1/* 2 * inode.c 3 * 4 * PURPOSE 5 * Inode handling routines for the OSTA-UDF(tm) filesystem. 6 * 7 * COPYRIGHT 8 * This file is distributed under the terms of the GNU General Public 9 * License (GPL). Copies of the GPL can be obtained from: 10 * ftp://prep.ai.mit.edu/pub/gnu/GPL 11 * Each contributing author retains all rights to their own work. 12 * 13 * (C) 1998 Dave Boynton 14 * (C) 1998-2004 Ben Fennema 15 * (C) 1999-2000 Stelias Computing Inc 16 * 17 * HISTORY 18 * 19 * 10/04/98 dgb Added rudimentary directory functions 20 * 10/07/98 Fully working udf_block_map! It works! 21 * 11/25/98 bmap altered to better support extents 22 * 12/06/98 blf partition support in udf_iget, udf_block_map 23 * and udf_read_inode 24 * 12/12/98 rewrote udf_block_map to handle next extents and descs across 25 * block boundaries (which is not actually allowed) 26 * 12/20/98 added support for strategy 4096 27 * 03/07/99 rewrote udf_block_map (again) 28 * New funcs, inode_bmap, udf_next_aext 29 * 04/19/99 Support for writing device EA's for major/minor # 30 */ 31 32#include "udfdecl.h" 33#include <linux/mm.h> 34#include <linux/module.h> 35#include <linux/pagemap.h> 36#include <linux/writeback.h> 37#include <linux/slab.h> 38#include <linux/crc-itu-t.h> 39#include <linux/mpage.h> 40#include <linux/uio.h> 41#include <linux/bio.h> 42 43#include "udf_i.h" 44#include "udf_sb.h" 45 46#define EXTENT_MERGE_SIZE 5 47 48#define FE_MAPPED_PERMS (FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \ 49 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \ 50 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC) 51 52#define FE_DELETE_PERMS (FE_PERM_U_DELETE | FE_PERM_G_DELETE | \ 53 FE_PERM_O_DELETE) 54 55static umode_t udf_convert_permissions(struct fileEntry *); 56static int udf_update_inode(struct inode *, int); 57static int udf_sync_inode(struct inode *inode); 58static int udf_alloc_i_data(struct inode *inode, size_t size); 59static sector_t inode_getblk(struct inode *, sector_t, int *, int *); 60static int udf_insert_aext(struct inode *, struct extent_position, 61 struct kernel_lb_addr, uint32_t); 62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t, 63 struct kernel_long_ad *, int *); 64static void udf_prealloc_extents(struct inode *, int, int, 65 struct kernel_long_ad *, int *); 66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *); 67static int udf_update_extents(struct inode *, struct kernel_long_ad *, int, 68 int, struct extent_position *); 69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int); 70 71static void __udf_clear_extent_cache(struct inode *inode) 72{ 73 struct udf_inode_info *iinfo = UDF_I(inode); 74 75 if (iinfo->cached_extent.lstart != -1) { 76 brelse(iinfo->cached_extent.epos.bh); 77 iinfo->cached_extent.lstart = -1; 78 } 79} 80 81/* Invalidate extent cache */ 82static void udf_clear_extent_cache(struct inode *inode) 83{ 84 struct udf_inode_info *iinfo = UDF_I(inode); 85 86 spin_lock(&iinfo->i_extent_cache_lock); 87 __udf_clear_extent_cache(inode); 88 spin_unlock(&iinfo->i_extent_cache_lock); 89} 90 91/* Return contents of extent cache */ 92static int udf_read_extent_cache(struct inode *inode, loff_t bcount, 93 loff_t *lbcount, struct extent_position *pos) 94{ 95 struct udf_inode_info *iinfo = UDF_I(inode); 96 int ret = 0; 97 98 spin_lock(&iinfo->i_extent_cache_lock); 99 if ((iinfo->cached_extent.lstart <= bcount) && 100 (iinfo->cached_extent.lstart != -1)) { 101 /* Cache hit */ 102 *lbcount = iinfo->cached_extent.lstart; 103 memcpy(pos, &iinfo->cached_extent.epos, 104 sizeof(struct extent_position)); 105 if (pos->bh) 106 get_bh(pos->bh); 107 ret = 1; 108 } 109 spin_unlock(&iinfo->i_extent_cache_lock); 110 return ret; 111} 112 113/* Add extent to extent cache */ 114static void udf_update_extent_cache(struct inode *inode, loff_t estart, 115 struct extent_position *pos) 116{ 117 struct udf_inode_info *iinfo = UDF_I(inode); 118 119 spin_lock(&iinfo->i_extent_cache_lock); 120 /* Invalidate previously cached extent */ 121 __udf_clear_extent_cache(inode); 122 if (pos->bh) 123 get_bh(pos->bh); 124 memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos)); 125 iinfo->cached_extent.lstart = estart; 126 switch (iinfo->i_alloc_type) { 127 case ICBTAG_FLAG_AD_SHORT: 128 iinfo->cached_extent.epos.offset -= sizeof(struct short_ad); 129 break; 130 case ICBTAG_FLAG_AD_LONG: 131 iinfo->cached_extent.epos.offset -= sizeof(struct long_ad); 132 break; 133 } 134 spin_unlock(&iinfo->i_extent_cache_lock); 135} 136 137void udf_evict_inode(struct inode *inode) 138{ 139 struct udf_inode_info *iinfo = UDF_I(inode); 140 int want_delete = 0; 141 142 if (!is_bad_inode(inode)) { 143 if (!inode->i_nlink) { 144 want_delete = 1; 145 udf_setsize(inode, 0); 146 udf_update_inode(inode, IS_SYNC(inode)); 147 } 148 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB && 149 inode->i_size != iinfo->i_lenExtents) { 150 udf_warn(inode->i_sb, 151 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n", 152 inode->i_ino, inode->i_mode, 153 (unsigned long long)inode->i_size, 154 (unsigned long long)iinfo->i_lenExtents); 155 } 156 } 157 truncate_inode_pages_final(&inode->i_data); 158 invalidate_inode_buffers(inode); 159 clear_inode(inode); 160 kfree(iinfo->i_data); 161 iinfo->i_data = NULL; 162 udf_clear_extent_cache(inode); 163 if (want_delete) { 164 udf_free_inode(inode); 165 } 166} 167 168static void udf_write_failed(struct address_space *mapping, loff_t to) 169{ 170 struct inode *inode = mapping->host; 171 struct udf_inode_info *iinfo = UDF_I(inode); 172 loff_t isize = inode->i_size; 173 174 if (to > isize) { 175 truncate_pagecache(inode, isize); 176 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 177 down_write(&iinfo->i_data_sem); 178 udf_clear_extent_cache(inode); 179 udf_truncate_extents(inode); 180 up_write(&iinfo->i_data_sem); 181 } 182 } 183} 184 185static int udf_writepage(struct page *page, struct writeback_control *wbc) 186{ 187 return block_write_full_page(page, udf_get_block, wbc); 188} 189 190static int udf_writepages(struct address_space *mapping, 191 struct writeback_control *wbc) 192{ 193 return mpage_writepages(mapping, wbc, udf_get_block); 194} 195 196static int udf_readpage(struct file *file, struct page *page) 197{ 198 return mpage_readpage(page, udf_get_block); 199} 200 201static void udf_readahead(struct readahead_control *rac) 202{ 203 mpage_readahead(rac, udf_get_block); 204} 205 206static int udf_write_begin(struct file *file, struct address_space *mapping, 207 loff_t pos, unsigned len, unsigned flags, 208 struct page **pagep, void **fsdata) 209{ 210 int ret; 211 212 ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block); 213 if (unlikely(ret)) 214 udf_write_failed(mapping, pos + len); 215 return ret; 216} 217 218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter) 219{ 220 struct file *file = iocb->ki_filp; 221 struct address_space *mapping = file->f_mapping; 222 struct inode *inode = mapping->host; 223 size_t count = iov_iter_count(iter); 224 ssize_t ret; 225 226 ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block); 227 if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE)) 228 udf_write_failed(mapping, iocb->ki_pos + count); 229 return ret; 230} 231 232static sector_t udf_bmap(struct address_space *mapping, sector_t block) 233{ 234 return generic_block_bmap(mapping, block, udf_get_block); 235} 236 237const struct address_space_operations udf_aops = { 238 .readpage = udf_readpage, 239 .readahead = udf_readahead, 240 .writepage = udf_writepage, 241 .writepages = udf_writepages, 242 .write_begin = udf_write_begin, 243 .write_end = generic_write_end, 244 .direct_IO = udf_direct_IO, 245 .bmap = udf_bmap, 246}; 247 248/* 249 * Expand file stored in ICB to a normal one-block-file 250 * 251 * This function requires i_data_sem for writing and releases it. 252 * This function requires i_mutex held 253 */ 254int udf_expand_file_adinicb(struct inode *inode) 255{ 256 struct page *page; 257 char *kaddr; 258 struct udf_inode_info *iinfo = UDF_I(inode); 259 int err; 260 261 WARN_ON_ONCE(!inode_is_locked(inode)); 262 if (!iinfo->i_lenAlloc) { 263 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 264 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 265 else 266 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 267 /* from now on we have normal address_space methods */ 268 inode->i_data.a_ops = &udf_aops; 269 up_write(&iinfo->i_data_sem); 270 mark_inode_dirty(inode); 271 return 0; 272 } 273 /* 274 * Release i_data_sem so that we can lock a page - page lock ranks 275 * above i_data_sem. i_mutex still protects us against file changes. 