	union xfs_btree_key	*key,
1339	int			dir,
1340	int			numkeys)
1341{
1342	char			*dst_key;
1343
1344	ASSERT(numkeys >= 0);
1345	ASSERT(dir == 1 || dir == -1);
1346
1347	dst_key = (char *)key + (dir * cur->bc_ops->key_len);
1348	memmove(dst_key, key, numkeys * cur->bc_ops->key_len);
1349}
1350
1351/*
1352 * Shift records one index left/right inside a single btree block.
1353 */
1354STATIC void
1355xfs_btree_shift_recs(
1356	struct xfs_btree_cur	*cur,
1357	union xfs_btree_rec	*rec,
1358	int			dir,
1359	int			numrecs)
1360{
1361	char			*dst_rec;
1362
1363	ASSERT(numrecs >= 0);
1364	ASSERT(dir == 1 || dir == -1);
1365
1366	dst_rec = (char *)rec + (dir * cur->bc_ops->rec_len);
1367	memmove(dst_rec, rec, numrecs * cur->bc_ops->rec_len);
1368}
1369
1370/*
1371 * Shift block pointers one index left/right inside a single btree block.
1372 */
1373STATIC void
1374xfs_btree_shift_ptrs(
1375	struct xfs_btree_cur	*cur,
1376	union xfs_btree_ptr	*ptr,
1377	int			dir,
1378	int			numptrs)
1379{
1380	char			*dst_ptr;
1381
1382	ASSERT(numptrs >= 0);
1383	ASSERT(dir == 1 || dir == -1);
1384
1385	dst_ptr = (char *)ptr + (dir * xfs_btree_ptr_len(cur));
1386	memmove(dst_ptr, ptr, numptrs * xfs_btree_ptr_len(cur));
1387}
1388
1389/*
1390 * Log key values from the btree block.
1391 */
1392STATIC void
1393xfs_btree_log_keys(
1394	struct xfs_btree_cur	*cur,
1395	struct xfs_buf		*bp,
1396	int			first,
1397	int			last)
1398{
1399
1400	if (bp) {
1401		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1402		xfs_trans_log_buf(cur->bc_tp, bp,
1403				  xfs_btree_key_offset(cur, first),
1404				  xfs_btree_key_offset(cur, last + 1) - 1);
1405	} else {
1406		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1407				xfs_ilog_fbroot(cur->bc_ino.whichfork));
1408	}
1409}
1410
1411/*
1412 * Log record values from the btree block.
1413 */
1414void
1415xfs_btree_log_recs(
1416	struct xfs_btree_cur	*cur,
1417	struct xfs_buf		*bp,
1418	int			first,
1419	int			last)
1420{
1421
1422	xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1423	xfs_trans_log_buf(cur->bc_tp, bp,
1424			  xfs_btree_rec_offset(cur, first),
1425			  xfs_btree_rec_offset(cur, last + 1) - 1);
1426
1427}
1428
1429/*
1430 * Log block pointer fields from a btree block (nonleaf).
1431 */
1432STATIC void
1433xfs_btree_log_ptrs(
1434	struct xfs_btree_cur	*cur,	/* btree cursor */
1435	struct xfs_buf		*bp,	/* buffer containing btree block */
1436	int			first,	/* index of first pointer to log */
1437	int			last)	/* index of last pointer to log */
1438{
1439
1440	if (bp) {
1441		struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
1442		int			level = xfs_btree_get_level(block);
1443
1444		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1445		xfs_trans_log_buf(cur->bc_tp, bp,
1446				xfs_btree_ptr_offset(cur, first, level),
1447				xfs_btree_ptr_offset(cur, last + 1, level) - 1);
1448	} else {
1449		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1450			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1451	}
1452
1453}
1454
1455/*
1456 * Log fields from a btree block header.
1457 */
1458void
1459xfs_btree_log_block(
1460	struct xfs_btree_cur	*cur,	/* btree cursor */
1461	struct xfs_buf		*bp,	/* buffer containing btree block */
1462	int			fields)	/* mask of fields: XFS_BB_... */
1463{
1464	int			first;	/* first byte offset logged */
1465	int			last;	/* last byte offset logged */
1466	static const short	soffsets[] = {	/* table of offsets (short) */
1467		offsetof(struct xfs_btree_block, bb_magic),
1468		offsetof(struct xfs_btree_block, bb_level),
1469		offsetof(struct xfs_btree_block, bb_numrecs),
1470		offsetof(struct xfs_btree_block, bb_u.s.bb_leftsib),
1471		offsetof(struct xfs_btree_block, bb_u.s.bb_rightsib),
1472		offsetof(struct xfs_btree_block, bb_u.s.bb_blkno),
1473		offsetof(struct xfs_btree_block, bb_u.s.bb_lsn),
1474		offsetof(struct xfs_btree_block, bb_u.s.bb_uuid),
1475		offsetof(struct xfs_btree_block, bb_u.s.bb_owner),
1476		offsetof(struct xfs_btree_block, bb_u.s.bb_crc),
1477		XFS_BTREE_SBLOCK_CRC_LEN
1478	};
1479	static const short	loffsets[] = {	/* table of offsets (long) */
1480		offsetof(struct xfs_btree_block, bb_magic),
1481		offsetof(struct xfs_btree_block, bb_level),
1482		offsetof(struct xfs_btree_block, bb_numrecs),
1483		offsetof(struct xfs_btree_block, bb_u.l.bb_leftsib),
1484		offsetof(struct xfs_btree_block, bb_u.l.bb_rightsib),
1485		offsetof(struct xfs_btree_block, bb_u.l.bb_blkno),
1486		offsetof(struct xfs_btree_block, bb_u.l.bb_lsn),
1487		offsetof(struct xfs_btree_block, bb_u.l.bb_uuid),
1488		offsetof(struct xfs_btree_block, bb_u.l.bb_owner),
1489		offsetof(struct xfs_btree_block, bb_u.l.bb_crc),
1490		offsetof(struct xfs_btree_block, bb_u.l.bb_pad),
1491		XFS_BTREE_LBLOCK_CRC_LEN
1492	};
1493
1494	if (bp) {
1495		int nbits;
1496
1497		if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
1498			/*
1499			 * We don't log the CRC when updating a btree
1500			 * block but instead recreate it during log
1501			 * recovery.  As the log buffers have checksums
1502			 * of their own this is safe and avoids logging a crc
1503			 * update in a lot of places.
1504			 */
1505			if (fields == XFS_BB_ALL_BITS)
1506				fields = XFS_BB_ALL_BITS_CRC;
1507			nbits = XFS_BB_NUM_BITS_CRC;
1508		} else {
1509			nbits = XFS_BB_NUM_BITS;
1510		}
1511		xfs_btree_offsets(fields,
1512				  (cur->bc_flags & XFS_BTREE_LONG_PTRS) ?
1513					loffsets : soffsets,
1514				  nbits, &first, &last);
1515		xfs_trans_buf_set_type(cur->bc_tp, bp, XFS_BLFT_BTREE_BUF);
1516		xfs_trans_log_buf(cur->bc_tp, bp, first, last);
1517	} else {
1518		xfs_trans_log_inode(cur->bc_tp, cur->bc_ino.ip,
1519			xfs_ilog_fbroot(cur->bc_ino.whichfork));
1520	}
1521}
1522
1523/*
1524 * Increment cursor by one record at the level.
1525 * For nonzero levels the leaf-ward information is untouched.
1526 */
1527int						/* error */
1528xfs_btree_increment(
1529	struct xfs_btree_cur	*cur,
1530	int			level,
1531	int			*stat)		/* success/failure */
1532{
1533	struct xfs_btree_block	*block;
1534	union xfs_btree_ptr	ptr;
1535	struct xfs_buf		*bp;
1536	int			error;		/* error return value */
1537	int			lev;
1538
1539	ASSERT(level < cur->bc_nlevels);
1540
1541	/* Read-ahead to the right at this level. */
1542	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
1543
1544	/* Get a pointer to the btree block. */
1545	block = xfs_btree_get_block(cur, level, &bp);
1546
1547#ifdef DEBUG
1548	error = xfs_btree_check_block(cur, block, level, bp);
1549	if (error)
1550		goto error0;
1551#endif
1552
1553	/* We're done if we remain in the block after the increment. */
1554	if (++cur->bc_ptrs[level] <= xfs_btree_get_numrecs(block))
1555		goto out1;
1556
1557	/* Fail if we just went off the right edge of the tree. */
1558	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1559	if (xfs_btree_ptr_is_null(cur, &ptr))
1560		goto out0;
1561
1562	XFS_BTREE_STATS_INC(cur, increment);
1563
1564	/*
1565	 * March up the tree incrementing pointers.
1566	 * Stop when we don't go off the right edge of a block.
1567	 */
1568	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1569		block = xfs_btree_get_block(cur, lev, &bp);
1570
1571#ifdef DEBUG
1572		error = xfs_btree_check_block(cur, block, lev, bp);
1573		if (error)
1574			goto error0;
1575#endif
1576
1577		if (++cur->bc_ptrs[lev] <= xfs_btree_get_numrecs(block))
1578			break;
1579
1580		/* Read-ahead the right block for the next loop. */
1581		xfs_btree_readahead(cur, lev, XFS_BTCUR_RIGHTRA);
1582	}
1583
1584	/*
1585	 * If we went off the root then we are either seriously
1586	 * confused or have the tree root in an inode.
1587	 */
1588	if (lev == cur->bc_nlevels) {
1589		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1590			goto out0;
1591		ASSERT(0);
1592		error = -EFSCORRUPTED;
1593		goto error0;
1594	}
1595	ASSERT(lev < cur->bc_nlevels);
1596
1597	/*
1598	 * Now walk back down the tree, fixing up the cursor's buffer
1599	 * pointers and key numbers.
1600	 */
1601	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1602		union xfs_btree_ptr	*ptrp;
1603
1604		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1605		--lev;
1606		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1607		if (error)
1608			goto error0;
1609
1610		xfs_btree_setbuf(cur, lev, bp);
1611		cur->bc_ptrs[lev] = 1;
1612	}
1613out1:
1614	*stat = 1;
1615	return 0;
1616
1617out0:
1618	*stat = 0;
1619	return 0;
1620
1621error0:
1622	return error;
1623}
1624
1625/*
1626 * Decrement cursor by one record at the level.
1627 * For nonzero levels the leaf-ward information is untouched.
1628 */
1629int						/* error */
1630xfs_btree_decrement(
1631	struct xfs_btree_cur	*cur,
1632	int			level,
1633	int			*stat)		/* success/failure */
1634{
1635	struct xfs_btree_block	*block;
1636	xfs_buf_t		*bp;
1637	int			error;		/* error return value */
1638	int			lev;
1639	union xfs_btree_ptr	ptr;
1640
1641	ASSERT(level < cur->bc_nlevels);
1642
1643	/* Read-ahead to the left at this level. */
1644	xfs_btree_readahead(cur, level, XFS_BTCUR_LEFTRA);
1645
1646	/* We're done if we remain in the block after the decrement. */
1647	if (--cur->bc_ptrs[level] > 0)
1648		goto out1;
1649
1650	/* Get a pointer to the btree block. */
1651	block = xfs_btree_get_block(cur, level, &bp);
1652
1653#ifdef DEBUG
1654	error = xfs_btree_check_block(cur, block, level, bp);
1655	if (error)
1656		goto error0;
1657#endif
1658
1659	/* Fail if we just went off the left edge of the tree. */
1660	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
1661	if (xfs_btree_ptr_is_null(cur, &ptr))
1662		goto out0;
1663
1664	XFS_BTREE_STATS_INC(cur, decrement);
1665
1666	/*
1667	 * March up the tree decrementing pointers.
1668	 * Stop when we don't go off the left edge of a block.
1669	 */
1670	for (lev = level + 1; lev < cur->bc_nlevels; lev++) {
1671		if (--cur->bc_ptrs[lev] > 0)
1672			break;
1673		/* Read-ahead the left block for the next loop. */
1674		xfs_btree_readahead(cur, lev, XFS_BTCUR_LEFTRA);
1675	}
1676
1677	/*
1678	 * If we went off the root then we are seriously confused.
1679	 * or the root of the tree is in an inode.
1680	 */
1681	if (lev == cur->bc_nlevels) {
1682		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE)
1683			goto out0;
1684		ASSERT(0);
1685		error = -EFSCORRUPTED;
1686		goto error0;
1687	}
1688	ASSERT(lev < cur->bc_nlevels);
1689
1690	/*
1691	 * Now walk back down the tree, fixing up the cursor's buffer
1692	 * pointers and key numbers.
1693	 */
1694	for (block = xfs_btree_get_block(cur, lev, &bp); lev > level; ) {
1695		union xfs_btree_ptr	*ptrp;
1696
1697		ptrp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[lev], block);
1698		--lev;
1699		error = xfs_btree_read_buf_block(cur, ptrp, 0, &block, &bp);
1700		if (error)
1701			goto error0;
1702		xfs_btree_setbuf(cur, lev, bp);
1703		cur->bc_ptrs[lev] = xfs_btree_get_numrecs(block);
1704	}
1705out1:
1706	*stat = 1;
1707	return 0;
1708
1709out0:
1710	*stat = 0;
1711	return 0;
1712
1713error0:
1714	return error;
1715}
1716
1717int
1718xfs_btree_lookup_get_block(
1719	struct xfs_btree_cur	*cur,	/* btree cursor */
1720	int			level,	/* level in the btree */
1721	union xfs_btree_ptr	*pp,	/* ptr to btree block */
1722	struct xfs_btree_block	**blkp) /* return btree block */
1723{
1724	struct xfs_buf		*bp;	/* buffer pointer for btree block */
1725	xfs_daddr_t		daddr;
1726	int			error = 0;
1727
1728	/* special case the root block if in an inode */
1729	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
1730	    (level == cur->bc_nlevels - 1)) {
1731		*blkp = xfs_btree_get_iroot(cur);
1732		return 0;
1733	}
1734
1735	/*
1736	 * If the old buffer at this level for the disk address we are
1737	 * looking for re-use it.
1738	 *
1739	 * Otherwise throw it away and get a new one.
1740	 */
1741	bp = cur->bc_bufs[level];
1742	error = xfs_btree_ptr_to_daddr(cur, pp, &daddr);
1743	if (error)
1744		return error;
1745	if (bp && XFS_BUF_ADDR(bp) == daddr) {
1746		*blkp = XFS_BUF_TO_BLOCK(bp);
1747		return 0;
1748	}
1749
1750	error = xfs_btree_read_buf_block(cur, pp, 0, blkp, &bp);
1751	if (error)
1752		return error;
1753
1754	/* Check the inode owner since the verifiers don't. */
1755	if (xfs_sb_version_hascrc(&cur->bc_mp->m_sb) &&
1756	    !(cur->bc_ino.flags & XFS_BTCUR_BMBT_INVALID_OWNER) &&
1757	    (cur->bc_flags & XFS_BTREE_LONG_PTRS) &&
1758	    be64_to_cpu((*blkp)->bb_u.l.bb_owner) !=
1759			cur->bc_ino.ip->i_ino)
1760		goto out_bad;
1761
1762	/* Did we get the level we were looking for? */
1763	if (be16_to_cpu((*blkp)->bb_level) != level)
1764		goto out_bad;
1765
1766	/* Check that internal nodes have at least one record. */
1767	if (level != 0 && be16_to_cpu((*blkp)->bb_numrecs) == 0)
1768		goto out_bad;
1769
1770	xfs_btree_setbuf(cur, level, bp);
1771	return 0;
1772
1773out_bad:
1774	*blkp = NULL;
1775	xfs_buf_mark_corrupt(bp);
1776	xfs_trans_brelse(cur->bc_tp, bp);
1777	return -EFSCORRUPTED;
1778}
1779
1780/*
1781 * Get current search key.  For level 0 we don't actually have a key
1782 * structure so we make one up from the record.  For all other levels
1783 * we just return the right key.
1784 */
1785STATIC union xfs_btree_key *
1786xfs_lookup_get_search_key(
1787	struct xfs_btree_cur	*cur,
1788	int			level,
1789	int			keyno,
1790	struct xfs_btree_block	*block,
1791	union xfs_btree_key	*kp)
1792{
1793	if (level == 0) {
1794		cur->bc_ops->init_key_from_rec(kp,
1795				xfs_btree_rec_addr(cur, keyno, block));
1796		return kp;
1797	}
1798
1799	return xfs_btree_key_addr(cur, keyno, block);
1800}
1801
1802/*
1803 * Lookup the record.  The cursor is made to point to it, based on dir.
