xref: /kernel/linux/linux-5.10/fs/udf/inode.c (revision 8c2ecf20)
1/*
2 * inode.c
3 *
4 * PURPOSE
5 *  Inode handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 *  This file is distributed under the terms of the GNU General Public
9 *  License (GPL). Copies of the GPL can be obtained from:
10 *    ftp://prep.ai.mit.edu/pub/gnu/GPL
11 *  Each contributing author retains all rights to their own work.
12 *
13 *  (C) 1998 Dave Boynton
14 *  (C) 1998-2004 Ben Fennema
15 *  (C) 1999-2000 Stelias Computing Inc
16 *
17 * HISTORY
18 *
19 *  10/04/98 dgb  Added rudimentary directory functions
20 *  10/07/98      Fully working udf_block_map! It works!
21 *  11/25/98      bmap altered to better support extents
22 *  12/06/98 blf  partition support in udf_iget, udf_block_map
23 *                and udf_read_inode
24 *  12/12/98      rewrote udf_block_map to handle next extents and descs across
25 *                block boundaries (which is not actually allowed)
26 *  12/20/98      added support for strategy 4096
27 *  03/07/99      rewrote udf_block_map (again)
28 *                New funcs, inode_bmap, udf_next_aext
29 *  04/19/99      Support for writing device EA's for major/minor #
30 */
31
32#include "udfdecl.h"
33#include <linux/mm.h>
34#include <linux/module.h>
35#include <linux/pagemap.h>
36#include <linux/writeback.h>
37#include <linux/slab.h>
38#include <linux/crc-itu-t.h>
39#include <linux/mpage.h>
40#include <linux/uio.h>
41#include <linux/bio.h>
42
43#include "udf_i.h"
44#include "udf_sb.h"
45
46#define EXTENT_MERGE_SIZE 5
47
48#define FE_MAPPED_PERMS	(FE_PERM_U_READ | FE_PERM_U_WRITE | FE_PERM_U_EXEC | \
49			 FE_PERM_G_READ | FE_PERM_G_WRITE | FE_PERM_G_EXEC | \
50			 FE_PERM_O_READ | FE_PERM_O_WRITE | FE_PERM_O_EXEC)
51
52#define FE_DELETE_PERMS	(FE_PERM_U_DELETE | FE_PERM_G_DELETE | \
53			 FE_PERM_O_DELETE)
54
55static umode_t udf_convert_permissions(struct fileEntry *);
56static int udf_update_inode(struct inode *, int);
57static int udf_sync_inode(struct inode *inode);
58static int udf_alloc_i_data(struct inode *inode, size_t size);
59static sector_t inode_getblk(struct inode *, sector_t, int *, int *);
60static int udf_insert_aext(struct inode *, struct extent_position,
61			   struct kernel_lb_addr, uint32_t);
62static void udf_split_extents(struct inode *, int *, int, udf_pblk_t,
63			      struct kernel_long_ad *, int *);
64static void udf_prealloc_extents(struct inode *, int, int,
65				 struct kernel_long_ad *, int *);
66static void udf_merge_extents(struct inode *, struct kernel_long_ad *, int *);
67static int udf_update_extents(struct inode *, struct kernel_long_ad *, int,
68			      int, struct extent_position *);
69static int udf_get_block(struct inode *, sector_t, struct buffer_head *, int);
70
71static void __udf_clear_extent_cache(struct inode *inode)
72{
73	struct udf_inode_info *iinfo = UDF_I(inode);
74
75	if (iinfo->cached_extent.lstart != -1) {
76		brelse(iinfo->cached_extent.epos.bh);
77		iinfo->cached_extent.lstart = -1;
78	}
79}
80
81/* Invalidate extent cache */
82static void udf_clear_extent_cache(struct inode *inode)
83{
84	struct udf_inode_info *iinfo = UDF_I(inode);
85
86	spin_lock(&iinfo->i_extent_cache_lock);
87	__udf_clear_extent_cache(inode);
88	spin_unlock(&iinfo->i_extent_cache_lock);
89}
90
91/* Return contents of extent cache */
92static int udf_read_extent_cache(struct inode *inode, loff_t bcount,
93				 loff_t *lbcount, struct extent_position *pos)
94{
95	struct udf_inode_info *iinfo = UDF_I(inode);
96	int ret = 0;
97
98	spin_lock(&iinfo->i_extent_cache_lock);
99	if ((iinfo->cached_extent.lstart <= bcount) &&
100	    (iinfo->cached_extent.lstart != -1)) {
101		/* Cache hit */
102		*lbcount = iinfo->cached_extent.lstart;
103		memcpy(pos, &iinfo->cached_extent.epos,
104		       sizeof(struct extent_position));
105		if (pos->bh)
106			get_bh(pos->bh);
107		ret = 1;
108	}
109	spin_unlock(&iinfo->i_extent_cache_lock);
110	return ret;
111}
112
113/* Add extent to extent cache */
114static void udf_update_extent_cache(struct inode *inode, loff_t estart,
115				    struct extent_position *pos)
116{
117	struct udf_inode_info *iinfo = UDF_I(inode);
118
119	spin_lock(&iinfo->i_extent_cache_lock);
120	/* Invalidate previously cached extent */
121	__udf_clear_extent_cache(inode);
122	if (pos->bh)
123		get_bh(pos->bh);
124	memcpy(&iinfo->cached_extent.epos, pos, sizeof(*pos));
125	iinfo->cached_extent.lstart = estart;
126	switch (iinfo->i_alloc_type) {
127	case ICBTAG_FLAG_AD_SHORT:
128		iinfo->cached_extent.epos.offset -= sizeof(struct short_ad);
129		break;
130	case ICBTAG_FLAG_AD_LONG:
131		iinfo->cached_extent.epos.offset -= sizeof(struct long_ad);
132		break;
133	}
134	spin_unlock(&iinfo->i_extent_cache_lock);
135}
136
137void udf_evict_inode(struct inode *inode)
138{
139	struct udf_inode_info *iinfo = UDF_I(inode);
140	int want_delete = 0;
141
142	if (!is_bad_inode(inode)) {
143		if (!inode->i_nlink) {
144			want_delete = 1;
145			udf_setsize(inode, 0);
146			udf_update_inode(inode, IS_SYNC(inode));
147		}
148		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB &&
149		    inode->i_size != iinfo->i_lenExtents) {
150			udf_warn(inode->i_sb,
151				 "Inode %lu (mode %o) has inode size %llu different from extent length %llu. Filesystem need not be standards compliant.\n",
152				 inode->i_ino, inode->i_mode,
153				 (unsigned long long)inode->i_size,
154				 (unsigned long long)iinfo->i_lenExtents);
155		}
156	}
157	truncate_inode_pages_final(&inode->i_data);
158	invalidate_inode_buffers(inode);
159	clear_inode(inode);
160	kfree(iinfo->i_data);
161	iinfo->i_data = NULL;
162	udf_clear_extent_cache(inode);
163	if (want_delete) {
164		udf_free_inode(inode);
165	}
166}
167