276 */ 277 up_write(&iinfo->i_data_sem); 278 279 page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS); 280 if (!page) 281 return -ENOMEM; 282 283 if (!PageUptodate(page)) { 284 kaddr = kmap_atomic(page); 285 memset(kaddr + iinfo->i_lenAlloc, 0x00, 286 PAGE_SIZE - iinfo->i_lenAlloc); 287 memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr, 288 iinfo->i_lenAlloc); 289 flush_dcache_page(page); 290 SetPageUptodate(page); 291 kunmap_atomic(kaddr); 292 } 293 down_write(&iinfo->i_data_sem); 294 memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00, 295 iinfo->i_lenAlloc); 296 iinfo->i_lenAlloc = 0; 297 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 298 iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT; 299 else 300 iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG; 301 /* from now on we have normal address_space methods */ 302 inode->i_data.a_ops = &udf_aops; 303 set_page_dirty(page); 304 unlock_page(page); 305 up_write(&iinfo->i_data_sem); 306 err = filemap_fdatawrite(inode->i_mapping); 307 if (err) { 308 /* Restore everything back so that we don't lose data... */ 309 lock_page(page); 310 down_write(&iinfo->i_data_sem); 311 kaddr = kmap_atomic(page); 312 memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size); 313 kunmap_atomic(kaddr); 314 unlock_page(page); 315 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 316 inode->i_data.a_ops = &udf_adinicb_aops; 317 iinfo->i_lenAlloc = inode->i_size; 318 up_write(&iinfo->i_data_sem); 319 } 320 put_page(page); 321 mark_inode_dirty(inode); 322 323 return err; 324} 325 326struct buffer_head *udf_expand_dir_adinicb(struct inode *inode, 327 udf_pblk_t *block, int *err) 328{ 329 udf_pblk_t newblock; 330 struct buffer_head *dbh = NULL; 331 struct kernel_lb_addr eloc; 332 uint8_t alloctype; 333 struct extent_position epos; 334 335 struct udf_fileident_bh sfibh, dfibh; 336 loff_t f_pos = udf_ext0_offset(inode); 337 int size = udf_ext0_offset(inode) + inode->i_size; 338 struct fileIdentDesc cfi, *sfi, *dfi; 339 struct udf_inode_info *iinfo = UDF_I(inode); 340 341 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD)) 342 alloctype = ICBTAG_FLAG_AD_SHORT; 343 else 344 alloctype = ICBTAG_FLAG_AD_LONG; 345 346 if (!inode->i_size) { 347 iinfo->i_alloc_type = alloctype; 348 mark_inode_dirty(inode); 349 return NULL; 350 } 351 352 /* alloc block, and copy data to it */ 353 *block = udf_new_block(inode->i_sb, inode, 354 iinfo->i_location.partitionReferenceNum, 355 iinfo->i_location.logicalBlockNum, err); 356 if (!(*block)) 357 return NULL; 358 newblock = udf_get_pblock(inode->i_sb, *block, 359 iinfo->i_location.partitionReferenceNum, 360 0); 361 if (!newblock) 362 return NULL; 363 dbh = udf_tgetblk(inode->i_sb, newblock); 364 if (!dbh) 365 return NULL; 366 lock_buffer(dbh); 367 memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize); 368 set_buffer_uptodate(dbh); 369 unlock_buffer(dbh); 370 mark_buffer_dirty_inode(dbh, inode); 371 372 sfibh.soffset = sfibh.eoffset = 373 f_pos & (inode->i_sb->s_blocksize - 1); 374 sfibh.sbh = sfibh.ebh = NULL; 375 dfibh.soffset = dfibh.eoffset = 0; 376 dfibh.sbh = dfibh.ebh = dbh; 377 while (f_pos < size) { 378 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 379 sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL, 380 NULL, NULL, NULL); 381 if (!sfi) { 382 brelse(dbh); 383 return NULL; 384 } 385 iinfo->i_alloc_type = alloctype; 386 sfi->descTag.tagLocation = cpu_to_le32(*block); 387 dfibh.soffset = dfibh.eoffset; 388 dfibh.eoffset += (sfibh.eoffset - sfibh.soffset); 389 dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset); 390 if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse, 391 sfi->fileIdent + 392 le16_to_cpu(sfi->lengthOfImpUse))) { 393 iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB; 394 brelse(dbh); 395 return NULL; 396 } 397 } 398 mark_buffer_dirty_inode(dbh, inode); 399 400 memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc); 401 iinfo->i_lenAlloc = 0; 402 eloc.logicalBlockNum = *block; 403 eloc.partitionReferenceNum = 404 iinfo->i_location.partitionReferenceNum; 405 iinfo->i_lenExtents = inode->i_size; 406 epos.bh = NULL; 407 epos.block = iinfo->i_location; 408 epos.offset = udf_file_entry_alloc_offset(inode); 409 udf_add_aext(inode, &epos, &eloc, inode->i_size, 0); 410 /* UniqueID stuff */ 411 412 brelse(epos.bh); 413 mark_inode_dirty(inode); 414 return dbh; 415} 416 417static int udf_get_block(struct inode *inode, sector_t block, 418 struct buffer_head *bh_result, int create) 419{ 420 int err, new; 421 sector_t phys = 0; 422 struct udf_inode_info *iinfo; 423 424 if (!create) { 425 phys = udf_block_map(inode, block); 426 if (phys) 427 map_bh(bh_result, inode->i_sb, phys); 428 return 0; 429 } 430 431 err = -EIO; 432 new = 0; 433 iinfo = UDF_I(inode); 434 435 down_write(&iinfo->i_data_sem); 436 if (block == iinfo->i_next_alloc_block + 1) { 437 iinfo->i_next_alloc_block++; 438 iinfo->i_next_alloc_goal++; 439 } 440 441 /* 442 * Block beyond EOF and prealloc extents? Just discard preallocation 443 * as it is not useful and complicates things. 444 */ 445 if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents) 446 udf_discard_prealloc(inode); 447 udf_clear_extent_cache(inode); 448 phys = inode_getblk(inode, block, &err, &new); 449 if (!phys) 450 goto abort; 451 452 if (new) 453 set_buffer_new(bh_result); 454 map_bh(bh_result, inode->i_sb, phys); 455 456abort: 457 up_write(&iinfo->i_data_sem); 458 return err; 459} 460 461static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block, 462 int create, int *err) 463{ 464 struct buffer_head *bh; 465 struct buffer_head dummy; 466 467 dummy.b_state = 0; 468 dummy.b_blocknr = -1000; 469 *err = udf_get_block(inode, block, &dummy, create); 470 if (!*err && buffer_mapped(&dummy)) { 471 bh = sb_getblk(inode->i_sb, dummy.b_blocknr); 472 if (buffer_new(&dummy)) { 473 lock_buffer(bh); 474 memset(bh->b_data, 0x00, inode->i_sb->s_blocksize); 475 set_buffer_uptodate(bh); 476 unlock_buffer(bh); 477 mark_buffer_dirty_inode(bh, inode); 478 } 479 return bh; 480 } 481 482 return NULL; 483} 484 485/* Extend the file with new blocks totaling 'new_block_bytes', 486 * return the number of extents added 487 */ 488static int udf_do_extend_file(struct inode *inode, 489 struct extent_position *last_pos, 490 struct kernel_long_ad *last_ext, 491 loff_t new_block_bytes) 492{ 493 uint32_t add; 494 int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 495 struct super_block *sb = inode->i_sb; 496 struct udf_inode_info *iinfo; 497 int err; 498 499 /* The previous extent is fake and we should not extend by anything 500 * - there's nothing to do... */ 501 if (!new_block_bytes && fake) 502 return 0; 503 504 iinfo = UDF_I(inode); 505 /* Round the last extent up to a multiple of block size */ 506 if (last_ext->extLength & (sb->s_blocksize - 1)) { 507 last_ext->extLength = 508 (last_ext->extLength & UDF_EXTENT_FLAG_MASK) | 509 (((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) + 510 sb->s_blocksize - 1) & ~(sb->s_blocksize - 1)); 511 iinfo->i_lenExtents = 512 (iinfo->i_lenExtents + sb->s_blocksize - 1) & 513 ~(sb->s_blocksize - 1); 514 } 515 516 /* Can we merge with the previous extent? */ 517 if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) == 518 EXT_NOT_RECORDED_NOT_ALLOCATED) { 519 add = (1 << 30) - sb->s_blocksize - 520 (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 521 if (add > new_block_bytes) 522 add = new_block_bytes; 523 new_block_bytes -= add; 524 last_ext->extLength += add; 525 } 526 527 if (fake) { 528 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 529 last_ext->extLength, 1); 530 if (err < 0) 531 goto out_err; 532 count++; 533 } else { 534 struct kernel_lb_addr tmploc; 535 uint32_t tmplen; 536 537 udf_write_aext(inode, last_pos, &last_ext->extLocation, 538 last_ext->extLength, 1); 539 540 /* 541 * We've rewritten the last extent. If we are going to add 542 * more extents, we may need to enter possible following 543 * empty indirect extent. 544 */ 545 if (new_block_bytes) 546 udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0); 547 } 548 549 /* Managed to do everything necessary? */ 550 if (!new_block_bytes) 551 goto out; 552 553 /* All further extents will be NOT_RECORDED_NOT_ALLOCATED */ 554 last_ext->extLocation.logicalBlockNum = 0; 555 last_ext->extLocation.partitionReferenceNum = 0; 556 add = (1 << 30) - sb->s_blocksize; 557 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add; 558 559 /* Create enough extents to cover the whole hole */ 560 while (new_block_bytes > add) { 561 new_block_bytes -= add; 562 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 563 last_ext->extLength, 1); 564 if (err) 565 goto out_err; 566 count++; 567 } 568 if (new_block_bytes) { 569 last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 570 new_block_bytes; 571 err = udf_add_aext(inode, last_pos, &last_ext->extLocation, 572 last_ext->extLength, 1); 573 if (err) 574 goto out_err; 575 count++; 576 } 577 578out: 579 /* last_pos should point to the last written extent... */ 580 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 581 last_pos->offset -= sizeof(struct short_ad); 582 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 583 last_pos->offset -= sizeof(struct long_ad); 584 else 585 return -EIO; 586 587 return count; 588out_err: 589 /* Remove extents we've created so far */ 590 udf_clear_extent_cache(inode); 591 udf_truncate_extents(inode); 592 return err; 593} 594 595/* Extend the final block of the file to final_block_len bytes */ 596static void udf_do_extend_final_block(struct inode *inode, 597 struct extent_position *last_pos, 598 struct kernel_long_ad *last_ext, 599 uint32_t new_elen) 600{ 601 uint32_t added_bytes; 602 603 /* 604 * Extent already large enough? It may be already rounded up to block 605 * size... 606 */ 607 if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK)) 608 return; 609 added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK); 610 last_ext->extLength += added_bytes; 611 UDF_I(inode)->i_lenExtents += added_bytes; 612 613 udf_write_aext(inode, last_pos, &last_ext->extLocation, 614 last_ext->extLength, 1); 615} 616 617static int udf_extend_file(struct inode *inode, loff_t newsize) 618{ 619 620 struct extent_position epos; 621 struct kernel_lb_addr eloc; 622 uint32_t elen; 623 int8_t etype; 624 struct super_block *sb = inode->i_sb; 625 sector_t first_block = newsize >> sb->s_blocksize_bits, offset; 626 loff_t new_elen; 627 int adsize; 628 struct udf_inode_info *iinfo = UDF_I(inode); 629 struct kernel_long_ad extent; 630 int err = 0; 631 bool within_last_ext; 632 633 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 634 adsize = sizeof(struct short_ad); 635 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 636 adsize = sizeof(struct long_ad); 637 else 638 BUG(); 639 640 /* 641 * When creating hole in file, just don't bother with preserving 642 * preallocation. It likely won't be very useful anyway. 