1/* 2 * super.c 3 * 4 * PURPOSE 5 * Super block routines for the OSTA-UDF(tm) filesystem. 6 * 7 * DESCRIPTION 8 * OSTA-UDF(tm) = Optical Storage Technology Association 9 * Universal Disk Format. 10 * 11 * This code is based on version 2.00 of the UDF specification, 12 * and revision 3 of the ECMA 167 standard [equivalent to ISO 13346]. 13 * http://www.osta.org/ 14 * https://www.ecma.ch/ 15 * https://www.iso.org/ 16 * 17 * COPYRIGHT 18 * This file is distributed under the terms of the GNU General Public 19 * License (GPL). Copies of the GPL can be obtained from: 20 * ftp://prep.ai.mit.edu/pub/gnu/GPL 21 * Each contributing author retains all rights to their own work. 22 * 23 * (C) 1998 Dave Boynton 24 * (C) 1998-2004 Ben Fennema 25 * (C) 2000 Stelias Computing Inc 26 * 27 * HISTORY 28 * 29 * 09/24/98 dgb changed to allow compiling outside of kernel, and 30 * added some debugging. 31 * 10/01/98 dgb updated to allow (some) possibility of compiling w/2.0.34 32 * 10/16/98 attempting some multi-session support 33 * 10/17/98 added freespace count for "df" 34 * 11/11/98 gr added novrs option 35 * 11/26/98 dgb added fileset,anchor mount options 36 * 12/06/98 blf really hosed things royally. vat/sparing support. sequenced 37 * vol descs. rewrote option handling based on isofs 38 * 12/20/98 find the free space bitmap (if it exists) 39 */ 40 41#include "udfdecl.h" 42 43#include <linux/blkdev.h> 44#include <linux/slab.h> 45#include <linux/kernel.h> 46#include <linux/module.h> 47#include <linux/parser.h> 48#include <linux/stat.h> 49#include <linux/cdrom.h> 50#include <linux/nls.h> 51#include <linux/vfs.h> 52#include <linux/vmalloc.h> 53#include <linux/errno.h> 54#include <linux/mount.h> 55#include <linux/seq_file.h> 56#include <linux/bitmap.h> 57#include <linux/crc-itu-t.h> 58#include <linux/log2.h> 59#include <asm/byteorder.h> 60#include <linux/iversion.h> 61 62#include "udf_sb.h" 63#include "udf_i.h" 64 65#include <linux/init.h> 66#include <linux/uaccess.h> 67 68enum { 69 VDS_POS_PRIMARY_VOL_DESC, 70 VDS_POS_UNALLOC_SPACE_DESC, 71 VDS_POS_LOGICAL_VOL_DESC, 72 VDS_POS_IMP_USE_VOL_DESC, 73 VDS_POS_LENGTH 74}; 75 76#define VSD_FIRST_SECTOR_OFFSET 32768 77#define VSD_MAX_SECTOR_OFFSET 0x800000 78 79/* 80 * Maximum number of Terminating Descriptor / Logical Volume Integrity 81 * Descriptor redirections. The chosen numbers are arbitrary - just that we 82 * hopefully don't limit any real use of rewritten inode on write-once media 83 * but avoid looping for too long on corrupted media. 84 */ 85#define UDF_MAX_TD_NESTING 64 86#define UDF_MAX_LVID_NESTING 1000 87 88enum { UDF_MAX_LINKS = 0xffff }; 89 90/* These are the "meat" - everything else is stuffing */ 91static int udf_fill_super(struct super_block *, void *, int); 92static void udf_put_super(struct super_block *); 93static int udf_sync_fs(struct super_block *, int); 94static int udf_remount_fs(struct super_block *, int *, char *); 95static void udf_load_logicalvolint(struct super_block *, struct kernel_extent_ad); 96static void udf_open_lvid(struct super_block *); 97static void udf_close_lvid(struct super_block *); 98static unsigned int udf_count_free(struct super_block *); 99static int udf_statfs(struct dentry *, struct kstatfs *); 100static int udf_show_options(struct seq_file *, struct dentry *); 101 102struct logicalVolIntegrityDescImpUse *udf_sb_lvidiu(struct super_block *sb) 103{ 104 struct logicalVolIntegrityDesc *lvid; 105 unsigned int partnum; 106 unsigned int offset; 107 108 if (!UDF_SB(sb)->s_lvid_bh) 109 return NULL; 110 lvid = (struct logicalVolIntegrityDesc *)UDF_SB(sb)->s_lvid_bh->b_data; 111 partnum = le32_to_cpu(lvid->numOfPartitions); 112 /* The offset is to skip freeSpaceTable and sizeTable arrays */ 113 offset = partnum * 2 * sizeof(uint32_t); 114 return (struct logicalVolIntegrityDescImpUse *) 115 (((uint8_t *)(lvid + 1)) + offset); 116} 117 118/* UDF filesystem type */ 119static struct dentry *udf_mount(struct file_system_type *fs_type, 120 int flags, const char *dev_name, void *data) 121{ 122 return mount_bdev(fs_type, flags, dev_name, data, udf_fill_super); 123} 124 125static struct file_system_type udf_fstype = { 126 .owner = THIS_MODULE, 127 .name = "udf", 128 .mount = udf_mount, 129 .kill_sb = kill_block_super, 130 .fs_flags = FS_REQUIRES_DEV, 131}; 132MODULE_ALIAS_FS("udf"); 133 134static struct kmem_cache *udf_inode_cachep; 135 136static struct inode *udf_alloc_inode(struct super_block *sb) 137{ 138 struct udf_inode_info *ei; 139 ei = kmem_cache_alloc(udf_inode_cachep, GFP_KERNEL); 140 if (!ei) 141 return NULL; 142 143 ei->i_unique = 0; 144 ei->i_lenExtents = 0; 145 ei->i_lenStreams = 0; 146 ei->i_next_alloc_block = 0; 147 ei->i_next_alloc_goal = 0; 148 ei->i_strat4096 = 0; 149 ei->i_streamdir = 0; 150 ei->i_hidden = 0; 151 init_rwsem(&ei->i_data_sem); 152 ei->cached_extent.lstart = -1; 153 spin_lock_init(&ei->i_extent_cache_lock); 154 inode_set_iversion(&ei->vfs_inode, 1); 155 156 return &ei->vfs_inode; 157} 158 159static void udf_free_in_core_inode(struct inode *inode) 160{ 161 kmem_cache_free(udf_inode_cachep, UDF_I(inode)); 162} 163 164static void init_once(void *foo) 165{ 166 struct udf_inode_info *ei = (struct udf_inode_info *)foo; 167 168 ei->i_data = NULL; 169 inode_init_once(&ei->vfs_inode); 170} 171 172static int __init init_inodecache(void) 173{ 174 udf_inode_cachep = kmem_cache_create("udf_inode_cache", 175 sizeof(struct udf_inode_info), 176 0, (SLAB_RECLAIM_ACCOUNT | 177 SLAB_MEM_SPREAD | 178 SLAB_ACCOUNT), 179 init_once); 180 if (!udf_inode_cachep) 181 return -ENOMEM; 182 return 0; 183} 184 185static void destroy_inodecache(void) 186{ 187 /* 188 * Make sure all delayed rcu free inodes are flushed before we 189 * destroy cache. 190 */ 191 rcu_barrier(); 192 kmem_cache_destroy(udf_inode_cachep); 193} 194 195/* Superblock operations */ 196static const struct super_operations udf_sb_ops = { 197 .alloc_inode = udf_alloc_inode, 198 .free_inode = udf_free_in_core_inode, 199 .write_inode = udf_write_inode, 200 .evict_inode = udf_evict_inode, 201 .put_super = udf_put_super, 202 .sync_fs = udf_sync_fs, 203 .statfs = udf_statfs, 204 .remount_fs = udf_remount_fs, 205 .show_options = udf_show_options, 206}; 207 208struct udf_options { 209 unsigned char novrs; 210 unsigned int blocksize; 211 unsigned int session; 212 unsigned int lastblock; 213 unsigned int anchor; 214 unsigned int flags; 215 umode_t umask; 216 kgid_t gid; 217 kuid_t uid; 218 umode_t fmode; 219 umode_t dmode; 220 struct nls_table *nls_map; 221}; 222 223static int __init init_udf_fs(void) 224{ 225 int err; 226 227 err = init_inodecache(); 228 if (err) 229 goto out1; 230 err = register_filesystem(&udf_fstype); 231 if (err) 232 goto out; 233 234 return 0; 235 236out: 237 destroy_inodecache(); 238 239out1: 240 return err; 241} 242 243static void __exit exit_udf_fs(void) 244{ 245 unregister_filesystem(&udf_fstype); 246 destroy_inodecache(); 247} 248 249static int udf_sb_alloc_partition_maps(struct super_block *sb, u32 count) 250{ 251 struct udf_sb_info *sbi = UDF_SB(sb); 252 253 sbi->s_partmaps = kcalloc(count, sizeof(*sbi->s_partmaps), GFP_KERNEL); 254 if (!sbi->s_partmaps) { 255 sbi->s_partitions = 0; 256 return -ENOMEM; 257 } 258 259 sbi->s_partitions = count; 260 return 0; 261} 262 263static void udf_sb_free_bitmap(struct udf_bitmap *bitmap) 264{ 265 int i; 266 int nr_groups = bitmap->s_nr_groups; 267 268 for (i = 0; i < nr_groups; i++) 269 brelse(bitmap->s_block_bitmap[i]); 270 271 kvfree(bitmap); 272} 273 274static void udf_free_partition(struct udf_part_map *map) 275{ 276 int i; 277 struct udf_meta_data *mdata; 278 279 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) 280 iput(map->s_uspace.s_table); 281 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) 282 udf_sb_free_bitmap(map->s_uspace.s_bitmap); 283 if (map->s_partition_type == UDF_SPARABLE_MAP15) 284 for (i = 0; i < 4; i++) 285 brelse(map->s_type_specific.s_sparing.s_spar_map[i]); 286 else if (map->s_partition_type == UDF_METADATA_MAP25) { 287 mdata = &map->s_type_specific.s_metadata; 288 iput(mdata->s_metadata_fe); 289 mdata->s_metadata_fe = NULL; 290 291 iput(mdata->s_mirror_fe); 292 mdata->s_mirror_fe = NULL; 293 294 iput(mdata->s_bitmap_fe); 295 mdata->s_bitmap_fe = NULL; 296 } 297} 298 299static void udf_sb_free_partitions(struct super_block *sb) 300{ 301 struct udf_sb_info *sbi = UDF_SB(sb); 302 int i; 303 304 if (!sbi->s_partmaps) 305 return; 306 for (i = 0; i < sbi->s_partitions; i++) 307 udf_free_partition(&sbi->s_partmaps[i]); 308 kfree(sbi->s_partmaps); 309 sbi->s_partmaps = NULL; 310} 311 312static int udf_show_options(struct seq_file *seq, struct dentry *root) 313{ 314 struct super_block *sb = root->d_sb; 315 struct udf_sb_info *sbi = UDF_SB(sb); 316 317 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) 318 seq_puts(seq, ",nostrict"); 319 if (UDF_QUERY_FLAG(sb, UDF_FLAG_BLOCKSIZE_SET)) 320 seq_printf(seq, ",bs=%lu", sb->s_blocksize); 321 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNHIDE)) 322 seq_puts(seq, ",unhide"); 323 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UNDELETE)) 324 seq_puts(seq, ",undelete"); 325 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_USE_AD_IN_ICB)) 326 seq_puts(seq, ",noadinicb"); 327 if (UDF_QUERY_FLAG(sb, UDF_FLAG_USE_SHORT_AD)) 328 seq_puts(seq, ",shortad"); 329 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_FORGET)) 330 seq_puts(seq, ",uid=forget"); 331 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_FORGET)) 332 seq_puts(seq, ",gid=forget"); 333 if (UDF_QUERY_FLAG(sb, UDF_FLAG_UID_SET)) 334 seq_printf(seq, ",uid=%u", from_kuid(&init_user_ns, sbi->s_uid)); 335 if (UDF_QUERY_FLAG(sb, UDF_FLAG_GID_SET)) 336 seq_printf(seq, ",gid=%u", from_kgid(&init_user_ns, sbi->s_gid)); 337 if (sbi->s_umask != 0) 338 seq_printf(seq, ",umask=%ho", sbi->s_umask); 339 if (sbi->s_fmode != UDF_INVALID_MODE) 340 seq_printf(seq, ",mode=%ho", sbi->s_fmode); 341 if (sbi->s_dmode != UDF_INVALID_MODE) 342 seq_printf(seq, ",dmode=%ho", sbi->s_dmode); 343 if (UDF_QUERY_FLAG(sb, UDF_FLAG_SESSION_SET)) 344 seq_printf(seq, ",session=%d", sbi->s_session); 345 if (UDF_QUERY_FLAG(sb, UDF_FLAG_LASTBLOCK_SET)) 346 seq_printf(seq, ",lastblock=%u", sbi->s_last_block); 347 if (sbi->s_anchor != 0) 348 seq_printf(seq, ",anchor=%u", sbi->s_anchor); 349 if (sbi->s_nls_map) 350 seq_printf(seq, ",iocharset=%s", sbi->s_nls_map->charset); 351 else 352 seq_puts(seq, ",iocharset=utf8"); 353 354 return 0; 355} 356 357/* 358 * udf_parse_options 359 * 360 * PURPOSE 361 * Parse mount options. 