168static void udf_write_failed(struct address_space *mapping, loff_t to)
169{
170	struct inode *inode = mapping->host;
171	struct udf_inode_info *iinfo = UDF_I(inode);
172	loff_t isize = inode->i_size;
173
174	if (to > isize) {
175		truncate_pagecache(inode, isize);
176		if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
177			down_write(&iinfo->i_data_sem);
178			udf_clear_extent_cache(inode);
179			udf_truncate_extents(inode);
180			up_write(&iinfo->i_data_sem);
181		}
182	}
183}
184
185static int udf_writepage(struct page *page, struct writeback_control *wbc)
186{
187	return block_write_full_page(page, udf_get_block, wbc);
188}
189
190static int udf_writepages(struct address_space *mapping,
191			struct writeback_control *wbc)
192{
193	return mpage_writepages(mapping, wbc, udf_get_block);
194}
195
196static int udf_readpage(struct file *file, struct page *page)
197{
198	return mpage_readpage(page, udf_get_block);
199}
200
201static void udf_readahead(struct readahead_control *rac)
202{
203	mpage_readahead(rac, udf_get_block);
204}
205
206static int udf_write_begin(struct file *file, struct address_space *mapping,
207			loff_t pos, unsigned len, unsigned flags,
208			struct page **pagep, void **fsdata)
209{
210	int ret;
211
212	ret = block_write_begin(mapping, pos, len, flags, pagep, udf_get_block);
213	if (unlikely(ret))
214		udf_write_failed(mapping, pos + len);
215	return ret;
216}
217
218static ssize_t udf_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
219{
220	struct file *file = iocb->ki_filp;
221	struct address_space *mapping = file->f_mapping;
222	struct inode *inode = mapping->host;
223	size_t count = iov_iter_count(iter);
224	ssize_t ret;
225
226	ret = blockdev_direct_IO(iocb, inode, iter, udf_get_block);
227	if (unlikely(ret < 0 && iov_iter_rw(iter) == WRITE))
228		udf_write_failed(mapping, iocb->ki_pos + count);
229	return ret;
230}
231
232static sector_t udf_bmap(struct address_space *mapping, sector_t block)
233{
234	return generic_block_bmap(mapping, block, udf_get_block);
235}
236
237const struct address_space_operations udf_aops = {
238	.readpage	= udf_readpage,
239	.readahead	= udf_readahead,
240	.writepage	= udf_writepage,
241	.writepages	= udf_writepages,
242	.write_begin	= udf_write_begin,
243	.write_end	= generic_write_end,
244	.direct_IO	= udf_direct_IO,
245	.bmap		= udf_bmap,
246};
247
248/*
249 * Expand file stored in ICB to a normal one-block-file
250 *
251 * This function requires i_data_sem for writing and releases it.
252 * This function requires i_mutex held
253 */
254int udf_expand_file_adinicb(struct inode *inode)
255{
256	struct page *page;
257	char *kaddr;
258	struct udf_inode_info *iinfo = UDF_I(inode);
259	int err;
260
261	WARN_ON_ONCE(!inode_is_locked(inode));
262	if (!iinfo->i_lenAlloc) {
263		if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
264			iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
265		else
266			iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
267		/* from now on we have normal address_space methods */
268		inode->i_data.a_ops = &udf_aops;
269		up_write(&iinfo->i_data_sem);
270		mark_inode_dirty(inode);
271		return 0;
272	}
273	/*
274	 * Release i_data_sem so that we can lock a page - page lock ranks
275	 * above i_data_sem. i_mutex still protects us against file changes.
276	 */
277	up_write(&iinfo->i_data_sem);
278
279	page = find_or_create_page(inode->i_mapping, 0, GFP_NOFS);
280	if (!page)
281		return -ENOMEM;
282
283	if (!PageUptodate(page)) {
284		kaddr = kmap_atomic(page);
285		memset(kaddr + iinfo->i_lenAlloc, 0x00,
286		       PAGE_SIZE - iinfo->i_lenAlloc);
287		memcpy(kaddr, iinfo->i_data + iinfo->i_lenEAttr,
288			iinfo->i_lenAlloc);
289		flush_dcache_page(page);
290		SetPageUptodate(page);
291		kunmap_atomic(kaddr);
292	}
293	down_write(&iinfo->i_data_sem);
294	memset(iinfo->i_data + iinfo->i_lenEAttr, 0x00,
295	       iinfo->i_lenAlloc);
296	iinfo->i_lenAlloc = 0;
297	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
298		iinfo->i_alloc_type = ICBTAG_FLAG_AD_SHORT;
299	else
300		iinfo->i_alloc_type = ICBTAG_FLAG_AD_LONG;
301	/* from now on we have normal address_space methods */
302	inode->i_data.a_ops = &udf_aops;
303	set_page_dirty(page);
304	unlock_page(page);
305	up_write(&iinfo->i_data_sem);
306	err = filemap_fdatawrite(inode->i_mapping);
307	if (err) {
308		/* Restore everything back so that we don't lose data... */
309		lock_page(page);
310		down_write(&iinfo->i_data_sem);
311		kaddr = kmap_atomic(page);
312		memcpy(iinfo->i_data + iinfo->i_lenEAttr, kaddr, inode->i_size);
313		kunmap_atomic(kaddr);
314		unlock_page(page);
315		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
316		inode->i_data.a_ops = &udf_adinicb_aops;
317		iinfo->i_lenAlloc = inode->i_size;
318		up_write(&iinfo->i_data_sem);
319	}
320	put_page(page);
321	mark_inode_dirty(inode);
322
323	return err;
324}
325
326struct buffer_head *udf_expand_dir_adinicb(struct inode *inode,
327					    udf_pblk_t *block, int *err)
328{
329	udf_pblk_t newblock;
330	struct buffer_head *dbh = NULL;
331	struct kernel_lb_addr eloc;
332	uint8_t alloctype;
333	struct extent_position epos;
334
335	struct udf_fileident_bh sfibh, dfibh;
336	loff_t f_pos = udf_ext0_offset(inode);
337	int size = udf_ext0_offset(inode) + inode->i_size;
338	struct fileIdentDesc cfi, *sfi, *dfi;
339	struct udf_inode_info *iinfo = UDF_I(inode);
340
341	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_USE_SHORT_AD))
342		alloctype = ICBTAG_FLAG_AD_SHORT;
343	else
344		alloctype = ICBTAG_FLAG_AD_LONG;
345
346	if (!inode->i_size) {
347		iinfo->i_alloc_type = alloctype;
348		mark_inode_dirty(inode);
349		return NULL;
350	}
351
352	/* alloc block, and copy data to it */
353	*block = udf_new_block(inode->i_sb, inode,