1804 * stat is set to 0 if can't find any such record, 1 for success.
1805 */
1806int					/* error */
1807xfs_btree_lookup(
1808	struct xfs_btree_cur	*cur,	/* btree cursor */
1809	xfs_lookup_t		dir,	/* <=, ==, or >= */
1810	int			*stat)	/* success/failure */
1811{
1812	struct xfs_btree_block	*block;	/* current btree block */
1813	int64_t			diff;	/* difference for the current key */
1814	int			error;	/* error return value */
1815	int			keyno;	/* current key number */
1816	int			level;	/* level in the btree */
1817	union xfs_btree_ptr	*pp;	/* ptr to btree block */
1818	union xfs_btree_ptr	ptr;	/* ptr to btree block */
1819
1820	XFS_BTREE_STATS_INC(cur, lookup);
1821
1822	/* No such thing as a zero-level tree. */
1823	if (XFS_IS_CORRUPT(cur->bc_mp, cur->bc_nlevels == 0))
1824		return -EFSCORRUPTED;
1825
1826	block = NULL;
1827	keyno = 0;
1828
1829	/* initialise start pointer from cursor */
1830	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
1831	pp = &ptr;
1832
1833	/*
1834	 * Iterate over each level in the btree, starting at the root.
1835	 * For each level above the leaves, find the key we need, based
1836	 * on the lookup record, then follow the corresponding block
1837	 * pointer down to the next level.
1838	 */
1839	for (level = cur->bc_nlevels - 1, diff = 1; level >= 0; level--) {
1840		/* Get the block we need to do the lookup on. */
1841		error = xfs_btree_lookup_get_block(cur, level, pp, &block);
1842		if (error)
1843			goto error0;
1844
1845		if (diff == 0) {
1846			/*
1847			 * If we already had a key match at a higher level, we
1848			 * know we need to use the first entry in this block.
1849			 */
1850			keyno = 1;
1851		} else {
1852			/* Otherwise search this block. Do a binary search. */
1853
1854			int	high;	/* high entry number */
1855			int	low;	/* low entry number */
1856
1857			/* Set low and high entry numbers, 1-based. */
1858			low = 1;
1859			high = xfs_btree_get_numrecs(block);
1860			if (!high) {
1861				/* Block is empty, must be an empty leaf. */
1862				if (level != 0 || cur->bc_nlevels != 1) {
1863					XFS_CORRUPTION_ERROR(__func__,
1864							XFS_ERRLEVEL_LOW,
1865							cur->bc_mp, block,
1866							sizeof(*block));
1867					return -EFSCORRUPTED;
1868				}
1869
1870				cur->bc_ptrs[0] = dir != XFS_LOOKUP_LE;
1871				*stat = 0;
1872				return 0;
1873			}
1874
1875			/* Binary search the block. */
1876			while (low <= high) {
1877				union xfs_btree_key	key;
1878				union xfs_btree_key	*kp;
1879
1880				XFS_BTREE_STATS_INC(cur, compare);
1881
1882				/* keyno is average of low and high. */
1883				keyno = (low + high) >> 1;
1884
1885				/* Get current search key */
1886				kp = xfs_lookup_get_search_key(cur, level,
1887						keyno, block, &key);
1888
1889				/*
1890				 * Compute difference to get next direction:
1891				 *  - less than, move right
1892				 *  - greater than, move left
1893				 *  - equal, we're done
1894				 */
1895				diff = cur->bc_ops->key_diff(cur, kp);
1896				if (diff < 0)
1897					low = keyno + 1;
1898				else if (diff > 0)
1899					high = keyno - 1;
1900				else
1901					break;
1902			}
1903		}
1904
1905		/*
1906		 * If there are more levels, set up for the next level
1907		 * by getting the block number and filling in the cursor.
1908		 */
1909		if (level > 0) {
1910			/*
1911			 * If we moved left, need the previous key number,
1912			 * unless there isn't one.
1913			 */
1914			if (diff > 0 && --keyno < 1)
1915				keyno = 1;
1916			pp = xfs_btree_ptr_addr(cur, keyno, block);
1917
1918			error = xfs_btree_debug_check_ptr(cur, pp, 0, level);
1919			if (error)
1920				goto error0;
1921
1922			cur->bc_ptrs[level] = keyno;
1923		}
1924	}
1925
1926	/* Done with the search. See if we need to adjust the results. */
1927	if (dir != XFS_LOOKUP_LE && diff < 0) {
1928		keyno++;
1929		/*
1930		 * If ge search and we went off the end of the block, but it's
1931		 * not the last block, we're in the wrong block.
1932		 */
1933		xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
1934		if (dir == XFS_LOOKUP_GE &&
1935		    keyno > xfs_btree_get_numrecs(block) &&
1936		    !xfs_btree_ptr_is_null(cur, &ptr)) {
1937			int	i;
1938
1939			cur->bc_ptrs[0] = keyno;
1940			error = xfs_btree_increment(cur, 0, &i);
1941			if (error)
1942				goto error0;
1943			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1))
1944				return -EFSCORRUPTED;
1945			*stat = 1;
1946			return 0;
1947		}
1948	} else if (dir == XFS_LOOKUP_LE && diff > 0)
1949		keyno--;
1950	cur->bc_ptrs[0] = keyno;
1951
1952	/* Return if we succeeded or not. */
1953	if (keyno == 0 || keyno > xfs_btree_get_numrecs(block))
1954		*stat = 0;
1955	else if (dir != XFS_LOOKUP_EQ || diff == 0)
1956		*stat = 1;
1957	else
1958		*stat = 0;
1959	return 0;
1960
1961error0:
1962	return error;
1963}
1964
1965/* Find the high key storage area from a regular key. */
1966union xfs_btree_key *
1967xfs_btree_high_key_from_key(
1968	struct xfs_btree_cur	*cur,
1969	union xfs_btree_key	*key)
1970{
1971	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
1972	return (union xfs_btree_key *)((char *)key +
1973			(cur->bc_ops->key_len / 2));
1974}
1975
1976/* Determine the low (and high if overlapped) keys of a leaf block */
1977STATIC void
1978xfs_btree_get_leaf_keys(
1979	struct xfs_btree_cur	*cur,
1980	struct xfs_btree_block	*block,
1981	union xfs_btree_key	*key)
1982{
1983	union xfs_btree_key	max_hkey;
1984	union xfs_btree_key	hkey;
1985	union xfs_btree_rec	*rec;
1986	union xfs_btree_key	*high;
1987	int			n;
1988
1989	rec = xfs_btree_rec_addr(cur, 1, block);
1990	cur->bc_ops->init_key_from_rec(key, rec);
1991
1992	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
1993
1994		cur->bc_ops->init_high_key_from_rec(&max_hkey, rec);
1995		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
1996			rec = xfs_btree_rec_addr(cur, n, block);
1997			cur->bc_ops->init_high_key_from_rec(&hkey, rec);
1998			if (cur->bc_ops->diff_two_keys(cur, &hkey, &max_hkey)
1999					> 0)
2000				max_hkey = hkey;
2001		}
2002
2003		high = xfs_btree_high_key_from_key(cur, key);
2004		memcpy(high, &max_hkey, cur->bc_ops->key_len / 2);
2005	}
2006}
2007
2008/* Determine the low (and high if overlapped) keys of a node block */
2009STATIC void
2010xfs_btree_get_node_keys(
2011	struct xfs_btree_cur	*cur,
2012	struct xfs_btree_block	*block,
2013	union xfs_btree_key	*key)
2014{
2015	union xfs_btree_key	*hkey;
2016	union xfs_btree_key	*max_hkey;
2017	union xfs_btree_key	*high;
2018	int			n;
2019
2020	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2021		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2022				cur->bc_ops->key_len / 2);
2023
2024		max_hkey = xfs_btree_high_key_addr(cur, 1, block);
2025		for (n = 2; n <= xfs_btree_get_numrecs(block); n++) {
2026			hkey = xfs_btree_high_key_addr(cur, n, block);
2027			if (cur->bc_ops->diff_two_keys(cur, hkey, max_hkey) > 0)
2028				max_hkey = hkey;
2029		}
2030
2031		high = xfs_btree_high_key_from_key(cur, key);
2032		memcpy(high, max_hkey, cur->bc_ops->key_len / 2);
2033	} else {
2034		memcpy(key, xfs_btree_key_addr(cur, 1, block),
2035				cur->bc_ops->key_len);
2036	}
2037}
2038
2039/* Derive the keys for any btree block. */
2040void
2041xfs_btree_get_keys(
2042	struct xfs_btree_cur	*cur,
2043	struct xfs_btree_block	*block,
2044	union xfs_btree_key	*key)
2045{
2046	if (be16_to_cpu(block->bb_level) == 0)
2047		xfs_btree_get_leaf_keys(cur, block, key);
2048	else
2049		xfs_btree_get_node_keys(cur, block, key);
2050}
2051
2052/*
2053 * Decide if we need to update the parent keys of a btree block.  For
2054 * a standard btree this is only necessary if we're updating the first
2055 * record/key.  For an overlapping btree, we must always update the
2056 * keys because the highest key can be in any of the records or keys
2057 * in the block.
2058 */
2059static inline bool
2060xfs_btree_needs_key_update(
2061	struct xfs_btree_cur	*cur,
2062	int			ptr)
2063{
2064	return (cur->bc_flags & XFS_BTREE_OVERLAPPING) || ptr == 1;
2065}
2066
2067/*
2068 * Update the low and high parent keys of the given level, progressing
2069 * towards the root.  If force_all is false, stop if the keys for a given
2070 * level do not need updating.
2071 */
2072STATIC int
2073__xfs_btree_updkeys(
2074	struct xfs_btree_cur	*cur,
2075	int			level,
2076	struct xfs_btree_block	*block,
2077	struct xfs_buf		*bp0,
2078	bool			force_all)
2079{
2080	union xfs_btree_key	key;	/* keys from current level */
2081	union xfs_btree_key	*lkey;	/* keys from the next level up */
2082	union xfs_btree_key	*hkey;
2083	union xfs_btree_key	*nlkey;	/* keys from the next level up */
2084	union xfs_btree_key	*nhkey;
2085	struct xfs_buf		*bp;
2086	int			ptr;
2087
2088	ASSERT(cur->bc_flags & XFS_BTREE_OVERLAPPING);
2089
2090	/* Exit if there aren't any parent levels to update. */
2091	if (level + 1 >= cur->bc_nlevels)
2092		return 0;
2093
2094	trace_xfs_btree_updkeys(cur, level, bp0);
2095
2096	lkey = &key;
2097	hkey = xfs_btree_high_key_from_key(cur, lkey);
2098	xfs_btree_get_keys(cur, block, lkey);
2099	for (level++; level < cur->bc_nlevels; level++) {
2100#ifdef DEBUG
2101		int		error;
2102#endif
2103		block = xfs_btree_get_block(cur, level, &bp);
2104		trace_xfs_btree_updkeys(cur, level, bp);
2105#ifdef DEBUG
2106		error = xfs_btree_check_block(cur, block, level, bp);
2107		if (error)
2108			return error;
2109#endif
2110		ptr = cur->bc_ptrs[level];
2111		nlkey = xfs_btree_key_addr(cur, ptr, block);
2112		nhkey = xfs_btree_high_key_addr(cur, ptr, block);
2113		if (!force_all &&
2114		    !(cur->bc_ops->diff_two_keys(cur, nlkey, lkey) != 0 ||
2115		      cur->bc_ops->diff_two_keys(cur, nhkey, hkey) != 0))
2116			break;
2117		xfs_btree_copy_keys(cur, nlkey, lkey, 1);
2118		xfs_btree_log_keys(cur, bp, ptr, ptr);
2119		if (level + 1 >= cur->bc_nlevels)
2120			break;
2121		xfs_btree_get_node_keys(cur, block, lkey);
2122	}
2123
2124	return 0;
2125}
2126
2127/* Update all the keys from some level in cursor back to the root. */
2128STATIC int
2129xfs_btree_updkeys_force(
2130	struct xfs_btree_cur	*cur,
2131	int			level)
2132{
2133	struct xfs_buf		*bp;
2134	struct xfs_btree_block	*block;
2135
2136	block = xfs_btree_get_block(cur, level, &bp);
2137	return __xfs_btree_updkeys(cur, level, block, bp, true);
2138}
2139
2140/*
2141 * Update the parent keys of the given level, progressing towards the root.
2142 */
2143STATIC int
2144xfs_btree_update_keys(
2145	struct xfs_btree_cur	*cur,
2146	int			level)
2147{
2148	struct xfs_btree_block	*block;
2149	struct xfs_buf		*bp;
2150	union xfs_btree_key	*kp;
2151	union xfs_btree_key	key;
2152	int			ptr;
2153
2154	ASSERT(level >= 0);
2155
2156	block = xfs_btree_get_block(cur, level, &bp);
2157	if (cur->bc_flags & XFS_BTREE_OVERLAPPING)
2158		return __xfs_btree_updkeys(cur, level, block, bp, false);
2159
2160	/*
2161	 * Go up the tree from this level toward the root.
2162	 * At each level, update the key value to the value input.
2163	 * Stop when we reach a level where the cursor isn't pointing
2164	 * at the first entry in the block.
2165	 */
2166	xfs_btree_get_keys(cur, block, &key);
2167	for (level++, ptr = 1; ptr == 1 && level < cur->bc_nlevels; level++) {
2168#ifdef DEBUG
2169		int		error;
2170#endif
2171		block = xfs_btree_get_block(cur, level, &bp);
2172#ifdef DEBUG
2173		error = xfs_btree_check_block(cur, block, level, bp);
2174		if (error)
2175			return error;
2176#endif
2177		ptr = cur->bc_ptrs[level];
2178		kp = xfs_btree_key_addr(cur, ptr, block);
2179		xfs_btree_copy_keys(cur, kp, &key, 1);
2180		xfs_btree_log_keys(cur, bp, ptr, ptr);
2181	}
2182
2183	return 0;
2184}
2185
2186/*
2187 * Update the record referred to by cur to the value in the
2188 * given record. This either works (return 0) or gets an
2189 * EFSCORRUPTED error.
2190 */
2191int
2192xfs_btree_update(
2193	struct xfs_btree_cur	*cur,
2194	union xfs_btree_rec	*rec)
2195{
2196	struct xfs_btree_block	*block;
2197	struct xfs_buf		*bp;
2198	int			error;
2199	int			ptr;
2200	union xfs_btree_rec	*rp;
2201
2202	/* Pick up the current block. */
2203	block = xfs_btree_get_block(cur, 0, &bp);
2204
2205#ifdef DEBUG
2206	error = xfs_btree_check_block(cur, block, 0, bp);
2207	if (error)
2208		goto error0;
2209#endif
2210	/* Get the address of the rec to be updated. */
2211	ptr = cur->bc_ptrs[0];
2212	rp = xfs_btree_rec_addr(cur, ptr, block);
2213
2214	/* Fill in the new contents and log them. */
2215	xfs_btree_copy_recs(cur, rp, rec, 1);
2216	xfs_btree_log_recs(cur, bp, ptr, ptr);
2217
2218	/*
2219	 * If we are tracking the last record in the tree and
2220	 * we are at the far right edge of the tree, update it.
2221	 */
2222	if (xfs_btree_is_lastrec(cur, block, 0)) {
2223		cur->bc_ops->update_lastrec(cur, block, rec,
2224					    ptr, LASTREC_UPDATE);
2225	}
2226
2227	/* Pass new key value up to our parent. */
2228	if (xfs_btree_needs_key_update(cur, ptr)) {
2229		error = xfs_btree_update_keys(cur, 0);
2230		if (error)
2231			goto error0;
2232	}
2233
2234	return 0;
2235
2236error0:
2237	return error;
2238}
2239
2240/*
2241 * Move 1 record left from cur/level if possible.
2242 * Update cur to reflect the new path.