362 * 363 * DESCRIPTION 364 * The following mount options are supported: 365 * 366 * gid= Set the default group. 367 * umask= Set the default umask. 368 * mode= Set the default file permissions. 369 * dmode= Set the default directory permissions. 370 * uid= Set the default user. 371 * bs= Set the block size. 372 * unhide Show otherwise hidden files. 373 * undelete Show deleted files in lists. 374 * adinicb Embed data in the inode (default) 375 * noadinicb Don't embed data in the inode 376 * shortad Use short ad's 377 * longad Use long ad's (default) 378 * nostrict Unset strict conformance 379 * iocharset= Set the NLS character set 380 * 381 * The remaining are for debugging and disaster recovery: 382 * 383 * novrs Skip volume sequence recognition 384 * 385 * The following expect a offset from 0. 386 * 387 * session= Set the CDROM session (default= last session) 388 * anchor= Override standard anchor location. (default= 256) 389 * volume= Override the VolumeDesc location. (unused) 390 * partition= Override the PartitionDesc location. (unused) 391 * lastblock= Set the last block of the filesystem/ 392 * 393 * The following expect a offset from the partition root. 394 * 395 * fileset= Override the fileset block location. (unused) 396 * rootdir= Override the root directory location. (unused) 397 * WARNING: overriding the rootdir to a non-directory may 398 * yield highly unpredictable results. 399 * 400 * PRE-CONDITIONS 401 * options Pointer to mount options string. 402 * uopts Pointer to mount options variable. 403 * 404 * POST-CONDITIONS 405 * <return> 1 Mount options parsed okay. 406 * <return> 0 Error parsing mount options. 407 * 408 * HISTORY 409 * July 1, 1997 - Andrew E. Mileski 410 * Written, tested, and released. 411 */ 412 413enum { 414 Opt_novrs, Opt_nostrict, Opt_bs, Opt_unhide, Opt_undelete, 415 Opt_noadinicb, Opt_adinicb, Opt_shortad, Opt_longad, 416 Opt_gid, Opt_uid, Opt_umask, Opt_session, Opt_lastblock, 417 Opt_anchor, Opt_volume, Opt_partition, Opt_fileset, 418 Opt_rootdir, Opt_utf8, Opt_iocharset, 419 Opt_err, Opt_uforget, Opt_uignore, Opt_gforget, Opt_gignore, 420 Opt_fmode, Opt_dmode 421}; 422 423static const match_table_t tokens = { 424 {Opt_novrs, "novrs"}, 425 {Opt_nostrict, "nostrict"}, 426 {Opt_bs, "bs=%u"}, 427 {Opt_unhide, "unhide"}, 428 {Opt_undelete, "undelete"}, 429 {Opt_noadinicb, "noadinicb"}, 430 {Opt_adinicb, "adinicb"}, 431 {Opt_shortad, "shortad"}, 432 {Opt_longad, "longad"}, 433 {Opt_uforget, "uid=forget"}, 434 {Opt_uignore, "uid=ignore"}, 435 {Opt_gforget, "gid=forget"}, 436 {Opt_gignore, "gid=ignore"}, 437 {Opt_gid, "gid=%u"}, 438 {Opt_uid, "uid=%u"}, 439 {Opt_umask, "umask=%o"}, 440 {Opt_session, "session=%u"}, 441 {Opt_lastblock, "lastblock=%u"}, 442 {Opt_anchor, "anchor=%u"}, 443 {Opt_volume, "volume=%u"}, 444 {Opt_partition, "partition=%u"}, 445 {Opt_fileset, "fileset=%u"}, 446 {Opt_rootdir, "rootdir=%u"}, 447 {Opt_utf8, "utf8"}, 448 {Opt_iocharset, "iocharset=%s"}, 449 {Opt_fmode, "mode=%o"}, 450 {Opt_dmode, "dmode=%o"}, 451 {Opt_err, NULL} 452}; 453 454static int udf_parse_options(char *options, struct udf_options *uopt, 455 bool remount) 456{ 457 char *p; 458 int option; 459 460 uopt->novrs = 0; 461 uopt->session = 0xFFFFFFFF; 462 uopt->lastblock = 0; 463 uopt->anchor = 0; 464 465 if (!options) 466 return 1; 467 468 while ((p = strsep(&options, ",")) != NULL) { 469 substring_t args[MAX_OPT_ARGS]; 470 int token; 471 unsigned n; 472 if (!*p) 473 continue; 474 475 token = match_token(p, tokens, args); 476 switch (token) { 477 case Opt_novrs: 478 uopt->novrs = 1; 479 break; 480 case Opt_bs: 481 if (match_int(&args[0], &option)) 482 return 0; 483 n = option; 484 if (n != 512 && n != 1024 && n != 2048 && n != 4096) 485 return 0; 486 uopt->blocksize = n; 487 uopt->flags |= (1 << UDF_FLAG_BLOCKSIZE_SET); 488 break; 489 case Opt_unhide: 490 uopt->flags |= (1 << UDF_FLAG_UNHIDE); 491 break; 492 case Opt_undelete: 493 uopt->flags |= (1 << UDF_FLAG_UNDELETE); 494 break; 495 case Opt_noadinicb: 496 uopt->flags &= ~(1 << UDF_FLAG_USE_AD_IN_ICB); 497 break; 498 case Opt_adinicb: 499 uopt->flags |= (1 << UDF_FLAG_USE_AD_IN_ICB); 500 break; 501 case Opt_shortad: 502 uopt->flags |= (1 << UDF_FLAG_USE_SHORT_AD); 503 break; 504 case Opt_longad: 505 uopt->flags &= ~(1 << UDF_FLAG_USE_SHORT_AD); 506 break; 507 case Opt_gid: 508 if (match_int(args, &option)) 509 return 0; 510 uopt->gid = make_kgid(current_user_ns(), option); 511 if (!gid_valid(uopt->gid)) 512 return 0; 513 uopt->flags |= (1 << UDF_FLAG_GID_SET); 514 break; 515 case Opt_uid: 516 if (match_int(args, &option)) 517 return 0; 518 uopt->uid = make_kuid(current_user_ns(), option); 519 if (!uid_valid(uopt->uid)) 520 return 0; 521 uopt->flags |= (1 << UDF_FLAG_UID_SET); 522 break; 523 case Opt_umask: 524 if (match_octal(args, &option)) 525 return 0; 526 uopt->umask = option; 527 break; 528 case Opt_nostrict: 529 uopt->flags &= ~(1 << UDF_FLAG_STRICT); 530 break; 531 case Opt_session: 532 if (match_int(args, &option)) 533 return 0; 534 uopt->session = option; 535 if (!remount) 536 uopt->flags |= (1 << UDF_FLAG_SESSION_SET); 537 break; 538 case Opt_lastblock: 539 if (match_int(args, &option)) 540 return 0; 541 uopt->lastblock = option; 542 if (!remount) 543 uopt->flags |= (1 << UDF_FLAG_LASTBLOCK_SET); 544 break; 545 case Opt_anchor: 546 if (match_int(args, &option)) 547 return 0; 548 uopt->anchor = option; 549 break; 550 case Opt_volume: 551 case Opt_partition: 552 case Opt_fileset: 553 case Opt_rootdir: 554 /* Ignored (never implemented properly) */ 555 break; 556 case Opt_utf8: 557 if (!remount) { 558 unload_nls(uopt->nls_map); 559 uopt->nls_map = NULL; 560 } 561 break; 562 case Opt_iocharset: 563 if (!remount) { 564 unload_nls(uopt->nls_map); 565 uopt->nls_map = NULL; 566 } 567 /* When nls_map is not loaded then UTF-8 is used */ 568 if (!remount && strcmp(args[0].from, "utf8") != 0) { 569 uopt->nls_map = load_nls(args[0].from); 570 if (!uopt->nls_map) { 571 pr_err("iocharset %s not found\n", 572 args[0].from); 573 return 0; 574 } 575 } 576 break; 577 case Opt_uforget: 578 uopt->flags |= (1 << UDF_FLAG_UID_FORGET); 579 break; 580 case Opt_uignore: 581 case Opt_gignore: 582 /* These options are superseeded by uid=<number> */ 583 break; 584 case Opt_gforget: 585 uopt->flags |= (1 << UDF_FLAG_GID_FORGET); 586 break; 587 case Opt_fmode: 588 if (match_octal(args, &option)) 589 return 0; 590 uopt->fmode = option & 0777; 591 break; 592 case Opt_dmode: 593 if (match_octal(args, &option)) 594 return 0; 595 uopt->dmode = option & 0777; 596 break; 597 default: 598 pr_err("bad mount option \"%s\" or missing value\n", p); 599 return 0; 600 } 601 } 602 return 1; 603} 604 605static int udf_remount_fs(struct super_block *sb, int *flags, char *options) 606{ 607 struct udf_options uopt; 608 struct udf_sb_info *sbi = UDF_SB(sb); 609 int error = 0; 610 611 if (!(*flags & SB_RDONLY) && UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 612 return -EACCES; 613 614 sync_filesystem(sb); 615 616 uopt.flags = sbi->s_flags; 617 uopt.uid = sbi->s_uid; 618 uopt.gid = sbi->s_gid; 619 uopt.umask = sbi->s_umask; 620 uopt.fmode = sbi->s_fmode; 621 uopt.dmode = sbi->s_dmode; 622 uopt.nls_map = NULL; 623 624 if (!udf_parse_options(options, &uopt, true)) 625 return -EINVAL; 626 627 write_lock(&sbi->s_cred_lock); 628 sbi->s_flags = uopt.flags; 629 sbi->s_uid = uopt.uid; 630 sbi->s_gid = uopt.gid; 631 sbi->s_umask = uopt.umask; 632 sbi->s_fmode = uopt.fmode; 633 sbi->s_dmode = uopt.dmode; 634 write_unlock(&sbi->s_cred_lock); 635 636 if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb)) 637 goto out_unlock; 638 639 if (*flags & SB_RDONLY) 640 udf_close_lvid(sb); 641 else 642 udf_open_lvid(sb); 643 644out_unlock: 645 return error; 646} 647 648/* 649 * Check VSD descriptor. Returns -1 in case we are at the end of volume 650 * recognition area, 0 if the descriptor is valid but non-interesting, 1 if 651 * we found one of NSR descriptors we are looking for. 652 */ 653static int identify_vsd(const struct volStructDesc *vsd) 654{ 655 int ret = 0; 656 657 if (!memcmp(vsd->stdIdent, VSD_STD_ID_CD001, VSD_STD_ID_LEN)) { 658 switch (vsd->structType) { 659 case 0: 660 udf_debug("ISO9660 Boot Record found\n"); 661 break; 662 case 1: 663 udf_debug("ISO9660 Primary Volume Descriptor found\n"); 664 break; 665 case 2: 666 udf_debug("ISO9660 Supplementary Volume Descriptor found\n"); 667 break; 668 case 3: 669 udf_debug("ISO9660 Volume Partition Descriptor found\n"); 670 break; 671 case 255: 672 udf_debug("ISO9660 