354			       iinfo->i_location.partitionReferenceNum,
355			       iinfo->i_location.logicalBlockNum, err);
356	if (!(*block))
357		return NULL;
358	newblock = udf_get_pblock(inode->i_sb, *block,
359				  iinfo->i_location.partitionReferenceNum,
360				0);
361	if (!newblock)
362		return NULL;
363	dbh = udf_tgetblk(inode->i_sb, newblock);
364	if (!dbh)
365		return NULL;
366	lock_buffer(dbh);
367	memset(dbh->b_data, 0x00, inode->i_sb->s_blocksize);
368	set_buffer_uptodate(dbh);
369	unlock_buffer(dbh);
370	mark_buffer_dirty_inode(dbh, inode);
371
372	sfibh.soffset = sfibh.eoffset =
373			f_pos & (inode->i_sb->s_blocksize - 1);
374	sfibh.sbh = sfibh.ebh = NULL;
375	dfibh.soffset = dfibh.eoffset = 0;
376	dfibh.sbh = dfibh.ebh = dbh;
377	while (f_pos < size) {
378		iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
379		sfi = udf_fileident_read(inode, &f_pos, &sfibh, &cfi, NULL,
380					 NULL, NULL, NULL);
381		if (!sfi) {
382			brelse(dbh);
383			return NULL;
384		}
385		iinfo->i_alloc_type = alloctype;
386		sfi->descTag.tagLocation = cpu_to_le32(*block);
387		dfibh.soffset = dfibh.eoffset;
388		dfibh.eoffset += (sfibh.eoffset - sfibh.soffset);
389		dfi = (struct fileIdentDesc *)(dbh->b_data + dfibh.soffset);
390		if (udf_write_fi(inode, sfi, dfi, &dfibh, sfi->impUse,
391				 sfi->fileIdent +
392					le16_to_cpu(sfi->lengthOfImpUse))) {
393			iinfo->i_alloc_type = ICBTAG_FLAG_AD_IN_ICB;
394			brelse(dbh);
395			return NULL;
396		}
397	}
398	mark_buffer_dirty_inode(dbh, inode);
399
400	memset(iinfo->i_data + iinfo->i_lenEAttr, 0, iinfo->i_lenAlloc);
401	iinfo->i_lenAlloc = 0;
402	eloc.logicalBlockNum = *block;
403	eloc.partitionReferenceNum =
404				iinfo->i_location.partitionReferenceNum;
405	iinfo->i_lenExtents = inode->i_size;
406	epos.bh = NULL;
407	epos.block = iinfo->i_location;
408	epos.offset = udf_file_entry_alloc_offset(inode);
409	udf_add_aext(inode, &epos, &eloc, inode->i_size, 0);
410	/* UniqueID stuff */
411
412	brelse(epos.bh);
413	mark_inode_dirty(inode);
414	return dbh;
415}
416
417static int udf_get_block(struct inode *inode, sector_t block,
418			 struct buffer_head *bh_result, int create)
419{
420	int err, new;
421	sector_t phys = 0;
422	struct udf_inode_info *iinfo;
423
424	if (!create) {
425		phys = udf_block_map(inode, block);
426		if (phys)
427			map_bh(bh_result, inode->i_sb, phys);
428		return 0;
429	}
430
431	err = -EIO;
432	new = 0;
433	iinfo = UDF_I(inode);
434
435	down_write(&iinfo->i_data_sem);
436	if (block == iinfo->i_next_alloc_block + 1) {
437		iinfo->i_next_alloc_block++;
438		iinfo->i_next_alloc_goal++;
439	}
440
441	/*
442	 * Block beyond EOF and prealloc extents? Just discard preallocation
443	 * as it is not useful and complicates things.
444	 */
445	if (((loff_t)block) << inode->i_blkbits >= iinfo->i_lenExtents)
446		udf_discard_prealloc(inode);
447	udf_clear_extent_cache(inode);
448	phys = inode_getblk(inode, block, &err, &new);
449	if (!phys)
450		goto abort;
451
452	if (new)
453		set_buffer_new(bh_result);
454	map_bh(bh_result, inode->i_sb, phys);
455
456abort:
457	up_write(&iinfo->i_data_sem);
458	return err;
459}
460
461static struct buffer_head *udf_getblk(struct inode *inode, udf_pblk_t block,
462				      int create, int *err)
463{
464	struct buffer_head *bh;
465	struct buffer_head dummy;
466
467	dummy.b_state = 0;
468	dummy.b_blocknr = -1000;
469	*err = udf_get_block(inode, block, &dummy, create);
470	if (!*err && buffer_mapped(&dummy)) {
471		bh = sb_getblk(inode->i_sb, dummy.b_blocknr);
472		if (buffer_new(&dummy)) {
473			lock_buffer(bh);
474			memset(bh->b_data, 0x00, inode->i_sb->s_blocksize);
475			set_buffer_uptodate(bh);
476			unlock_buffer(bh);
477			mark_buffer_dirty_inode(bh, inode);
478		}
479		return bh;
480	}
481
482	return NULL;
483}
484
485/* Extend the file with new blocks totaling 'new_block_bytes',
486 * return the number of extents added
487 */
488static int udf_do_extend_file(struct inode *inode,
489			      struct extent_position *last_pos,
490			      struct kernel_long_ad *last_ext,
491			      loff_t new_block_bytes)
492{
493	uint32_t add;
494	int count = 0, fake = !(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
495	struct super_block *sb = inode->i_sb;
496	struct udf_inode_info *iinfo;
497	int err;
498
499	/* The previous extent is fake and we should not extend by anything
500	 * - there's nothing to do... */
501	if (!new_block_bytes && fake)
502		return 0;
503
504	iinfo = UDF_I(inode);
505	/* Round the last extent up to a multiple of block size */
506	if (last_ext->extLength & (sb->s_blocksize - 1)) {
507		last_ext->extLength =
508			(last_ext->extLength & UDF_EXTENT_FLAG_MASK) |
509			(((last_ext->extLength & UDF_EXTENT_LENGTH_MASK) +
510			  sb->s_blocksize - 1) & ~(sb->s_blocksize - 1));
511		iinfo->i_lenExtents =
512			(iinfo->i_lenExtents + sb->s_blocksize - 1) &
513			~(sb->s_blocksize - 1);
514	}
515
516	/* Can we merge with the previous extent? */
517	if ((last_ext->extLength & UDF_EXTENT_FLAG_MASK) ==
518					EXT_NOT_RECORDED_NOT_ALLOCATED) {
519		add = (1 << 30) - sb->s_blocksize -
520			(last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
521		if (add > new_block_bytes)
522			add = new_block_bytes;
523		new_block_bytes -= add;
524		last_ext->extLength += add;
525	}
526
527	if (fake) {
528		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
529				   last_ext->extLength, 1);
530		if (err < 0)
531			goto out_err;
532		count++;
533	} else {
534		struct kernel_lb_addr tmploc;
535		uint32_t tmplen;
536
537		udf_write_aext(inode, last_pos, &last_ext->extLocation,
538				last_ext->extLength, 1);
539
540		/*
541		 * We've rewritten the last extent. If we are going to add
542		 * more extents, we may need to enter possible following
543		 * empty indirect extent.