643 */ 644 udf_discard_prealloc(inode); 645 646 etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset); 647 within_last_ext = (etype != -1); 648 /* We don't expect extents past EOF... */ 649 WARN_ON_ONCE(within_last_ext && 650 elen > ((loff_t)offset + 1) << inode->i_blkbits); 651 652 if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) || 653 (epos.bh && epos.offset == sizeof(struct allocExtDesc))) { 654 /* File has no extents at all or has empty last 655 * indirect extent! Create a fake extent... */ 656 extent.extLocation.logicalBlockNum = 0; 657 extent.extLocation.partitionReferenceNum = 0; 658 extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 659 } else { 660 epos.offset -= adsize; 661 etype = udf_next_aext(inode, &epos, &extent.extLocation, 662 &extent.extLength, 0); 663 extent.extLength |= etype << 30; 664 } 665 666 new_elen = ((loff_t)offset << inode->i_blkbits) | 667 (newsize & (sb->s_blocksize - 1)); 668 669 /* File has extent covering the new size (could happen when extending 670 * inside a block)? 671 */ 672 if (within_last_ext) { 673 /* Extending file within the last file block */ 674 udf_do_extend_final_block(inode, &epos, &extent, new_elen); 675 } else { 676 err = udf_do_extend_file(inode, &epos, &extent, new_elen); 677 } 678 679 if (err < 0) 680 goto out; 681 err = 0; 682 iinfo->i_lenExtents = newsize; 683out: 684 brelse(epos.bh); 685 return err; 686} 687 688static sector_t inode_getblk(struct inode *inode, sector_t block, 689 int *err, int *new) 690{ 691 struct kernel_long_ad laarr[EXTENT_MERGE_SIZE]; 692 struct extent_position prev_epos, cur_epos, next_epos; 693 int count = 0, startnum = 0, endnum = 0; 694 uint32_t elen = 0, tmpelen; 695 struct kernel_lb_addr eloc, tmpeloc; 696 int c = 1; 697 loff_t lbcount = 0, b_off = 0; 698 udf_pblk_t newblocknum, newblock = 0; 699 sector_t offset = 0; 700 int8_t etype; 701 struct udf_inode_info *iinfo = UDF_I(inode); 702 udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum; 703 int lastblock = 0; 704 bool isBeyondEOF; 705 706 *err = 0; 707 *new = 0; 708 prev_epos.offset = udf_file_entry_alloc_offset(inode); 709 prev_epos.block = iinfo->i_location; 710 prev_epos.bh = NULL; 711 cur_epos = next_epos = prev_epos; 712 b_off = (loff_t)block << inode->i_sb->s_blocksize_bits; 713 714 /* find the extent which contains the block we are looking for. 715 alternate between laarr[0] and laarr[1] for locations of the 716 current extent, and the previous extent */ 717 do { 718 if (prev_epos.bh != cur_epos.bh) { 719 brelse(prev_epos.bh); 720 get_bh(cur_epos.bh); 721 prev_epos.bh = cur_epos.bh; 722 } 723 if (cur_epos.bh != next_epos.bh) { 724 brelse(cur_epos.bh); 725 get_bh(next_epos.bh); 726 cur_epos.bh = next_epos.bh; 727 } 728 729 lbcount += elen; 730 731 prev_epos.block = cur_epos.block; 732 cur_epos.block = next_epos.block; 733 734 prev_epos.offset = cur_epos.offset; 735 cur_epos.offset = next_epos.offset; 736 737 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1); 738 if (etype == -1) 739 break; 740 741 c = !c; 742 743 laarr[c].extLength = (etype << 30) | elen; 744 laarr[c].extLocation = eloc; 745 746 if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 747 pgoal = eloc.logicalBlockNum + 748 ((elen + inode->i_sb->s_blocksize - 1) >> 749 inode->i_sb->s_blocksize_bits); 750 751 count++; 752 } while (lbcount + elen <= b_off); 753 754 b_off -= lbcount; 755 offset = b_off >> inode->i_sb->s_blocksize_bits; 756 /* 757 * Move prev_epos and cur_epos into indirect extent if we are at 758 * the pointer to it 759 */ 760 udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0); 761 udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0); 762 763 /* if the extent is allocated and recorded, return the block 764 if the extent is not a multiple of the blocksize, round up */ 765 766 if (etype == (EXT_RECORDED_ALLOCATED >> 30)) { 767 if (elen & (inode->i_sb->s_blocksize - 1)) { 768 elen = EXT_RECORDED_ALLOCATED | 769 ((elen + inode->i_sb->s_blocksize - 1) & 770 ~(inode->i_sb->s_blocksize - 1)); 771 udf_write_aext(inode, &cur_epos, &eloc, elen, 1); 772 } 773 newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 774 goto out_free; 775 } 776 777 /* Are we beyond EOF and preallocated extent? */ 778 if (etype == -1) { 779 int ret; 780 loff_t hole_len; 781 782 isBeyondEOF = true; 783 if (count) { 784 if (c) 785 laarr[0] = laarr[1]; 786 startnum = 1; 787 } else { 788 /* Create a fake extent when there's not one */ 789 memset(&laarr[0].extLocation, 0x00, 790 sizeof(struct kernel_lb_addr)); 791 laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED; 792 /* Will udf_do_extend_file() create real extent from 793 a fake one? */ 794 startnum = (offset > 0); 795 } 796 /* Create extents for the hole between EOF and offset */ 797 hole_len = (loff_t)offset << inode->i_blkbits; 798 ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len); 799 if (ret < 0) { 800 *err = ret; 801 goto out_free; 802 } 803 c = 0; 804 offset = 0; 805 count += ret; 806 /* 807 * Is there any real extent? - otherwise we overwrite the fake 808 * one... 809 */ 810 if (count) 811 c = !c; 812 laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | 813 inode->i_sb->s_blocksize; 814 memset(&laarr[c].extLocation, 0x00, 815 sizeof(struct kernel_lb_addr)); 816 count++; 817 endnum = c + 1; 818 lastblock = 1; 819 } else { 820 isBeyondEOF = false; 821 endnum = startnum = ((count > 2) ? 2 : count); 822 823 /* if the current extent is in position 0, 824 swap it with the previous */ 825 if (!c && count != 1) { 826 laarr[2] = laarr[0]; 827 laarr[0] = laarr[1]; 828 laarr[1] = laarr[2]; 829 c = 1; 830 } 831 832 /* if the current block is located in an extent, 833 read the next extent */ 834 etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0); 835 if (etype != -1) { 836 laarr[c + 1].extLength = (etype << 30) | elen; 837 laarr[c + 1].extLocation = eloc; 838 count++; 839 startnum++; 840 endnum++; 841 } else 842 lastblock = 1; 843 } 844 845 /* if the current extent is not recorded but allocated, get the 846 * block in the extent corresponding to the requested block */ 847 if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 848 newblocknum = laarr[c].extLocation.logicalBlockNum + offset; 849 else { /* otherwise, allocate a new block */ 850 if (iinfo->i_next_alloc_block == block) 851 goal = iinfo->i_next_alloc_goal; 852 853 if (!goal) { 854 if (!(goal = pgoal)) /* XXX: what was intended here? */ 855 goal = iinfo->i_location.logicalBlockNum + 1; 856 } 857 858 newblocknum = udf_new_block(inode->i_sb, inode, 859 iinfo->i_location.partitionReferenceNum, 860 goal, err); 861 if (!newblocknum) { 862 *err = -ENOSPC; 863 goto out_free; 864 } 865 if (isBeyondEOF) 866 iinfo->i_lenExtents += inode->i_sb->s_blocksize; 867 } 868 869 /* if the extent the requsted block is located in contains multiple 870 * blocks, split the extent into at most three extents. blocks prior 871 * to requested block, requested block, and blocks after requested 872 * block */ 873 udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum); 874 875 /* We preallocate blocks only for regular files. It also makes sense 876 * for directories but there's a problem when to drop the 877 * preallocation. We might use some delayed work for that but I feel 878 * it's overengineering for a filesystem like UDF. */ 879 if (S_ISREG(inode->i_mode)) 880 udf_prealloc_extents(inode, c, lastblock, laarr, &endnum); 881 882 /* merge any continuous blocks in laarr */ 883 udf_merge_extents(inode, laarr, &endnum); 884 885 /* write back the new extents, inserting new extents if the new number 886 * of extents is greater than the old number, and deleting extents if 887 * the new number of extents is less than the old number */ 888 *err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos); 889 if (*err < 0) 890 goto out_free; 891 892 newblock = udf_get_pblock(inode->i_sb, newblocknum, 893 iinfo->i_location.partitionReferenceNum, 0); 894 if (!newblock) { 895 *err = -EIO; 896 goto out_free; 897 } 898 *new = 1; 899 iinfo->i_next_alloc_block = block; 900 iinfo->i_next_alloc_goal = newblocknum; 901 inode->i_ctime = current_time(inode); 902 903 if (IS_SYNC(inode)) 904 udf_sync_inode(inode); 905 else 906 mark_inode_dirty(inode); 907out_free: 908 brelse(prev_epos.bh); 909 brelse(cur_epos.bh); 910 brelse(next_epos.bh); 911 return newblock; 912} 913 914static void udf_split_extents(struct inode *inode, int *c, int offset, 915 udf_pblk_t newblocknum, 916 struct kernel_long_ad *laarr, int *endnum) 917{ 918 unsigned long blocksize = inode->i_sb->s_blocksize; 919 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 920 921 if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) || 922 (laarr[*c].extLength >> 30) == 923 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 924 int curr = *c; 925 int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) + 926 blocksize - 1) >> blocksize_bits; 927 int8_t etype = (laarr[curr].extLength >> 30); 928 929 if (blen == 1) 930 ; 931 else if (!offset || blen == offset + 1) { 932 laarr[curr + 2] = laarr[curr + 1]; 933 laarr[curr + 1] = laarr[curr]; 934 } else { 935 laarr[curr + 3] = laarr[curr + 1]; 936 laarr[curr + 2] = laarr[curr + 1] = laarr[curr]; 937 } 938 939 if (offset) { 940 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 941 udf_free_blocks(inode->i_sb, inode, 942 &laarr[curr].extLocation, 943 0, offset); 944 laarr[curr].extLength = 945 EXT_NOT_RECORDED_NOT_ALLOCATED | 946 (offset << blocksize_bits); 947 laarr[curr].extLocation.logicalBlockNum = 0; 948 laarr[curr].extLocation. 