Volume Descriptor Set Terminator found\n"); 673 break; 674 default: 675 udf_debug("ISO9660 VRS (%u) found\n", vsd->structType); 676 break; 677 } 678 } else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BEA01, VSD_STD_ID_LEN)) 679 ; /* ret = 0 */ 680 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR02, VSD_STD_ID_LEN)) 681 ret = 1; 682 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_NSR03, VSD_STD_ID_LEN)) 683 ret = 1; 684 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_BOOT2, VSD_STD_ID_LEN)) 685 ; /* ret = 0 */ 686 else if (!memcmp(vsd->stdIdent, VSD_STD_ID_CDW02, VSD_STD_ID_LEN)) 687 ; /* ret = 0 */ 688 else { 689 /* TEA01 or invalid id : end of volume recognition area */ 690 ret = -1; 691 } 692 693 return ret; 694} 695 696/* 697 * Check Volume Structure Descriptors (ECMA 167 2/9.1) 698 * We also check any "CD-ROM Volume Descriptor Set" (ECMA 167 2/8.3.1) 699 * @return 1 if NSR02 or NSR03 found, 700 * -1 if first sector read error, 0 otherwise 701 */ 702static int udf_check_vsd(struct super_block *sb) 703{ 704 struct volStructDesc *vsd = NULL; 705 loff_t sector = VSD_FIRST_SECTOR_OFFSET; 706 int sectorsize; 707 struct buffer_head *bh = NULL; 708 int nsr = 0; 709 struct udf_sb_info *sbi; 710 loff_t session_offset; 711 712 sbi = UDF_SB(sb); 713 if (sb->s_blocksize < sizeof(struct volStructDesc)) 714 sectorsize = sizeof(struct volStructDesc); 715 else 716 sectorsize = sb->s_blocksize; 717 718 session_offset = (loff_t)sbi->s_session << sb->s_blocksize_bits; 719 sector += session_offset; 720 721 udf_debug("Starting at sector %u (%lu byte sectors)\n", 722 (unsigned int)(sector >> sb->s_blocksize_bits), 723 sb->s_blocksize); 724 /* Process the sequence (if applicable). The hard limit on the sector 725 * offset is arbitrary, hopefully large enough so that all valid UDF 726 * filesystems will be recognised. There is no mention of an upper 727 * bound to the size of the volume recognition area in the standard. 728 * The limit will prevent the code to read all the sectors of a 729 * specially crafted image (like a bluray disc full of CD001 sectors), 730 * potentially causing minutes or even hours of uninterruptible I/O 731 * activity. This actually happened with uninitialised SSD partitions 732 * (all 0xFF) before the check for the limit and all valid IDs were 733 * added */ 734 for (; !nsr && sector < VSD_MAX_SECTOR_OFFSET; sector += sectorsize) { 735 /* Read a block */ 736 bh = udf_tread(sb, sector >> sb->s_blocksize_bits); 737 if (!bh) 738 break; 739 740 vsd = (struct volStructDesc *)(bh->b_data + 741 (sector & (sb->s_blocksize - 1))); 742 nsr = identify_vsd(vsd); 743 /* Found NSR or end? */ 744 if (nsr) { 745 brelse(bh); 746 break; 747 } 748 /* 749 * Special handling for improperly formatted VRS (e.g., Win10) 750 * where components are separated by 2048 bytes even though 751 * sectors are 4K 752 */ 753 if (sb->s_blocksize == 4096) { 754 nsr = identify_vsd(vsd + 1); 755 /* Ignore unknown IDs... */ 756 if (nsr < 0) 757 nsr = 0; 758 } 759 brelse(bh); 760 } 761 762 if (nsr > 0) 763 return 1; 764 else if (!bh && sector - session_offset == VSD_FIRST_SECTOR_OFFSET) 765 return -1; 766 else 767 return 0; 768} 769 770static int udf_verify_domain_identifier(struct super_block *sb, 771 struct regid *ident, char *dname) 772{ 773 struct domainIdentSuffix *suffix; 774 775 if (memcmp(ident->ident, UDF_ID_COMPLIANT, strlen(UDF_ID_COMPLIANT))) { 776 udf_warn(sb, "Not OSTA UDF compliant %s descriptor.\n", dname); 777 goto force_ro; 778 } 779 if (ident->flags & ENTITYID_FLAGS_DIRTY) { 780 udf_warn(sb, "Possibly not OSTA UDF compliant %s descriptor.\n", 781 dname); 782 goto force_ro; 783 } 784 suffix = (struct domainIdentSuffix *)ident->identSuffix; 785 if ((suffix->domainFlags & DOMAIN_FLAGS_HARD_WRITE_PROTECT) || 786 (suffix->domainFlags & DOMAIN_FLAGS_SOFT_WRITE_PROTECT)) { 787 if (!sb_rdonly(sb)) { 788 udf_warn(sb, "Descriptor for %s marked write protected." 789 " Forcing read only mount.\n", dname); 790 } 791 goto force_ro; 792 } 793 return 0; 794 795force_ro: 796 if (!sb_rdonly(sb)) 797 return -EACCES; 798 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 799 return 0; 800} 801 802static int udf_load_fileset(struct super_block *sb, struct fileSetDesc *fset, 803 struct kernel_lb_addr *root) 804{ 805 int ret; 806 807 ret = udf_verify_domain_identifier(sb, &fset->domainIdent, "file set"); 808 if (ret < 0) 809 return ret; 810 811 *root = lelb_to_cpu(fset->rootDirectoryICB.extLocation); 812 UDF_SB(sb)->s_serial_number = le16_to_cpu(fset->descTag.tagSerialNum); 813 814 udf_debug("Rootdir at block=%u, partition=%u\n", 815 root->logicalBlockNum, root->partitionReferenceNum); 816 return 0; 817} 818 819static int udf_find_fileset(struct super_block *sb, 820 struct kernel_lb_addr *fileset, 821 struct kernel_lb_addr *root) 822{ 823 struct buffer_head *bh = NULL; 824 uint16_t ident; 825 int ret; 826 827 if (fileset->logicalBlockNum == 0xFFFFFFFF && 828 fileset->partitionReferenceNum == 0xFFFF) 829 return -EINVAL; 830 831 bh = udf_read_ptagged(sb, fileset, 0, &ident); 832 if (!bh) 833 return -EIO; 834 if (ident != TAG_IDENT_FSD) { 835 brelse(bh); 836 return -EINVAL; 837 } 838 839 udf_debug("Fileset at block=%u, partition=%u\n", 840 fileset->logicalBlockNum, fileset->partitionReferenceNum); 841 842 UDF_SB(sb)->s_partition = fileset->partitionReferenceNum; 843 ret = udf_load_fileset(sb, (struct fileSetDesc *)bh->b_data, root); 844 brelse(bh); 845 return ret; 846} 847 848/* 849 * Load primary Volume Descriptor Sequence 850 * 851 * Return <0 on error, 0 on success. -EAGAIN is special meaning next sequence 852 * should be tried. 853 */ 854static int udf_load_pvoldesc(struct super_block *sb, sector_t block) 855{ 856 struct primaryVolDesc *pvoldesc; 857 uint8_t *outstr; 858 struct buffer_head *bh; 859 uint16_t ident; 860 int ret; 861 struct timestamp *ts; 862 863 outstr = kmalloc(128, GFP_NOFS); 864 if (!outstr) 865 return -ENOMEM; 866 867 bh = udf_read_tagged(sb, block, block, &ident); 868 if (!bh) { 869 ret = -EAGAIN; 870 goto out2; 871 } 872 873 if (ident != TAG_IDENT_PVD) { 874 ret = -EIO; 875 goto out_bh; 876 } 877 878 pvoldesc = (struct primaryVolDesc *)bh->b_data; 879 880 udf_disk_stamp_to_time(&UDF_SB(sb)->s_record_time, 881 pvoldesc->recordingDateAndTime); 882 ts = &pvoldesc->recordingDateAndTime; 883 udf_debug("recording time %04u/%02u/%02u %02u:%02u (%x)\n", 884 le16_to_cpu(ts->year), ts->month, ts->day, ts->hour, 885 ts->minute, le16_to_cpu(ts->typeAndTimezone)); 886 887 ret = udf_dstrCS0toChar(sb, outstr, 31, pvoldesc->volIdent, 32); 888 if (ret < 0) { 889 strcpy(UDF_SB(sb)->s_volume_ident, "InvalidName"); 890 pr_warn("incorrect volume identification, setting to " 891 "'InvalidName'\n"); 892 } else { 893 strncpy(UDF_SB(sb)->s_volume_ident, outstr, ret); 894 } 895 udf_debug("volIdent[] = '%s'\n", UDF_SB(sb)->s_volume_ident); 896 897 ret = udf_dstrCS0toChar(sb, outstr, 127, pvoldesc->volSetIdent, 128); 898 if (ret < 0) { 899 ret = 0; 900 goto out_bh; 901 } 902 outstr[ret] = 0; 903 udf_debug("volSetIdent[] = '%s'\n", outstr); 904 905 ret = 0; 906out_bh: 907 brelse(bh); 908out2: 909 kfree(outstr); 910 return ret; 911} 912 913struct inode *udf_find_metadata_inode_efe(struct super_block *sb, 914 u32 meta_file_loc, u32 partition_ref) 915{ 916 struct kernel_lb_addr addr; 917 struct inode *metadata_fe; 918 919 addr.logicalBlockNum = meta_file_loc; 920 addr.partitionReferenceNum = partition_ref; 921 922 metadata_fe = udf_iget_special(sb, &addr); 923 924 if (IS_ERR(metadata_fe)) { 925 udf_warn(sb, "metadata inode efe not found\n"); 926 return metadata_fe; 927 } 928 if (UDF_I(metadata_fe)->i_alloc_type != ICBTAG_FLAG_AD_SHORT) { 929 udf_warn(sb, "metadata inode efe does not have short allocation descriptors!\n"); 930 iput(metadata_fe); 931 return ERR_PTR(-EIO); 932 } 933 934 return metadata_fe; 935} 936 937static int udf_load_metadata_files(struct super_block *sb, int partition, 938 int type1_index) 939{ 940 struct udf_sb_info *sbi = UDF_SB(sb); 941 struct udf_part_map *map; 942 struct udf_meta_data *mdata; 943 struct kernel_lb_addr addr; 944 struct inode *fe; 945 946 map = &sbi->s_partmaps[partition]; 947 mdata = &map->s_type_specific.s_metadata; 948 mdata->s_phys_partition_ref = type1_index; 949 950 /* metadata address */ 951 udf_debug("Metadata file location: block = %u part = %u\n", 952 mdata->s_meta_file_loc, mdata->s_phys_partition_ref); 953 954 fe = udf_find_metadata_inode_efe(sb, mdata->s_meta_file_loc, 955 mdata->s_phys_partition_ref); 956 if (IS_ERR(fe)) { 957 /* mirror file entry */ 958 udf_debug("Mirror metadata file location: block = %u part = %u\n", 959 mdata->s_mirror_file_loc, mdata->s_phys_partition_ref); 960 961 fe = udf_find_metadata_inode_efe(sb, mdata->s_mirror_file_loc, 962 mdata->s_phys_partition_ref); 963 964 if (IS_ERR(fe)) { 965 udf_err(sb, "Both metadata and mirror metadata inode efe can not found\n"); 966 return PTR_ERR(fe); 967 } 968 mdata->s_mirror_fe = fe; 969 } else 970 mdata->s_metadata_fe = fe; 971 972 973 /* 974 * bitmap file entry 975 * Note: 976 * Load only if bitmap file location differs from 0xFFFFFFFF (DCN-5102) 977 */ 978 if (mdata->s_bitmap_file_loc != 0xFFFFFFFF) { 979 addr.logicalBlockNum = mdata->s_bitmap_file_loc; 980 addr.partitionReferenceNum = mdata->s_phys_partition_ref; 981 982 udf_debug("Bitmap file location: block = %u part = %u\n", 983 addr.logicalBlockNum, addr.partitionReferenceNum); 984 985 fe = udf_iget_special(sb, &addr); 986 if (IS_ERR(fe)) { 987 if (sb_rdonly(sb)) 988 