544		 */
545		if (new_block_bytes)
546			udf_next_aext(inode, last_pos, &tmploc, &tmplen, 0);
547	}
548
549	/* Managed to do everything necessary? */
550	if (!new_block_bytes)
551		goto out;
552
553	/* All further extents will be NOT_RECORDED_NOT_ALLOCATED */
554	last_ext->extLocation.logicalBlockNum = 0;
555	last_ext->extLocation.partitionReferenceNum = 0;
556	add = (1 << 30) - sb->s_blocksize;
557	last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED | add;
558
559	/* Create enough extents to cover the whole hole */
560	while (new_block_bytes > add) {
561		new_block_bytes -= add;
562		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
563				   last_ext->extLength, 1);
564		if (err)
565			goto out_err;
566		count++;
567	}
568	if (new_block_bytes) {
569		last_ext->extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
570			new_block_bytes;
571		err = udf_add_aext(inode, last_pos, &last_ext->extLocation,
572				   last_ext->extLength, 1);
573		if (err)
574			goto out_err;
575		count++;
576	}
577
578out:
579	/* last_pos should point to the last written extent... */
580	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
581		last_pos->offset -= sizeof(struct short_ad);
582	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
583		last_pos->offset -= sizeof(struct long_ad);
584	else
585		return -EIO;
586
587	return count;
588out_err:
589	/* Remove extents we've created so far */
590	udf_clear_extent_cache(inode);
591	udf_truncate_extents(inode);
592	return err;
593}
594
595/* Extend the final block of the file to final_block_len bytes */
596static void udf_do_extend_final_block(struct inode *inode,
597				      struct extent_position *last_pos,
598				      struct kernel_long_ad *last_ext,
599				      uint32_t new_elen)
600{
601	uint32_t added_bytes;
602
603	/*
604	 * Extent already large enough? It may be already rounded up to block
605	 * size...
606	 */
607	if (new_elen <= (last_ext->extLength & UDF_EXTENT_LENGTH_MASK))
608		return;
609	added_bytes = new_elen - (last_ext->extLength & UDF_EXTENT_LENGTH_MASK);
610	last_ext->extLength += added_bytes;
611	UDF_I(inode)->i_lenExtents += added_bytes;
612
613	udf_write_aext(inode, last_pos, &last_ext->extLocation,
614			last_ext->extLength, 1);
615}
616
617static int udf_extend_file(struct inode *inode, loff_t newsize)
618{
619
620	struct extent_position epos;
621	struct kernel_lb_addr eloc;
622	uint32_t elen;
623	int8_t etype;
624	struct super_block *sb = inode->i_sb;
625	sector_t first_block = newsize >> sb->s_blocksize_bits, offset;
626	loff_t new_elen;
627	int adsize;
628	struct udf_inode_info *iinfo = UDF_I(inode);
629	struct kernel_long_ad extent;
630	int err = 0;
631	bool within_last_ext;
632
633	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
634		adsize = sizeof(struct short_ad);
635	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
636		adsize = sizeof(struct long_ad);
637	else
638		BUG();
639
640	/*
641	 * When creating hole in file, just don't bother with preserving
642	 * preallocation. It likely won't be very useful anyway.
643	 */
644	udf_discard_prealloc(inode);
645
646	etype = inode_bmap(inode, first_block, &epos, &eloc, &elen, &offset);
647	within_last_ext = (etype != -1);
648	/* We don't expect extents past EOF... */
649	WARN_ON_ONCE(within_last_ext &&
650		     elen > ((loff_t)offset + 1) << inode->i_blkbits);
651
652	if ((!epos.bh && epos.offset == udf_file_entry_alloc_offset(inode)) ||
653	    (epos.bh && epos.offset == sizeof(struct allocExtDesc))) {
654		/* File has no extents at all or has empty last
655		 * indirect extent! Create a fake extent... */
656		extent.extLocation.logicalBlockNum = 0;
657		extent.extLocation.partitionReferenceNum = 0;
658		extent.extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
659	} else {
660		epos.offset -= adsize;
661		etype = udf_next_aext(inode, &epos, &extent.extLocation,
662				      &extent.extLength, 0);
663		extent.extLength |= etype << 30;
664	}
665
666	new_elen = ((loff_t)offset << inode->i_blkbits) |
667					(newsize & (sb->s_blocksize - 1));
668
669	/* File has extent covering the new size (could happen when extending
670	 * inside a block)?
671	 */
672	if (within_last_ext) {
673		/* Extending file within the last file block */
674		udf_do_extend_final_block(inode, &epos, &extent, new_elen);
675	} else {
676		err = udf_do_extend_file(inode, &epos, &extent, new_elen);
677	}
678
679	if (err < 0)
680		goto out;
681	err = 0;
682	iinfo->i_lenExtents = newsize;
683out:
684	brelse(epos.bh);
685	return err;
686}
687
688static sector_t inode_getblk(struct inode *inode, sector_t block,
689			     int *err, int *new)
690{
691	struct kernel_long_ad laarr[EXTENT_MERGE_SIZE];
692	struct extent_position prev_epos, cur_epos, next_epos;
693	int count = 0, startnum = 0, endnum = 0;
694	uint32_t elen = 0, tmpelen;
695	struct kernel_lb_addr eloc, tmpeloc;
696	int c = 1;
697	loff_t lbcount = 0, b_off = 0;
698	udf_pblk_t newblocknum, newblock = 0;
699	sector_t offset = 0;
700	int8_t etype;
701	struct udf_inode_info *iinfo = UDF_I(inode);
702	udf_pblk_t goal = 0, pgoal = iinfo->i_location.logicalBlockNum;
703	int lastblock = 0;
704	bool isBeyondEOF;
705
706	*err = 0;
707	*new = 0;
708	prev_epos.offset = udf_file_entry_alloc_offset(inode);
709	prev_epos.block = iinfo->i_location;
710	prev_epos.bh = NULL;
711	cur_epos = next_epos = prev_epos;
712	b_off = (loff_t)block << inode->i_sb->s_blocksize_bits;
713
714	/* find the extent which contains the block we are looking for.