949 partitionReferenceNum = 0; 950 } else 951 laarr[curr].extLength = (etype << 30) | 952 (offset << blocksize_bits); 953 curr++; 954 (*c)++; 955 (*endnum)++; 956 } 957 958 laarr[curr].extLocation.logicalBlockNum = newblocknum; 959 if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) 960 laarr[curr].extLocation.partitionReferenceNum = 961 UDF_I(inode)->i_location.partitionReferenceNum; 962 laarr[curr].extLength = EXT_RECORDED_ALLOCATED | 963 blocksize; 964 curr++; 965 966 if (blen != offset + 1) { 967 if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) 968 laarr[curr].extLocation.logicalBlockNum += 969 offset + 1; 970 laarr[curr].extLength = (etype << 30) | 971 ((blen - (offset + 1)) << blocksize_bits); 972 curr++; 973 (*endnum)++; 974 } 975 } 976} 977 978static void udf_prealloc_extents(struct inode *inode, int c, int lastblock, 979 struct kernel_long_ad *laarr, 980 int *endnum) 981{ 982 int start, length = 0, currlength = 0, i; 983 984 if (*endnum >= (c + 1)) { 985 if (!lastblock) 986 return; 987 else 988 start = c; 989 } else { 990 if ((laarr[c + 1].extLength >> 30) == 991 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 992 start = c + 1; 993 length = currlength = 994 (((laarr[c + 1].extLength & 995 UDF_EXTENT_LENGTH_MASK) + 996 inode->i_sb->s_blocksize - 1) >> 997 inode->i_sb->s_blocksize_bits); 998 } else 999 start = c; 1000 } 1001 1002 for (i = start + 1; i <= *endnum; i++) { 1003 if (i == *endnum) { 1004 if (lastblock) 1005 length += UDF_DEFAULT_PREALLOC_BLOCKS; 1006 } else if ((laarr[i].extLength >> 30) == 1007 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) { 1008 length += (((laarr[i].extLength & 1009 UDF_EXTENT_LENGTH_MASK) + 1010 inode->i_sb->s_blocksize - 1) >> 1011 inode->i_sb->s_blocksize_bits); 1012 } else 1013 break; 1014 } 1015 1016 if (length) { 1017 int next = laarr[start].extLocation.logicalBlockNum + 1018 (((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) + 1019 inode->i_sb->s_blocksize - 1) >> 1020 inode->i_sb->s_blocksize_bits); 1021 int numalloc = udf_prealloc_blocks(inode->i_sb, inode, 1022 laarr[start].extLocation.partitionReferenceNum, 1023 next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ? 1024 length : UDF_DEFAULT_PREALLOC_BLOCKS) - 1025 currlength); 1026 if (numalloc) { 1027 if (start == (c + 1)) 1028 laarr[start].extLength += 1029 (numalloc << 1030 inode->i_sb->s_blocksize_bits); 1031 else { 1032 memmove(&laarr[c + 2], &laarr[c + 1], 1033 sizeof(struct long_ad) * (*endnum - (c + 1))); 1034 (*endnum)++; 1035 laarr[c + 1].extLocation.logicalBlockNum = next; 1036 laarr[c + 1].extLocation.partitionReferenceNum = 1037 laarr[c].extLocation. 1038 partitionReferenceNum; 1039 laarr[c + 1].extLength = 1040 EXT_NOT_RECORDED_ALLOCATED | 1041 (numalloc << 1042 inode->i_sb->s_blocksize_bits); 1043 start = c + 1; 1044 } 1045 1046 for (i = start + 1; numalloc && i < *endnum; i++) { 1047 int elen = ((laarr[i].extLength & 1048 UDF_EXTENT_LENGTH_MASK) + 1049 inode->i_sb->s_blocksize - 1) >> 1050 inode->i_sb->s_blocksize_bits; 1051 1052 if (elen > numalloc) { 1053 laarr[i].extLength -= 1054 (numalloc << 1055 inode->i_sb->s_blocksize_bits); 1056 numalloc = 0; 1057 } else { 1058 numalloc -= elen; 1059 if (*endnum > (i + 1)) 1060 memmove(&laarr[i], 1061 &laarr[i + 1], 1062 sizeof(struct long_ad) * 1063 (*endnum - (i + 1))); 1064 i--; 1065 (*endnum)--; 1066 } 1067 } 1068 UDF_I(inode)->i_lenExtents += 1069 numalloc << inode->i_sb->s_blocksize_bits; 1070 } 1071 } 1072} 1073 1074static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr, 1075 int *endnum) 1076{ 1077 int i; 1078 unsigned long blocksize = inode->i_sb->s_blocksize; 1079 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1080 1081 for (i = 0; i < (*endnum - 1); i++) { 1082 struct kernel_long_ad *li /*l[i]*/ = &laarr[i]; 1083 struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1]; 1084 1085 if (((li->extLength >> 30) == (lip1->extLength >> 30)) && 1086 (((li->extLength >> 30) == 1087 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) || 1088 ((lip1->extLocation.logicalBlockNum - 1089 li->extLocation.logicalBlockNum) == 1090 (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1091 blocksize - 1) >> blocksize_bits)))) { 1092 1093 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1094 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1095 blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) { 1096 li->extLength = lip1->extLength + 1097 (((li->extLength & 1098 UDF_EXTENT_LENGTH_MASK) + 1099 blocksize - 1) & ~(blocksize - 1)); 1100 if (*endnum > (i + 2)) 1101 memmove(&laarr[i + 1], &laarr[i + 2], 1102 sizeof(struct long_ad) * 1103 (*endnum - (i + 2))); 1104 i--; 1105 (*endnum)--; 1106 } 1107 } else if (((li->extLength >> 30) == 1108 (EXT_NOT_RECORDED_ALLOCATED >> 30)) && 1109 ((lip1->extLength >> 30) == 1110 (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) { 1111 udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0, 1112 ((li->extLength & 1113 UDF_EXTENT_LENGTH_MASK) + 1114 blocksize - 1) >> blocksize_bits); 1115 li->extLocation.logicalBlockNum = 0; 1116 li->extLocation.partitionReferenceNum = 0; 1117 1118 if (((li->extLength & UDF_EXTENT_LENGTH_MASK) + 1119 (lip1->extLength & UDF_EXTENT_LENGTH_MASK) + 1120 blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) { 1121 lip1->extLength = (lip1->extLength - 1122 (li->extLength & 1123 UDF_EXTENT_LENGTH_MASK) + 1124 UDF_EXTENT_LENGTH_MASK) & 1125 ~(blocksize - 1); 1126 li->extLength = (li->extLength & 1127 UDF_EXTENT_FLAG_MASK) + 1128 (UDF_EXTENT_LENGTH_MASK + 1) - 1129 blocksize; 1130 } else { 1131 li->extLength = lip1->extLength + 1132 (((li->extLength & 1133 UDF_EXTENT_LENGTH_MASK) + 1134 blocksize - 1) & ~(blocksize - 1)); 1135 if (*endnum > (i + 2)) 1136 memmove(&laarr[i + 1], &laarr[i + 2], 1137 sizeof(struct long_ad) * 1138 (*endnum - (i + 2))); 1139 i--; 1140 (*endnum)--; 1141 } 1142 } else if ((li->extLength >> 30) == 1143 (EXT_NOT_RECORDED_ALLOCATED >> 30)) { 1144 udf_free_blocks(inode->i_sb, inode, 1145 &li->extLocation, 0, 1146 ((li->extLength & 1147 UDF_EXTENT_LENGTH_MASK) + 1148 blocksize - 1) >> blocksize_bits); 1149 li->extLocation.logicalBlockNum = 0; 1150 li->extLocation.partitionReferenceNum = 0; 1151 li->extLength = (li->extLength & 1152 UDF_EXTENT_LENGTH_MASK) | 1153 EXT_NOT_RECORDED_NOT_ALLOCATED; 1154 } 1155 } 1156} 1157 1158static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr, 1159 int startnum, int endnum, 1160 struct extent_position *epos) 1161{ 1162 int start = 0, i; 1163 struct kernel_lb_addr tmploc; 1164 uint32_t tmplen; 1165 int err; 1166 1167 if (startnum > endnum) { 1168 for (i = 0; i < (startnum - endnum); i++) 1169 udf_delete_aext(inode, *epos); 1170 } else if (startnum < endnum) { 1171 for (i = 0; i < (endnum - startnum); i++) { 1172 err = udf_insert_aext(inode, *epos, 1173 laarr[i].extLocation, 1174 laarr[i].extLength); 1175 /* 1176 * If we fail here, we are likely corrupting the extent 1177 * list and leaking blocks. At least stop early to 1178 * limit the damage. 