udf_warn(sb, "bitmap inode efe not found but it's ok since the disc is mounted read-only\n"); 989 else { 990 udf_err(sb, "bitmap inode efe not found and attempted read-write mount\n"); 991 return PTR_ERR(fe); 992 } 993 } else 994 mdata->s_bitmap_fe = fe; 995 } 996 997 udf_debug("udf_load_metadata_files Ok\n"); 998 return 0; 999} 1000 1001int udf_compute_nr_groups(struct super_block *sb, u32 partition) 1002{ 1003 struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition]; 1004 return DIV_ROUND_UP(map->s_partition_len + 1005 (sizeof(struct spaceBitmapDesc) << 3), 1006 sb->s_blocksize * 8); 1007} 1008 1009static struct udf_bitmap *udf_sb_alloc_bitmap(struct super_block *sb, u32 index) 1010{ 1011 struct udf_bitmap *bitmap; 1012 int nr_groups = udf_compute_nr_groups(sb, index); 1013 1014 bitmap = kvzalloc(struct_size(bitmap, s_block_bitmap, nr_groups), 1015 GFP_KERNEL); 1016 if (!bitmap) 1017 return NULL; 1018 1019 bitmap->s_nr_groups = nr_groups; 1020 return bitmap; 1021} 1022 1023static int check_partition_desc(struct super_block *sb, 1024 struct partitionDesc *p, 1025 struct udf_part_map *map) 1026{ 1027 bool umap, utable, fmap, ftable; 1028 struct partitionHeaderDesc *phd; 1029 1030 switch (le32_to_cpu(p->accessType)) { 1031 case PD_ACCESS_TYPE_READ_ONLY: 1032 case PD_ACCESS_TYPE_WRITE_ONCE: 1033 case PD_ACCESS_TYPE_NONE: 1034 goto force_ro; 1035 } 1036 1037 /* No Partition Header Descriptor? */ 1038 if (strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR02) && 1039 strcmp(p->partitionContents.ident, PD_PARTITION_CONTENTS_NSR03)) 1040 goto force_ro; 1041 1042 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1043 utable = phd->unallocSpaceTable.extLength; 1044 umap = phd->unallocSpaceBitmap.extLength; 1045 ftable = phd->freedSpaceTable.extLength; 1046 fmap = phd->freedSpaceBitmap.extLength; 1047 1048 /* No allocation info? */ 1049 if (!utable && !umap && !ftable && !fmap) 1050 goto force_ro; 1051 1052 /* We don't support blocks that require erasing before overwrite */ 1053 if (ftable || fmap) 1054 goto force_ro; 1055 /* UDF 2.60: 2.3.3 - no mixing of tables & bitmaps, no VAT. */ 1056 if (utable && umap) 1057 goto force_ro; 1058 1059 if (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1060 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1061 map->s_partition_type == UDF_METADATA_MAP25) 1062 goto force_ro; 1063 1064 return 0; 1065force_ro: 1066 if (!sb_rdonly(sb)) 1067 return -EACCES; 1068 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1069 return 0; 1070} 1071 1072static int udf_fill_partdesc_info(struct super_block *sb, 1073 struct partitionDesc *p, int p_index) 1074{ 1075 struct udf_part_map *map; 1076 struct udf_sb_info *sbi = UDF_SB(sb); 1077 struct partitionHeaderDesc *phd; 1078 int err; 1079 1080 map = &sbi->s_partmaps[p_index]; 1081 1082 map->s_partition_len = le32_to_cpu(p->partitionLength); /* blocks */ 1083 map->s_partition_root = le32_to_cpu(p->partitionStartingLocation); 1084 1085 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_READ_ONLY)) 1086 map->s_partition_flags |= UDF_PART_FLAG_READ_ONLY; 1087 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_WRITE_ONCE)) 1088 map->s_partition_flags |= UDF_PART_FLAG_WRITE_ONCE; 1089 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_REWRITABLE)) 1090 map->s_partition_flags |= UDF_PART_FLAG_REWRITABLE; 1091 if (p->accessType == cpu_to_le32(PD_ACCESS_TYPE_OVERWRITABLE)) 1092 map->s_partition_flags |= UDF_PART_FLAG_OVERWRITABLE; 1093 1094 udf_debug("Partition (%d type %x) starts at physical %u, block length %u\n", 1095 p_index, map->s_partition_type, 1096 map->s_partition_root, map->s_partition_len); 1097 1098 err = check_partition_desc(sb, p, map); 1099 if (err) 1100 return err; 1101 1102 /* 1103 * Skip loading allocation info it we cannot ever write to the fs. 1104 * This is a correctness thing as we may have decided to force ro mount 1105 * to avoid allocation info we don't support. 1106 */ 1107 if (UDF_QUERY_FLAG(sb, UDF_FLAG_RW_INCOMPAT)) 1108 return 0; 1109 1110 phd = (struct partitionHeaderDesc *)p->partitionContentsUse; 1111 if (phd->unallocSpaceTable.extLength) { 1112 struct kernel_lb_addr loc = { 1113 .logicalBlockNum = le32_to_cpu( 1114 phd->unallocSpaceTable.extPosition), 1115 .partitionReferenceNum = p_index, 1116 }; 1117 struct inode *inode; 1118 1119 inode = udf_iget_special(sb, &loc); 1120 if (IS_ERR(inode)) { 1121 udf_debug("cannot load unallocSpaceTable (part %d)\n", 1122 p_index); 1123 return PTR_ERR(inode); 1124 } 1125 map->s_uspace.s_table = inode; 1126 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_TABLE; 1127 udf_debug("unallocSpaceTable (part %d) @ %lu\n", 1128 p_index, map->s_uspace.s_table->i_ino); 1129 } 1130 1131 if (phd->unallocSpaceBitmap.extLength) { 1132 struct udf_bitmap *bitmap = udf_sb_alloc_bitmap(sb, p_index); 1133 if (!bitmap) 1134 return -ENOMEM; 1135 map->s_uspace.s_bitmap = bitmap; 1136 bitmap->s_extPosition = le32_to_cpu( 1137 phd->unallocSpaceBitmap.extPosition); 1138 map->s_partition_flags |= UDF_PART_FLAG_UNALLOC_BITMAP; 1139 udf_debug("unallocSpaceBitmap (part %d) @ %u\n", 1140 p_index, bitmap->s_extPosition); 1141 } 1142 1143 return 0; 1144} 1145 1146static void udf_find_vat_block(struct super_block *sb, int p_index, 1147 int type1_index, sector_t start_block) 1148{ 1149 struct udf_sb_info *sbi = UDF_SB(sb); 1150 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1151 sector_t vat_block; 1152 struct kernel_lb_addr ino; 1153 struct inode *inode; 1154 1155 /* 1156 * VAT file entry is in the last recorded block. Some broken disks have 1157 * it a few blocks before so try a bit harder... 1158 */ 1159 ino.partitionReferenceNum = type1_index; 1160 for (vat_block = start_block; 1161 vat_block >= map->s_partition_root && 1162 vat_block >= start_block - 3; vat_block--) { 1163 ino.logicalBlockNum = vat_block - map->s_partition_root; 1164 inode = udf_iget_special(sb, &ino); 1165 if (!IS_ERR(inode)) { 1166 sbi->s_vat_inode = inode; 1167 break; 1168 } 1169 } 1170} 1171 1172static int udf_load_vat(struct super_block *sb, int p_index, int type1_index) 1173{ 1174 struct udf_sb_info *sbi = UDF_SB(sb); 1175 struct udf_part_map *map = &sbi->s_partmaps[p_index]; 1176 struct buffer_head *bh = NULL; 1177 struct udf_inode_info *vati; 1178 uint32_t pos; 1179 struct virtualAllocationTable20 *vat20; 1180 sector_t blocks = i_size_read(sb->s_bdev->bd_inode) >> 1181 sb->s_blocksize_bits; 1182 1183 udf_find_vat_block(sb, p_index, type1_index, sbi->s_last_block); 1184 if (!sbi->s_vat_inode && 1185 sbi->s_last_block != blocks - 1) { 1186 pr_notice("Failed to read VAT inode from the last recorded block (%lu), retrying with the last block of the device (%lu).\n", 1187 (unsigned long)sbi->s_last_block, 1188 (unsigned long)blocks - 1); 1189 udf_find_vat_block(sb, p_index, type1_index, blocks - 1); 1190 } 1191 if (!sbi->s_vat_inode) 1192 return -EIO; 1193 1194 if (map->s_partition_type == UDF_VIRTUAL_MAP15) { 1195 map->s_type_specific.s_virtual.s_start_offset = 0; 1196 map->s_type_specific.s_virtual.s_num_entries = 1197 (sbi->s_vat_inode->i_size - 36) >> 2; 1198 } else if (map->s_partition_type == UDF_VIRTUAL_MAP20) { 1199 vati = UDF_I(sbi->s_vat_inode); 1200 if (vati->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1201 pos = udf_block_map(sbi->s_vat_inode, 0); 1202 bh = sb_bread(sb, pos); 1203 if (!bh) 1204 return -EIO; 1205 vat20 = (struct virtualAllocationTable20 *)bh->b_data; 1206 } else { 1207 vat20 = (struct virtualAllocationTable20 *) 1208 vati->i_data; 1209 } 1210 1211 map->s_type_specific.s_virtual.s_start_offset = 1212 le16_to_cpu(vat20->lengthHeader); 1213 map->s_type_specific.s_virtual.s_num_entries = 1214 (sbi->s_vat_inode->i_size - 1215 map->s_type_specific.s_virtual. 1216 s_start_offset) >> 2; 1217 brelse(bh); 1218 } 1219 return 0; 1220} 1221 1222/* 1223 * Load partition descriptor block 1224 * 1225 * Returns <0 on error, 0 on success, -EAGAIN is special - try next descriptor 1226 * sequence. 1227 */ 1228static int udf_load_partdesc(struct super_block *sb, sector_t block) 1229{ 1230 struct buffer_head *bh; 1231 struct partitionDesc *p; 1232 struct udf_part_map *map; 1233 struct udf_sb_info *sbi = UDF_SB(sb); 1234 int i, type1_idx; 1235 uint16_t partitionNumber; 1236 uint16_t ident; 1237 int ret; 1238 1239 bh = udf_read_tagged(sb, block, block, &ident); 1240 if (!bh) 1241 return -EAGAIN; 1242 if (ident != TAG_IDENT_PD) { 1243 ret = 0; 1244 goto out_bh; 1245 } 1246 1247 p = (struct partitionDesc *)bh->b_data; 1248 partitionNumber = le16_to_cpu(p->partitionNumber); 1249 1250 /* First scan for TYPE1 and SPARABLE partitions */ 1251 for (i = 0; i < sbi->s_partitions; i++) { 1252 map = &sbi->s_partmaps[i]; 1253 udf_debug("Searching map: (%u == %u)\n", 1254 map->s_partition_num, partitionNumber); 1255 if (map->s_partition_num == partitionNumber && 1256 (map->s_partition_type == UDF_TYPE1_MAP15 || 1257 map->s_partition_type == UDF_SPARABLE_MAP15)) 1258 break; 1259 } 1260 1261 if (i >= sbi->s_partitions) { 1262 udf_debug("Partition (%u) not found in partition map\n", 1263 partitionNumber); 1264 ret = 0; 1265 goto out_bh; 1266 } 1267 1268 ret = udf_fill_partdesc_info(sb, p, i); 1269 if (ret < 0) 1270 goto out_bh; 1271 1272 /* 1273 * Now rescan for VIRTUAL or METADATA partitions when SPARABLE and 1274 * PHYSICAL partitions are already set up 1275 */ 1276 type1_idx = i; 1277 map = NULL; /* supress 'maybe used uninitialized' warning */ 1278 for (i = 0; i < sbi->s_partitions; i++) { 1279 map = &sbi->s_partmaps[i]; 1280 1281 if (map->s_partition_num == partitionNumber && 1282 (map->s_partition_type == UDF_VIRTUAL_MAP15 || 1283 map->s_partition_type == UDF_VIRTUAL_MAP20 || 1284 map->s_partition_type == UDF_METADATA_MAP25)) 1285 break; 1286 } 1287 1288 if (i >= sbi->s_partitions) { 1289 ret = 0; 1290 goto out_bh; 1291 } 1292 1293 ret = udf_fill_partdesc_info(sb, p, i); 1294 if (ret < 0) 1295 goto out_bh; 1296 1297 if (map->s_partition_type == UDF_METADATA_MAP25) { 1298 ret = udf_load_metadata_files(sb, i, type1_idx); 1299 if (ret < 0) { 1300 udf_err(sb, "error loading MetaData partition map %d\n", 1301 i); 1302 goto out_bh; 1303 } 1304 } else { 1305 /* 1306 * If we have a partition with virtual map, we don't handle 1307 * writing to it (we overwrite blocks instead of relocating 1308 * them). 