715	   alternate between laarr[0] and laarr[1] for locations of the
716	   current extent, and the previous extent */
717	do {
718		if (prev_epos.bh != cur_epos.bh) {
719			brelse(prev_epos.bh);
720			get_bh(cur_epos.bh);
721			prev_epos.bh = cur_epos.bh;
722		}
723		if (cur_epos.bh != next_epos.bh) {
724			brelse(cur_epos.bh);
725			get_bh(next_epos.bh);
726			cur_epos.bh = next_epos.bh;
727		}
728
729		lbcount += elen;
730
731		prev_epos.block = cur_epos.block;
732		cur_epos.block = next_epos.block;
733
734		prev_epos.offset = cur_epos.offset;
735		cur_epos.offset = next_epos.offset;
736
737		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 1);
738		if (etype == -1)
739			break;
740
741		c = !c;
742
743		laarr[c].extLength = (etype << 30) | elen;
744		laarr[c].extLocation = eloc;
745
746		if (etype != (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
747			pgoal = eloc.logicalBlockNum +
748				((elen + inode->i_sb->s_blocksize - 1) >>
749				 inode->i_sb->s_blocksize_bits);
750
751		count++;
752	} while (lbcount + elen <= b_off);
753
754	b_off -= lbcount;
755	offset = b_off >> inode->i_sb->s_blocksize_bits;
756	/*
757	 * Move prev_epos and cur_epos into indirect extent if we are at
758	 * the pointer to it
759	 */
760	udf_next_aext(inode, &prev_epos, &tmpeloc, &tmpelen, 0);
761	udf_next_aext(inode, &cur_epos, &tmpeloc, &tmpelen, 0);
762
763	/* if the extent is allocated and recorded, return the block
764	   if the extent is not a multiple of the blocksize, round up */
765
766	if (etype == (EXT_RECORDED_ALLOCATED >> 30)) {
767		if (elen & (inode->i_sb->s_blocksize - 1)) {
768			elen = EXT_RECORDED_ALLOCATED |
769				((elen + inode->i_sb->s_blocksize - 1) &
770				 ~(inode->i_sb->s_blocksize - 1));
771			udf_write_aext(inode, &cur_epos, &eloc, elen, 1);
772		}
773		newblock = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
774		goto out_free;
775	}
776
777	/* Are we beyond EOF and preallocated extent? */
778	if (etype == -1) {
779		int ret;
780		loff_t hole_len;
781
782		isBeyondEOF = true;
783		if (count) {
784			if (c)
785				laarr[0] = laarr[1];
786			startnum = 1;
787		} else {
788			/* Create a fake extent when there's not one */
789			memset(&laarr[0].extLocation, 0x00,
790				sizeof(struct kernel_lb_addr));
791			laarr[0].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED;
792			/* Will udf_do_extend_file() create real extent from
793			   a fake one? */
794			startnum = (offset > 0);
795		}
796		/* Create extents for the hole between EOF and offset */
797		hole_len = (loff_t)offset << inode->i_blkbits;
798		ret = udf_do_extend_file(inode, &prev_epos, laarr, hole_len);
799		if (ret < 0) {
800			*err = ret;
801			goto out_free;
802		}
803		c = 0;
804		offset = 0;
805		count += ret;
806		/*
807		 * Is there any real extent? - otherwise we overwrite the fake
808		 * one...
809		 */
810		if (count)
811			c = !c;
812		laarr[c].extLength = EXT_NOT_RECORDED_NOT_ALLOCATED |
813			inode->i_sb->s_blocksize;
814		memset(&laarr[c].extLocation, 0x00,
815			sizeof(struct kernel_lb_addr));
816		count++;
817		endnum = c + 1;
818		lastblock = 1;
819	} else {
820		isBeyondEOF = false;
821		endnum = startnum = ((count > 2) ? 2 : count);
822
823		/* if the current extent is in position 0,
824		   swap it with the previous */
825		if (!c && count != 1) {
826			laarr[2] = laarr[0];
827			laarr[0] = laarr[1];
828			laarr[1] = laarr[2];
829			c = 1;
830		}
831
832		/* if the current block is located in an extent,
833		   read the next extent */
834		etype = udf_next_aext(inode, &next_epos, &eloc, &elen, 0);
835		if (etype != -1) {
836			laarr[c + 1].extLength = (etype << 30) | elen;
837			laarr[c + 1].extLocation = eloc;
838			count++;
839			startnum++;
840			endnum++;
841		} else
842			lastblock = 1;
843	}
844
845	/* if the current extent is not recorded but allocated, get the
846	 * block in the extent corresponding to the requested block */
847	if ((laarr[c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30))
848		newblocknum = laarr[c].extLocation.logicalBlockNum + offset;
849	else { /* otherwise, allocate a new block */
850		if (iinfo->i_next_alloc_block == block)
851			goal = iinfo->i_next_alloc_goal;
852
853		if (!goal) {
854			if (!(goal = pgoal)) /* XXX: what was intended here? */
855				goal = iinfo->i_location.logicalBlockNum + 1;
856		}
857
858		newblocknum = udf_new_block(inode->i_sb, inode,
859				iinfo->i_location.partitionReferenceNum,
860				goal, err);
861		if (!newblocknum) {
862			*err = -ENOSPC;
863			goto out_free;
864		}
865		if (isBeyondEOF)
866			iinfo->i_lenExtents += inode->i_sb->s_blocksize;
867	}
868
869	/* if the extent the requsted block is located in contains multiple
870	 * blocks, split the extent into at most three extents. blocks prior
871	 * to requested block, requested block, and blocks after requested
872	 * block */
873	udf_split_extents(inode, &c, offset, newblocknum, laarr, &endnum);
874
875	/* We preallocate blocks only for regular files. It also makes sense
876	 * for directories but there's a problem when to drop the
877	 * preallocation. We might use some delayed work for that but I feel
878	 * it's overengineering for a filesystem like UDF. */
879	if (S_ISREG(inode->i_mode))
880		udf_prealloc_extents(inode, c, lastblock, laarr, &endnum);
881
882	/* merge any continuous blocks in laarr */
883	udf_merge_extents(inode, laarr, &endnum);
884
885	/* write back the new extents, inserting new extents if the new number
886	 * of extents is greater than the old number, and deleting extents if
887	 * the new number of extents is less than the old number */
888	*err = udf_update_extents(inode, laarr, startnum, endnum, &prev_epos);
889	if (*err < 0)
890		goto out_free;
891
892	newblock = udf_get_pblock(inode->i_sb, newblocknum,
893				iinfo->i_location.partitionReferenceNum, 0);
894	if (!newblock) {
895		*err = -EIO;
896		goto out_free;
897	}
898	*new = 1;
899	iinfo->i_next_alloc_block = block;
900	iinfo->i_next_alloc_goal = newblocknum;
901	inode->i_ctime = current_time(inode);
902
903	if (IS_SYNC(inode))
904		udf_sync_inode(inode);
905	else
906		mark_inode_dirty(inode);
907out_free:
908	brelse(prev_epos.bh);
909	brelse(cur_epos.bh);
910	brelse(next_epos.bh);
911	return newblock;
912}
913
914static void udf_split_extents(struct inode *inode, int *c, int offset,
915			       udf_pblk_t newblocknum,
916			       struct kernel_long_ad *laarr, int *endnum)
917{
918	unsigned long blocksize = inode->i_sb->s_blocksize;
919	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
920
921	if ((laarr[*c].extLength >> 30) == (EXT_NOT_RECORDED_ALLOCATED >> 30) ||
922	    (laarr[*c].extLength >> 30) ==
923				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
924		int curr = *c;
925		int blen = ((laarr[curr].extLength & UDF_EXTENT_LENGTH_MASK) +
926			    blocksize - 1) >> blocksize_bits;
927		int8_t etype = (laarr[curr].extLength >> 30);
928
929		if (blen == 1)
930			;
931		else if (!offset || blen == offset + 1) {
932			laarr[curr + 2] = laarr[curr + 1];
933			laarr[curr + 1] = laarr[curr];
934		} else {
935			laarr[curr + 3] = laarr[curr + 1];
936			laarr[curr + 2] = laarr[curr + 1] = laarr[curr];
937		}
938
939		if (offset) {
940			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30)) {
941				udf_free_blocks(inode->i_sb, inode,
942						&laarr[curr].extLocation,
943						0, offset);
944				laarr[curr].extLength =
945					EXT_NOT_RECORDED_NOT_ALLOCATED |
946					(offset << blocksize_bits);
947				laarr[curr].extLocation.logicalBlockNum = 0;
948				laarr[curr].extLocation.