2243 */
2244STATIC int					/* error */
2245xfs_btree_lshift(
2246	struct xfs_btree_cur	*cur,
2247	int			level,
2248	int			*stat)		/* success/failure */
2249{
2250	struct xfs_buf		*lbp;		/* left buffer pointer */
2251	struct xfs_btree_block	*left;		/* left btree block */
2252	int			lrecs;		/* left record count */
2253	struct xfs_buf		*rbp;		/* right buffer pointer */
2254	struct xfs_btree_block	*right;		/* right btree block */
2255	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2256	int			rrecs;		/* right record count */
2257	union xfs_btree_ptr	lptr;		/* left btree pointer */
2258	union xfs_btree_key	*rkp = NULL;	/* right btree key */
2259	union xfs_btree_ptr	*rpp = NULL;	/* right address pointer */
2260	union xfs_btree_rec	*rrp = NULL;	/* right record pointer */
2261	int			error;		/* error return value */
2262	int			i;
2263
2264	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2265	    level == cur->bc_nlevels - 1)
2266		goto out0;
2267
2268	/* Set up variables for this block as "right". */
2269	right = xfs_btree_get_block(cur, level, &rbp);
2270
2271#ifdef DEBUG
2272	error = xfs_btree_check_block(cur, right, level, rbp);
2273	if (error)
2274		goto error0;
2275#endif
2276
2277	/* If we've got no left sibling then we can't shift an entry left. */
2278	xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2279	if (xfs_btree_ptr_is_null(cur, &lptr))
2280		goto out0;
2281
2282	/*
2283	 * If the cursor entry is the one that would be moved, don't
2284	 * do it... it's too complicated.
2285	 */
2286	if (cur->bc_ptrs[level] <= 1)
2287		goto out0;
2288
2289	/* Set up the left neighbor as "left". */
2290	error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
2291	if (error)
2292		goto error0;
2293
2294	/* If it's full, it can't take another entry. */
2295	lrecs = xfs_btree_get_numrecs(left);
2296	if (lrecs == cur->bc_ops->get_maxrecs(cur, level))
2297		goto out0;
2298
2299	rrecs = xfs_btree_get_numrecs(right);
2300
2301	/*
2302	 * We add one entry to the left side and remove one for the right side.
2303	 * Account for it here, the changes will be updated on disk and logged
2304	 * later.
2305	 */
2306	lrecs++;
2307	rrecs--;
2308
2309	XFS_BTREE_STATS_INC(cur, lshift);
2310	XFS_BTREE_STATS_ADD(cur, moves, 1);
2311
2312	/*
2313	 * If non-leaf, copy a key and a ptr to the left block.
2314	 * Log the changes to the left block.
2315	 */
2316	if (level > 0) {
2317		/* It's a non-leaf.  Move keys and pointers. */
2318		union xfs_btree_key	*lkp;	/* left btree key */
2319		union xfs_btree_ptr	*lpp;	/* left address pointer */
2320
2321		lkp = xfs_btree_key_addr(cur, lrecs, left);
2322		rkp = xfs_btree_key_addr(cur, 1, right);
2323
2324		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2325		rpp = xfs_btree_ptr_addr(cur, 1, right);
2326
2327		error = xfs_btree_debug_check_ptr(cur, rpp, 0, level);
2328		if (error)
2329			goto error0;
2330
2331		xfs_btree_copy_keys(cur, lkp, rkp, 1);
2332		xfs_btree_copy_ptrs(cur, lpp, rpp, 1);
2333
2334		xfs_btree_log_keys(cur, lbp, lrecs, lrecs);
2335		xfs_btree_log_ptrs(cur, lbp, lrecs, lrecs);
2336
2337		ASSERT(cur->bc_ops->keys_inorder(cur,
2338			xfs_btree_key_addr(cur, lrecs - 1, left), lkp));
2339	} else {
2340		/* It's a leaf.  Move records.  */
2341		union xfs_btree_rec	*lrp;	/* left record pointer */
2342
2343		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2344		rrp = xfs_btree_rec_addr(cur, 1, right);
2345
2346		xfs_btree_copy_recs(cur, lrp, rrp, 1);
2347		xfs_btree_log_recs(cur, lbp, lrecs, lrecs);
2348
2349		ASSERT(cur->bc_ops->recs_inorder(cur,
2350			xfs_btree_rec_addr(cur, lrecs - 1, left), lrp));
2351	}
2352
2353	xfs_btree_set_numrecs(left, lrecs);
2354	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2355
2356	xfs_btree_set_numrecs(right, rrecs);
2357	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2358
2359	/*
2360	 * Slide the contents of right down one entry.
2361	 */
2362	XFS_BTREE_STATS_ADD(cur, moves, rrecs - 1);
2363	if (level > 0) {
2364		/* It's a nonleaf. operate on keys and ptrs */
2365		for (i = 0; i < rrecs; i++) {
2366			error = xfs_btree_debug_check_ptr(cur, rpp, i + 1, level);
2367			if (error)
2368				goto error0;
2369		}
2370
2371		xfs_btree_shift_keys(cur,
2372				xfs_btree_key_addr(cur, 2, right),
2373				-1, rrecs);
2374		xfs_btree_shift_ptrs(cur,
2375				xfs_btree_ptr_addr(cur, 2, right),
2376				-1, rrecs);
2377
2378		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2379		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2380	} else {
2381		/* It's a leaf. operate on records */
2382		xfs_btree_shift_recs(cur,
2383			xfs_btree_rec_addr(cur, 2, right),
2384			-1, rrecs);
2385		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2386	}
2387
2388	/*
2389	 * Using a temporary cursor, update the parent key values of the
2390	 * block on the left.
2391	 */
2392	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2393		error = xfs_btree_dup_cursor(cur, &tcur);
2394		if (error)
2395			goto error0;
2396		i = xfs_btree_firstrec(tcur, level);
2397		if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2398			error = -EFSCORRUPTED;
2399			goto error0;
2400		}
2401
2402		error = xfs_btree_decrement(tcur, level, &i);
2403		if (error)
2404			goto error1;
2405
2406		/* Update the parent high keys of the left block, if needed. */
2407		error = xfs_btree_update_keys(tcur, level);
2408		if (error)
2409			goto error1;
2410
2411		xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2412	}
2413
2414	/* Update the parent keys of the right block. */
2415	error = xfs_btree_update_keys(cur, level);
2416	if (error)
2417		goto error0;
2418
2419	/* Slide the cursor value left one. */
2420	cur->bc_ptrs[level]--;
2421
2422	*stat = 1;
2423	return 0;
2424
2425out0:
2426	*stat = 0;
2427	return 0;
2428
2429error0:
2430	return error;
2431
2432error1:
2433	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2434	return error;
2435}
2436
2437/*
2438 * Move 1 record right from cur/level if possible.
2439 * Update cur to reflect the new path.
2440 */
2441STATIC int					/* error */
2442xfs_btree_rshift(
2443	struct xfs_btree_cur	*cur,
2444	int			level,
2445	int			*stat)		/* success/failure */
2446{
2447	struct xfs_buf		*lbp;		/* left buffer pointer */
2448	struct xfs_btree_block	*left;		/* left btree block */
2449	struct xfs_buf		*rbp;		/* right buffer pointer */
2450	struct xfs_btree_block	*right;		/* right btree block */
2451	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
2452	union xfs_btree_ptr	rptr;		/* right block pointer */
2453	union xfs_btree_key	*rkp;		/* right btree key */
2454	int			rrecs;		/* right record count */
2455	int			lrecs;		/* left record count */
2456	int			error;		/* error return value */
2457	int			i;		/* loop counter */
2458
2459	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
2460	    (level == cur->bc_nlevels - 1))
2461		goto out0;
2462
2463	/* Set up variables for this block as "left". */
2464	left = xfs_btree_get_block(cur, level, &lbp);
2465
2466#ifdef DEBUG
2467	error = xfs_btree_check_block(cur, left, level, lbp);
2468	if (error)
2469		goto error0;
2470#endif
2471
2472	/* If we've got no right sibling then we can't shift an entry right. */
2473	xfs_btree_get_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2474	if (xfs_btree_ptr_is_null(cur, &rptr))
2475		goto out0;
2476
2477	/*
2478	 * If the cursor entry is the one that would be moved, don't
2479	 * do it... it's too complicated.
2480	 */
2481	lrecs = xfs_btree_get_numrecs(left);
2482	if (cur->bc_ptrs[level] >= lrecs)
2483		goto out0;
2484
2485	/* Set up the right neighbor as "right". */
2486	error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
2487	if (error)
2488		goto error0;
2489
2490	/* If it's full, it can't take another entry. */
2491	rrecs = xfs_btree_get_numrecs(right);
2492	if (rrecs == cur->bc_ops->get_maxrecs(cur, level))
2493		goto out0;
2494
2495	XFS_BTREE_STATS_INC(cur, rshift);
2496	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2497
2498	/*
2499	 * Make a hole at the start of the right neighbor block, then
2500	 * copy the last left block entry to the hole.
2501	 */
2502	if (level > 0) {
2503		/* It's a nonleaf. make a hole in the keys and ptrs */
2504		union xfs_btree_key	*lkp;
2505		union xfs_btree_ptr	*lpp;
2506		union xfs_btree_ptr	*rpp;
2507
2508		lkp = xfs_btree_key_addr(cur, lrecs, left);
2509		lpp = xfs_btree_ptr_addr(cur, lrecs, left);
2510		rkp = xfs_btree_key_addr(cur, 1, right);
2511		rpp = xfs_btree_ptr_addr(cur, 1, right);
2512
2513		for (i = rrecs - 1; i >= 0; i--) {
2514			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
2515			if (error)
2516				goto error0;
2517		}
2518
2519		xfs_btree_shift_keys(cur, rkp, 1, rrecs);
2520		xfs_btree_shift_ptrs(cur, rpp, 1, rrecs);
2521
2522		error = xfs_btree_debug_check_ptr(cur, lpp, 0, level);
2523		if (error)
2524			goto error0;
2525
2526		/* Now put the new data in, and log it. */
2527		xfs_btree_copy_keys(cur, rkp, lkp, 1);
2528		xfs_btree_copy_ptrs(cur, rpp, lpp, 1);
2529
2530		xfs_btree_log_keys(cur, rbp, 1, rrecs + 1);
2531		xfs_btree_log_ptrs(cur, rbp, 1, rrecs + 1);
2532
2533		ASSERT(cur->bc_ops->keys_inorder(cur, rkp,
2534			xfs_btree_key_addr(cur, 2, right)));
2535	} else {
2536		/* It's a leaf. make a hole in the records */
2537		union xfs_btree_rec	*lrp;
2538		union xfs_btree_rec	*rrp;
2539
2540		lrp = xfs_btree_rec_addr(cur, lrecs, left);
2541		rrp = xfs_btree_rec_addr(cur, 1, right);
2542
2543		xfs_btree_shift_recs(cur, rrp, 1, rrecs);
2544
2545		/* Now put the new data in, and log it. */
2546		xfs_btree_copy_recs(cur, rrp, lrp, 1);
2547		xfs_btree_log_recs(cur, rbp, 1, rrecs + 1);
2548	}
2549
2550	/*
2551	 * Decrement and log left's numrecs, bump and log right's numrecs.
2552	 */
2553	xfs_btree_set_numrecs(left, --lrecs);
2554	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS);
2555
2556	xfs_btree_set_numrecs(right, ++rrecs);
2557	xfs_btree_log_block(cur, rbp, XFS_BB_NUMRECS);
2558
2559	/*
2560	 * Using a temporary cursor, update the parent key values of the
2561	 * block on the right.
2562	 */
2563	error = xfs_btree_dup_cursor(cur, &tcur);
2564	if (error)
2565		goto error0;
2566	i = xfs_btree_lastrec(tcur, level);
2567	if (XFS_IS_CORRUPT(tcur->bc_mp, i != 1)) {
2568		error = -EFSCORRUPTED;
2569		goto error0;
2570	}
2571
2572	error = xfs_btree_increment(tcur, level, &i);
2573	if (error)
2574		goto error1;
2575
2576	/* Update the parent high keys of the left block, if needed. */
2577	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2578		error = xfs_btree_update_keys(cur, level);
2579		if (error)
2580			goto error1;
2581	}
2582
2583	/* Update the parent keys of the right block. */
2584	error = xfs_btree_update_keys(tcur, level);
2585	if (error)
2586		goto error1;
2587
2588	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
2589
2590	*stat = 1;
2591	return 0;
2592
2593out0:
2594	*stat = 0;
2595	return 0;
2596
2597error0:
2598	return error;
2599
2600error1:
2601	xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
2602	return error;
2603}
2604
2605/*
2606 * Split cur/level block in half.
2607 * Return new block number and the key to its first
2608 * record (to be inserted into parent).
2609 */
2610STATIC int					/* error */
2611__xfs_btree_split(
2612	struct xfs_btree_cur	*cur,
2613	int			level,
2614	union xfs_btree_ptr	*ptrp,
2615	union xfs_btree_key	*key,
2616	struct xfs_btree_cur	**curp,
2617	int			*stat)		/* success/failure */
2618{
2619	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
2620	struct xfs_buf		*lbp;		/* left buffer pointer */
2621	struct xfs_btree_block	*left;		/* left btree block */
2622	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
2623	struct xfs_buf		*rbp;		/* right buffer pointer */
2624	struct xfs_btree_block	*right;		/* right btree block */
2625	union xfs_btree_ptr	rrptr;		/* right-right sibling ptr */
2626	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
2627	struct xfs_btree_block	*rrblock;	/* right-right btree block */
2628	int			lrecs;
2629	int			rrecs;
2630	int			src_index;
2631	int			error;		/* error return value */
2632	int			i;
2633
2634	XFS_BTREE_STATS_INC(cur, split);
2635
2636	/* Set up left block (current one). */
2637	left = xfs_btree_get_block(cur, level, &lbp);
2638
2639#ifdef DEBUG
2640	error = xfs_btree_check_block(cur, left, level, lbp);
2641	if (error)
2642		goto error0;
2643#endif
2644
2645	xfs_btree_buf_to_ptr(cur, lbp, &lptr);
2646
2647	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2648	error = cur->bc_ops->alloc_block(cur, &lptr, &rptr, stat);
2649	if (error)
2650		goto error0;
2651	if (*stat == 0)
2652		goto out0;
2653	XFS_BTREE_STATS_INC(cur, alloc);
2654
2655	/* Set up the new block as "right". */
2656	error = xfs_btree_get_buf_block(cur, &rptr, &right, &rbp);
2657	if (error)
2658		goto error0;
2659
2660	/* Fill in the btree header for the new right block. */
2661	xfs_btree_init_block_cur(cur, rbp, xfs_btree_get_level(left), 0);
2662
2663	/*
2664	 * Split the entries between the old and the new block evenly.
2665	 * Make sure that if there's an odd number of entries now, that
2666	 * each new block will have the same number of entries.
2667	 */
2668	lrecs = xfs_btree_get_numrecs(left);
2669	rrecs = lrecs / 2;
2670	if ((lrecs & 1) && cur->bc_ptrs[level] <= rrecs + 1)
2671		rrecs++;
2672	src_index = (lrecs - rrecs + 1);
2673
2674	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
2675
2676	/* Adjust numrecs for the later get_*_keys() calls. */
2677	lrecs -= rrecs;
2678	xfs_btree_set_numrecs(left, lrecs);
2679	xfs_btree_set_numrecs(right, xfs_btree_get_numrecs(right) + rrecs);
2680
2681	/*
2682	 * Copy btree block entries from the left block over to the
2683	 * new block, the right. Update the right block and log the
2684	 * changes.
2685	 */
2686	if (level > 0) {
2687		/* It's a non-leaf.  Move keys and pointers. */
2688		union xfs_btree_key	*lkp;	/* left btree key */
2689		union xfs_btree_ptr	*lpp;	/* left address pointer */
2690		union xfs_btree_key	*rkp;	/* right btree key */
2691		union xfs_btree_ptr	*rpp;	/* right address pointer */
2692
2693		lkp = xfs_btree_key_addr(cur, src_index, left);
2694		lpp = xfs_btree_ptr_addr(cur, src_index, left);
2695		rkp = xfs_btree_key_addr(cur, 1, right);
2696		rpp = xfs_btree_ptr_addr(cur, 1, right);
2697
2698		for (i = src_index; i < rrecs; i++) {
2699			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
2700			if (error)
2701				goto error0;
2702		}
2703
2704		/* Copy the keys & pointers to the new block. */
2705		xfs_btree_copy_keys(cur, rkp, lkp, rrecs);
2706		xfs_btree_copy_ptrs(cur, rpp, lpp, rrecs);
2707
2708		xfs_btree_log_keys(cur, rbp, 1, rrecs);
2709		xfs_btree_log_ptrs(cur, rbp, 1, rrecs);
2710
2711		/* Stash the keys of the new block for later insertion. */
2712		xfs_btree_get_node_keys(cur, right, key);
2713	} else {
2714		/* It's a leaf.  Move records.  */
2715		union xfs_btree_rec	*lrp;	/* left record pointer */
2716		union xfs_btree_rec	*rrp;	/* right record pointer */
2717
2718		lrp = xfs_btree_rec_addr(cur, src_index, left);
2719		rrp = xfs_btree_rec_addr(cur, 1, right);
2720
2721		/* Copy records to the new block. */
2722		xfs_btree_copy_recs(cur, rrp, lrp, rrecs);
2723		xfs_btree_log_recs(cur, rbp, 1, rrecs);
2724
2725		/* Stash the keys of the new block for later insertion. */
2726		xfs_btree_get_leaf_keys(cur, right, key);
2727	}
2728
2729	/*
2730	 * Find the left block number by looking in the buffer.