1309 */ 1310 if (!sb_rdonly(sb)) { 1311 ret = -EACCES; 1312 goto out_bh; 1313 } 1314 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1315 ret = udf_load_vat(sb, i, type1_idx); 1316 if (ret < 0) 1317 goto out_bh; 1318 } 1319 ret = 0; 1320out_bh: 1321 /* In case loading failed, we handle cleanup in udf_fill_super */ 1322 brelse(bh); 1323 return ret; 1324} 1325 1326static int udf_load_sparable_map(struct super_block *sb, 1327 struct udf_part_map *map, 1328 struct sparablePartitionMap *spm) 1329{ 1330 uint32_t loc; 1331 uint16_t ident; 1332 struct sparingTable *st; 1333 struct udf_sparing_data *sdata = &map->s_type_specific.s_sparing; 1334 int i; 1335 struct buffer_head *bh; 1336 1337 map->s_partition_type = UDF_SPARABLE_MAP15; 1338 sdata->s_packet_len = le16_to_cpu(spm->packetLength); 1339 if (!is_power_of_2(sdata->s_packet_len)) { 1340 udf_err(sb, "error loading logical volume descriptor: " 1341 "Invalid packet length %u\n", 1342 (unsigned)sdata->s_packet_len); 1343 return -EIO; 1344 } 1345 if (spm->numSparingTables > 4) { 1346 udf_err(sb, "error loading logical volume descriptor: " 1347 "Too many sparing tables (%d)\n", 1348 (int)spm->numSparingTables); 1349 return -EIO; 1350 } 1351 if (le32_to_cpu(spm->sizeSparingTable) > sb->s_blocksize) { 1352 udf_err(sb, "error loading logical volume descriptor: " 1353 "Too big sparing table size (%u)\n", 1354 le32_to_cpu(spm->sizeSparingTable)); 1355 return -EIO; 1356 } 1357 1358 for (i = 0; i < spm->numSparingTables; i++) { 1359 loc = le32_to_cpu(spm->locSparingTable[i]); 1360 bh = udf_read_tagged(sb, loc, loc, &ident); 1361 if (!bh) 1362 continue; 1363 1364 st = (struct sparingTable *)bh->b_data; 1365 if (ident != 0 || 1366 strncmp(st->sparingIdent.ident, UDF_ID_SPARING, 1367 strlen(UDF_ID_SPARING)) || 1368 sizeof(*st) + le16_to_cpu(st->reallocationTableLen) > 1369 sb->s_blocksize) { 1370 brelse(bh); 1371 continue; 1372 } 1373 1374 sdata->s_spar_map[i] = bh; 1375 } 1376 map->s_partition_func = udf_get_pblock_spar15; 1377 return 0; 1378} 1379 1380static int udf_load_logicalvol(struct super_block *sb, sector_t block, 1381 struct kernel_lb_addr *fileset) 1382{ 1383 struct logicalVolDesc *lvd; 1384 int i, offset; 1385 uint8_t type; 1386 struct udf_sb_info *sbi = UDF_SB(sb); 1387 struct genericPartitionMap *gpm; 1388 uint16_t ident; 1389 struct buffer_head *bh; 1390 unsigned int table_len; 1391 int ret; 1392 1393 bh = udf_read_tagged(sb, block, block, &ident); 1394 if (!bh) 1395 return -EAGAIN; 1396 BUG_ON(ident != TAG_IDENT_LVD); 1397 lvd = (struct logicalVolDesc *)bh->b_data; 1398 table_len = le32_to_cpu(lvd->mapTableLength); 1399 if (table_len > sb->s_blocksize - sizeof(*lvd)) { 1400 udf_err(sb, "error loading logical volume descriptor: " 1401 "Partition table too long (%u > %lu)\n", table_len, 1402 sb->s_blocksize - sizeof(*lvd)); 1403 ret = -EIO; 1404 goto out_bh; 1405 } 1406 1407 ret = udf_verify_domain_identifier(sb, &lvd->domainIdent, 1408 "logical volume"); 1409 if (ret) 1410 goto out_bh; 1411 ret = udf_sb_alloc_partition_maps(sb, le32_to_cpu(lvd->numPartitionMaps)); 1412 if (ret) 1413 goto out_bh; 1414 1415 for (i = 0, offset = 0; 1416 i < sbi->s_partitions && offset < table_len; 1417 i++, offset += gpm->partitionMapLength) { 1418 struct udf_part_map *map = &sbi->s_partmaps[i]; 1419 gpm = (struct genericPartitionMap *) 1420 &(lvd->partitionMaps[offset]); 1421 type = gpm->partitionMapType; 1422 if (type == 1) { 1423 struct genericPartitionMap1 *gpm1 = 1424 (struct genericPartitionMap1 *)gpm; 1425 map->s_partition_type = UDF_TYPE1_MAP15; 1426 map->s_volumeseqnum = le16_to_cpu(gpm1->volSeqNum); 1427 map->s_partition_num = le16_to_cpu(gpm1->partitionNum); 1428 map->s_partition_func = NULL; 1429 } else if (type == 2) { 1430 struct udfPartitionMap2 *upm2 = 1431 (struct udfPartitionMap2 *)gpm; 1432 if (!strncmp(upm2->partIdent.ident, UDF_ID_VIRTUAL, 1433 strlen(UDF_ID_VIRTUAL))) { 1434 u16 suf = 1435 le16_to_cpu(((__le16 *)upm2->partIdent. 1436 identSuffix)[0]); 1437 if (suf < 0x0200) { 1438 map->s_partition_type = 1439 UDF_VIRTUAL_MAP15; 1440 map->s_partition_func = 1441 udf_get_pblock_virt15; 1442 } else { 1443 map->s_partition_type = 1444 UDF_VIRTUAL_MAP20; 1445 map->s_partition_func = 1446 udf_get_pblock_virt20; 1447 } 1448 } else if (!strncmp(upm2->partIdent.ident, 1449 UDF_ID_SPARABLE, 1450 strlen(UDF_ID_SPARABLE))) { 1451 ret = udf_load_sparable_map(sb, map, 1452 (struct sparablePartitionMap *)gpm); 1453 if (ret < 0) 1454 goto out_bh; 1455 } else if (!strncmp(upm2->partIdent.ident, 1456 UDF_ID_METADATA, 1457 strlen(UDF_ID_METADATA))) { 1458 struct udf_meta_data *mdata = 1459 &map->s_type_specific.s_metadata; 1460 struct metadataPartitionMap *mdm = 1461 (struct metadataPartitionMap *) 1462 &(lvd->partitionMaps[offset]); 1463 udf_debug("Parsing Logical vol part %d type %u id=%s\n", 1464 i, type, UDF_ID_METADATA); 1465 1466 map->s_partition_type = UDF_METADATA_MAP25; 1467 map->s_partition_func = udf_get_pblock_meta25; 1468 1469 mdata->s_meta_file_loc = 1470 le32_to_cpu(mdm->metadataFileLoc); 1471 mdata->s_mirror_file_loc = 1472 le32_to_cpu(mdm->metadataMirrorFileLoc); 1473 mdata->s_bitmap_file_loc = 1474 le32_to_cpu(mdm->metadataBitmapFileLoc); 1475 mdata->s_alloc_unit_size = 1476 le32_to_cpu(mdm->allocUnitSize); 1477 mdata->s_align_unit_size = 1478 le16_to_cpu(mdm->alignUnitSize); 1479 if (mdm->flags & 0x01) 1480 mdata->s_flags |= MF_DUPLICATE_MD; 1481 1482 udf_debug("Metadata Ident suffix=0x%x\n", 1483 le16_to_cpu(*(__le16 *) 1484 mdm->partIdent.identSuffix)); 1485 udf_debug("Metadata part num=%u\n", 1486 le16_to_cpu(mdm->partitionNum)); 1487 udf_debug("Metadata part alloc unit size=%u\n", 1488 le32_to_cpu(mdm->allocUnitSize)); 1489 udf_debug("Metadata file loc=%u\n", 1490 le32_to_cpu(mdm->metadataFileLoc)); 1491 udf_debug("Mirror file loc=%u\n", 1492 le32_to_cpu(mdm->metadataMirrorFileLoc)); 1493 udf_debug("Bitmap file loc=%u\n", 1494 le32_to_cpu(mdm->metadataBitmapFileLoc)); 1495 udf_debug("Flags: %d %u\n", 1496 mdata->s_flags, mdm->flags); 1497 } else { 1498 udf_debug("Unknown ident: %s\n", 1499 upm2->partIdent.ident); 1500 continue; 1501 } 1502 map->s_volumeseqnum = le16_to_cpu(upm2->volSeqNum); 1503 map->s_partition_num = le16_to_cpu(upm2->partitionNum); 1504 } 1505 udf_debug("Partition (%d:%u) type %u on volume %u\n", 1506 i, map->s_partition_num, type, map->s_volumeseqnum); 1507 } 1508 1509 if (fileset) { 1510 struct long_ad *la = (struct long_ad *)&(lvd->logicalVolContentsUse[0]); 1511 1512 *fileset = lelb_to_cpu(la->extLocation); 1513 udf_debug("FileSet found in LogicalVolDesc at block=%u, partition=%u\n", 1514 fileset->logicalBlockNum, 1515 fileset->partitionReferenceNum); 1516 } 1517 if (lvd->integritySeqExt.extLength) 1518 udf_load_logicalvolint(sb, leea_to_cpu(lvd->integritySeqExt)); 1519 ret = 0; 1520 1521 if (!sbi->s_lvid_bh) { 1522 /* We can't generate unique IDs without a valid LVID */ 1523 if (sb_rdonly(sb)) { 1524 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 1525 } else { 1526 udf_warn(sb, "Damaged or missing LVID, forcing " 1527 "readonly mount\n"); 1528 ret = -EACCES; 1529 } 1530 } 1531out_bh: 1532 brelse(bh); 1533 return ret; 1534} 1535 1536/* 1537 * Find the prevailing Logical Volume Integrity Descriptor. 1538 */ 1539static void udf_load_logicalvolint(struct super_block *sb, struct kernel_extent_ad loc) 1540{ 1541 struct buffer_head *bh, *final_bh; 1542 uint16_t ident; 1543 struct udf_sb_info *sbi = UDF_SB(sb); 1544 struct logicalVolIntegrityDesc *lvid; 1545 int indirections = 0; 1546 u32 parts, impuselen; 1547 1548 while (++indirections <= UDF_MAX_LVID_NESTING) { 1549 final_bh = NULL; 1550 while (loc.extLength > 0 && 1551 (bh = udf_read_tagged(sb, loc.extLocation, 1552 loc.extLocation, &ident))) { 1553 if (ident != TAG_IDENT_LVID) { 1554 brelse(bh); 1555 break; 1556 } 1557 1558 brelse(final_bh); 1559 final_bh = bh; 1560 1561 loc.extLength -= sb->s_blocksize; 1562 loc.extLocation++; 1563 } 1564 1565 if (!final_bh) 1566 return; 1567 1568 brelse(sbi->s_lvid_bh); 1569 sbi->s_lvid_bh = final_bh; 1570 1571 lvid = (struct logicalVolIntegrityDesc *)final_bh->b_data; 1572 if (lvid->nextIntegrityExt.extLength == 0) 1573 goto check; 1574 1575 loc = leea_to_cpu(lvid->nextIntegrityExt); 1576 } 1577 1578 udf_warn(sb, "Too many LVID indirections (max %u), ignoring.\n", 1579 UDF_MAX_LVID_NESTING); 1580out_err: 1581 brelse(sbi->s_lvid_bh); 1582 sbi->s_lvid_bh = NULL; 1583 return; 1584check: 1585 parts = le32_to_cpu(lvid->numOfPartitions); 1586 impuselen = le32_to_cpu(lvid->lengthOfImpUse); 1587 if (parts >= sb->s_blocksize || impuselen >= sb->s_blocksize || 1588 sizeof(struct logicalVolIntegrityDesc) + impuselen + 1589 2 * parts * sizeof(u32) > sb->s_blocksize) { 1590 udf_warn(sb, "Corrupted LVID (parts=%u, impuselen=%u), " 1591 "ignoring.