949						partitionReferenceNum = 0;
950			} else
951				laarr[curr].extLength = (etype << 30) |
952					(offset << blocksize_bits);
953			curr++;
954			(*c)++;
955			(*endnum)++;
956		}
957
958		laarr[curr].extLocation.logicalBlockNum = newblocknum;
959		if (etype == (EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))
960			laarr[curr].extLocation.partitionReferenceNum =
961				UDF_I(inode)->i_location.partitionReferenceNum;
962		laarr[curr].extLength = EXT_RECORDED_ALLOCATED |
963			blocksize;
964		curr++;
965
966		if (blen != offset + 1) {
967			if (etype == (EXT_NOT_RECORDED_ALLOCATED >> 30))
968				laarr[curr].extLocation.logicalBlockNum +=
969								offset + 1;
970			laarr[curr].extLength = (etype << 30) |
971				((blen - (offset + 1)) << blocksize_bits);
972			curr++;
973			(*endnum)++;
974		}
975	}
976}
977
978static void udf_prealloc_extents(struct inode *inode, int c, int lastblock,
979				 struct kernel_long_ad *laarr,
980				 int *endnum)
981{
982	int start, length = 0, currlength = 0, i;
983
984	if (*endnum >= (c + 1)) {
985		if (!lastblock)
986			return;
987		else
988			start = c;
989	} else {
990		if ((laarr[c + 1].extLength >> 30) ==
991					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
992			start = c + 1;
993			length = currlength =
994				(((laarr[c + 1].extLength &
995					UDF_EXTENT_LENGTH_MASK) +
996				inode->i_sb->s_blocksize - 1) >>
997				inode->i_sb->s_blocksize_bits);
998		} else
999			start = c;
1000	}
1001
1002	for (i = start + 1; i <= *endnum; i++) {
1003		if (i == *endnum) {
1004			if (lastblock)
1005				length += UDF_DEFAULT_PREALLOC_BLOCKS;
1006		} else if ((laarr[i].extLength >> 30) ==
1007				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) {
1008			length += (((laarr[i].extLength &
1009						UDF_EXTENT_LENGTH_MASK) +
1010				    inode->i_sb->s_blocksize - 1) >>
1011				    inode->i_sb->s_blocksize_bits);
1012		} else
1013			break;
1014	}
1015
1016	if (length) {
1017		int next = laarr[start].extLocation.logicalBlockNum +
1018			(((laarr[start].extLength & UDF_EXTENT_LENGTH_MASK) +
1019			  inode->i_sb->s_blocksize - 1) >>
1020			  inode->i_sb->s_blocksize_bits);
1021		int numalloc = udf_prealloc_blocks(inode->i_sb, inode,
1022				laarr[start].extLocation.partitionReferenceNum,
1023				next, (UDF_DEFAULT_PREALLOC_BLOCKS > length ?
1024				length : UDF_DEFAULT_PREALLOC_BLOCKS) -
1025				currlength);
1026		if (numalloc) 	{
1027			if (start == (c + 1))
1028				laarr[start].extLength +=
1029					(numalloc <<
1030					 inode->i_sb->s_blocksize_bits);
1031			else {
1032				memmove(&laarr[c + 2], &laarr[c + 1],
1033					sizeof(struct long_ad) * (*endnum - (c + 1)));
1034				(*endnum)++;
1035				laarr[c + 1].extLocation.logicalBlockNum = next;
1036				laarr[c + 1].extLocation.partitionReferenceNum =
1037					laarr[c].extLocation.
1038							partitionReferenceNum;
1039				laarr[c + 1].extLength =
1040					EXT_NOT_RECORDED_ALLOCATED |
1041					(numalloc <<
1042					 inode->i_sb->s_blocksize_bits);
1043				start = c + 1;
1044			}
1045
1046			for (i = start + 1; numalloc && i < *endnum; i++) {
1047				int elen = ((laarr[i].extLength &
1048						UDF_EXTENT_LENGTH_MASK) +
1049					    inode->i_sb->s_blocksize - 1) >>
1050					    inode->i_sb->s_blocksize_bits;
1051
1052				if (elen > numalloc) {
1053					laarr[i].extLength -=
1054						(numalloc <<
1055						 inode->i_sb->s_blocksize_bits);
1056					numalloc = 0;
1057				} else {
1058					numalloc -= elen;
1059					if (*endnum > (i + 1))
1060						memmove(&laarr[i],
1061							&laarr[i + 1],
1062							sizeof(struct long_ad) *
1063							(*endnum - (i + 1)));
1064					i--;
1065					(*endnum)--;
1066				}
1067			}
1068			UDF_I(inode)->i_lenExtents +=
1069				numalloc << inode->i_sb->s_blocksize_bits;
1070		}
1071	}
1072}
1073
1074static void udf_merge_extents(struct inode *inode, struct kernel_long_ad *laarr,
1075			      int *endnum)
1076{
1077	int i;
1078	unsigned long blocksize = inode->i_sb->s_blocksize;
1079	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1080
1081	for (i = 0; i < (*endnum - 1); i++) {
1082		struct kernel_long_ad *li /*l[i]*/ = &laarr[i];
1083		struct kernel_long_ad *lip1 /*l[i plus 1]*/ = &laarr[i + 1];
1084
1085		if (((li->extLength >> 30) == (lip1->extLength >> 30)) &&
1086			(((li->extLength >> 30) ==
1087				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30)) ||
1088			((lip1->extLocation.logicalBlockNum -
1089			  li->extLocation.logicalBlockNum) ==
1090			(((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1091			blocksize - 1) >> blocksize_bits)))) {
1092
1093			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1094			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1095			     blocksize - 1) <= UDF_EXTENT_LENGTH_MASK) {
1096				li->extLength = lip1->extLength +
1097					(((li->extLength &
1098						UDF_EXTENT_LENGTH_MASK) +
1099					 blocksize - 1) & ~(blocksize - 1));
1100				if (*endnum > (i + 2))
1101					memmove(&laarr[i + 1], &laarr[i + 2],
1102						sizeof(struct long_ad) *
1103						(*endnum - (i + 2)));
1104				i--;
1105				(*endnum)--;
1106			}
1107		} else if (((li->extLength >> 30) ==
1108				(EXT_NOT_RECORDED_ALLOCATED >> 30)) &&
1109			   ((lip1->extLength >> 30) ==
1110				(EXT_NOT_RECORDED_NOT_ALLOCATED >> 30))) {
1111			udf_free_blocks(inode->i_sb, inode, &li->extLocation, 0,
1112					((li->extLength &
1113					  UDF_EXTENT_LENGTH_MASK) +