2731	 * Adjust sibling pointers.
2732	 */
2733	xfs_btree_get_sibling(cur, left, &rrptr, XFS_BB_RIGHTSIB);
2734	xfs_btree_set_sibling(cur, right, &rrptr, XFS_BB_RIGHTSIB);
2735	xfs_btree_set_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
2736	xfs_btree_set_sibling(cur, left, &rptr, XFS_BB_RIGHTSIB);
2737
2738	xfs_btree_log_block(cur, rbp, XFS_BB_ALL_BITS);
2739	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
2740
2741	/*
2742	 * If there's a block to the new block's right, make that block
2743	 * point back to right instead of to left.
2744	 */
2745	if (!xfs_btree_ptr_is_null(cur, &rrptr)) {
2746		error = xfs_btree_read_buf_block(cur, &rrptr,
2747							0, &rrblock, &rrbp);
2748		if (error)
2749			goto error0;
2750		xfs_btree_set_sibling(cur, rrblock, &rptr, XFS_BB_LEFTSIB);
2751		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
2752	}
2753
2754	/* Update the parent high keys of the left block, if needed. */
2755	if (cur->bc_flags & XFS_BTREE_OVERLAPPING) {
2756		error = xfs_btree_update_keys(cur, level);
2757		if (error)
2758			goto error0;
2759	}
2760
2761	/*
2762	 * If the cursor is really in the right block, move it there.
2763	 * If it's just pointing past the last entry in left, then we'll
2764	 * insert there, so don't change anything in that case.
2765	 */
2766	if (cur->bc_ptrs[level] > lrecs + 1) {
2767		xfs_btree_setbuf(cur, level, rbp);
2768		cur->bc_ptrs[level] -= lrecs;
2769	}
2770	/*
2771	 * If there are more levels, we'll need another cursor which refers
2772	 * the right block, no matter where this cursor was.
2773	 */
2774	if (level + 1 < cur->bc_nlevels) {
2775		error = xfs_btree_dup_cursor(cur, curp);
2776		if (error)
2777			goto error0;
2778		(*curp)->bc_ptrs[level + 1]++;
2779	}
2780	*ptrp = rptr;
2781	*stat = 1;
2782	return 0;
2783out0:
2784	*stat = 0;
2785	return 0;
2786
2787error0:
2788	return error;
2789}
2790
2791struct xfs_btree_split_args {
2792	struct xfs_btree_cur	*cur;
2793	int			level;
2794	union xfs_btree_ptr	*ptrp;
2795	union xfs_btree_key	*key;
2796	struct xfs_btree_cur	**curp;
2797	int			*stat;		/* success/failure */
2798	int			result;
2799	bool			kswapd;	/* allocation in kswapd context */
2800	struct completion	*done;
2801	struct work_struct	work;
2802};
2803
2804/*
2805 * Stack switching interfaces for allocation
2806 */
2807static void
2808xfs_btree_split_worker(
2809	struct work_struct	*work)
2810{
2811	struct xfs_btree_split_args	*args = container_of(work,
2812						struct xfs_btree_split_args, work);
2813	unsigned long		pflags;
2814	unsigned long		new_pflags = 0;
2815
2816	/*
2817	 * we are in a transaction context here, but may also be doing work
2818	 * in kswapd context, and hence we may need to inherit that state
2819	 * temporarily to ensure that we don't block waiting for memory reclaim
2820	 * in any way.
2821	 */
2822	if (args->kswapd)
2823		new_pflags |= PF_MEMALLOC | PF_SWAPWRITE | PF_KSWAPD;
2824
2825	current_set_flags_nested(&pflags, new_pflags);
2826	xfs_trans_set_context(args->cur->bc_tp);
2827
2828	args->result = __xfs_btree_split(args->cur, args->level, args->ptrp,
2829					 args->key, args->curp, args->stat);
2830
2831	xfs_trans_clear_context(args->cur->bc_tp);
2832	current_restore_flags_nested(&pflags, new_pflags);
2833
2834	/*
2835	 * Do not access args after complete() has run here. We don't own args
2836	 * and the owner may run and free args before we return here.
2837	 */
2838	complete(args->done);
2839
2840}
2841
2842/*
2843 * BMBT split requests often come in with little stack to work on. Push
2844 * them off to a worker thread so there is lots of stack to use. For the other
2845 * btree types, just call directly to avoid the context switch overhead here.
2846 */
2847STATIC int					/* error */
2848xfs_btree_split(
2849	struct xfs_btree_cur	*cur,
2850	int			level,
2851	union xfs_btree_ptr	*ptrp,
2852	union xfs_btree_key	*key,
2853	struct xfs_btree_cur	**curp,
2854	int			*stat)		/* success/failure */
2855{
2856	struct xfs_btree_split_args	args;
2857	DECLARE_COMPLETION_ONSTACK(done);
2858
2859	if (cur->bc_btnum != XFS_BTNUM_BMAP)
2860		return __xfs_btree_split(cur, level, ptrp, key, curp, stat);
2861
2862	args.cur = cur;
2863	args.level = level;
2864	args.ptrp = ptrp;
2865	args.key = key;
2866	args.curp = curp;
2867	args.stat = stat;
2868	args.done = &done;
2869	args.kswapd = current_is_kswapd();
2870	INIT_WORK_ONSTACK(&args.work, xfs_btree_split_worker);
2871	queue_work(xfs_alloc_wq, &args.work);
2872	wait_for_completion(&done);
2873	destroy_work_on_stack(&args.work);
2874	return args.result;
2875}
2876
2877
2878/*
2879 * Copy the old inode root contents into a real block and make the
2880 * broot point to it.
2881 */
2882int						/* error */
2883xfs_btree_new_iroot(
2884	struct xfs_btree_cur	*cur,		/* btree cursor */
2885	int			*logflags,	/* logging flags for inode */
2886	int			*stat)		/* return status - 0 fail */
2887{
2888	struct xfs_buf		*cbp;		/* buffer for cblock */
2889	struct xfs_btree_block	*block;		/* btree block */
2890	struct xfs_btree_block	*cblock;	/* child btree block */
2891	union xfs_btree_key	*ckp;		/* child key pointer */
2892	union xfs_btree_ptr	*cpp;		/* child ptr pointer */
2893	union xfs_btree_key	*kp;		/* pointer to btree key */
2894	union xfs_btree_ptr	*pp;		/* pointer to block addr */
2895	union xfs_btree_ptr	nptr;		/* new block addr */
2896	int			level;		/* btree level */
2897	int			error;		/* error return code */
2898	int			i;		/* loop counter */
2899
2900	XFS_BTREE_STATS_INC(cur, newroot);
2901
2902	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
2903
2904	level = cur->bc_nlevels - 1;
2905
2906	block = xfs_btree_get_iroot(cur);
2907	pp = xfs_btree_ptr_addr(cur, 1, block);
2908
2909	/* Allocate the new block. If we can't do it, we're toast. Give up. */
2910	error = cur->bc_ops->alloc_block(cur, pp, &nptr, stat);
2911	if (error)
2912		goto error0;
2913	if (*stat == 0)
2914		return 0;
2915
2916	XFS_BTREE_STATS_INC(cur, alloc);
2917
2918	/* Copy the root into a real block. */
2919	error = xfs_btree_get_buf_block(cur, &nptr, &cblock, &cbp);
2920	if (error)
2921		goto error0;
2922
2923	/*
2924	 * we can't just memcpy() the root in for CRC enabled btree blocks.
2925	 * In that case have to also ensure the blkno remains correct
2926	 */
2927	memcpy(cblock, block, xfs_btree_block_len(cur));
2928	if (cur->bc_flags & XFS_BTREE_CRC_BLOCKS) {
2929		if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
2930			cblock->bb_u.l.bb_blkno = cpu_to_be64(cbp->b_bn);
2931		else
2932			cblock->bb_u.s.bb_blkno = cpu_to_be64(cbp->b_bn);
2933	}
2934
2935	be16_add_cpu(&block->bb_level, 1);
2936	xfs_btree_set_numrecs(block, 1);
2937	cur->bc_nlevels++;
2938	cur->bc_ptrs[level + 1] = 1;
2939
2940	kp = xfs_btree_key_addr(cur, 1, block);
2941	ckp = xfs_btree_key_addr(cur, 1, cblock);
2942	xfs_btree_copy_keys(cur, ckp, kp, xfs_btree_get_numrecs(cblock));
2943
2944	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
2945	for (i = 0; i < be16_to_cpu(cblock->bb_numrecs); i++) {
2946		error = xfs_btree_debug_check_ptr(cur, pp, i, level);
2947		if (error)
2948			goto error0;
2949	}
2950
2951	xfs_btree_copy_ptrs(cur, cpp, pp, xfs_btree_get_numrecs(cblock));
2952
2953	error = xfs_btree_debug_check_ptr(cur, &nptr, 0, level);
2954	if (error)
2955		goto error0;
2956
2957	xfs_btree_copy_ptrs(cur, pp, &nptr, 1);
2958
2959	xfs_iroot_realloc(cur->bc_ino.ip,
2960			  1 - xfs_btree_get_numrecs(cblock),
2961			  cur->bc_ino.whichfork);
2962
2963	xfs_btree_setbuf(cur, level, cbp);
2964
2965	/*
2966	 * Do all this logging at the end so that
2967	 * the root is at the right level.
2968	 */
2969	xfs_btree_log_block(cur, cbp, XFS_BB_ALL_BITS);
2970	xfs_btree_log_keys(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2971	xfs_btree_log_ptrs(cur, cbp, 1, be16_to_cpu(cblock->bb_numrecs));
2972
2973	*logflags |=
2974		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork);
2975	*stat = 1;
2976	return 0;
2977error0:
2978	return error;
2979}
2980
2981/*
2982 * Allocate a new root block, fill it in.
2983 */
2984STATIC int				/* error */
2985xfs_btree_new_root(
2986	struct xfs_btree_cur	*cur,	/* btree cursor */
2987	int			*stat)	/* success/failure */
2988{
2989	struct xfs_btree_block	*block;	/* one half of the old root block */
2990	struct xfs_buf		*bp;	/* buffer containing block */
2991	int			error;	/* error return value */
2992	struct xfs_buf		*lbp;	/* left buffer pointer */
2993	struct xfs_btree_block	*left;	/* left btree block */
2994	struct xfs_buf		*nbp;	/* new (root) buffer */
2995	struct xfs_btree_block	*new;	/* new (root) btree block */
2996	int			nptr;	/* new value for key index, 1 or 2 */
2997	struct xfs_buf		*rbp;	/* right buffer pointer */
2998	struct xfs_btree_block	*right;	/* right btree block */
2999	union xfs_btree_ptr	rptr;
3000	union xfs_btree_ptr	lptr;
3001
3002	XFS_BTREE_STATS_INC(cur, newroot);
3003
3004	/* initialise our start point from the cursor */
3005	cur->bc_ops->init_ptr_from_cur(cur, &rptr);
3006
3007	/* Allocate the new block. If we can't do it, we're toast. Give up. */
3008	error = cur->bc_ops->alloc_block(cur, &rptr, &lptr, stat);
3009	if (error)
3010		goto error0;
3011	if (*stat == 0)
3012		goto out0;
3013	XFS_BTREE_STATS_INC(cur, alloc);
3014
3015	/* Set up the new block. */
3016	error = xfs_btree_get_buf_block(cur, &lptr, &new, &nbp);
3017	if (error)
3018		goto error0;
3019
3020	/* Set the root in the holding structure  increasing the level by 1. */
3021	cur->bc_ops->set_root(cur, &lptr, 1);
3022
3023	/*
3024	 * At the previous root level there are now two blocks: the old root,
3025	 * and the new block generated when it was split.  We don't know which
3026	 * one the cursor is pointing at, so we set up variables "left" and
3027	 * "right" for each case.
3028	 */
3029	block = xfs_btree_get_block(cur, cur->bc_nlevels - 1, &bp);
3030
3031#ifdef DEBUG
3032	error = xfs_btree_check_block(cur, block, cur->bc_nlevels - 1, bp);
3033	if (error)
3034		goto error0;
3035#endif
3036
3037	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3038	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3039		/* Our block is left, pick up the right block. */
3040		lbp = bp;
3041		xfs_btree_buf_to_ptr(cur, lbp, &lptr);
3042		left = block;
3043		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
3044		if (error)
3045			goto error0;
3046		bp = rbp;
3047		nptr = 1;
3048	} else {
3049		/* Our block is right, pick up the left block. */
3050		rbp = bp;
3051		xfs_btree_buf_to_ptr(cur, rbp, &rptr);
3052		right = block;
3053		xfs_btree_get_sibling(cur, right, &lptr, XFS_BB_LEFTSIB);
3054		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3055		if (error)
3056			goto error0;
3057		bp = lbp;
3058		nptr = 2;
3059	}
3060
3061	/* Fill in the new block's btree header and log it. */
3062	xfs_btree_init_block_cur(cur, nbp, cur->bc_nlevels, 2);
3063	xfs_btree_log_block(cur, nbp, XFS_BB_ALL_BITS);
3064	ASSERT(!xfs_btree_ptr_is_null(cur, &lptr) &&
3065			!xfs_btree_ptr_is_null(cur, &rptr));
3066
3067	/* Fill in the key data in the new root. */
3068	if (xfs_btree_get_level(left) > 0) {
3069		/*
3070		 * Get the keys for the left block's keys and put them directly
3071		 * in the parent block.  Do the same for the right block.
3072		 */
3073		xfs_btree_get_node_keys(cur, left,
3074				xfs_btree_key_addr(cur, 1, new));
3075		xfs_btree_get_node_keys(cur, right,
3076				xfs_btree_key_addr(cur, 2, new));
3077	} else {
3078		/*
3079		 * Get the keys for the left block's records and put them
3080		 * directly in the parent block.  Do the same for the right
3081		 * block.
3082		 */
3083		xfs_btree_get_leaf_keys(cur, left,
3084			xfs_btree_key_addr(cur, 1, new));
3085		xfs_btree_get_leaf_keys(cur, right,
3086			xfs_btree_key_addr(cur, 2, new));
3087	}
3088	xfs_btree_log_keys(cur, nbp, 1, 2);
3089
3090	/* Fill in the pointer data in the new root. */
3091	xfs_btree_copy_ptrs(cur,
3092		xfs_btree_ptr_addr(cur, 1, new), &lptr, 1);
3093	xfs_btree_copy_ptrs(cur,
3094		xfs_btree_ptr_addr(cur, 2, new), &rptr, 1);
3095	xfs_btree_log_ptrs(cur, nbp, 1, 2);
3096
3097	/* Fix up the cursor. */
3098	xfs_btree_setbuf(cur, cur->bc_nlevels, nbp);
3099	cur->bc_ptrs[cur->bc_nlevels] = nptr;
3100	cur->bc_nlevels++;
3101	*stat = 1;
3102	return 0;
3103error0:
3104	return error;
3105out0:
3106	*stat = 0;
3107	return 0;
3108}
3109
3110STATIC int
3111xfs_btree_make_block_unfull(
3112	struct xfs_btree_cur	*cur,	/* btree cursor */
3113	int			level,	/* btree level */
3114	int			numrecs,/* # of recs in block */
3115	int			*oindex,/* old tree index */
3116	int			*index,	/* new tree index */
3117	union xfs_btree_ptr	*nptr,	/* new btree ptr */
3118	struct xfs_btree_cur	**ncur,	/* new btree cursor */
3119	union xfs_btree_key	*key,	/* key of new block */
3120	int			*stat)
3121{
3122	int			error = 0;
3123
3124	if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3125	    level == cur->bc_nlevels - 1) {
3126		struct xfs_inode *ip = cur->bc_ino.ip;
3127
3128		if (numrecs < cur->bc_ops->get_dmaxrecs(cur, level)) {
3129			/* A root block that can be made bigger. */
3130			xfs_iroot_realloc(ip, 1, cur->bc_ino.whichfork);
3131			*stat = 1;
3132		} else {
3133			/* A root block that needs replacing */
3134			int	logflags = 0;
3135
3136			error = xfs_btree_new_iroot(cur, &logflags, stat);
3137			if (error || *stat == 0)
3138				return error;
3139
3140			xfs_trans_log_inode(cur->bc_tp, ip, logflags);
3141		}
3142
3143		return 0;
3144	}
3145
3146	/* First, try shifting an entry to the right neighbor. */
3147	error = xfs_btree_rshift(cur, level, stat);
3148	if (error || *stat)
3149		return error;
3150
3151	/* Next, try shifting an entry to the left neighbor. */
3152	error = xfs_btree_lshift(cur, level, stat);
3153	if (error)
3154		return error;
3155
3156	if (*stat) {
3157		*oindex = *index = cur->bc_ptrs[level];
3158		return 0;
3159	}
3160
3161	/*
3162	 * Next, try splitting the current block in half.