\n", parts, impuselen); 1592 goto out_err; 1593 } 1594} 1595 1596/* 1597 * Step for reallocation of table of partition descriptor sequence numbers. 1598 * Must be power of 2. 1599 */ 1600#define PART_DESC_ALLOC_STEP 32 1601 1602struct part_desc_seq_scan_data { 1603 struct udf_vds_record rec; 1604 u32 partnum; 1605}; 1606 1607struct desc_seq_scan_data { 1608 struct udf_vds_record vds[VDS_POS_LENGTH]; 1609 unsigned int size_part_descs; 1610 unsigned int num_part_descs; 1611 struct part_desc_seq_scan_data *part_descs_loc; 1612}; 1613 1614static struct udf_vds_record *handle_partition_descriptor( 1615 struct buffer_head *bh, 1616 struct desc_seq_scan_data *data) 1617{ 1618 struct partitionDesc *desc = (struct partitionDesc *)bh->b_data; 1619 int partnum; 1620 int i; 1621 1622 partnum = le16_to_cpu(desc->partitionNumber); 1623 for (i = 0; i < data->num_part_descs; i++) 1624 if (partnum == data->part_descs_loc[i].partnum) 1625 return &(data->part_descs_loc[i].rec); 1626 if (data->num_part_descs >= data->size_part_descs) { 1627 struct part_desc_seq_scan_data *new_loc; 1628 unsigned int new_size = ALIGN(partnum, PART_DESC_ALLOC_STEP); 1629 1630 new_loc = kcalloc(new_size, sizeof(*new_loc), GFP_KERNEL); 1631 if (!new_loc) 1632 return ERR_PTR(-ENOMEM); 1633 memcpy(new_loc, data->part_descs_loc, 1634 data->size_part_descs * sizeof(*new_loc)); 1635 kfree(data->part_descs_loc); 1636 data->part_descs_loc = new_loc; 1637 data->size_part_descs = new_size; 1638 } 1639 return &(data->part_descs_loc[data->num_part_descs++].rec); 1640} 1641 1642 1643static struct udf_vds_record *get_volume_descriptor_record(uint16_t ident, 1644 struct buffer_head *bh, struct desc_seq_scan_data *data) 1645{ 1646 switch (ident) { 1647 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1648 return &(data->vds[VDS_POS_PRIMARY_VOL_DESC]); 1649 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1650 return &(data->vds[VDS_POS_IMP_USE_VOL_DESC]); 1651 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1652 return &(data->vds[VDS_POS_LOGICAL_VOL_DESC]); 1653 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1654 return &(data->vds[VDS_POS_UNALLOC_SPACE_DESC]); 1655 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1656 return handle_partition_descriptor(bh, data); 1657 } 1658 return NULL; 1659} 1660 1661/* 1662 * Process a main/reserve volume descriptor sequence. 1663 * @block First block of first extent of the sequence. 1664 * @lastblock Lastblock of first extent of the sequence. 1665 * @fileset There we store extent containing root fileset 1666 * 1667 * Returns <0 on error, 0 on success. -EAGAIN is special - try next descriptor 1668 * sequence 1669 */ 1670static noinline int udf_process_sequence( 1671 struct super_block *sb, 1672 sector_t block, sector_t lastblock, 1673 struct kernel_lb_addr *fileset) 1674{ 1675 struct buffer_head *bh = NULL; 1676 struct udf_vds_record *curr; 1677 struct generic_desc *gd; 1678 struct volDescPtr *vdp; 1679 bool done = false; 1680 uint32_t vdsn; 1681 uint16_t ident; 1682 int ret; 1683 unsigned int indirections = 0; 1684 struct desc_seq_scan_data data; 1685 unsigned int i; 1686 1687 memset(data.vds, 0, sizeof(struct udf_vds_record) * VDS_POS_LENGTH); 1688 data.size_part_descs = PART_DESC_ALLOC_STEP; 1689 data.num_part_descs = 0; 1690 data.part_descs_loc = kcalloc(data.size_part_descs, 1691 sizeof(*data.part_descs_loc), 1692 GFP_KERNEL); 1693 if (!data.part_descs_loc) 1694 return -ENOMEM; 1695 1696 /* 1697 * Read the main descriptor sequence and find which descriptors 1698 * are in it. 1699 */ 1700 for (; (!done && block <= lastblock); block++) { 1701 bh = udf_read_tagged(sb, block, block, &ident); 1702 if (!bh) 1703 break; 1704 1705 /* Process each descriptor (ISO 13346 3/8.3-8.4) */ 1706 gd = (struct generic_desc *)bh->b_data; 1707 vdsn = le32_to_cpu(gd->volDescSeqNum); 1708 switch (ident) { 1709 case TAG_IDENT_VDP: /* ISO 13346 3/10.3 */ 1710 if (++indirections > UDF_MAX_TD_NESTING) { 1711 udf_err(sb, "too many Volume Descriptor " 1712 "Pointers (max %u supported)\n", 1713 UDF_MAX_TD_NESTING); 1714 brelse(bh); 1715 ret = -EIO; 1716 goto out; 1717 } 1718 1719 vdp = (struct volDescPtr *)bh->b_data; 1720 block = le32_to_cpu(vdp->nextVolDescSeqExt.extLocation); 1721 lastblock = le32_to_cpu( 1722 vdp->nextVolDescSeqExt.extLength) >> 1723 sb->s_blocksize_bits; 1724 lastblock += block - 1; 1725 /* For loop is going to increment 'block' again */ 1726 block--; 1727 break; 1728 case TAG_IDENT_PVD: /* ISO 13346 3/10.1 */ 1729 case TAG_IDENT_IUVD: /* ISO 13346 3/10.4 */ 1730 case TAG_IDENT_LVD: /* ISO 13346 3/10.6 */ 1731 case TAG_IDENT_USD: /* ISO 13346 3/10.8 */ 1732 case TAG_IDENT_PD: /* ISO 13346 3/10.5 */ 1733 curr = get_volume_descriptor_record(ident, bh, &data); 1734 if (IS_ERR(curr)) { 1735 brelse(bh); 1736 ret = PTR_ERR(curr); 1737 goto out; 1738 } 1739 /* Descriptor we don't care about? */ 1740 if (!curr) 1741 break; 1742 if (vdsn >= curr->volDescSeqNum) { 1743 curr->volDescSeqNum = vdsn; 1744 curr->block = block; 1745 } 1746 break; 1747 case TAG_IDENT_TD: /* ISO 13346 3/10.9 */ 1748 done = true; 1749 break; 1750 } 1751 brelse(bh); 1752 } 1753 /* 1754 * Now read interesting descriptors again and process them 1755 * in a suitable order 1756 */ 1757 if (!data.vds[VDS_POS_PRIMARY_VOL_DESC].block) { 1758 udf_err(sb, "Primary Volume Descriptor not found!\n"); 1759 ret = -EAGAIN; 1760 goto out; 1761 } 1762 ret = udf_load_pvoldesc(sb, data.vds[VDS_POS_PRIMARY_VOL_DESC].block); 1763 if (ret < 0) 1764 goto out; 1765 1766 if (data.vds[VDS_POS_LOGICAL_VOL_DESC].block) { 1767 ret = udf_load_logicalvol(sb, 1768 data.vds[VDS_POS_LOGICAL_VOL_DESC].block, 1769 fileset); 1770 if (ret < 0) 1771 goto out; 1772 } 1773 1774 /* Now handle prevailing Partition Descriptors */ 1775 for (i = 0; i < data.num_part_descs; i++) { 1776 ret = udf_load_partdesc(sb, data.part_descs_loc[i].rec.block); 1777 if (ret < 0) 1778 goto out; 1779 } 1780 ret = 0; 1781out: 1782 kfree(data.part_descs_loc); 1783 return ret; 1784} 1785 1786/* 1787 * Load Volume Descriptor Sequence described by anchor in bh 1788 * 1789 * Returns <0 on error, 0 on success 1790 */ 1791static int udf_load_sequence(struct super_block *sb, struct buffer_head *bh, 1792 struct kernel_lb_addr *fileset) 1793{ 1794 struct anchorVolDescPtr *anchor; 1795 sector_t main_s, main_e, reserve_s, reserve_e; 1796 int ret; 1797 1798 anchor = (struct anchorVolDescPtr *)bh->b_data; 1799 1800 /* Locate the main sequence */ 1801 main_s = le32_to_cpu(anchor->mainVolDescSeqExt.extLocation); 1802 main_e = le32_to_cpu(anchor->mainVolDescSeqExt.extLength); 1803 main_e = main_e >> sb->s_blocksize_bits; 1804 main_e += main_s - 1; 1805 1806 /* Locate the reserve sequence */ 1807 reserve_s = le32_to_cpu(anchor->reserveVolDescSeqExt.extLocation); 1808 reserve_e = le32_to_cpu(anchor->reserveVolDescSeqExt.extLength); 1809 reserve_e = reserve_e >> sb->s_blocksize_bits; 1810 reserve_e += reserve_s - 1; 1811 1812 /* Process the main & reserve sequences */ 1813 /* responsible for finding the PartitionDesc(s) */ 1814 ret = udf_process_sequence(sb, main_s, main_e, fileset); 1815 if (ret != -EAGAIN) 1816 return ret; 1817 udf_sb_free_partitions(sb); 1818 ret = udf_process_sequence(sb, reserve_s, reserve_e, fileset); 1819 if (ret < 0) { 1820 udf_sb_free_partitions(sb); 1821 /* No sequence was OK, return -EIO */ 1822 if (ret == -EAGAIN) 1823 ret = -EIO; 1824 } 1825 return ret; 1826} 1827 1828/* 1829 * Check whether there is an anchor block in the given block and 1830 * load Volume Descriptor Sequence if so. 1831 * 1832 * Returns <0 on error, 0 on success, -EAGAIN is special - try next anchor 1833 * block 1834 */ 1835static int udf_check_anchor_block(struct super_block *sb, sector_t block, 1836 struct kernel_lb_addr *fileset) 1837{ 1838 struct buffer_head *bh; 1839 uint16_t ident; 1840 int ret; 1841 1842 if (UDF_QUERY_FLAG(sb, UDF_FLAG_VARCONV) && 1843 udf_fixed_to_variable(block) >= 1844 i_size_read(sb->s_bdev->bd_inode) >> sb->s_blocksize_bits) 1845 return -EAGAIN; 1846 1847 bh = udf_read_tagged(sb, block, block, &ident); 1848 if (!bh) 1849 return -EAGAIN; 1850 if (ident != TAG_IDENT_AVDP) { 1851 brelse(bh); 1852 return -EAGAIN; 1853 } 1854 ret = udf_load_sequence(sb, bh, fileset); 1855 brelse(bh); 1856 return ret; 1857} 1858 1859/* 1860 * Search for an anchor volume descriptor pointer. 1861 * 1862 * Returns < 0 on error, 0 on success. -EAGAIN is special - try next set 1863 * of anchors. 1864 */ 1865static int udf_scan_anchors(struct super_block *sb, sector_t *lastblock, 1866 struct kernel_lb_addr *fileset) 1867{ 1868 sector_t last[6]; 1869 int i; 1870 struct udf_sb_info *sbi = UDF_SB(sb); 1871 int last_count = 0; 1872 int ret; 1873 1874 /* First try user provided anchor */ 1875 if (sbi->s_anchor) { 1876 ret = udf_check_anchor_block(sb, sbi->s_anchor, fileset); 1877 if (ret != -EAGAIN) 1878 return ret; 1879 } 1880 /* 1881 * according to spec, anchor is in either: 1882 * block 256 1883 * lastblock-256 1884 * lastblock 1885 * however, if the disc isn't closed, it could be 512. 1886 */ 1887 ret = udf_check_anchor_block(sb, sbi->s_session + 256, fileset); 1888 if (ret != -EAGAIN) 1889 return ret; 1890 /* 1891 * The trouble is which block is the last one. Drives often misreport 1892 * this so we try various possibilities. 