1179 */ 1180 if (err < 0) 1181 return err; 1182 udf_next_aext(inode, epos, &laarr[i].extLocation, 1183 &laarr[i].extLength, 1); 1184 start++; 1185 } 1186 } 1187 1188 for (i = start; i < endnum; i++) { 1189 udf_next_aext(inode, epos, &tmploc, &tmplen, 0); 1190 udf_write_aext(inode, epos, &laarr[i].extLocation, 1191 laarr[i].extLength, 1); 1192 } 1193 return 0; 1194} 1195 1196struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block, 1197 int create, int *err) 1198{ 1199 struct buffer_head *bh = NULL; 1200 1201 bh = udf_getblk(inode, block, create, err); 1202 if (!bh) 1203 return NULL; 1204 1205 if (buffer_uptodate(bh)) 1206 return bh; 1207 1208 ll_rw_block(REQ_OP_READ, 0, 1, &bh); 1209 1210 wait_on_buffer(bh); 1211 if (buffer_uptodate(bh)) 1212 return bh; 1213 1214 brelse(bh); 1215 *err = -EIO; 1216 return NULL; 1217} 1218 1219int udf_setsize(struct inode *inode, loff_t newsize) 1220{ 1221 int err; 1222 struct udf_inode_info *iinfo; 1223 unsigned int bsize = i_blocksize(inode); 1224 1225 if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) || 1226 S_ISLNK(inode->i_mode))) 1227 return -EINVAL; 1228 if (IS_APPEND(inode) || IS_IMMUTABLE(inode)) 1229 return -EPERM; 1230 1231 iinfo = UDF_I(inode); 1232 if (newsize > inode->i_size) { 1233 down_write(&iinfo->i_data_sem); 1234 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1235 if (bsize < 1236 (udf_file_entry_alloc_offset(inode) + newsize)) { 1237 err = udf_expand_file_adinicb(inode); 1238 if (err) 1239 return err; 1240 down_write(&iinfo->i_data_sem); 1241 } else { 1242 iinfo->i_lenAlloc = newsize; 1243 goto set_size; 1244 } 1245 } 1246 err = udf_extend_file(inode, newsize); 1247 if (err) { 1248 up_write(&iinfo->i_data_sem); 1249 return err; 1250 } 1251set_size: 1252 up_write(&iinfo->i_data_sem); 1253 truncate_setsize(inode, newsize); 1254 } else { 1255 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1256 down_write(&iinfo->i_data_sem); 1257 udf_clear_extent_cache(inode); 1258 memset(iinfo->i_data + iinfo->i_lenEAttr + newsize, 1259 0x00, bsize - newsize - 1260 udf_file_entry_alloc_offset(inode)); 1261 iinfo->i_lenAlloc = newsize; 1262 truncate_setsize(inode, newsize); 1263 up_write(&iinfo->i_data_sem); 1264 goto update_time; 1265 } 1266 err = block_truncate_page(inode->i_mapping, newsize, 1267 udf_get_block); 1268 if (err) 1269 return err; 1270 truncate_setsize(inode, newsize); 1271 down_write(&iinfo->i_data_sem); 1272 udf_clear_extent_cache(inode); 1273 err = udf_truncate_extents(inode); 1274 up_write(&iinfo->i_data_sem); 1275 if (err) 1276 return err; 1277 } 1278update_time: 1279 inode->i_mtime = inode->i_ctime = current_time(inode); 1280 if (IS_SYNC(inode)) 1281 udf_sync_inode(inode); 1282 else 1283 mark_inode_dirty(inode); 1284 return 0; 1285} 1286 1287/* 1288 * Maximum length of linked list formed by ICB hierarchy. The chosen number is 1289 * arbitrary - just that we hopefully don't limit any real use of rewritten 1290 * inode on write-once media but avoid looping for too long on corrupted media. 1291 */ 1292#define UDF_MAX_ICB_NESTING 1024 1293 1294static int udf_read_inode(struct inode *inode, bool hidden_inode) 1295{ 1296 struct buffer_head *bh = NULL; 1297 struct fileEntry *fe; 1298 struct extendedFileEntry *efe; 1299 uint16_t ident; 1300 struct udf_inode_info *iinfo = UDF_I(inode); 1301 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1302 struct kernel_lb_addr *iloc = &iinfo->i_location; 1303 unsigned int link_count; 1304 unsigned int indirections = 0; 1305 int bs = inode->i_sb->s_blocksize; 1306 int ret = -EIO; 1307 uint32_t uid, gid; 1308 1309reread: 1310 if (iloc->partitionReferenceNum >= sbi->s_partitions) { 1311 udf_debug("partition reference: %u > logical volume partitions: %u\n", 1312 iloc->partitionReferenceNum, sbi->s_partitions); 1313 return -EIO; 1314 } 1315 1316 if (iloc->logicalBlockNum >= 1317 sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) { 1318 udf_debug("block=%u, partition=%u out of range\n", 1319 iloc->logicalBlockNum, iloc->partitionReferenceNum); 1320 return -EIO; 1321 } 1322 1323 /* 1324 * Set defaults, but the inode is still incomplete! 1325 * Note: get_new_inode() sets the following on a new inode: 1326 * i_sb = sb 1327 * i_no = ino 1328 * i_flags = sb->s_flags 1329 * i_state = 0 1330 * clean_inode(): zero fills and sets 1331 * i_count = 1 1332 * i_nlink = 1 1333 * i_op = NULL; 1334 */ 1335 bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident); 1336 if (!bh) { 1337 udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino); 1338 return -EIO; 1339 } 1340 1341 if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE && 1342 ident != TAG_IDENT_USE) { 1343 udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n", 1344 inode->i_ino, ident); 1345 goto out; 1346 } 1347 1348 fe = (struct fileEntry *)bh->b_data; 1349 efe = (struct extendedFileEntry *)bh->b_data; 1350 1351 if (fe->icbTag.strategyType == cpu_to_le16(4096)) { 1352 struct buffer_head *ibh; 1353 1354 ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident); 1355 if (ident == TAG_IDENT_IE && ibh) { 1356 struct kernel_lb_addr loc; 1357 struct indirectEntry *ie; 1358 1359 ie = (struct indirectEntry *)ibh->b_data; 1360 loc = lelb_to_cpu(ie->indirectICB.extLocation); 1361 1362 if (ie->indirectICB.extLength) { 1363 brelse(ibh); 1364 memcpy(&iinfo->i_location, &loc, 1365 sizeof(struct kernel_lb_addr)); 1366 if (++indirections > UDF_MAX_ICB_NESTING) { 1367 udf_err(inode->i_sb, 1368 "too many ICBs in ICB hierarchy" 1369 " (max %d supported)\n", 1370 UDF_MAX_ICB_NESTING); 1371 goto out; 1372 } 1373 brelse(bh); 1374 goto reread; 1375 } 1376 } 1377 brelse(ibh); 1378 } else if (fe->icbTag.strategyType != cpu_to_le16(4)) { 1379 udf_err(inode->i_sb, "unsupported strategy type: %u\n", 1380 le16_to_cpu(fe->icbTag.strategyType)); 1381 goto out; 1382 } 1383 if (fe->icbTag.strategyType == cpu_to_le16(4)) 1384 iinfo->i_strat4096 = 0; 1385 else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */ 1386 iinfo->i_strat4096 = 1; 1387 1388 iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) & 1389 ICBTAG_FLAG_AD_MASK; 1390 if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT && 1391 iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG && 1392 iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) { 1393 ret = -EIO; 1394 goto out; 1395 } 1396 iinfo->i_hidden = hidden_inode; 1397 iinfo->i_unique = 0; 1398 iinfo->i_lenEAttr = 0; 1399 iinfo->i_lenExtents = 0; 1400 iinfo->i_lenAlloc = 0; 1401 iinfo->i_next_alloc_block = 0; 1402 iinfo->i_next_alloc_goal = 0; 1403 if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) { 1404 iinfo->i_efe = 1; 1405 iinfo->i_use = 0; 1406 ret = udf_alloc_i_data(inode, bs - 1407 sizeof(struct extendedFileEntry)); 1408 if (ret) 1409 goto out; 1410 memcpy(iinfo->i_data, 1411 bh->b_data + sizeof(struct extendedFileEntry), 1412 bs - sizeof(struct extendedFileEntry)); 1413 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) { 1414 iinfo->i_efe = 0; 1415 iinfo->i_use = 0; 1416 ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry)); 1417 if (ret) 1418 goto out; 1419 memcpy(iinfo->i_data, 1420 bh->b_data + sizeof(struct fileEntry), 1421 bs - sizeof(struct fileEntry)); 1422 } else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) { 1423 iinfo->i_efe = 0; 1424 iinfo->i_use = 1; 1425 iinfo->i_lenAlloc = le32_to_cpu( 1426 ((struct unallocSpaceEntry *)bh->b_data)-> 1427 lengthAllocDescs); 1428 ret = udf_alloc_i_data(inode, bs - 1429 sizeof(struct unallocSpaceEntry)); 1430 if (ret) 1431 goto out; 1432 memcpy(iinfo->i_data, 1433 bh->b_data + sizeof(struct unallocSpaceEntry), 1434 bs - sizeof(struct unallocSpaceEntry)); 1435 return 0; 1436 } 1437 1438 ret = -EIO; 1439 read_lock(&sbi->s_cred_lock); 1440 uid = le32_to_cpu(fe->uid); 1441 if (uid == UDF_INVALID_ID || 1442 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET)) 1443 inode->i_uid = sbi->s_uid; 1444 else 1445 i_uid_write(inode, uid); 1446 1447 gid = le32_to_cpu(fe->gid); 1448 if (gid == UDF_INVALID_ID || 1449 UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET)) 1450 inode->i_gid = sbi->s_gid; 1451 else 1452 i_gid_write(inode, gid); 1453 1454 if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY && 1455 sbi->s_fmode != UDF_INVALID_MODE) 1456 inode->i_mode = sbi->s_fmode; 1457 else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY && 1458 sbi->s_dmode != UDF_INVALID_MODE) 1459 inode->i_mode = sbi->s_dmode; 1460 else 1461 inode->i_mode = udf_convert_permissions(fe); 1462 inode->i_mode &= ~sbi->s_umask; 1463 iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS; 1464 1465 read_unlock(&sbi->s_cred_lock); 1466 1467 link_count = le16_to_cpu(fe->fileLinkCount); 1468 if (!link_count) { 1469 if (!hidden_inode) { 1470 ret = -ESTALE; 1471 goto out; 1472 } 1473 link_count = 1; 1474 } 1475 set_nlink(inode, link_count); 1476 1477 inode->i_size = le64_to_cpu(fe->informationLength); 1478 iinfo->i_lenExtents = inode->i_size; 1479 1480 if (iinfo->i_efe == 0) { 1481 inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) << 1482 (inode->i_sb->s_blocksize_bits - 9); 1483 1484 udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime); 1485 udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime); 1486 udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime); 1487 1488 iinfo->i_unique = le64_to_cpu(fe->uniqueID); 1489 iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr); 1490 iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs); 1491 iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint); 1492 iinfo->i_streamdir = 0; 1493 iinfo->i_lenStreams = 0; 1494 } else { 1495 inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) << 1496 (inode->i_sb->s_blocksize_bits - 9); 1497 1498 udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime); 1499 udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime); 1500 udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime); 1501 udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime); 1502 1503 iinfo->i_unique = le64_to_cpu(efe->uniqueID); 1504 iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr); 1505 iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs); 1506 iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint); 1507 1508 /* Named streams */ 1509 iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0); 1510 iinfo->i_locStreamdir = 1511 lelb_to_cpu(efe->streamDirectoryICB.extLocation); 1512 