3163	 *
3164	 * If this works we have to re-set our variables because we
3165	 * could be in a different block now.
3166	 */
3167	error = xfs_btree_split(cur, level, nptr, key, ncur, stat);
3168	if (error || *stat == 0)
3169		return error;
3170
3171
3172	*index = cur->bc_ptrs[level];
3173	return 0;
3174}
3175
3176/*
3177 * Insert one record/level.  Return information to the caller
3178 * allowing the next level up to proceed if necessary.
3179 */
3180STATIC int
3181xfs_btree_insrec(
3182	struct xfs_btree_cur	*cur,	/* btree cursor */
3183	int			level,	/* level to insert record at */
3184	union xfs_btree_ptr	*ptrp,	/* i/o: block number inserted */
3185	union xfs_btree_rec	*rec,	/* record to insert */
3186	union xfs_btree_key	*key,	/* i/o: block key for ptrp */
3187	struct xfs_btree_cur	**curp,	/* output: new cursor replacing cur */
3188	int			*stat)	/* success/failure */
3189{
3190	struct xfs_btree_block	*block;	/* btree block */
3191	struct xfs_buf		*bp;	/* buffer for block */
3192	union xfs_btree_ptr	nptr;	/* new block ptr */
3193	struct xfs_btree_cur	*ncur = NULL;	/* new btree cursor */
3194	union xfs_btree_key	nkey;	/* new block key */
3195	union xfs_btree_key	*lkey;
3196	int			optr;	/* old key/record index */
3197	int			ptr;	/* key/record index */
3198	int			numrecs;/* number of records */
3199	int			error;	/* error return value */
3200	int			i;
3201	xfs_daddr_t		old_bn;
3202
3203	ncur = NULL;
3204	lkey = &nkey;
3205
3206	/*
3207	 * If we have an external root pointer, and we've made it to the
3208	 * root level, allocate a new root block and we're done.
3209	 */
3210	if (!(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) &&
3211	    (level >= cur->bc_nlevels)) {
3212		error = xfs_btree_new_root(cur, stat);
3213		xfs_btree_set_ptr_null(cur, ptrp);
3214
3215		return error;
3216	}
3217
3218	/* If we're off the left edge, return failure. */
3219	ptr = cur->bc_ptrs[level];
3220	if (ptr == 0) {
3221		*stat = 0;
3222		return 0;
3223	}
3224
3225	optr = ptr;
3226
3227	XFS_BTREE_STATS_INC(cur, insrec);
3228
3229	/* Get pointers to the btree buffer and block. */
3230	block = xfs_btree_get_block(cur, level, &bp);
3231	old_bn = bp ? bp->b_bn : XFS_BUF_DADDR_NULL;
3232	numrecs = xfs_btree_get_numrecs(block);
3233
3234#ifdef DEBUG
3235	error = xfs_btree_check_block(cur, block, level, bp);
3236	if (error)
3237		goto error0;
3238
3239	/* Check that the new entry is being inserted in the right place. */
3240	if (ptr <= numrecs) {
3241		if (level == 0) {
3242			ASSERT(cur->bc_ops->recs_inorder(cur, rec,
3243				xfs_btree_rec_addr(cur, ptr, block)));
3244		} else {
3245			ASSERT(cur->bc_ops->keys_inorder(cur, key,
3246				xfs_btree_key_addr(cur, ptr, block)));
3247		}
3248	}
3249#endif
3250
3251	/*
3252	 * If the block is full, we can't insert the new entry until we
3253	 * make the block un-full.
3254	 */
3255	xfs_btree_set_ptr_null(cur, &nptr);
3256	if (numrecs == cur->bc_ops->get_maxrecs(cur, level)) {
3257		error = xfs_btree_make_block_unfull(cur, level, numrecs,
3258					&optr, &ptr, &nptr, &ncur, lkey, stat);
3259		if (error || *stat == 0)
3260			goto error0;
3261	}
3262
3263	/*
3264	 * The current block may have changed if the block was
3265	 * previously full and we have just made space in it.
3266	 */
3267	block = xfs_btree_get_block(cur, level, &bp);
3268	numrecs = xfs_btree_get_numrecs(block);
3269
3270#ifdef DEBUG
3271	error = xfs_btree_check_block(cur, block, level, bp);
3272	if (error)
3273		goto error0;
3274#endif
3275
3276	/*
3277	 * At this point we know there's room for our new entry in the block
3278	 * we're pointing at.
3279	 */
3280	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr + 1);
3281
3282	if (level > 0) {
3283		/* It's a nonleaf. make a hole in the keys and ptrs */
3284		union xfs_btree_key	*kp;
3285		union xfs_btree_ptr	*pp;
3286
3287		kp = xfs_btree_key_addr(cur, ptr, block);
3288		pp = xfs_btree_ptr_addr(cur, ptr, block);
3289
3290		for (i = numrecs - ptr; i >= 0; i--) {
3291			error = xfs_btree_debug_check_ptr(cur, pp, i, level);
3292			if (error)
3293				goto error0;
3294		}
3295
3296		xfs_btree_shift_keys(cur, kp, 1, numrecs - ptr + 1);
3297		xfs_btree_shift_ptrs(cur, pp, 1, numrecs - ptr + 1);
3298
3299		error = xfs_btree_debug_check_ptr(cur, ptrp, 0, level);
3300		if (error)
3301			goto error0;
3302
3303		/* Now put the new data in, bump numrecs and log it. */
3304		xfs_btree_copy_keys(cur, kp, key, 1);
3305		xfs_btree_copy_ptrs(cur, pp, ptrp, 1);
3306		numrecs++;
3307		xfs_btree_set_numrecs(block, numrecs);
3308		xfs_btree_log_ptrs(cur, bp, ptr, numrecs);
3309		xfs_btree_log_keys(cur, bp, ptr, numrecs);
3310#ifdef DEBUG
3311		if (ptr < numrecs) {
3312			ASSERT(cur->bc_ops->keys_inorder(cur, kp,
3313				xfs_btree_key_addr(cur, ptr + 1, block)));
3314		}
3315#endif
3316	} else {
3317		/* It's a leaf. make a hole in the records */
3318		union xfs_btree_rec             *rp;
3319
3320		rp = xfs_btree_rec_addr(cur, ptr, block);
3321
3322		xfs_btree_shift_recs(cur, rp, 1, numrecs - ptr + 1);
3323
3324		/* Now put the new data in, bump numrecs and log it. */
3325		xfs_btree_copy_recs(cur, rp, rec, 1);
3326		xfs_btree_set_numrecs(block, ++numrecs);
3327		xfs_btree_log_recs(cur, bp, ptr, numrecs);
3328#ifdef DEBUG
3329		if (ptr < numrecs) {
3330			ASSERT(cur->bc_ops->recs_inorder(cur, rp,
3331				xfs_btree_rec_addr(cur, ptr + 1, block)));
3332		}
3333#endif
3334	}
3335
3336	/* Log the new number of records in the btree header. */
3337	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3338
3339	/*
3340	 * If we just inserted into a new tree block, we have to
3341	 * recalculate nkey here because nkey is out of date.
3342	 *
3343	 * Otherwise we're just updating an existing block (having shoved
3344	 * some records into the new tree block), so use the regular key
3345	 * update mechanism.
3346	 */
3347	if (bp && bp->b_bn != old_bn) {
3348		xfs_btree_get_keys(cur, block, lkey);
3349	} else if (xfs_btree_needs_key_update(cur, optr)) {
3350		error = xfs_btree_update_keys(cur, level);
3351		if (error)
3352			goto error0;
3353	}
3354
3355	/*
3356	 * If we are tracking the last record in the tree and
3357	 * we are at the far right edge of the tree, update it.
3358	 */
3359	if (xfs_btree_is_lastrec(cur, block, level)) {
3360		cur->bc_ops->update_lastrec(cur, block, rec,
3361					    ptr, LASTREC_INSREC);
3362	}
3363
3364	/*
3365	 * Return the new block number, if any.
3366	 * If there is one, give back a record value and a cursor too.
3367	 */
3368	*ptrp = nptr;
3369	if (!xfs_btree_ptr_is_null(cur, &nptr)) {
3370		xfs_btree_copy_keys(cur, key, lkey, 1);
3371		*curp = ncur;
3372	}
3373
3374	*stat = 1;
3375	return 0;
3376
3377error0:
3378	if (ncur)
3379		xfs_btree_del_cursor(ncur, error);
3380	return error;
3381}
3382
3383/*
3384 * Insert the record at the point referenced by cur.
3385 *
3386 * A multi-level split of the tree on insert will invalidate the original
3387 * cursor.  All callers of this function should assume that the cursor is
3388 * no longer valid and revalidate it.
3389 */
3390int
3391xfs_btree_insert(
3392	struct xfs_btree_cur	*cur,
3393	int			*stat)
3394{
3395	int			error;	/* error return value */
3396	int			i;	/* result value, 0 for failure */
3397	int			level;	/* current level number in btree */
3398	union xfs_btree_ptr	nptr;	/* new block number (split result) */
3399	struct xfs_btree_cur	*ncur;	/* new cursor (split result) */
3400	struct xfs_btree_cur	*pcur;	/* previous level's cursor */
3401	union xfs_btree_key	bkey;	/* key of block to insert */
3402	union xfs_btree_key	*key;
3403	union xfs_btree_rec	rec;	/* record to insert */
3404
3405	level = 0;
3406	ncur = NULL;
3407	pcur = cur;
3408	key = &bkey;
3409
3410	xfs_btree_set_ptr_null(cur, &nptr);
3411
3412	/* Make a key out of the record data to be inserted, and save it. */
3413	cur->bc_ops->init_rec_from_cur(cur, &rec);
3414	cur->bc_ops->init_key_from_rec(key, &rec);
3415
3416	/*
3417	 * Loop going up the tree, starting at the leaf level.
3418	 * Stop when we don't get a split block, that must mean that
3419	 * the insert is finished with this level.
3420	 */
3421	do {
3422		/*
3423		 * Insert nrec/nptr into this level of the tree.
3424		 * Note if we fail, nptr will be null.
3425		 */
3426		error = xfs_btree_insrec(pcur, level, &nptr, &rec, key,
3427				&ncur, &i);
3428		if (error) {
3429			if (pcur != cur)
3430				xfs_btree_del_cursor(pcur, XFS_BTREE_ERROR);
3431			goto error0;
3432		}
3433
3434		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3435			error = -EFSCORRUPTED;
3436			goto error0;
3437		}
3438		level++;
3439
3440		/*
3441		 * See if the cursor we just used is trash.
3442		 * Can't trash the caller's cursor, but otherwise we should
3443		 * if ncur is a new cursor or we're about to be done.
3444		 */
3445		if (pcur != cur &&
3446		    (ncur || xfs_btree_ptr_is_null(cur, &nptr))) {
3447			/* Save the state from the cursor before we trash it */
3448			if (cur->bc_ops->update_cursor)
3449				cur->bc_ops->update_cursor(pcur, cur);
3450			cur->bc_nlevels = pcur->bc_nlevels;
3451			xfs_btree_del_cursor(pcur, XFS_BTREE_NOERROR);
3452		}
3453		/* If we got a new cursor, switch to it. */
3454		if (ncur) {
3455			pcur = ncur;
3456			ncur = NULL;
3457		}
3458	} while (!xfs_btree_ptr_is_null(cur, &nptr));
3459
3460	*stat = i;
3461	return 0;
3462error0:
3463	return error;
3464}
3465
3466/*
3467 * Try to merge a non-leaf block back into the inode root.
3468 *
3469 * Note: the killroot names comes from the fact that we're effectively
3470 * killing the old root block.  But because we can't just delete the
3471 * inode we have to copy the single block it was pointing to into the
3472 * inode.
3473 */
3474STATIC int
3475xfs_btree_kill_iroot(
3476	struct xfs_btree_cur	*cur)
3477{
3478	int			whichfork = cur->bc_ino.whichfork;
3479	struct xfs_inode	*ip = cur->bc_ino.ip;
3480	struct xfs_ifork	*ifp = XFS_IFORK_PTR(ip, whichfork);
3481	struct xfs_btree_block	*block;
3482	struct xfs_btree_block	*cblock;
3483	union xfs_btree_key	*kp;
3484	union xfs_btree_key	*ckp;
3485	union xfs_btree_ptr	*pp;
3486	union xfs_btree_ptr	*cpp;
3487	struct xfs_buf		*cbp;
3488	int			level;
3489	int			index;
3490	int			numrecs;
3491	int			error;
3492#ifdef DEBUG
3493	union xfs_btree_ptr	ptr;
3494#endif
3495	int			i;
3496
3497	ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
3498	ASSERT(cur->bc_nlevels > 1);
3499
3500	/*
3501	 * Don't deal with the root block needs to be a leaf case.
3502	 * We're just going to turn the thing back into extents anyway.
3503	 */
3504	level = cur->bc_nlevels - 1;
3505	if (level == 1)
3506		goto out0;
3507
3508	/*
3509	 * Give up if the root has multiple children.
3510	 */
3511	block = xfs_btree_get_iroot(cur);
3512	if (xfs_btree_get_numrecs(block) != 1)
3513		goto out0;
3514
3515	cblock = xfs_btree_get_block(cur, level - 1, &cbp);
3516	numrecs = xfs_btree_get_numrecs(cblock);
3517
3518	/*
3519	 * Only do this if the next level will fit.
3520	 * Then the data must be copied up to the inode,
3521	 * instead of freeing the root you free the next level.
3522	 */
3523	if (numrecs > cur->bc_ops->get_dmaxrecs(cur, level))
3524		goto out0;
3525
3526	XFS_BTREE_STATS_INC(cur, killroot);
3527
3528#ifdef DEBUG
3529	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_LEFTSIB);
3530	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3531	xfs_btree_get_sibling(cur, block, &ptr, XFS_BB_RIGHTSIB);
3532	ASSERT(xfs_btree_ptr_is_null(cur, &ptr));
3533#endif
3534
3535	index = numrecs - cur->bc_ops->get_maxrecs(cur, level);
3536	if (index) {
3537		xfs_iroot_realloc(cur->bc_ino.ip, index,
3538				  cur->bc_ino.whichfork);
3539		block = ifp->if_broot;
3540	}
3541
3542	be16_add_cpu(&block->bb_numrecs, index);
3543	ASSERT(block->bb_numrecs == cblock->bb_numrecs);
3544
3545	kp = xfs_btree_key_addr(cur, 1, block);
3546	ckp = xfs_btree_key_addr(cur, 1, cblock);
3547	xfs_btree_copy_keys(cur, kp, ckp, numrecs);
3548
3549	pp = xfs_btree_ptr_addr(cur, 1, block);
3550	cpp = xfs_btree_ptr_addr(cur, 1, cblock);
3551
3552	for (i = 0; i < numrecs; i++) {
3553		error = xfs_btree_debug_check_ptr(cur, cpp, i, level - 1);
3554		if (error)
3555			return error;
3556	}
3557
3558	xfs_btree_copy_ptrs(cur, pp, cpp, numrecs);
3559
3560	error = xfs_btree_free_block(cur, cbp);
3561	if (error)
3562		return error;
3563
3564	cur->bc_bufs[level - 1] = NULL;
3565	be16_add_cpu(&block->bb_level, -1);
3566	xfs_trans_log_inode(cur->bc_tp, ip,
3567		XFS_ILOG_CORE | xfs_ilog_fbroot(cur->bc_ino.whichfork));
3568	cur->bc_nlevels--;
3569out0:
3570	return 0;
3571}
3572
3573/*
3574 * Kill the current root node, and replace it with it's only child node.