1893 */ 1894 last[last_count++] = *lastblock; 1895 if (*lastblock >= 1) 1896 last[last_count++] = *lastblock - 1; 1897 last[last_count++] = *lastblock + 1; 1898 if (*lastblock >= 2) 1899 last[last_count++] = *lastblock - 2; 1900 if (*lastblock >= 150) 1901 last[last_count++] = *lastblock - 150; 1902 if (*lastblock >= 152) 1903 last[last_count++] = *lastblock - 152; 1904 1905 for (i = 0; i < last_count; i++) { 1906 if (last[i] >= i_size_read(sb->s_bdev->bd_inode) >> 1907 sb->s_blocksize_bits) 1908 continue; 1909 ret = udf_check_anchor_block(sb, last[i], fileset); 1910 if (ret != -EAGAIN) { 1911 if (!ret) 1912 *lastblock = last[i]; 1913 return ret; 1914 } 1915 if (last[i] < 256) 1916 continue; 1917 ret = udf_check_anchor_block(sb, last[i] - 256, fileset); 1918 if (ret != -EAGAIN) { 1919 if (!ret) 1920 *lastblock = last[i]; 1921 return ret; 1922 } 1923 } 1924 1925 /* Finally try block 512 in case media is open */ 1926 return udf_check_anchor_block(sb, sbi->s_session + 512, fileset); 1927} 1928 1929/* 1930 * Find an anchor volume descriptor and load Volume Descriptor Sequence from 1931 * area specified by it. The function expects sbi->s_lastblock to be the last 1932 * block on the media. 1933 * 1934 * Return <0 on error, 0 if anchor found. -EAGAIN is special meaning anchor 1935 * was not found. 1936 */ 1937static int udf_find_anchor(struct super_block *sb, 1938 struct kernel_lb_addr *fileset) 1939{ 1940 struct udf_sb_info *sbi = UDF_SB(sb); 1941 sector_t lastblock = sbi->s_last_block; 1942 int ret; 1943 1944 ret = udf_scan_anchors(sb, &lastblock, fileset); 1945 if (ret != -EAGAIN) 1946 goto out; 1947 1948 /* No anchor found? Try VARCONV conversion of block numbers */ 1949 UDF_SET_FLAG(sb, UDF_FLAG_VARCONV); 1950 lastblock = udf_variable_to_fixed(sbi->s_last_block); 1951 /* Firstly, we try to not convert number of the last block */ 1952 ret = udf_scan_anchors(sb, &lastblock, fileset); 1953 if (ret != -EAGAIN) 1954 goto out; 1955 1956 lastblock = sbi->s_last_block; 1957 /* Secondly, we try with converted number of the last block */ 1958 ret = udf_scan_anchors(sb, &lastblock, fileset); 1959 if (ret < 0) { 1960 /* VARCONV didn't help. Clear it. */ 1961 UDF_CLEAR_FLAG(sb, UDF_FLAG_VARCONV); 1962 } 1963out: 1964 if (ret == 0) 1965 sbi->s_last_block = lastblock; 1966 return ret; 1967} 1968 1969/* 1970 * Check Volume Structure Descriptor, find Anchor block and load Volume 1971 * Descriptor Sequence. 1972 * 1973 * Returns < 0 on error, 0 on success. -EAGAIN is special meaning anchor 1974 * block was not found. 1975 */ 1976static int udf_load_vrs(struct super_block *sb, struct udf_options *uopt, 1977 int silent, struct kernel_lb_addr *fileset) 1978{ 1979 struct udf_sb_info *sbi = UDF_SB(sb); 1980 int nsr = 0; 1981 int ret; 1982 1983 if (!sb_set_blocksize(sb, uopt->blocksize)) { 1984 if (!silent) 1985 udf_warn(sb, "Bad block size\n"); 1986 return -EINVAL; 1987 } 1988 sbi->s_last_block = uopt->lastblock; 1989 if (!uopt->novrs) { 1990 /* Check that it is NSR02 compliant */ 1991 nsr = udf_check_vsd(sb); 1992 if (!nsr) { 1993 if (!silent) 1994 udf_warn(sb, "No VRS found\n"); 1995 return -EINVAL; 1996 } 1997 if (nsr == -1) 1998 udf_debug("Failed to read sector at offset %d. " 1999 "Assuming open disc. Skipping validity " 2000 "check\n", VSD_FIRST_SECTOR_OFFSET); 2001 if (!sbi->s_last_block) 2002 sbi->s_last_block = udf_get_last_block(sb); 2003 } else { 2004 udf_debug("Validity check skipped because of novrs option\n"); 2005 } 2006 2007 /* Look for anchor block and load Volume Descriptor Sequence */ 2008 sbi->s_anchor = uopt->anchor; 2009 ret = udf_find_anchor(sb, fileset); 2010 if (ret < 0) { 2011 if (!silent && ret == -EAGAIN) 2012 udf_warn(sb, "No anchor found\n"); 2013 return ret; 2014 } 2015 return 0; 2016} 2017 2018static void udf_finalize_lvid(struct logicalVolIntegrityDesc *lvid) 2019{ 2020 struct timespec64 ts; 2021 2022 ktime_get_real_ts64(&ts); 2023 udf_time_to_disk_stamp(&lvid->recordingDateAndTime, ts); 2024 lvid->descTag.descCRC = cpu_to_le16( 2025 crc_itu_t(0, (char *)lvid + sizeof(struct tag), 2026 le16_to_cpu(lvid->descTag.descCRCLength))); 2027 lvid->descTag.tagChecksum = udf_tag_checksum(&lvid->descTag); 2028} 2029 2030static void udf_open_lvid(struct super_block *sb) 2031{ 2032 struct udf_sb_info *sbi = UDF_SB(sb); 2033 struct buffer_head *bh = sbi->s_lvid_bh; 2034 struct logicalVolIntegrityDesc *lvid; 2035 struct logicalVolIntegrityDescImpUse *lvidiu; 2036 2037 if (!bh) 2038 return; 2039 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2040 lvidiu = udf_sb_lvidiu(sb); 2041 if (!lvidiu) 2042 return; 2043 2044 mutex_lock(&sbi->s_alloc_mutex); 2045 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2046 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2047 if (le32_to_cpu(lvid->integrityType) == LVID_INTEGRITY_TYPE_CLOSE) 2048 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_OPEN); 2049 else 2050 UDF_SET_FLAG(sb, UDF_FLAG_INCONSISTENT); 2051 2052 udf_finalize_lvid(lvid); 2053 mark_buffer_dirty(bh); 2054 sbi->s_lvid_dirty = 0; 2055 mutex_unlock(&sbi->s_alloc_mutex); 2056 /* Make opening of filesystem visible on the media immediately */ 2057 sync_dirty_buffer(bh); 2058} 2059 2060static void udf_close_lvid(struct super_block *sb) 2061{ 2062 struct udf_sb_info *sbi = UDF_SB(sb); 2063 struct buffer_head *bh = sbi->s_lvid_bh; 2064 struct logicalVolIntegrityDesc *lvid; 2065 struct logicalVolIntegrityDescImpUse *lvidiu; 2066 2067 if (!bh) 2068 return; 2069 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2070 lvidiu = udf_sb_lvidiu(sb); 2071 if (!lvidiu) 2072 return; 2073 2074 mutex_lock(&sbi->s_alloc_mutex); 2075 lvidiu->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 2076 lvidiu->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 2077 if (UDF_MAX_WRITE_VERSION > le16_to_cpu(lvidiu->maxUDFWriteRev)) 2078 lvidiu->maxUDFWriteRev = cpu_to_le16(UDF_MAX_WRITE_VERSION); 2079 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFReadRev)) 2080 lvidiu->minUDFReadRev = cpu_to_le16(sbi->s_udfrev); 2081 if (sbi->s_udfrev > le16_to_cpu(lvidiu->minUDFWriteRev)) 2082 lvidiu->minUDFWriteRev = cpu_to_le16(sbi->s_udfrev); 2083 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_INCONSISTENT)) 2084 lvid->integrityType = cpu_to_le32(LVID_INTEGRITY_TYPE_CLOSE); 2085 2086 /* 2087 * We set buffer uptodate unconditionally here to avoid spurious 2088 * warnings from mark_buffer_dirty() when previous EIO has marked 2089 * the buffer as !uptodate 2090 */ 2091 set_buffer_uptodate(bh); 2092 udf_finalize_lvid(lvid); 2093 mark_buffer_dirty(bh); 2094 sbi->s_lvid_dirty = 0; 2095 mutex_unlock(&sbi->s_alloc_mutex); 2096 /* Make closing of filesystem visible on the media immediately */ 2097 sync_dirty_buffer(bh); 2098} 2099 2100u64 lvid_get_unique_id(struct super_block *sb) 2101{ 2102 struct buffer_head *bh; 2103 struct udf_sb_info *sbi = UDF_SB(sb); 2104 struct logicalVolIntegrityDesc *lvid; 2105 struct logicalVolHeaderDesc *lvhd; 2106 u64 uniqueID; 2107 u64 ret; 2108 2109 bh = sbi->s_lvid_bh; 2110 if (!bh) 2111 return 0; 2112 2113 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2114 lvhd = (struct logicalVolHeaderDesc *)lvid->logicalVolContentsUse; 2115 2116 mutex_lock(&sbi->s_alloc_mutex); 2117 ret = uniqueID = le64_to_cpu(lvhd->uniqueID); 2118 if (!(++uniqueID & 0xFFFFFFFF)) 2119 uniqueID += 16; 2120 lvhd->uniqueID = cpu_to_le64(uniqueID); 2121 udf_updated_lvid(sb); 2122 mutex_unlock(&sbi->s_alloc_mutex); 2123 2124 return ret; 2125} 2126 2127static int udf_fill_super(struct super_block *sb, void *options, int silent) 2128{ 2129 int ret = -EINVAL; 2130 struct inode *inode = NULL; 2131 struct udf_options uopt; 2132 struct kernel_lb_addr rootdir, fileset; 2133 struct udf_sb_info *sbi; 2134 bool lvid_open = false; 2135 2136 uopt.flags = (1 << UDF_FLAG_USE_AD_IN_ICB) | (1 << UDF_FLAG_STRICT); 2137 /* By default we'll use overflow[ug]id when UDF inode [ug]id == -1 */ 2138 uopt.uid = make_kuid(current_user_ns(), overflowuid); 2139 uopt.gid = make_kgid(current_user_ns(), overflowgid); 2140 uopt.umask = 0; 2141 uopt.fmode = UDF_INVALID_MODE; 2142 uopt.dmode = UDF_INVALID_MODE; 2143 uopt.nls_map = NULL; 2144 2145 sbi = kzalloc(sizeof(*sbi), GFP_KERNEL); 2146 if (!sbi) 2147 return -ENOMEM; 2148 2149 sb->s_fs_info = sbi; 2150 2151 mutex_init(&sbi->s_alloc_mutex); 2152 2153 if (!udf_parse_options((char *)options, &uopt, false)) 2154 goto parse_options_failure; 2155 2156 fileset.logicalBlockNum = 0xFFFFFFFF; 2157 fileset.partitionReferenceNum = 0xFFFF; 2158 2159 sbi->s_flags = uopt.flags; 2160 sbi->s_uid = uopt.uid; 2161 sbi->s_gid = uopt.gid; 2162 sbi->s_umask = uopt.umask; 2163 sbi->s_fmode = uopt.fmode; 2164 sbi->s_dmode = uopt.dmode; 2165 sbi->s_nls_map = uopt.nls_map; 2166 rwlock_init(&sbi->s_cred_lock); 2167 2168 if (uopt.session == 0xFFFFFFFF) 2169 sbi->s_session = udf_get_last_session(sb); 2170 else 2171 sbi->s_session = uopt.session; 2172 2173 udf_debug("Multi-session=%d\n", sbi->s_session); 2174 2175 /* Fill in the rest of the superblock */ 2176 sb->s_op = &udf_sb_ops; 2177 sb->s_export_op = &udf_export_ops; 2178 2179 sb->s_magic = UDF_SUPER_MAGIC; 2180 sb->s_time_gran = 1000; 2181 2182 if (uopt.flags & (1 << UDF_FLAG_BLOCKSIZE_SET)) { 2183 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2184 } else { 2185 uopt.blocksize = bdev_logical_block_size(sb->s_bdev); 2186 while (uopt.blocksize <= 4096) { 2187 ret = udf_load_vrs(sb, &uopt, silent, &fileset); 2188 if (ret < 0) { 2189 if (!silent && ret != -EACCES) { 2190 pr_notice("Scanning with blocksize %u failed\n", 2191 uopt.blocksize); 2192 } 2193 brelse(sbi->s_lvid_bh); 2194 sbi->s_lvid_bh = NULL; 2195 /* 2196 * EACCES is special - we want to propagate to 2197 * upper layers that we cannot handle RW mount. 