iinfo->i_lenStreams = le64_to_cpu(efe->objectSize); 1513 if (iinfo->i_lenStreams >= inode->i_size) 1514 iinfo->i_lenStreams -= inode->i_size; 1515 else 1516 iinfo->i_lenStreams = 0; 1517 } 1518 inode->i_generation = iinfo->i_unique; 1519 1520 /* 1521 * Sanity check length of allocation descriptors and extended attrs to 1522 * avoid integer overflows 1523 */ 1524 if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs) 1525 goto out; 1526 /* Now do exact checks */ 1527 if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs) 1528 goto out; 1529 /* Sanity checks for files in ICB so that we don't get confused later */ 1530 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) { 1531 /* 1532 * For file in ICB data is stored in allocation descriptor 1533 * so sizes should match 1534 */ 1535 if (iinfo->i_lenAlloc != inode->i_size) 1536 goto out; 1537 /* File in ICB has to fit in there... */ 1538 if (inode->i_size > bs - udf_file_entry_alloc_offset(inode)) 1539 goto out; 1540 } 1541 1542 switch (fe->icbTag.fileType) { 1543 case ICBTAG_FILE_TYPE_DIRECTORY: 1544 inode->i_op = &udf_dir_inode_operations; 1545 inode->i_fop = &udf_dir_operations; 1546 inode->i_mode |= S_IFDIR; 1547 inc_nlink(inode); 1548 break; 1549 case ICBTAG_FILE_TYPE_REALTIME: 1550 case ICBTAG_FILE_TYPE_REGULAR: 1551 case ICBTAG_FILE_TYPE_UNDEF: 1552 case ICBTAG_FILE_TYPE_VAT20: 1553 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1554 inode->i_data.a_ops = &udf_adinicb_aops; 1555 else 1556 inode->i_data.a_ops = &udf_aops; 1557 inode->i_op = &udf_file_inode_operations; 1558 inode->i_fop = &udf_file_operations; 1559 inode->i_mode |= S_IFREG; 1560 break; 1561 case ICBTAG_FILE_TYPE_BLOCK: 1562 inode->i_mode |= S_IFBLK; 1563 break; 1564 case ICBTAG_FILE_TYPE_CHAR: 1565 inode->i_mode |= S_IFCHR; 1566 break; 1567 case ICBTAG_FILE_TYPE_FIFO: 1568 init_special_inode(inode, inode->i_mode | S_IFIFO, 0); 1569 break; 1570 case ICBTAG_FILE_TYPE_SOCKET: 1571 init_special_inode(inode, inode->i_mode | S_IFSOCK, 0); 1572 break; 1573 case ICBTAG_FILE_TYPE_SYMLINK: 1574 inode->i_data.a_ops = &udf_symlink_aops; 1575 inode->i_op = &udf_symlink_inode_operations; 1576 inode_nohighmem(inode); 1577 inode->i_mode = S_IFLNK | 0777; 1578 break; 1579 case ICBTAG_FILE_TYPE_MAIN: 1580 udf_debug("METADATA FILE-----\n"); 1581 break; 1582 case ICBTAG_FILE_TYPE_MIRROR: 1583 udf_debug("METADATA MIRROR FILE-----\n"); 1584 break; 1585 case ICBTAG_FILE_TYPE_BITMAP: 1586 udf_debug("METADATA BITMAP FILE-----\n"); 1587 break; 1588 default: 1589 udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n", 1590 inode->i_ino, fe->icbTag.fileType); 1591 goto out; 1592 } 1593 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1594 struct deviceSpec *dsea = 1595 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1596 if (dsea) { 1597 init_special_inode(inode, inode->i_mode, 1598 MKDEV(le32_to_cpu(dsea->majorDeviceIdent), 1599 le32_to_cpu(dsea->minorDeviceIdent))); 1600 /* Developer ID ??? */ 1601 } else 1602 goto out; 1603 } 1604 ret = 0; 1605out: 1606 brelse(bh); 1607 return ret; 1608} 1609 1610static int udf_alloc_i_data(struct inode *inode, size_t size) 1611{ 1612 struct udf_inode_info *iinfo = UDF_I(inode); 1613 iinfo->i_data = kmalloc(size, GFP_KERNEL); 1614 if (!iinfo->i_data) 1615 return -ENOMEM; 1616 return 0; 1617} 1618 1619static umode_t udf_convert_permissions(struct fileEntry *fe) 1620{ 1621 umode_t mode; 1622 uint32_t permissions; 1623 uint32_t flags; 1624 1625 permissions = le32_to_cpu(fe->permissions); 1626 flags = le16_to_cpu(fe->icbTag.flags); 1627 1628 mode = ((permissions) & 0007) | 1629 ((permissions >> 2) & 0070) | 1630 ((permissions >> 4) & 0700) | 1631 ((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) | 1632 ((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) | 1633 ((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0); 1634 1635 return mode; 1636} 1637 1638void udf_update_extra_perms(struct inode *inode, umode_t mode) 1639{ 1640 struct udf_inode_info *iinfo = UDF_I(inode); 1641 1642 /* 1643 * UDF 2.01 sec. 3.3.3.3 Note 2: 1644 * In Unix, delete permission tracks write 1645 */ 1646 iinfo->i_extraPerms &= ~FE_DELETE_PERMS; 1647 if (mode & 0200) 1648 iinfo->i_extraPerms |= FE_PERM_U_DELETE; 1649 if (mode & 0020) 1650 iinfo->i_extraPerms |= FE_PERM_G_DELETE; 1651 if (mode & 0002) 1652 iinfo->i_extraPerms |= FE_PERM_O_DELETE; 1653} 1654 1655int udf_write_inode(struct inode *inode, struct writeback_control *wbc) 1656{ 1657 return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL); 1658} 1659 1660static int udf_sync_inode(struct inode *inode) 1661{ 1662 return udf_update_inode(inode, 1); 1663} 1664 1665static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time) 1666{ 1667 if (iinfo->i_crtime.tv_sec > time.tv_sec || 1668 (iinfo->i_crtime.tv_sec == time.tv_sec && 1669 iinfo->i_crtime.tv_nsec > time.tv_nsec)) 1670 iinfo->i_crtime = time; 1671} 1672 1673static int udf_update_inode(struct inode *inode, int do_sync) 1674{ 1675 struct buffer_head *bh = NULL; 1676 struct fileEntry *fe; 1677 struct extendedFileEntry *efe; 1678 uint64_t lb_recorded; 1679 uint32_t udfperms; 1680 uint16_t icbflags; 1681 uint16_t crclen; 1682 int err = 0; 1683 struct udf_sb_info *sbi = UDF_SB(inode->i_sb); 1684 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 1685 struct udf_inode_info *iinfo = UDF_I(inode); 1686 1687 bh = udf_tgetblk(inode->i_sb, 1688 udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0)); 1689 if (!bh) { 1690 udf_debug("getblk failure\n"); 1691 return -EIO; 1692 } 1693 1694 lock_buffer(bh); 1695 memset(bh->b_data, 0, inode->i_sb->s_blocksize); 1696 fe = (struct fileEntry *)bh->b_data; 1697 efe = (struct extendedFileEntry *)bh->b_data; 1698 1699 if (iinfo->i_use) { 1700 struct unallocSpaceEntry *use = 1701 (struct unallocSpaceEntry *)bh->b_data; 1702 1703 use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1704 memcpy(bh->b_data + sizeof(struct unallocSpaceEntry), 1705 iinfo->i_data, inode->i_sb->s_blocksize - 1706 sizeof(struct unallocSpaceEntry)); 1707 use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE); 1708 crclen = sizeof(struct unallocSpaceEntry); 1709 1710 goto finish; 1711 } 1712 1713 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET)) 1714 fe->uid = cpu_to_le32(UDF_INVALID_ID); 1715 else 1716 fe->uid = cpu_to_le32(i_uid_read(inode)); 1717 1718 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET)) 1719 fe->gid = cpu_to_le32(UDF_INVALID_ID); 1720 else 1721 fe->gid = cpu_to_le32(i_gid_read(inode)); 1722 1723 udfperms = ((inode->i_mode & 0007)) | 1724 ((inode->i_mode & 0070) << 2) | 1725 ((inode->i_mode & 0700) << 4); 1726 1727 udfperms |= iinfo->i_extraPerms; 1728 fe->permissions = cpu_to_le32(udfperms); 1729 1730 if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0) 1731 fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1); 1732 else { 1733 if (iinfo->i_hidden) 1734 fe->fileLinkCount = cpu_to_le16(0); 1735 else 1736 fe->fileLinkCount = cpu_to_le16(inode->i_nlink); 1737 } 1738 1739 fe->informationLength = cpu_to_le64(inode->i_size); 1740 1741 if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) { 1742 struct regid *eid; 1743 struct deviceSpec *dsea = 1744 (struct deviceSpec *)udf_get_extendedattr(inode, 12, 1); 1745 if (!dsea) { 1746 dsea = (struct deviceSpec *) 1747 udf_add_extendedattr(inode, 1748 sizeof(struct deviceSpec) + 1749 sizeof(struct regid), 12, 0x3); 1750 dsea->attrType = cpu_to_le32(12); 1751 dsea->attrSubtype = 1; 1752 dsea->attrLength = cpu_to_le32( 1753 sizeof(struct deviceSpec) + 1754 sizeof(struct regid)); 1755 dsea->impUseLength = cpu_to_le32(sizeof(struct regid)); 1756 } 1757 eid = (struct regid *)dsea->impUse; 1758 memset(eid, 0, sizeof(*eid)); 1759 strcpy(eid->ident, UDF_ID_DEVELOPER); 1760 eid->identSuffix[0] = UDF_OS_CLASS_UNIX; 1761 eid->identSuffix[1] = UDF_OS_ID_LINUX; 1762 dsea->majorDeviceIdent = cpu_to_le32(imajor(inode)); 1763 dsea->minorDeviceIdent = cpu_to_le32(iminor(inode)); 1764 } 1765 1766 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) 1767 lb_recorded = 0; /* No extents => no blocks! */ 1768 else 1769 lb_recorded = 1770 (inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >> 1771 (blocksize_bits - 9); 1772 1773 if (iinfo->i_efe == 0) { 1774 memcpy(bh->b_data + sizeof(struct fileEntry), 1775 iinfo->i_data, 1776 inode->i_sb->s_blocksize - sizeof(struct fileEntry)); 1777 fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1778 1779 udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime); 1780 udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime); 1781 udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime); 1782 memset(&(fe->impIdent), 0, sizeof(struct regid)); 1783 strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER); 1784 fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1785 fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1786 fe->uniqueID = cpu_to_le64(iinfo->i_unique); 1787 fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1788 fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1789 fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1790 fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE); 1791 crclen = sizeof(struct fileEntry); 1792 } else { 1793 memcpy(bh->b_data + sizeof(struct extendedFileEntry), 1794 iinfo->i_data, 1795 inode->i_sb->s_blocksize - 1796 sizeof(struct extendedFileEntry)); 1797 efe->objectSize = 1798 cpu_to_le64(inode->i_size + iinfo->i_lenStreams); 1799 efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded); 1800 1801 if (iinfo->i_streamdir) { 1802 struct long_ad *icb_lad = &efe->streamDirectoryICB; 1803 1804 icb_lad->extLocation = 1805 cpu_to_lelb(iinfo->i_locStreamdir); 1806 icb_lad->extLength = 1807 cpu_to_le32(inode->i_sb->s_blocksize); 1808 } 1809 1810 udf_adjust_time(iinfo, inode->i_atime); 1811 udf_adjust_time(iinfo, inode->i_mtime); 1812 udf_adjust_time(iinfo, inode->i_ctime); 1813 1814 udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime); 1815 udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime); 1816 udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime); 1817 udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime); 1818 1819 memset(&(efe->impIdent), 0, sizeof(efe->impIdent)); 1820 strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER); 1821 efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX; 1822 efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX; 1823 efe->uniqueID = cpu_to_le64(iinfo->i_unique); 1824 efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr); 1825 efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc); 1826 efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint); 1827 efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE); 1828 crclen = sizeof(struct extendedFileEntry); 1829 } 1830 1831finish: 1832 if (iinfo->i_strat4096) { 1833 fe->icbTag.strategyType = cpu_to_le16(4096); 1834 fe->icbTag.strategyParameter = cpu_to_le16(1); 1835 fe->icbTag.numEntries = cpu_to_le16(2); 1836 } else { 1837 fe->icbTag.strategyType = cpu_to_le16(4); 1838 fe->icbTag.numEntries = cpu_to_le16(1); 1839 } 1840 1841 if (iinfo->i_use) 1842 fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE; 1843 else if (S_ISDIR(inode->i_mode)) 1844 fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY; 1845 else if (S_ISREG(inode->i_mode)) 1846 fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR; 1847 else if (S_ISLNK(inode->i_mode)) 1848 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK; 1849 else if (S_ISBLK(inode->i_mode)) 1850 fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK; 1851 else if (S_ISCHR(inode->i_mode)) 1852 fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR; 1853 else if (S_ISFIFO(inode->i_mode)) 1854 fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO; 1855 else if (S_ISSOCK(inode->i_mode)) 1856 fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET; 1857 1858 icbflags = iinfo->i_alloc_type | 1859 ((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) | 1860 ((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) | 1861 ((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) | 1862 (le16_to_cpu(fe->icbTag.flags) & 1863 ~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID | 1864 ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY)); 1865 1866 fe->icbTag.flags = cpu_to_le16(icbflags); 1867 if (sbi->s_udfrev >= 0x0200) 1868 fe->descTag.descVersion = cpu_to_le16(3); 1869 else 1870 fe->descTag.descVersion = cpu_to_le16(2); 1871 fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number); 1872 fe->descTag.tagLocation = cpu_to_le32( 1873 iinfo->i_location.logicalBlockNum); 1874 crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag); 1875 fe->descTag.descCRCLength = cpu_to_le16(crclen); 1876 fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag), 1877 crclen)); 1878 fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag); 1879 1880 set_buffer_uptodate(bh); 1881 unlock_buffer(bh); 1882 1883 /* write the data blocks */ 1884 mark_buffer_dirty(bh); 1885 if (do_sync) { 1886 sync_dirty_buffer(bh); 1887 if (buffer_write_io_error(bh)) { 1888 udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n", 1889 inode->i_ino); 1890 err = -EIO; 1891 } 1892 } 1893 brelse(bh); 1894 1895 return err; 1896} 1897 1898struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino, 1899 bool hidden_inode) 1900{ 1901 unsigned long block = udf_get_lb_pblock(sb, ino, 0); 1902 struct inode *inode = iget_locked(sb, block); 1903 int err; 1904 1905 if (!inode) 1906 return ERR_PTR(-ENOMEM); 1907 1908 if (!(inode->i_state & I_NEW)) { 1909 if (UDF_I(inode)->i_hidden != hidden_inode) { 1910 iput(inode); 1911 return ERR_PTR(-EFSCORRUPTED); 1912 } 1913 return inode; 1914 } 1915 1916 memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr)); 1917 err = udf_read_inode(inode, hidden_inode); 1918 if (err < 0) { 1919 iget_failed(inode); 1920 return ERR_PTR(err); 1921 } 1922 unlock_new_inode(inode); 1923 1924 return inode; 1925} 1926 1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block, 1928 struct extent_position *epos) 1929{ 1930 struct super_block *sb = inode->i_sb; 1931 struct buffer_head *bh; 1932 struct allocExtDesc *aed; 1933 struct extent_position nepos; 1934 struct kernel_lb_addr neloc; 1935 int ver, adsize; 1936 1937 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 1938 adsize = sizeof(struct short_ad); 1939 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 1940 adsize = sizeof(struct long_ad); 1941 else 1942 return -EIO; 1943 1944 neloc.logicalBlockNum = block; 1945 neloc.partitionReferenceNum = epos->block.partitionReferenceNum; 1946 1947 bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0)); 1948 if (!bh) 1949 return -EIO; 1950 lock_buffer(bh); 1951 memset(bh->b_data, 0x00, sb->s_blocksize); 1952 set_buffer_uptodate(bh); 1953 unlock_buffer(bh); 1954 mark_buffer_dirty_inode(bh, inode); 1955 1956 aed = (struct allocExtDesc *)(bh->b_data); 1957 if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) { 1958 aed->previousAllocExtLocation = 1959 cpu_to_le32(epos->block.logicalBlockNum); 1960 } 1961 aed->lengthAllocDescs = cpu_to_le32(0); 1962 if (UDF_SB(sb)->s_udfrev >= 0x0200) 1963 ver = 3; 1964 else 1965 ver = 2; 1966 udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block, 1967 sizeof(struct tag)); 1968 1969 nepos.block = neloc; 1970 nepos.offset = sizeof(struct allocExtDesc); 1971 nepos.bh = bh; 1972 1973 /* 1974 * Do we have to copy current last extent to make space for indirect 1975 * one? 1976 */ 1977 if (epos->offset + adsize > sb->s_blocksize) { 1978 struct kernel_lb_addr cp_loc; 1979 uint32_t cp_len; 1980 int cp_type; 1981 1982 epos->offset -= adsize; 1983 cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0); 1984 cp_len |= ((uint32_t)cp_type) << 30; 1985 1986 __udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1); 1987 udf_write_aext(inode, epos, &nepos.block, 1988 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1989 } else { 1990 __udf_add_aext(inode, epos, &nepos.block, 1991 sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0); 1992 } 1993 1994 brelse(epos->bh); 1995 *epos = nepos; 1996 1997 return 0; 1998} 1999 2000/* 2001 * Append extent at the given position - should be the first free one in inode 2002 * / indirect extent. This function assumes there is enough space in the inode 2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before. 2004 */ 2005int __udf_add_aext(struct inode *inode, struct extent_position *epos, 2006 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2007{ 2008 struct udf_inode_info *iinfo = UDF_I(inode); 2009 struct allocExtDesc *aed; 2010 int adsize; 2011 2012 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2013 adsize = sizeof(struct short_ad); 2014 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2015 adsize = sizeof(struct long_ad); 2016 else 2017 return -EIO; 2018 2019 if (!epos->bh) { 2020 WARN_ON(iinfo->i_lenAlloc != 2021 epos->offset - udf_file_entry_alloc_offset(inode)); 2022 } else { 2023 aed = (struct allocExtDesc *)epos->bh->b_data; 2024 WARN_ON(le32_to_cpu(aed->lengthAllocDescs) != 2025 epos->offset - sizeof(struct allocExtDesc)); 2026 WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize); 2027 } 2028 2029 udf_write_aext(inode, epos, eloc, elen, inc); 2030 2031 if (!epos->bh) { 2032 iinfo->i_lenAlloc += adsize; 2033 mark_inode_dirty(inode); 2034 } else { 2035 aed = (struct allocExtDesc *)epos->bh->b_data; 2036 le32_add_cpu(&aed->lengthAllocDescs, adsize); 2037 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2038 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2039 udf_update_tag(epos->bh->b_data, 2040 epos->offset + (inc ? 0 : adsize)); 2041 else 2042 udf_update_tag(epos->bh->b_data, 2043 sizeof(struct allocExtDesc)); 2044 mark_buffer_dirty_inode(epos->bh, inode); 2045 } 2046 2047 return 0; 2048} 2049 2050/* 2051 * Append extent at given position - should be the first free one in inode 2052 * / indirect extent. Takes care of allocating and linking indirect blocks. 