1114					 blocksize - 1) >> blocksize_bits);
1115			li->extLocation.logicalBlockNum = 0;
1116			li->extLocation.partitionReferenceNum = 0;
1117
1118			if (((li->extLength & UDF_EXTENT_LENGTH_MASK) +
1119			     (lip1->extLength & UDF_EXTENT_LENGTH_MASK) +
1120			     blocksize - 1) & ~UDF_EXTENT_LENGTH_MASK) {
1121				lip1->extLength = (lip1->extLength -
1122						   (li->extLength &
1123						   UDF_EXTENT_LENGTH_MASK) +
1124						   UDF_EXTENT_LENGTH_MASK) &
1125						   ~(blocksize - 1);
1126				li->extLength = (li->extLength &
1127						 UDF_EXTENT_FLAG_MASK) +
1128						(UDF_EXTENT_LENGTH_MASK + 1) -
1129						blocksize;
1130			} else {
1131				li->extLength = lip1->extLength +
1132					(((li->extLength &
1133						UDF_EXTENT_LENGTH_MASK) +
1134					  blocksize - 1) & ~(blocksize - 1));
1135				if (*endnum > (i + 2))
1136					memmove(&laarr[i + 1], &laarr[i + 2],
1137						sizeof(struct long_ad) *
1138						(*endnum - (i + 2)));
1139				i--;
1140				(*endnum)--;
1141			}
1142		} else if ((li->extLength >> 30) ==
1143					(EXT_NOT_RECORDED_ALLOCATED >> 30)) {
1144			udf_free_blocks(inode->i_sb, inode,
1145					&li->extLocation, 0,
1146					((li->extLength &
1147						UDF_EXTENT_LENGTH_MASK) +
1148					 blocksize - 1) >> blocksize_bits);
1149			li->extLocation.logicalBlockNum = 0;
1150			li->extLocation.partitionReferenceNum = 0;
1151			li->extLength = (li->extLength &
1152						UDF_EXTENT_LENGTH_MASK) |
1153						EXT_NOT_RECORDED_NOT_ALLOCATED;
1154		}
1155	}
1156}
1157
1158static int udf_update_extents(struct inode *inode, struct kernel_long_ad *laarr,
1159			      int startnum, int endnum,
1160			      struct extent_position *epos)
1161{
1162	int start = 0, i;
1163	struct kernel_lb_addr tmploc;
1164	uint32_t tmplen;
1165	int err;
1166
1167	if (startnum > endnum) {
1168		for (i = 0; i < (startnum - endnum); i++)
1169			udf_delete_aext(inode, *epos);
1170	} else if (startnum < endnum) {
1171		for (i = 0; i < (endnum - startnum); i++) {
1172			err = udf_insert_aext(inode, *epos,
1173					      laarr[i].extLocation,
1174					      laarr[i].extLength);
1175			/*
1176			 * If we fail here, we are likely corrupting the extent
1177			 * list and leaking blocks. At least stop early to
1178			 * limit the damage.
1179			 */
1180			if (err < 0)
1181				return err;
1182			udf_next_aext(inode, epos, &laarr[i].extLocation,
1183				      &laarr[i].extLength, 1);
1184			start++;
1185		}
1186	}
1187
1188	for (i = start; i < endnum; i++) {
1189		udf_next_aext(inode, epos, &tmploc, &tmplen, 0);
1190		udf_write_aext(inode, epos, &laarr[i].extLocation,
1191			       laarr[i].extLength, 1);
1192	}
1193	return 0;
1194}
1195
1196struct buffer_head *udf_bread(struct inode *inode, udf_pblk_t block,
1197			      int create, int *err)
1198{
1199	struct buffer_head *bh = NULL;
1200
1201	bh = udf_getblk(inode, block, create, err);
1202	if (!bh)
1203		return NULL;
1204
1205	if (buffer_uptodate(bh))
1206		return bh;
1207
1208	ll_rw_block(REQ_OP_READ, 0, 1, &bh);
1209
1210	wait_on_buffer(bh);
1211	if (buffer_uptodate(bh))
1212		return bh;
1213
1214	brelse(bh);
1215	*err = -EIO;
1216	return NULL;
1217}
1218
1219int udf_setsize(struct inode *inode, loff_t newsize)
1220{
1221	int err;
1222	struct udf_inode_info *iinfo;
1223	unsigned int bsize = i_blocksize(inode);
1224
1225	if (!(S_ISREG(inode->i_mode) || S_ISDIR(inode->i_mode) ||
1226	      S_ISLNK(inode->i_mode)))
1227		return -EINVAL;
1228	if (IS_APPEND(inode) || IS_IMMUTABLE(inode))
1229		return -EPERM;
1230
1231	iinfo = UDF_I(inode);
1232	if (newsize > inode->i_size) {
1233		down_write(&iinfo->i_data_sem);
1234		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1235			if (bsize <
1236			    (udf_file_entry_alloc_offset(inode) + newsize)) {
1237				err = udf_expand_file_adinicb(inode);
1238				if (err)
1239					return err;
1240				down_write(&iinfo->i_data_sem);
1241			} else {
1242				iinfo->i_lenAlloc = newsize;
1243				goto set_size;
1244			}
1245		}
1246		err = udf_extend_file(inode, newsize);
1247		if (err) {
1248			up_write(&iinfo->i_data_sem);
1249			return err;
1250		}
1251set_size:
1252		up_write(&iinfo->i_data_sem);
1253		truncate_setsize(inode, newsize);
1254	} else {
1255		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1256			down_write(&iinfo->i_data_sem);
1257			udf_clear_extent_cache(inode);
1258			memset(iinfo->i_data + iinfo->i_lenEAttr + newsize,
1259			       0x00, bsize - newsize -
1260			       udf_file_entry_alloc_offset(inode));
1261			iinfo->i_lenAlloc = newsize;
1262			truncate_setsize(inode, newsize);
1263			up_write(&iinfo->i_data_sem);
1264			goto update_time;
1265		}
1266		err = block_truncate_page(inode->i_mapping, newsize,
1267					  udf_get_block);
1268		if (err)
1269			return err;
1270		truncate_setsize(inode, newsize);
1271		down_write(&iinfo->i_data_sem);
1272		udf_clear_extent_cache(inode);
1273		err = udf_truncate_extents(inode);
1274		up_write(&iinfo->i_data_sem);
1275		if (err)
1276			return err;
1277	}
1278update_time:
1279	inode->i_mtime = inode->i_ctime = current_time(inode);
1280	if (IS_SYNC(inode))
1281		udf_sync_inode(inode);
1282	else
1283		mark_inode_dirty(inode);
1284	return 0;
1285}
1286
1287/*
1288 * Maximum length of linked list formed by ICB hierarchy. The chosen number is
1289 * arbitrary - just that we hopefully don't limit any real use of rewritten
1290 * inode on write-once media but avoid looping for too long on corrupted media.