3575 */
3576STATIC int
3577xfs_btree_kill_root(
3578	struct xfs_btree_cur	*cur,
3579	struct xfs_buf		*bp,
3580	int			level,
3581	union xfs_btree_ptr	*newroot)
3582{
3583	int			error;
3584
3585	XFS_BTREE_STATS_INC(cur, killroot);
3586
3587	/*
3588	 * Update the root pointer, decreasing the level by 1 and then
3589	 * free the old root.
3590	 */
3591	cur->bc_ops->set_root(cur, newroot, -1);
3592
3593	error = xfs_btree_free_block(cur, bp);
3594	if (error)
3595		return error;
3596
3597	cur->bc_bufs[level] = NULL;
3598	cur->bc_ra[level] = 0;
3599	cur->bc_nlevels--;
3600
3601	return 0;
3602}
3603
3604STATIC int
3605xfs_btree_dec_cursor(
3606	struct xfs_btree_cur	*cur,
3607	int			level,
3608	int			*stat)
3609{
3610	int			error;
3611	int			i;
3612
3613	if (level > 0) {
3614		error = xfs_btree_decrement(cur, level, &i);
3615		if (error)
3616			return error;
3617	}
3618
3619	*stat = 1;
3620	return 0;
3621}
3622
3623/*
3624 * Single level of the btree record deletion routine.
3625 * Delete record pointed to by cur/level.
3626 * Remove the record from its block then rebalance the tree.
3627 * Return 0 for error, 1 for done, 2 to go on to the next level.
3628 */
3629STATIC int					/* error */
3630xfs_btree_delrec(
3631	struct xfs_btree_cur	*cur,		/* btree cursor */
3632	int			level,		/* level removing record from */
3633	int			*stat)		/* fail/done/go-on */
3634{
3635	struct xfs_btree_block	*block;		/* btree block */
3636	union xfs_btree_ptr	cptr;		/* current block ptr */
3637	struct xfs_buf		*bp;		/* buffer for block */
3638	int			error;		/* error return value */
3639	int			i;		/* loop counter */
3640	union xfs_btree_ptr	lptr;		/* left sibling block ptr */
3641	struct xfs_buf		*lbp;		/* left buffer pointer */
3642	struct xfs_btree_block	*left;		/* left btree block */
3643	int			lrecs = 0;	/* left record count */
3644	int			ptr;		/* key/record index */
3645	union xfs_btree_ptr	rptr;		/* right sibling block ptr */
3646	struct xfs_buf		*rbp;		/* right buffer pointer */
3647	struct xfs_btree_block	*right;		/* right btree block */
3648	struct xfs_btree_block	*rrblock;	/* right-right btree block */
3649	struct xfs_buf		*rrbp;		/* right-right buffer pointer */
3650	int			rrecs = 0;	/* right record count */
3651	struct xfs_btree_cur	*tcur;		/* temporary btree cursor */
3652	int			numrecs;	/* temporary numrec count */
3653
3654	tcur = NULL;
3655
3656	/* Get the index of the entry being deleted, check for nothing there. */
3657	ptr = cur->bc_ptrs[level];
3658	if (ptr == 0) {
3659		*stat = 0;
3660		return 0;
3661	}
3662
3663	/* Get the buffer & block containing the record or key/ptr. */
3664	block = xfs_btree_get_block(cur, level, &bp);
3665	numrecs = xfs_btree_get_numrecs(block);
3666
3667#ifdef DEBUG
3668	error = xfs_btree_check_block(cur, block, level, bp);
3669	if (error)
3670		goto error0;
3671#endif
3672
3673	/* Fail if we're off the end of the block. */
3674	if (ptr > numrecs) {
3675		*stat = 0;
3676		return 0;
3677	}
3678
3679	XFS_BTREE_STATS_INC(cur, delrec);
3680	XFS_BTREE_STATS_ADD(cur, moves, numrecs - ptr);
3681
3682	/* Excise the entries being deleted. */
3683	if (level > 0) {
3684		/* It's a nonleaf. operate on keys and ptrs */
3685		union xfs_btree_key	*lkp;
3686		union xfs_btree_ptr	*lpp;
3687
3688		lkp = xfs_btree_key_addr(cur, ptr + 1, block);
3689		lpp = xfs_btree_ptr_addr(cur, ptr + 1, block);
3690
3691		for (i = 0; i < numrecs - ptr; i++) {
3692			error = xfs_btree_debug_check_ptr(cur, lpp, i, level);
3693			if (error)
3694				goto error0;
3695		}
3696
3697		if (ptr < numrecs) {
3698			xfs_btree_shift_keys(cur, lkp, -1, numrecs - ptr);
3699			xfs_btree_shift_ptrs(cur, lpp, -1, numrecs - ptr);
3700			xfs_btree_log_keys(cur, bp, ptr, numrecs - 1);
3701			xfs_btree_log_ptrs(cur, bp, ptr, numrecs - 1);
3702		}
3703	} else {
3704		/* It's a leaf. operate on records */
3705		if (ptr < numrecs) {
3706			xfs_btree_shift_recs(cur,
3707				xfs_btree_rec_addr(cur, ptr + 1, block),
3708				-1, numrecs - ptr);
3709			xfs_btree_log_recs(cur, bp, ptr, numrecs - 1);
3710		}
3711	}
3712
3713	/*
3714	 * Decrement and log the number of entries in the block.
3715	 */
3716	xfs_btree_set_numrecs(block, --numrecs);
3717	xfs_btree_log_block(cur, bp, XFS_BB_NUMRECS);
3718
3719	/*
3720	 * If we are tracking the last record in the tree and
3721	 * we are at the far right edge of the tree, update it.
3722	 */
3723	if (xfs_btree_is_lastrec(cur, block, level)) {
3724		cur->bc_ops->update_lastrec(cur, block, NULL,
3725					    ptr, LASTREC_DELREC);
3726	}
3727
3728	/*
3729	 * We're at the root level.  First, shrink the root block in-memory.
3730	 * Try to get rid of the next level down.  If we can't then there's
3731	 * nothing left to do.
3732	 */
3733	if (level == cur->bc_nlevels - 1) {
3734		if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3735			xfs_iroot_realloc(cur->bc_ino.ip, -1,
3736					  cur->bc_ino.whichfork);
3737
3738			error = xfs_btree_kill_iroot(cur);
3739			if (error)
3740				goto error0;
3741
3742			error = xfs_btree_dec_cursor(cur, level, stat);
3743			if (error)
3744				goto error0;
3745			*stat = 1;
3746			return 0;
3747		}
3748
3749		/*
3750		 * If this is the root level, and there's only one entry left,
3751		 * and it's NOT the leaf level, then we can get rid of this
3752		 * level.
3753		 */
3754		if (numrecs == 1 && level > 0) {
3755			union xfs_btree_ptr	*pp;
3756			/*
3757			 * pp is still set to the first pointer in the block.
3758			 * Make it the new root of the btree.
3759			 */
3760			pp = xfs_btree_ptr_addr(cur, 1, block);
3761			error = xfs_btree_kill_root(cur, bp, level, pp);
3762			if (error)
3763				goto error0;
3764		} else if (level > 0) {
3765			error = xfs_btree_dec_cursor(cur, level, stat);
3766			if (error)
3767				goto error0;
3768		}
3769		*stat = 1;
3770		return 0;
3771	}
3772
3773	/*
3774	 * If we deleted the leftmost entry in the block, update the
3775	 * key values above us in the tree.
3776	 */
3777	if (xfs_btree_needs_key_update(cur, ptr)) {
3778		error = xfs_btree_update_keys(cur, level);
3779		if (error)
3780			goto error0;
3781	}
3782
3783	/*
3784	 * If the number of records remaining in the block is at least
3785	 * the minimum, we're done.
3786	 */
3787	if (numrecs >= cur->bc_ops->get_minrecs(cur, level)) {
3788		error = xfs_btree_dec_cursor(cur, level, stat);
3789		if (error)
3790			goto error0;
3791		return 0;
3792	}
3793
3794	/*
3795	 * Otherwise, we have to move some records around to keep the
3796	 * tree balanced.  Look at the left and right sibling blocks to
3797	 * see if we can re-balance by moving only one record.
3798	 */
3799	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
3800	xfs_btree_get_sibling(cur, block, &lptr, XFS_BB_LEFTSIB);
3801
3802	if (cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) {
3803		/*
3804		 * One child of root, need to get a chance to copy its contents
3805		 * into the root and delete it. Can't go up to next level,
3806		 * there's nothing to delete there.
3807		 */
3808		if (xfs_btree_ptr_is_null(cur, &rptr) &&
3809		    xfs_btree_ptr_is_null(cur, &lptr) &&
3810		    level == cur->bc_nlevels - 2) {
3811			error = xfs_btree_kill_iroot(cur);
3812			if (!error)
3813				error = xfs_btree_dec_cursor(cur, level, stat);
3814			if (error)
3815				goto error0;
3816			return 0;
3817		}
3818	}
3819
3820	ASSERT(!xfs_btree_ptr_is_null(cur, &rptr) ||
3821	       !xfs_btree_ptr_is_null(cur, &lptr));
3822
3823	/*
3824	 * Duplicate the cursor so our btree manipulations here won't
3825	 * disrupt the next level up.
3826	 */
3827	error = xfs_btree_dup_cursor(cur, &tcur);
3828	if (error)
3829		goto error0;
3830
3831	/*
3832	 * If there's a right sibling, see if it's ok to shift an entry
3833	 * out of it.
3834	 */
3835	if (!xfs_btree_ptr_is_null(cur, &rptr)) {
3836		/*
3837		 * Move the temp cursor to the last entry in the next block.
3838		 * Actually any entry but the first would suffice.
3839		 */
3840		i = xfs_btree_lastrec(tcur, level);
3841		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3842			error = -EFSCORRUPTED;
3843			goto error0;
3844		}
3845
3846		error = xfs_btree_increment(tcur, level, &i);
3847		if (error)
3848			goto error0;
3849		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3850			error = -EFSCORRUPTED;
3851			goto error0;
3852		}
3853
3854		i = xfs_btree_lastrec(tcur, level);
3855		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3856			error = -EFSCORRUPTED;
3857			goto error0;
3858		}
3859
3860		/* Grab a pointer to the block. */
3861		right = xfs_btree_get_block(tcur, level, &rbp);
3862#ifdef DEBUG
3863		error = xfs_btree_check_block(tcur, right, level, rbp);
3864		if (error)
3865			goto error0;
3866#endif
3867		/* Grab the current block number, for future use. */
3868		xfs_btree_get_sibling(tcur, right, &cptr, XFS_BB_LEFTSIB);
3869
3870		/*
3871		 * If right block is full enough so that removing one entry
3872		 * won't make it too empty, and left-shifting an entry out
3873		 * of right to us works, we're done.
3874		 */
3875		if (xfs_btree_get_numrecs(right) - 1 >=
3876		    cur->bc_ops->get_minrecs(tcur, level)) {
3877			error = xfs_btree_lshift(tcur, level, &i);
3878			if (error)
3879				goto error0;
3880			if (i) {
3881				ASSERT(xfs_btree_get_numrecs(block) >=
3882				       cur->bc_ops->get_minrecs(tcur, level));
3883
3884				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3885				tcur = NULL;
3886
3887				error = xfs_btree_dec_cursor(cur, level, stat);
3888				if (error)
3889					goto error0;
3890				return 0;
3891			}
3892		}
3893
3894		/*
3895		 * Otherwise, grab the number of records in right for
3896		 * future reference, and fix up the temp cursor to point
3897		 * to our block again (last record).
3898		 */
3899		rrecs = xfs_btree_get_numrecs(right);
3900		if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3901			i = xfs_btree_firstrec(tcur, level);
3902			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3903				error = -EFSCORRUPTED;
3904				goto error0;
3905			}
3906
3907			error = xfs_btree_decrement(tcur, level, &i);
3908			if (error)
3909				goto error0;
3910			if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3911				error = -EFSCORRUPTED;
3912				goto error0;
3913			}
3914		}
3915	}
3916
3917	/*
3918	 * If there's a left sibling, see if it's ok to shift an entry
3919	 * out of it.
3920	 */
3921	if (!xfs_btree_ptr_is_null(cur, &lptr)) {
3922		/*
3923		 * Move the temp cursor to the first entry in the
3924		 * previous block.
3925		 */
3926		i = xfs_btree_firstrec(tcur, level);
3927		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3928			error = -EFSCORRUPTED;
3929			goto error0;
3930		}
3931
3932		error = xfs_btree_decrement(tcur, level, &i);
3933		if (error)
3934			goto error0;
3935		i = xfs_btree_firstrec(tcur, level);
3936		if (XFS_IS_CORRUPT(cur->bc_mp, i != 1)) {
3937			error = -EFSCORRUPTED;
3938			goto error0;
3939		}
3940
3941		/* Grab a pointer to the block. */
3942		left = xfs_btree_get_block(tcur, level, &lbp);
3943#ifdef DEBUG
3944		error = xfs_btree_check_block(cur, left, level, lbp);
3945		if (error)
3946			goto error0;
3947#endif
3948		/* Grab the current block number, for future use. */
3949		xfs_btree_get_sibling(tcur, left, &cptr, XFS_BB_RIGHTSIB);
3950
3951		/*
3952		 * If left block is full enough so that removing one entry
3953		 * won't make it too empty, and right-shifting an entry out
3954		 * of left to us works, we're done.
3955		 */
3956		if (xfs_btree_get_numrecs(left) - 1 >=
3957		    cur->bc_ops->get_minrecs(tcur, level)) {
3958			error = xfs_btree_rshift(tcur, level, &i);
3959			if (error)
3960				goto error0;
3961			if (i) {
3962				ASSERT(xfs_btree_get_numrecs(block) >=
3963				       cur->bc_ops->get_minrecs(tcur, level));
3964				xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3965				tcur = NULL;
3966				if (level == 0)
3967					cur->bc_ptrs[0]++;
3968
3969				*stat = 1;
3970				return 0;
3971			}
3972		}
3973
3974		/*
3975		 * Otherwise, grab the number of records in right for
3976		 * future reference.
3977		 */
3978		lrecs = xfs_btree_get_numrecs(left);
3979	}
3980
3981	/* Delete the temp cursor, we're done with it. */
3982	xfs_btree_del_cursor(tcur, XFS_BTREE_NOERROR);
3983	tcur = NULL;
3984
3985	/* If here, we need to do a join to keep the tree balanced. */
3986	ASSERT(!xfs_btree_ptr_is_null(cur, &cptr));
3987
3988	if (!xfs_btree_ptr_is_null(cur, &lptr) &&
3989	    lrecs + xfs_btree_get_numrecs(block) <=
3990			cur->bc_ops->get_maxrecs(cur, level)) {
3991		/*
3992		 * Set "right" to be the starting block,
3993		 * "left" to be the left neighbor.
3994		 */
3995		rptr = cptr;
3996		right = block;
3997		rbp = bp;
3998		error = xfs_btree_read_buf_block(cur, &lptr, 0, &left, &lbp);
3999		if (error)
4000			goto error0;
4001
4002	/*
4003	 * If that won't work, see if we can join with the right neighbor block.
4004	 */
4005	} else if (!xfs_btree_ptr_is_null(cur, &rptr) &&
4006		   rrecs + xfs_btree_get_numrecs(block) <=
4007			cur->bc_ops->get_maxrecs(cur, level)) {
4008		/*
4009		 * Set "left" to be the starting block,
4010		 * "right" to be the right neighbor.
4011		 */
4012		lptr = cptr;
4013		left = block;
4014		lbp = bp;
4015		error = xfs_btree_read_buf_block(cur, &rptr, 0, &right, &rbp);
4016		if (error)
4017			goto error0;
4018
4019	/*
4020	 * Otherwise, we can't fix the imbalance.
4021	 * Just return.  This is probably a logic error, but it's not fatal.
4022	 */
4023	} else {
4024		error = xfs_btree_dec_cursor(cur, level, stat);
4025		if (error)
4026			goto error0;
4027		return 0;
4028	}
4029
4030	rrecs = xfs_btree_get_numrecs(right);
4031	lrecs = xfs_btree_get_numrecs(left);
4032
4033	/*
4034	 * We're now going to join "left" and "right" by moving all the stuff
4035	 * in "right" to "left" and deleting "right".