2198 */ 2199 if (ret == -EACCES) 2200 break; 2201 } else 2202 break; 2203 2204 uopt.blocksize <<= 1; 2205 } 2206 } 2207 if (ret < 0) { 2208 if (ret == -EAGAIN) { 2209 udf_warn(sb, "No partition found (1)\n"); 2210 ret = -EINVAL; 2211 } 2212 goto error_out; 2213 } 2214 2215 udf_debug("Lastblock=%u\n", sbi->s_last_block); 2216 2217 if (sbi->s_lvid_bh) { 2218 struct logicalVolIntegrityDescImpUse *lvidiu = 2219 udf_sb_lvidiu(sb); 2220 uint16_t minUDFReadRev; 2221 uint16_t minUDFWriteRev; 2222 2223 if (!lvidiu) { 2224 ret = -EINVAL; 2225 goto error_out; 2226 } 2227 minUDFReadRev = le16_to_cpu(lvidiu->minUDFReadRev); 2228 minUDFWriteRev = le16_to_cpu(lvidiu->minUDFWriteRev); 2229 if (minUDFReadRev > UDF_MAX_READ_VERSION) { 2230 udf_err(sb, "minUDFReadRev=%x (max is %x)\n", 2231 minUDFReadRev, 2232 UDF_MAX_READ_VERSION); 2233 ret = -EINVAL; 2234 goto error_out; 2235 } else if (minUDFWriteRev > UDF_MAX_WRITE_VERSION) { 2236 if (!sb_rdonly(sb)) { 2237 ret = -EACCES; 2238 goto error_out; 2239 } 2240 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2241 } 2242 2243 sbi->s_udfrev = minUDFWriteRev; 2244 2245 if (minUDFReadRev >= UDF_VERS_USE_EXTENDED_FE) 2246 UDF_SET_FLAG(sb, UDF_FLAG_USE_EXTENDED_FE); 2247 if (minUDFReadRev >= UDF_VERS_USE_STREAMS) 2248 UDF_SET_FLAG(sb, UDF_FLAG_USE_STREAMS); 2249 } 2250 2251 if (!sbi->s_partitions) { 2252 udf_warn(sb, "No partition found (2)\n"); 2253 ret = -EINVAL; 2254 goto error_out; 2255 } 2256 2257 if (sbi->s_partmaps[sbi->s_partition].s_partition_flags & 2258 UDF_PART_FLAG_READ_ONLY) { 2259 if (!sb_rdonly(sb)) { 2260 ret = -EACCES; 2261 goto error_out; 2262 } 2263 UDF_SET_FLAG(sb, UDF_FLAG_RW_INCOMPAT); 2264 } 2265 2266 ret = udf_find_fileset(sb, &fileset, &rootdir); 2267 if (ret < 0) { 2268 udf_warn(sb, "No fileset found\n"); 2269 goto error_out; 2270 } 2271 2272 if (!silent) { 2273 struct timestamp ts; 2274 udf_time_to_disk_stamp(&ts, sbi->s_record_time); 2275 udf_info("Mounting volume '%s', timestamp %04u/%02u/%02u %02u:%02u (%x)\n", 2276 sbi->s_volume_ident, 2277 le16_to_cpu(ts.year), ts.month, ts.day, 2278 ts.hour, ts.minute, le16_to_cpu(ts.typeAndTimezone)); 2279 } 2280 if (!sb_rdonly(sb)) { 2281 udf_open_lvid(sb); 2282 lvid_open = true; 2283 } 2284 2285 /* Assign the root inode */ 2286 /* assign inodes by physical block number */ 2287 /* perhaps it's not extensible enough, but for now ... */ 2288 inode = udf_iget(sb, &rootdir); 2289 if (IS_ERR(inode)) { 2290 udf_err(sb, "Error in udf_iget, block=%u, partition=%u\n", 2291 rootdir.logicalBlockNum, rootdir.partitionReferenceNum); 2292 ret = PTR_ERR(inode); 2293 goto error_out; 2294 } 2295 2296 /* Allocate a dentry for the root inode */ 2297 sb->s_root = d_make_root(inode); 2298 if (!sb->s_root) { 2299 udf_err(sb, "Couldn't allocate root dentry\n"); 2300 ret = -ENOMEM; 2301 goto error_out; 2302 } 2303 sb->s_maxbytes = MAX_LFS_FILESIZE; 2304 sb->s_max_links = UDF_MAX_LINKS; 2305 return 0; 2306 2307error_out: 2308 iput(sbi->s_vat_inode); 2309parse_options_failure: 2310 unload_nls(uopt.nls_map); 2311 if (lvid_open) 2312 udf_close_lvid(sb); 2313 brelse(sbi->s_lvid_bh); 2314 udf_sb_free_partitions(sb); 2315 kfree(sbi); 2316 sb->s_fs_info = NULL; 2317 2318 return ret; 2319} 2320 2321void _udf_err(struct super_block *sb, const char *function, 2322 const char *fmt, ...) 2323{ 2324 struct va_format vaf; 2325 va_list args; 2326 2327 va_start(args, fmt); 2328 2329 vaf.fmt = fmt; 2330 vaf.va = &args; 2331 2332 pr_err("error (device %s): %s: %pV", sb->s_id, function, &vaf); 2333 2334 va_end(args); 2335} 2336 2337void _udf_warn(struct super_block *sb, const char *function, 2338 const char *fmt, ...) 2339{ 2340 struct va_format vaf; 2341 va_list args; 2342 2343 va_start(args, fmt); 2344 2345 vaf.fmt = fmt; 2346 vaf.va = &args; 2347 2348 pr_warn("warning (device %s): %s: %pV", sb->s_id, function, &vaf); 2349 2350 va_end(args); 2351} 2352 2353static void udf_put_super(struct super_block *sb) 2354{ 2355 struct udf_sb_info *sbi; 2356 2357 sbi = UDF_SB(sb); 2358 2359 iput(sbi->s_vat_inode); 2360 unload_nls(sbi->s_nls_map); 2361 if (!sb_rdonly(sb)) 2362 udf_close_lvid(sb); 2363 brelse(sbi->s_lvid_bh); 2364 udf_sb_free_partitions(sb); 2365 mutex_destroy(&sbi->s_alloc_mutex); 2366 kfree(sb->s_fs_info); 2367 sb->s_fs_info = NULL; 2368} 2369 2370static int udf_sync_fs(struct super_block *sb, int wait) 2371{ 2372 struct udf_sb_info *sbi = UDF_SB(sb); 2373 2374 mutex_lock(&sbi->s_alloc_mutex); 2375 if (sbi->s_lvid_dirty) { 2376 struct buffer_head *bh = sbi->s_lvid_bh; 2377 struct logicalVolIntegrityDesc *lvid; 2378 2379 lvid = (struct logicalVolIntegrityDesc *)bh->b_data; 2380 udf_finalize_lvid(lvid); 2381 2382 /* 2383 * Blockdevice will be synced later so we don't have to submit 2384 * the buffer for IO 2385 */ 2386 mark_buffer_dirty(bh); 2387 sbi->s_lvid_dirty = 0; 2388 } 2389 mutex_unlock(&sbi->s_alloc_mutex); 2390 2391 return 0; 2392} 2393 2394static int udf_statfs(struct dentry *dentry, struct kstatfs *buf) 2395{ 2396 struct super_block *sb = dentry->d_sb; 2397 struct udf_sb_info *sbi = UDF_SB(sb); 2398 struct logicalVolIntegrityDescImpUse *lvidiu; 2399 u64 id = huge_encode_dev(sb->s_bdev->bd_dev); 2400 2401 lvidiu = udf_sb_lvidiu(sb); 2402 buf->f_type = UDF_SUPER_MAGIC; 2403 buf->f_bsize = sb->s_blocksize; 2404 buf->f_blocks = sbi->s_partmaps[sbi->s_partition].s_partition_len; 2405 buf->f_bfree = udf_count_free(sb); 2406 buf->f_bavail = buf->f_bfree; 2407 /* 2408 * Let's pretend each free block is also a free 'inode' since UDF does 2409 * not have separate preallocated table of inodes. 2410 */ 2411 buf->f_files = (lvidiu != NULL ? (le32_to_cpu(lvidiu->numFiles) + 2412 le32_to_cpu(lvidiu->numDirs)) : 0) 2413 + buf->f_bfree; 2414 buf->f_ffree = buf->f_bfree; 2415 buf->f_namelen = UDF_NAME_LEN; 2416 buf->f_fsid = u64_to_fsid(id); 2417 2418 return 0; 2419} 2420 2421static unsigned int udf_count_free_bitmap(struct super_block *sb, 2422 struct udf_bitmap *bitmap) 2423{ 2424 struct buffer_head *bh = NULL; 2425 unsigned int accum = 0; 2426 int index; 2427 udf_pblk_t block = 0, newblock; 2428 struct kernel_lb_addr loc; 2429 uint32_t bytes; 2430 uint8_t *ptr; 2431 uint16_t ident; 2432 struct spaceBitmapDesc *bm; 2433 2434 loc.logicalBlockNum = bitmap->s_extPosition; 2435 loc.partitionReferenceNum = UDF_SB(sb)->s_partition; 2436 bh = udf_read_ptagged(sb, &loc, 0, &ident); 2437 2438 if (!bh) { 2439 udf_err(sb, "udf_count_free failed\n"); 2440 goto out; 2441 } else if (ident != TAG_IDENT_SBD) { 2442 brelse(bh); 2443 udf_err(sb, "udf_count_free failed\n"); 2444 goto out; 2445 } 2446 2447 bm = (struct spaceBitmapDesc *)bh->b_data; 2448 bytes = le32_to_cpu(bm->numOfBytes); 2449 index = sizeof(struct spaceBitmapDesc); /* offset in first block only */ 2450 ptr = (uint8_t *)bh->b_data; 2451 2452 while (bytes > 0) { 2453 u32 cur_bytes = min_t(u32, bytes, sb->s_blocksize - index); 2454 accum += bitmap_weight((const unsigned long *)(ptr + index), 2455 cur_bytes * 8); 2456 bytes -= cur_bytes; 2457 if (bytes) { 2458 brelse(bh); 2459 newblock = udf_get_lb_pblock(sb, &loc, ++block); 2460 bh = udf_tread(sb, newblock); 2461 if (!bh) { 2462 udf_debug("read failed\n"); 2463 goto out; 2464 } 2465 index = 0; 2466 ptr = (uint8_t *)bh->b_data; 2467 } 2468 } 2469 brelse(bh); 2470out: 2471 return accum; 2472} 2473 2474static unsigned int udf_count_free_table(struct super_block *sb, 2475 struct inode *table) 2476{ 2477 unsigned int accum = 0; 2478 uint32_t elen; 2479 struct kernel_lb_addr eloc; 2480 int8_t etype; 2481 struct extent_position epos; 2482 2483 mutex_lock(&UDF_SB(sb)->s_alloc_mutex); 2484 epos.block = UDF_I(table)->i_location; 2485 epos.offset = sizeof(struct unallocSpaceEntry); 2486 epos.bh = NULL; 2487 2488 while ((etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) 2489 accum += (elen >> table->i_sb->s_blocksize_bits); 2490 2491 brelse(epos.bh); 2492 mutex_unlock(&UDF_SB(sb)->s_alloc_mutex); 2493 2494 return accum; 2495} 2496 2497static unsigned int udf_count_free(struct super_block *sb) 2498{ 2499 unsigned int accum = 0; 2500 struct udf_sb_info *sbi = UDF_SB(sb); 2501 struct udf_part_map *map; 2502 unsigned int part = sbi->s_partition; 2503 int ptype = sbi->s_partmaps[part].s_partition_type; 2504 2505 if (ptype == UDF_METADATA_MAP25) { 2506 part = sbi->s_partmaps[part].s_type_specific.s_metadata. 2507 s_phys_partition_ref; 2508 } else if (ptype == UDF_VIRTUAL_MAP15 || ptype == UDF_VIRTUAL_MAP20) { 2509 /* 2510 * Filesystems with VAT are append-only and we cannot write to 2511 * them. Let's just report 0 here. 2512 */ 2513 return 0; 2514 } 2515 2516 if (sbi->s_lvid_bh) { 2517 struct logicalVolIntegrityDesc *lvid = 2518 (struct logicalVolIntegrityDesc *) 2519 sbi->s_lvid_bh->b_data; 2520 if (le32_to_cpu(lvid->numOfPartitions) > part) { 2521 accum = le32_to_cpu( 2522 lvid->freeSpaceTable[part]); 2523 if (accum == 0xFFFFFFFF) 2524 accum = 0; 2525 } 2526 } 2527 2528 if (accum) 2529 return accum; 2530 2531 map = &sbi->s_partmaps[part]; 2532 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) { 2533 accum += udf_count_free_bitmap(sb, 2534 map->s_uspace.s_bitmap); 2535 } 2536 if (accum) 2537 return accum; 2538 2539 if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) { 2540 accum += udf_count_free_table(sb, 2541 map->s_uspace.s_table); 2542 } 2543 return accum; 2544} 2545 2546MODULE_AUTHOR("Ben Fennema"); 2547MODULE_DESCRIPTION("Universal Disk Format Filesystem"); 2548MODULE_LICENSE("GPL"); 2549module_init(init_udf_fs) 2550module_exit(exit_udf_fs) 2551