2053 */ 2054int udf_add_aext(struct inode *inode, struct extent_position *epos, 2055 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2056{ 2057 int adsize; 2058 struct super_block *sb = inode->i_sb; 2059 2060 if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2061 adsize = sizeof(struct short_ad); 2062 else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2063 adsize = sizeof(struct long_ad); 2064 else 2065 return -EIO; 2066 2067 if (epos->offset + (2 * adsize) > sb->s_blocksize) { 2068 int err; 2069 udf_pblk_t new_block; 2070 2071 new_block = udf_new_block(sb, NULL, 2072 epos->block.partitionReferenceNum, 2073 epos->block.logicalBlockNum, &err); 2074 if (!new_block) 2075 return -ENOSPC; 2076 2077 err = udf_setup_indirect_aext(inode, new_block, epos); 2078 if (err) 2079 return err; 2080 } 2081 2082 return __udf_add_aext(inode, epos, eloc, elen, inc); 2083} 2084 2085void udf_write_aext(struct inode *inode, struct extent_position *epos, 2086 struct kernel_lb_addr *eloc, uint32_t elen, int inc) 2087{ 2088 int adsize; 2089 uint8_t *ptr; 2090 struct short_ad *sad; 2091 struct long_ad *lad; 2092 struct udf_inode_info *iinfo = UDF_I(inode); 2093 2094 if (!epos->bh) 2095 ptr = iinfo->i_data + epos->offset - 2096 udf_file_entry_alloc_offset(inode) + 2097 iinfo->i_lenEAttr; 2098 else 2099 ptr = epos->bh->b_data + epos->offset; 2100 2101 switch (iinfo->i_alloc_type) { 2102 case ICBTAG_FLAG_AD_SHORT: 2103 sad = (struct short_ad *)ptr; 2104 sad->extLength = cpu_to_le32(elen); 2105 sad->extPosition = cpu_to_le32(eloc->logicalBlockNum); 2106 adsize = sizeof(struct short_ad); 2107 break; 2108 case ICBTAG_FLAG_AD_LONG: 2109 lad = (struct long_ad *)ptr; 2110 lad->extLength = cpu_to_le32(elen); 2111 lad->extLocation = cpu_to_lelb(*eloc); 2112 memset(lad->impUse, 0x00, sizeof(lad->impUse)); 2113 adsize = sizeof(struct long_ad); 2114 break; 2115 default: 2116 return; 2117 } 2118 2119 if (epos->bh) { 2120 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2121 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) { 2122 struct allocExtDesc *aed = 2123 (struct allocExtDesc *)epos->bh->b_data; 2124 udf_update_tag(epos->bh->b_data, 2125 le32_to_cpu(aed->lengthAllocDescs) + 2126 sizeof(struct allocExtDesc)); 2127 } 2128 mark_buffer_dirty_inode(epos->bh, inode); 2129 } else { 2130 mark_inode_dirty(inode); 2131 } 2132 2133 if (inc) 2134 epos->offset += adsize; 2135} 2136 2137/* 2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case 2139 * someone does some weird stuff. 2140 */ 2141#define UDF_MAX_INDIR_EXTS 16 2142 2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos, 2144 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2145{ 2146 int8_t etype; 2147 unsigned int indirections = 0; 2148 2149 while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) == 2150 (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) { 2151 udf_pblk_t block; 2152 2153 if (++indirections > UDF_MAX_INDIR_EXTS) { 2154 udf_err(inode->i_sb, 2155 "too many indirect extents in inode %lu\n", 2156 inode->i_ino); 2157 return -1; 2158 } 2159 2160 epos->block = *eloc; 2161 epos->offset = sizeof(struct allocExtDesc); 2162 brelse(epos->bh); 2163 block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0); 2164 epos->bh = udf_tread(inode->i_sb, block); 2165 if (!epos->bh) { 2166 udf_debug("reading block %u failed!\n", block); 2167 return -1; 2168 } 2169 } 2170 2171 return etype; 2172} 2173 2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos, 2175 struct kernel_lb_addr *eloc, uint32_t *elen, int inc) 2176{ 2177 int alen; 2178 int8_t etype; 2179 uint8_t *ptr; 2180 struct short_ad *sad; 2181 struct long_ad *lad; 2182 struct udf_inode_info *iinfo = UDF_I(inode); 2183 2184 if (!epos->bh) { 2185 if (!epos->offset) 2186 epos->offset = udf_file_entry_alloc_offset(inode); 2187 ptr = iinfo->i_data + epos->offset - 2188 udf_file_entry_alloc_offset(inode) + 2189 iinfo->i_lenEAttr; 2190 alen = udf_file_entry_alloc_offset(inode) + 2191 iinfo->i_lenAlloc; 2192 } else { 2193 if (!epos->offset) 2194 epos->offset = sizeof(struct allocExtDesc); 2195 ptr = epos->bh->b_data + epos->offset; 2196 alen = sizeof(struct allocExtDesc) + 2197 le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)-> 2198 lengthAllocDescs); 2199 } 2200 2201 switch (iinfo->i_alloc_type) { 2202 case ICBTAG_FLAG_AD_SHORT: 2203 sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc); 2204 if (!sad) 2205 return -1; 2206 etype = le32_to_cpu(sad->extLength) >> 30; 2207 eloc->logicalBlockNum = le32_to_cpu(sad->extPosition); 2208 eloc->partitionReferenceNum = 2209 iinfo->i_location.partitionReferenceNum; 2210 *elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK; 2211 break; 2212 case ICBTAG_FLAG_AD_LONG: 2213 lad = udf_get_filelongad(ptr, alen, &epos->offset, inc); 2214 if (!lad) 2215 return -1; 2216 etype = le32_to_cpu(lad->extLength) >> 30; 2217 *eloc = lelb_to_cpu(lad->extLocation); 2218 *elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK; 2219 break; 2220 default: 2221 udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type); 2222 return -1; 2223 } 2224 2225 return etype; 2226} 2227 2228static int udf_insert_aext(struct inode *inode, struct extent_position epos, 2229 struct kernel_lb_addr neloc, uint32_t nelen) 2230{ 2231 struct kernel_lb_addr oeloc; 2232 uint32_t oelen; 2233 int8_t etype; 2234 int err; 2235 2236 if (epos.bh) 2237 get_bh(epos.bh); 2238 2239 while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) { 2240 udf_write_aext(inode, &epos, &neloc, nelen, 1); 2241 neloc = oeloc; 2242 nelen = (etype << 30) | oelen; 2243 } 2244 err = udf_add_aext(inode, &epos, &neloc, nelen, 1); 2245 brelse(epos.bh); 2246 2247 return err; 2248} 2249 2250int8_t udf_delete_aext(struct inode *inode, struct extent_position epos) 2251{ 2252 struct extent_position oepos; 2253 int adsize; 2254 int8_t etype; 2255 struct allocExtDesc *aed; 2256 struct udf_inode_info *iinfo; 2257 struct kernel_lb_addr eloc; 2258 uint32_t elen; 2259 2260 if (epos.bh) { 2261 get_bh(epos.bh); 2262 get_bh(epos.bh); 2263 } 2264 2265 iinfo = UDF_I(inode); 2266 if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT) 2267 adsize = sizeof(struct short_ad); 2268 else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG) 2269 adsize = sizeof(struct long_ad); 2270 else 2271 adsize = 0; 2272 2273 oepos = epos; 2274 if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1) 2275 return -1; 2276 2277 while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) { 2278 udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1); 2279 if (oepos.bh != epos.bh) { 2280 oepos.block = epos.block; 2281 brelse(oepos.bh); 2282 get_bh(epos.bh); 2283 oepos.bh = epos.bh; 2284 oepos.offset = epos.offset - adsize; 2285 } 2286 } 2287 memset(&eloc, 0x00, sizeof(struct kernel_lb_addr)); 2288 elen = 0; 2289 2290 if (epos.bh != oepos.bh) { 2291 udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1); 2292 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2293 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2294 if (!oepos.bh) { 2295 iinfo->i_lenAlloc -= (adsize * 2); 2296 mark_inode_dirty(inode); 2297 } else { 2298 aed = (struct allocExtDesc *)oepos.bh->b_data; 2299 le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize)); 2300 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2301 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2302 udf_update_tag(oepos.bh->b_data, 2303 oepos.offset - (2 * adsize)); 2304 else 2305 udf_update_tag(oepos.bh->b_data, 2306 sizeof(struct allocExtDesc)); 2307 mark_buffer_dirty_inode(oepos.bh, inode); 2308 } 2309 } else { 2310 udf_write_aext(inode, &oepos, &eloc, elen, 1); 2311 if (!oepos.bh) { 2312 iinfo->i_lenAlloc -= adsize; 2313 mark_inode_dirty(inode); 2314 } else { 2315 aed = (struct allocExtDesc *)oepos.bh->b_data; 2316 le32_add_cpu(&aed->lengthAllocDescs, -adsize); 2317 if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) || 2318 UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) 2319 udf_update_tag(oepos.bh->b_data, 2320 epos.offset - adsize); 2321 else 2322 udf_update_tag(oepos.bh->b_data, 2323 sizeof(struct allocExtDesc)); 2324 mark_buffer_dirty_inode(oepos.bh, inode); 2325 } 2326 } 2327 2328 brelse(epos.bh); 2329 brelse(oepos.bh); 2330 2331 return (elen >> 30); 2332} 2333 2334int8_t inode_bmap(struct inode *inode, sector_t block, 2335 struct extent_position *pos, struct kernel_lb_addr *eloc, 2336 uint32_t *elen, sector_t *offset) 2337{ 2338 unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits; 2339 loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits; 2340 int8_t etype; 2341 struct udf_inode_info *iinfo; 2342 2343 iinfo = UDF_I(inode); 2344 if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) { 2345 pos->offset = 0; 2346 pos->block = iinfo->i_location; 2347 pos->bh = NULL; 2348 } 2349 *elen = 0; 2350 do { 2351 etype = udf_next_aext(inode, pos, eloc, elen, 1); 2352 if (etype == -1) { 2353 *offset = (bcount - lbcount) >> blocksize_bits; 2354 iinfo->i_lenExtents = lbcount; 2355 return -1; 2356 } 2357 lbcount += *elen; 2358 } while (lbcount <= bcount); 2359 /* update extent cache */ 2360 udf_update_extent_cache(inode, lbcount - *elen, pos); 2361 *offset = (bcount + *elen - lbcount) >> blocksize_bits; 2362 2363 return etype; 2364} 2365 2366udf_pblk_t udf_block_map(struct inode *inode, sector_t block) 2367{ 2368 struct kernel_lb_addr eloc; 2369 uint32_t elen; 2370 sector_t offset; 2371 struct extent_position epos = {}; 2372 udf_pblk_t ret; 2373 2374 down_read(&UDF_I(inode)->i_data_sem); 2375 2376 if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) == 2377 (EXT_RECORDED_ALLOCATED >> 30)) 2378 ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset); 2379 else 2380 ret = 0; 2381 2382 up_read(&UDF_I(inode)->i_data_sem); 2383 brelse(epos.bh); 2384 2385 if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV)) 2386 return udf_fixed_to_variable(ret); 2387 else 2388 return ret; 2389} 2390