4036	 */
4037	XFS_BTREE_STATS_ADD(cur, moves, rrecs);
4038	if (level > 0) {
4039		/* It's a non-leaf.  Move keys and pointers. */
4040		union xfs_btree_key	*lkp;	/* left btree key */
4041		union xfs_btree_ptr	*lpp;	/* left address pointer */
4042		union xfs_btree_key	*rkp;	/* right btree key */
4043		union xfs_btree_ptr	*rpp;	/* right address pointer */
4044
4045		lkp = xfs_btree_key_addr(cur, lrecs + 1, left);
4046		lpp = xfs_btree_ptr_addr(cur, lrecs + 1, left);
4047		rkp = xfs_btree_key_addr(cur, 1, right);
4048		rpp = xfs_btree_ptr_addr(cur, 1, right);
4049
4050		for (i = 1; i < rrecs; i++) {
4051			error = xfs_btree_debug_check_ptr(cur, rpp, i, level);
4052			if (error)
4053				goto error0;
4054		}
4055
4056		xfs_btree_copy_keys(cur, lkp, rkp, rrecs);
4057		xfs_btree_copy_ptrs(cur, lpp, rpp, rrecs);
4058
4059		xfs_btree_log_keys(cur, lbp, lrecs + 1, lrecs + rrecs);
4060		xfs_btree_log_ptrs(cur, lbp, lrecs + 1, lrecs + rrecs);
4061	} else {
4062		/* It's a leaf.  Move records.  */
4063		union xfs_btree_rec	*lrp;	/* left record pointer */
4064		union xfs_btree_rec	*rrp;	/* right record pointer */
4065
4066		lrp = xfs_btree_rec_addr(cur, lrecs + 1, left);
4067		rrp = xfs_btree_rec_addr(cur, 1, right);
4068
4069		xfs_btree_copy_recs(cur, lrp, rrp, rrecs);
4070		xfs_btree_log_recs(cur, lbp, lrecs + 1, lrecs + rrecs);
4071	}
4072
4073	XFS_BTREE_STATS_INC(cur, join);
4074
4075	/*
4076	 * Fix up the number of records and right block pointer in the
4077	 * surviving block, and log it.
4078	 */
4079	xfs_btree_set_numrecs(left, lrecs + rrecs);
4080	xfs_btree_get_sibling(cur, right, &cptr, XFS_BB_RIGHTSIB),
4081	xfs_btree_set_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4082	xfs_btree_log_block(cur, lbp, XFS_BB_NUMRECS | XFS_BB_RIGHTSIB);
4083
4084	/* If there is a right sibling, point it to the remaining block. */
4085	xfs_btree_get_sibling(cur, left, &cptr, XFS_BB_RIGHTSIB);
4086	if (!xfs_btree_ptr_is_null(cur, &cptr)) {
4087		error = xfs_btree_read_buf_block(cur, &cptr, 0, &rrblock, &rrbp);
4088		if (error)
4089			goto error0;
4090		xfs_btree_set_sibling(cur, rrblock, &lptr, XFS_BB_LEFTSIB);
4091		xfs_btree_log_block(cur, rrbp, XFS_BB_LEFTSIB);
4092	}
4093
4094	/* Free the deleted block. */
4095	error = xfs_btree_free_block(cur, rbp);
4096	if (error)
4097		goto error0;
4098
4099	/*
4100	 * If we joined with the left neighbor, set the buffer in the
4101	 * cursor to the left block, and fix up the index.
4102	 */
4103	if (bp != lbp) {
4104		cur->bc_bufs[level] = lbp;
4105		cur->bc_ptrs[level] += lrecs;
4106		cur->bc_ra[level] = 0;
4107	}
4108	/*
4109	 * If we joined with the right neighbor and there's a level above
4110	 * us, increment the cursor at that level.
4111	 */
4112	else if ((cur->bc_flags & XFS_BTREE_ROOT_IN_INODE) ||
4113		   (level + 1 < cur->bc_nlevels)) {
4114		error = xfs_btree_increment(cur, level + 1, &i);
4115		if (error)
4116			goto error0;
4117	}
4118
4119	/*
4120	 * Readjust the ptr at this level if it's not a leaf, since it's
4121	 * still pointing at the deletion point, which makes the cursor
4122	 * inconsistent.  If this makes the ptr 0, the caller fixes it up.
4123	 * We can't use decrement because it would change the next level up.
4124	 */
4125	if (level > 0)
4126		cur->bc_ptrs[level]--;
4127
4128	/*
4129	 * We combined blocks, so we have to update the parent keys if the
4130	 * btree supports overlapped intervals.  However, bc_ptrs[level + 1]
4131	 * points to the old block so that the caller knows which record to
4132	 * delete.  Therefore, the caller must be savvy enough to call updkeys
4133	 * for us if we return stat == 2.  The other exit points from this
4134	 * function don't require deletions further up the tree, so they can
4135	 * call updkeys directly.
4136	 */
4137
4138	/* Return value means the next level up has something to do. */
4139	*stat = 2;
4140	return 0;
4141
4142error0:
4143	if (tcur)
4144		xfs_btree_del_cursor(tcur, XFS_BTREE_ERROR);
4145	return error;
4146}
4147
4148/*
4149 * Delete the record pointed to by cur.
4150 * The cursor refers to the place where the record was (could be inserted)
4151 * when the operation returns.
4152 */
4153int					/* error */
4154xfs_btree_delete(
4155	struct xfs_btree_cur	*cur,
4156	int			*stat)	/* success/failure */
4157{
4158	int			error;	/* error return value */
4159	int			level;
4160	int			i;
4161	bool			joined = false;
4162
4163	/*
4164	 * Go up the tree, starting at leaf level.
4165	 *
4166	 * If 2 is returned then a join was done; go to the next level.
4167	 * Otherwise we are done.
4168	 */
4169	for (level = 0, i = 2; i == 2; level++) {
4170		error = xfs_btree_delrec(cur, level, &i);
4171		if (error)
4172			goto error0;
4173		if (i == 2)
4174			joined = true;
4175	}
4176
4177	/*
4178	 * If we combined blocks as part of deleting the record, delrec won't
4179	 * have updated the parent high keys so we have to do that here.
4180	 */
4181	if (joined && (cur->bc_flags & XFS_BTREE_OVERLAPPING)) {
4182		error = xfs_btree_updkeys_force(cur, 0);
4183		if (error)
4184			goto error0;
4185	}
4186
4187	if (i == 0) {
4188		for (level = 1; level < cur->bc_nlevels; level++) {
4189			if (cur->bc_ptrs[level] == 0) {
4190				error = xfs_btree_decrement(cur, level, &i);
4191				if (error)
4192					goto error0;
4193				break;
4194			}
4195		}
4196	}
4197
4198	*stat = i;
4199	return 0;
4200error0:
4201	return error;
4202}
4203
4204/*
4205 * Get the data from the pointed-to record.
4206 */
4207int					/* error */
4208xfs_btree_get_rec(
4209	struct xfs_btree_cur	*cur,	/* btree cursor */
4210	union xfs_btree_rec	**recp,	/* output: btree record */
4211	int			*stat)	/* output: success/failure */
4212{
4213	struct xfs_btree_block	*block;	/* btree block */
4214	struct xfs_buf		*bp;	/* buffer pointer */
4215	int			ptr;	/* record number */
4216#ifdef DEBUG
4217	int			error;	/* error return value */
4218#endif
4219
4220	ptr = cur->bc_ptrs[0];
4221	block = xfs_btree_get_block(cur, 0, &bp);
4222
4223#ifdef DEBUG
4224	error = xfs_btree_check_block(cur, block, 0, bp);
4225	if (error)
4226		return error;
4227#endif
4228
4229	/*
4230	 * Off the right end or left end, return failure.
4231	 */
4232	if (ptr > xfs_btree_get_numrecs(block) || ptr <= 0) {
4233		*stat = 0;
4234		return 0;
4235	}
4236
4237	/*
4238	 * Point to the record and extract its data.
4239	 */
4240	*recp = xfs_btree_rec_addr(cur, ptr, block);
4241	*stat = 1;
4242	return 0;
4243}
4244
4245/* Visit a block in a btree. */
4246STATIC int
4247xfs_btree_visit_block(
4248	struct xfs_btree_cur		*cur,
4249	int				level,
4250	xfs_btree_visit_blocks_fn	fn,
4251	void				*data)
4252{
4253	struct xfs_btree_block		*block;
4254	struct xfs_buf			*bp;
4255	union xfs_btree_ptr		rptr;
4256	int				error;
4257
4258	/* do right sibling readahead */
4259	xfs_btree_readahead(cur, level, XFS_BTCUR_RIGHTRA);
4260	block = xfs_btree_get_block(cur, level, &bp);
4261
4262	/* process the block */
4263	error = fn(cur, level, data);
4264	if (error)
4265		return error;
4266
4267	/* now read rh sibling block for next iteration */
4268	xfs_btree_get_sibling(cur, block, &rptr, XFS_BB_RIGHTSIB);
4269	if (xfs_btree_ptr_is_null(cur, &rptr))
4270		return -ENOENT;
4271
4272	return xfs_btree_lookup_get_block(cur, level, &rptr, &block);
4273}
4274
4275
4276/* Visit every block in a btree. */
4277int
4278xfs_btree_visit_blocks(
4279	struct xfs_btree_cur		*cur,
4280	xfs_btree_visit_blocks_fn	fn,
4281	unsigned int			flags,
4282	void				*data)
4283{
4284	union xfs_btree_ptr		lptr;
4285	int				level;
4286	struct xfs_btree_block		*block = NULL;
4287	int				error = 0;
4288
4289	cur->bc_ops->init_ptr_from_cur(cur, &lptr);
4290
4291	/* for each level */
4292	for (level = cur->bc_nlevels - 1; level >= 0; level--) {
4293		/* grab the left hand block */
4294		error = xfs_btree_lookup_get_block(cur, level, &lptr, &block);
4295		if (error)
4296			return error;
4297
4298		/* readahead the left most block for the next level down */
4299		if (level > 0) {
4300			union xfs_btree_ptr     *ptr;
4301
4302			ptr = xfs_btree_ptr_addr(cur, 1, block);
4303			xfs_btree_readahead_ptr(cur, ptr, 1);
4304
4305			/* save for the next iteration of the loop */
4306			xfs_btree_copy_ptrs(cur, &lptr, ptr, 1);
4307
4308			if (!(flags & XFS_BTREE_VISIT_LEAVES))
4309				continue;
4310		} else if (!(flags & XFS_BTREE_VISIT_RECORDS)) {
4311			continue;
4312		}
4313
4314		/* for each buffer in the level */
4315		do {
4316			error = xfs_btree_visit_block(cur, level, fn, data);
4317		} while (!error);
4318
4319		if (error != -ENOENT)
4320			return error;
4321	}
4322
4323	return 0;
4324}
4325
4326/*
4327 * Change the owner of a btree.
4328 *
4329 * The mechanism we use here is ordered buffer logging. Because we don't know
4330 * how many buffers were are going to need to modify, we don't really want to
4331 * have to make transaction reservations for the worst case of every buffer in a
4332 * full size btree as that may be more space that we can fit in the log....
4333 *
4334 * We do the btree walk in the most optimal manner possible - we have sibling
4335 * pointers so we can just walk all the blocks on each level from left to right
4336 * in a single pass, and then move to the next level and do the same. We can
4337 * also do readahead on the sibling pointers to get IO moving more quickly,
4338 * though for slow disks this is unlikely to make much difference to performance
4339 * as the amount of CPU work we have to do before moving to the next block is
4340 * relatively small.
4341 *
4342 * For each btree block that we load, modify the owner appropriately, set the
4343 * buffer as an ordered buffer and log it appropriately. We need to ensure that
4344 * we mark the region we change dirty so that if the buffer is relogged in
4345 * a subsequent transaction the changes we make here as an ordered buffer are
4346 * correctly relogged in that transaction.  If we are in recovery context, then
4347 * just queue the modified buffer as delayed write buffer so the transaction
4348 * recovery completion writes the changes to disk.
4349 */
4350struct xfs_btree_block_change_owner_info {
4351	uint64_t		new_owner;
4352	struct list_head	*buffer_list;
4353};
4354
4355static int
4356xfs_btree_block_change_owner(
4357	struct xfs_btree_cur	*cur,
4358	int			level,
4359	void			*data)
4360{
4361	struct xfs_btree_block_change_owner_info	*bbcoi = data;
4362	struct xfs_btree_block	*block;
4363	struct xfs_buf		*bp;
4364
4365	/* modify the owner */
4366	block = xfs_btree_get_block(cur, level, &bp);
4367	if (cur->bc_flags & XFS_BTREE_LONG_PTRS) {
4368		if (block->bb_u.l.bb_owner == cpu_to_be64(bbcoi->new_owner))
4369			return 0;
4370		block->bb_u.l.bb_owner = cpu_to_be64(bbcoi->new_owner);
4371	} else {
4372		if (block->bb_u.s.bb_owner == cpu_to_be32(bbcoi->new_owner))
4373			return 0;
4374		block->bb_u.s.bb_owner = cpu_to_be32(bbcoi->new_owner);
4375	}
4376
4377	/*
4378	 * If the block is a root block hosted in an inode, we might not have a
4379	 * buffer pointer here and we shouldn't attempt to log the change as the
4380	 * information is already held in the inode and discarded when the root
4381	 * block is formatted into the on-disk inode fork. We still change it,
4382	 * though, so everything is consistent in memory.
4383	 */
4384	if (!bp) {
4385		ASSERT(cur->bc_flags & XFS_BTREE_ROOT_IN_INODE);
4386		ASSERT(level == cur->bc_nlevels - 1);
4387		return 0;
4388	}
4389
4390	if (cur->bc_tp) {
4391		if (!xfs_trans_ordered_buf(cur->bc_tp, bp)) {
4392			xfs_btree_log_block(cur, bp, XFS_BB_OWNER);
4393			return -EAGAIN;
4394		}
4395	} else {
4396		xfs_buf_delwri_queue(bp, bbcoi->buffer_list);
4397	}
4398
4399	return 0;
4400}
4401
4402int
4403xfs_btree_change_owner(
4404	struct xfs_btree_cur	*cur,
4405	uint64_t		new_owner,
4406	struct list_head	*buffer_list)
4407{
4408	struct xfs_btree_block_change_owner_info	bbcoi;
4409
4410	bbcoi.new_owner = new_owner;
4411	bbcoi.buffer_list = buffer_list;
4412
4413	return xfs_btree_visit_blocks(cur, xfs_btree_block_change_owner,
4414			XFS_BTREE_VISIT_ALL, &bbcoi);
4415}
4416
4417/* Verify the v5 fields of a long-format btree block. */
4418xfs_failaddr_t
4419xfs_btree_lblock_v5hdr_verify(
4420	struct xfs_buf		*bp,
4421	uint64_t		owner)
4422{
4423	struct xfs_mount	*mp = bp->b_mount;
4424	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4425
4426	if (!xfs_sb_version_hascrc(&mp->m_sb))
4427		return __this_address;
4428	if (!uuid_equal(&block->bb_u.l.bb_uuid, &mp->m_sb.sb_meta_uuid))
4429		return __this_address;
4430	if (block->bb_u.l.bb_blkno != cpu_to_be64(bp->b_bn))
4431		return __this_address;
4432	if (owner != XFS_RMAP_OWN_UNKNOWN &&
4433	    be64_to_cpu(block->bb_u.l.bb_owner) != owner)
4434		return __this_address;
4435	return NULL;
4436}
4437
4438/* Verify a long-format btree block. */
4439xfs_failaddr_t
4440xfs_btree_lblock_verify(
4441	struct xfs_buf		*bp,
4442	unsigned int		max_recs)
4443{
4444	struct xfs_mount	*mp = bp->b_mount;
4445	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4446
4447	/* numrecs verification */
4448	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4449		return __this_address;
4450
4451	/* sibling pointer verification */
4452	if (block->bb_u.l.bb_leftsib != cpu_to_be64(NULLFSBLOCK) &&
4453	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_leftsib)))
4454		return __this_address;
4455	if (block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK) &&
4456	    !xfs_verify_fsbno(mp, be64_to_cpu(block->bb_u.l.bb_rightsib)))
4457		return __this_address;
4458
4459	return NULL;
4460}
4461
4462/**
4463 * xfs_btree_sblock_v5hdr_verify() -- verify the v5 fields of a short-format
4464 *				      btree block
4465 *
4466 * @bp: buffer containing the btree block
4467 */
4468xfs_failaddr_t
4469xfs_btree_sblock_v5hdr_verify(
4470	struct xfs_buf		*bp)
4471{
4472	struct xfs_mount	*mp = bp->b_mount;
4473	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4474	struct xfs_perag	*pag = bp->b_pag;
4475
4476	if (!xfs_sb_version_hascrc(&mp->m_sb))
4477		return __this_address;
4478	if (!uuid_equal(&block->bb_u.s.bb_uuid, &mp->m_sb.sb_meta_uuid))
4479		return __this_address;
4480	if (block->bb_u.s.bb_blkno != cpu_to_be64(bp->b_bn))
4481		return __this_address;
4482	if (pag && be32_to_cpu(block->bb_u.s.bb_owner) != pag->pag_agno)
4483		return __this_address;
4484	return NULL;
4485}
4486
4487/**
4488 * xfs_btree_sblock_verify() -- verify a short-format btree block
4489 *
4490 * @bp: buffer containing the btree block
4491 * @max_recs: maximum records allowed in this btree node
4492 */
4493xfs_failaddr_t
4494xfs_btree_sblock_verify(
4495	struct xfs_buf		*bp,
4496	unsigned int		max_recs)
4497{
4498	struct xfs_mount	*mp = bp->b_mount;
4499	struct xfs_btree_block	*block = XFS_BUF_TO_BLOCK(bp);
4500	xfs_agblock_t		agno;
4501
4502	/* numrecs verification */
4503	if (be16_to_cpu(block->bb_numrecs) > max_recs)
4504		return __this_address;
4505
4506	/* sibling pointer verification */
4507	agno = xfs_daddr_to_agno(mp, XFS_BUF_ADDR(bp));
4508	if (block->bb_u.s.bb_leftsib != cpu_to_be32(NULLAGBLOCK) &&
4509	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_leftsib)))
4510		return __this_address;
4511	if (block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK) &&
4512	    !xfs_verify_agbno(mp, agno, be32_to_cpu(block->bb_u.s.bb_rightsib)))
4513		return __this_address;
4514
4515	return NULL;
4516}
4517
4518/*
4519 * Calculate the number of btree levels needed to store a given number of
4520 * records in a short-format btree.
4521 */
4522uint
4523xfs_btree_compute_maxlevels(
4524	uint			*limits,
4525	unsigned long		len)
4526{
4527	uint			level;
4528	unsigned long		maxblocks;
4529
4530	maxblocks = (len + limits[0] - 1) / limits[0];
4531	for (level = 1; maxblocks > 1; level++)
4532		maxblocks = (maxblocks + limits[1] - 1) / limits[1];
4533	return level;
4534}
4535
4536/*
4537 * Query a regular btree for all records overlapping a given interval.
4538 * Start with a LE lookup of the key of low_rec and return all records
4539 * until we find a record with a key greater than the key of high_rec.
4540 */
4541STATIC int
4542xfs_btree_simple_query_range(
4543	struct xfs_btree_cur		*cur,
4544	union xfs_btree_key		*low_key,
4545	union xfs_btree_key		*high_key,
4546	xfs_btree_query_range_fn	fn,
4547	void				*priv)
4548{
4549	union xfs_btree_rec		*recp;
4550	union xfs_btree_key		rec_key;
4551	int64_t				diff;
4552	int				stat;
4553	bool				firstrec = true;
4554	int				error;
4555
4556	ASSERT(cur->bc_ops->init_high_key_from_rec);
4557	ASSERT(cur->bc_ops->diff_two_keys);
4558
4559	/*
4560	 * Find the leftmost record.  The btree cursor must be set
4561	 * to the low record used to generate low_key.
4562	 */
4563	stat = 0;
4564	error = xfs_btree_lookup(cur, XFS_LOOKUP_LE, &stat);
4565	if (error)
4566		goto out;
4567
4568	/* Nothing?  See if there's anything to the right. */
4569	if (!stat) {
4570		error = xfs_btree_increment(cur, 0, &stat);
4571		if (error)
4572			goto out;
4573	}
4574
4575	while (stat) {
4576		/* Find the record. */
4577		error = xfs_btree_get_rec(cur, &recp, &stat);
4578		if (error || !stat)
4579			break;
4580
4581		/* Skip if high_key(rec) < low_key. */
4582		if (firstrec) {
4583			cur->bc_ops->init_high_key_from_rec(&rec_key, recp);
4584			firstrec = false;
4585			diff = cur->bc_ops->diff_two_keys(cur, low_key,
4586					&rec_key);
4587			if (diff > 0)
4588				goto advloop;
4589		}
4590
4591		/* Stop if high_key < low_key(rec). */
4592		cur->bc_ops->init_key_from_rec(&rec_key, recp);
4593		diff = cur->bc_ops->diff_two_keys(cur, &rec_key, high_key);
4594		if (diff > 0)
4595			break;
4596
4597		/* Callback */
4598		error = fn(cur, recp, priv);
4599		if (error)
4600			break;
4601
4602advloop:
4603		/* Move on to the next record. */
4604		error = xfs_btree_increment(cur, 0, &stat);
4605		if (error)
4606			break;
4607	}
4608
4609out:
4610	return error;
4611}
4612
4613/*
4614 * Query an overlapped interval btree for all records overlapping a given
4615 * interval.  This function roughly follows the algorithm given in
4616 * "Interval Trees" of _Introduction to Algorithms_, which is section
4617 * 14.3 in the 2nd and 3rd editions.
4618 *
4619 * First, generate keys for the low and high records passed in.
4620 *
4621 * For any leaf node, generate the high and low keys for the record.
4622 * If the record keys overlap with the query low/high keys, pass the
4623 * record to the function iterator.
4624 *
4625 * For any internal node, compare the low and high keys of each
4626 * pointer against the query low/high keys.  If there's an overlap,
4627 * follow the pointer.
4628 *
4629 * As an optimization, we stop scanning a block when we find a low key
4630 * that is greater than the query's high key.
4631 */
4632STATIC int
4633xfs_btree_overlapped_query_range(
4634	struct xfs_btree_cur		*cur,
4635	union xfs_btree_key		*low_key,
4636	union xfs_btree_key		*high_key,
4637	xfs_btree_query_range_fn	fn,
4638	void				*priv)
4639{
4640	union xfs_btree_ptr		ptr;
4641	union xfs_btree_ptr		*pp;
4642	union xfs_btree_key		rec_key;
4643	union xfs_btree_key		rec_hkey;
4644	union xfs_btree_key		*lkp;
4645	union xfs_btree_key		*hkp;
4646	union xfs_btree_rec		*recp;
4647	struct xfs_btree_block		*block;
4648	int64_t				ldiff;
4649	int64_t				hdiff;
4650	int				level;
4651	struct xfs_buf			*bp;
4652	int				i;
4653	int				error;
4654
4655	/* Load the root of the btree. */
4656	level = cur->bc_nlevels - 1;
4657	cur->bc_ops->init_ptr_from_cur(cur, &ptr);
4658	error = xfs_btree_lookup_get_block(cur, level, &ptr, &block);
4659	if (error)
4660		return error;
4661	xfs_btree_get_block(cur, level, &bp);
4662	trace_xfs_btree_overlapped_query_range(cur, level, bp);
4663#ifdef DEBUG
4664	error = xfs_btree_check_block(cur, block, level, bp);
4665	if (error)
4666		goto out;
4667#endif
4668	cur->bc_ptrs[level] = 1;
4669
4670	while (level < cur->bc_nlevels) {
4671		block = xfs_btree_get_block(cur, level, &bp);
4672
4673		/* End of node, pop back towards the root. */
4674		if (cur->bc_ptrs[level] > be16_to_cpu(block->bb_numrecs)) {
4675pop_up:
4676			if (level < cur->bc_nlevels - 1)
4677				cur->bc_ptrs[level + 1]++;
4678			level++;
4679			continue;
4680		}
4681
4682		if (level == 0) {
4683			/* Handle a leaf node. */
4684			recp = xfs_btree_rec_addr(cur, cur->bc_ptrs[0], block);
4685
4686			cur->bc_ops->init_high_key_from_rec(&rec_hkey, recp);
4687			ldiff = cur->bc_ops->diff_two_keys(cur, &rec_hkey,
4688					low_key);
4689
4690			cur->bc_ops->init_key_from_rec(&rec_key, recp);
4691			hdiff = cur->bc_ops->diff_two_keys(cur, high_key,
4692					&rec_key);
4693
4694			/*
4695			 * If (record's high key >= query's low key) and
4696			 *    (query's high key >= record's low key), then
4697			 * this record overlaps the query range; callback.
4698			 */
4699			if (ldiff >= 0 && hdiff >= 0) {
4700				error = fn(cur, recp, priv);
4701				if (error)
4702					break;
4703			} else if (hdiff < 0) {
4704				/* Record is larger than high key; pop. */
4705				goto pop_up;
4706			}
4707			cur->bc_ptrs[level]++;
4708			continue;
4709		}
4710
4711		/* Handle an internal node. */
4712		lkp = xfs_btree_key_addr(cur, cur->bc_ptrs[level], block);
4713		hkp = xfs_btree_high_key_addr(cur, cur->bc_ptrs[level], block);
4714		pp = xfs_btree_ptr_addr(cur, cur->bc_ptrs[level], block);
4715
4716		ldiff = cur->bc_ops->diff_two_keys(cur, hkp, low_key);
4717		hdiff = cur->bc_ops->diff_two_keys(cur, high_key, lkp);
4718
4719		/*
4720		 * If (pointer's high key >= query's low key) and
4721		 *    (query's high key >= pointer's low key), then
4722		 * this record overlaps the query range; follow pointer.
4723		 */
4724		if (ldiff >= 0 && hdiff >= 0) {
4725			level--;
4726			error = xfs_btree_lookup_get_block(cur, level, pp,
4727					&block);
4728			if (error)
4729				goto out;
4730			xfs_btree_get_block(cur, level, &bp);
4731			trace_xfs_btree_overlapped_query_range(cur, level, bp);
4732#ifdef DEBUG
4733			error = xfs_btree_check_block(cur, block, level, bp);
4734			if (error)
4735				goto out;
4736#endif
4737			cur->bc_ptrs[level] = 1;
4738			continue;
4739		} else if (hdiff < 0) {
4740			/* The low key is larger than the upper range; pop. */
4741			goto pop_up;
4742		}
4743		cur->bc_ptrs[level]++;
4744	}
4745
4746out:
4747	/*
4748	 * If we don't end this function with the cursor pointing at a record
4749	 * block, a subsequent non-error cursor deletion will not release
4750	 * node-level buffers, causing a buffer leak.  This is quite possible
4751	 * with a zero-results range query, so release the buffers if we
4752	 * failed to return any results.
4753	 */
4754	if (cur->bc_bufs[0] == NULL) {
4755		for (i = 0; i < cur->bc_nlevels; i++) {
4756			if (cur->bc_bufs[i]) {
4757				xfs_trans_brelse(cur->bc_tp, cur->bc_bufs[i]);
4758				cur->bc_bufs[i] = NULL;
4759				cur->bc_ptrs[i] = 0;
4760				cur->bc_ra[i] = 0;
4761			}
4762		}
4763	}
4764
4765	return error;
4766}
4767
4768/*
4769 * Query a btree for all records overlapping a given interval of keys.  The
4770 * supplied function will be called with each record found; return one of the
4771 * XFS_BTREE_QUERY_RANGE_{CONTINUE,ABORT} values or the usual negative error
4772 * code.  This function returns -ECANCELED, zero, or a negative error code.
4773 */
4774int
4775xfs_btree_query_range(
4776	struct xfs_btree_cur		*cur,
4777	union xfs_btree_irec		*low_rec,
4778	union xfs_btree_irec		*high_rec,
4779	xfs_btree_query_range_fn	fn,
4780	void				*priv)
4781{
4782	union xfs_btree_rec		rec;
4783	union xfs_btree_key		low_key;
4784	union xfs_btree_key		high_key;
4785
4786	/* Find the keys of both ends of the interval. */
4787	cur->bc_rec = *high_rec;
4788	cur->bc_ops->init_rec_from_cur(cur, &rec);
4789	cur->bc_ops->init_key_from_rec(&high_key, &rec);
4790
4791	cur->bc_rec = *low_rec;
4792	cur->bc_ops->init_rec_from_cur(cur, &rec);
4793	cur->bc_ops->init_key_from_rec(&low_key, &rec);
4794
4795	/* Enforce low key < high key. */
4796	if (cur->bc_ops->diff_two_keys(cur, &low_key, &high_key) > 0)
4797		return -EINVAL;
4798
4799	if (!(cur->bc_flags & XFS_BTREE_OVERLAPPING))
4800		return xfs_btree_simple_query_range(cur, &low_key,
4801				&high_key, fn, priv);
4802	return xfs_btree_overlapped_query_range(cur, &low_key, &high_key,
4803			fn, priv);
4804}
4805
4806/* Query a btree for all records. */
4807int
4808xfs_btree_query_all(
4809	struct xfs_btree_cur		*cur,
4810	xfs_btree_query_range_fn	fn,
4811	void				*priv)
4812{
4813	union xfs_btree_key		low_key;
4814	union xfs_btree_key		high_key;
4815
4816	memset(&cur->bc_rec, 0, sizeof(cur->bc_rec));
4817	memset(&low_key, 0, sizeof(low_key));
4818	memset(&high_key, 0xFF, sizeof(high_key));
4819
4820	return xfs_btree_simple_query_range(cur, &low_key, &high_key, fn, priv);
4821}
4822
4823/*
4824 * Calculate the number of blocks needed to store a given number of records
4825 * in a short-format (per-AG metadata) btree.
4826 */
4827unsigned long long
4828xfs_btree_calc_size(
4829	uint			*limits,
4830	unsigned long long	len)
4831{
4832	int			level;
4833	int			maxrecs;
4834	unsigned long long	rval;
4835
4836	maxrecs = limits[0];
4837	for (level = 0, rval = 0; len > 1; level++) {
4838		len += maxrecs - 1;
4839		do_div(len, maxrecs);
4840		maxrecs = limits[1];
4841		rval += len;
4842	}
4843	return rval;
4844}
4845
4846static int
4847xfs_btree_count_blocks_helper(
4848	struct xfs_btree_cur	*cur,
4849	int			level,
4850	void			*data)
4851{
4852	xfs_extlen_t		*blocks = data;
4853	(*blocks)++;
4854
4855	return 0;
4856}
4857
4858/* Count the blocks in a btree and return the result in *blocks. */
4859int
4860xfs_btree_count_blocks(
4861	struct xfs_btree_cur	*cur,
4862	xfs_extlen_t		*blocks)
4863{
4864	*blocks = 0;
4865	return xfs_btree_visit_blocks(cur, xfs_btree_count_blocks_helper,
4866			XFS_BTREE_VISIT_ALL, blocks);
4867}
4868
4869/* Compare two btree pointers. */
4870int64_t
4871xfs_btree_diff_two_ptrs(
4872	struct xfs_btree_cur		*cur,
4873	const union xfs_btree_ptr	*a,
4874	const union xfs_btree_ptr	*b)
4875{
4876	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4877		return (int64_t)be64_to_cpu(a->l) - be64_to_cpu(b->l);
4878	return (int64_t)be32_to_cpu(a->s) - be32_to_cpu(b->s);
4879}
4880
4881/* If there's an extent, we're done. */
4882STATIC int
4883xfs_btree_has_record_helper(
4884	struct xfs_btree_cur		*cur,
4885	union xfs_btree_rec		*rec,
4886	void				*priv)
4887{
4888	return -ECANCELED;
4889}
4890
4891/* Is there a record covering a given range of keys? */
4892int
4893xfs_btree_has_record(
4894	struct xfs_btree_cur	*cur,
4895	union xfs_btree_irec	*low,
4896	union xfs_btree_irec	*high,
4897	bool			*exists)
4898{
4899	int			error;
4900
4901	error = xfs_btree_query_range(cur, low, high,
4902			&xfs_btree_has_record_helper, NULL);
4903	if (error == -ECANCELED) {
4904		*exists = true;
4905		return 0;
4906	}
4907	*exists = false;
4908	return error;
4909}
4910
4911/* Are there more records in this btree? */
4912bool
4913xfs_btree_has_more_records(
4914	struct xfs_btree_cur	*cur)
4915{
4916	struct xfs_btree_block	*block;
4917	struct xfs_buf		*bp;
4918
4919	block = xfs_btree_get_block(cur, 0, &bp);
4920
4921	/* There are still records in this block. */
4922	if (cur->bc_ptrs[0] < xfs_btree_get_numrecs(block))
4923		return true;
4924
4925	/* There are more record blocks. */
4926	if (cur->bc_flags & XFS_BTREE_LONG_PTRS)
4927		return block->bb_u.l.bb_rightsib != cpu_to_be64(NULLFSBLOCK);
4928	else
4929		return block->bb_u.s.bb_rightsib != cpu_to_be32(NULLAGBLOCK);
4930}
4931