1291 */
1292#define UDF_MAX_ICB_NESTING 1024
1293
1294static int udf_read_inode(struct inode *inode, bool hidden_inode)
1295{
1296	struct buffer_head *bh = NULL;
1297	struct fileEntry *fe;
1298	struct extendedFileEntry *efe;
1299	uint16_t ident;
1300	struct udf_inode_info *iinfo = UDF_I(inode);
1301	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1302	struct kernel_lb_addr *iloc = &iinfo->i_location;
1303	unsigned int link_count;
1304	unsigned int indirections = 0;
1305	int bs = inode->i_sb->s_blocksize;
1306	int ret = -EIO;
1307	uint32_t uid, gid;
1308
1309reread:
1310	if (iloc->partitionReferenceNum >= sbi->s_partitions) {
1311		udf_debug("partition reference: %u > logical volume partitions: %u\n",
1312			  iloc->partitionReferenceNum, sbi->s_partitions);
1313		return -EIO;
1314	}
1315
1316	if (iloc->logicalBlockNum >=
1317	    sbi->s_partmaps[iloc->partitionReferenceNum].s_partition_len) {
1318		udf_debug("block=%u, partition=%u out of range\n",
1319			  iloc->logicalBlockNum, iloc->partitionReferenceNum);
1320		return -EIO;
1321	}
1322
1323	/*
1324	 * Set defaults, but the inode is still incomplete!
1325	 * Note: get_new_inode() sets the following on a new inode:
1326	 *      i_sb = sb
1327	 *      i_no = ino
1328	 *      i_flags = sb->s_flags
1329	 *      i_state = 0
1330	 * clean_inode(): zero fills and sets
1331	 *      i_count = 1
1332	 *      i_nlink = 1
1333	 *      i_op = NULL;
1334	 */
1335	bh = udf_read_ptagged(inode->i_sb, iloc, 0, &ident);
1336	if (!bh) {
1337		udf_err(inode->i_sb, "(ino %lu) failed !bh\n", inode->i_ino);
1338		return -EIO;
1339	}
1340
1341	if (ident != TAG_IDENT_FE && ident != TAG_IDENT_EFE &&
1342	    ident != TAG_IDENT_USE) {
1343		udf_err(inode->i_sb, "(ino %lu) failed ident=%u\n",
1344			inode->i_ino, ident);
1345		goto out;
1346	}
1347
1348	fe = (struct fileEntry *)bh->b_data;
1349	efe = (struct extendedFileEntry *)bh->b_data;
1350
1351	if (fe->icbTag.strategyType == cpu_to_le16(4096)) {
1352		struct buffer_head *ibh;
1353
1354		ibh = udf_read_ptagged(inode->i_sb, iloc, 1, &ident);
1355		if (ident == TAG_IDENT_IE && ibh) {
1356			struct kernel_lb_addr loc;
1357			struct indirectEntry *ie;
1358
1359			ie = (struct indirectEntry *)ibh->b_data;
1360			loc = lelb_to_cpu(ie->indirectICB.extLocation);
1361
1362			if (ie->indirectICB.extLength) {
1363				brelse(ibh);
1364				memcpy(&iinfo->i_location, &loc,
1365				       sizeof(struct kernel_lb_addr));
1366				if (++indirections > UDF_MAX_ICB_NESTING) {
1367					udf_err(inode->i_sb,
1368						"too many ICBs in ICB hierarchy"
1369						" (max %d supported)\n",
1370						UDF_MAX_ICB_NESTING);
1371					goto out;
1372				}
1373				brelse(bh);
1374				goto reread;
1375			}
1376		}
1377		brelse(ibh);
1378	} else if (fe->icbTag.strategyType != cpu_to_le16(4)) {
1379		udf_err(inode->i_sb, "unsupported strategy type: %u\n",
1380			le16_to_cpu(fe->icbTag.strategyType));
1381		goto out;
1382	}
1383	if (fe->icbTag.strategyType == cpu_to_le16(4))
1384		iinfo->i_strat4096 = 0;
1385	else /* if (fe->icbTag.strategyType == cpu_to_le16(4096)) */
1386		iinfo->i_strat4096 = 1;
1387
1388	iinfo->i_alloc_type = le16_to_cpu(fe->icbTag.flags) &
1389							ICBTAG_FLAG_AD_MASK;
1390	if (iinfo->i_alloc_type != ICBTAG_FLAG_AD_SHORT &&
1391	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_LONG &&
1392	    iinfo->i_alloc_type != ICBTAG_FLAG_AD_IN_ICB) {
1393		ret = -EIO;
1394		goto out;
1395	}
1396	iinfo->i_hidden = hidden_inode;
1397	iinfo->i_unique = 0;
1398	iinfo->i_lenEAttr = 0;
1399	iinfo->i_lenExtents = 0;
1400	iinfo->i_lenAlloc = 0;
1401	iinfo->i_next_alloc_block = 0;
1402	iinfo->i_next_alloc_goal = 0;
1403	if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_EFE)) {
1404		iinfo->i_efe = 1;
1405		iinfo->i_use = 0;
1406		ret = udf_alloc_i_data(inode, bs -
1407					sizeof(struct extendedFileEntry));
1408		if (ret)
1409			goto out;
1410		memcpy(iinfo->i_data,
1411		       bh->b_data + sizeof(struct extendedFileEntry),
1412		       bs - sizeof(struct extendedFileEntry));
1413	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_FE)) {
1414		iinfo->i_efe = 0;
1415		iinfo->i_use = 0;
1416		ret = udf_alloc_i_data(inode, bs - sizeof(struct fileEntry));
1417		if (ret)
1418			goto out;
1419		memcpy(iinfo->i_data,
1420		       bh->b_data + sizeof(struct fileEntry),
1421		       bs - sizeof(struct fileEntry));
1422	} else if (fe->descTag.tagIdent == cpu_to_le16(TAG_IDENT_USE)) {
1423		iinfo->i_efe = 0;
1424		iinfo->i_use = 1;
1425		iinfo->i_lenAlloc = le32_to_cpu(
1426				((struct unallocSpaceEntry *)bh->b_data)->
1427				 lengthAllocDescs);
1428		ret = udf_alloc_i_data(inode, bs -
1429					sizeof(struct unallocSpaceEntry));
1430		if (ret)
1431			goto out;
1432		memcpy(iinfo->i_data,
1433		       bh->b_data + sizeof(struct unallocSpaceEntry),
1434		       bs - sizeof(struct unallocSpaceEntry));
1435		return 0;
1436	}
1437
1438	ret = -EIO;
1439	read_lock(&sbi->s_cred_lock);
1440	uid = le32_to_cpu(fe->uid);
1441	if (uid == UDF_INVALID_ID ||
1442	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_SET))
1443		inode->i_uid = sbi->s_uid;
1444	else
1445		i_uid_write(inode, uid);
1446
1447	gid = le32_to_cpu(fe->gid);
1448	if (gid == UDF_INVALID_ID ||
1449	    UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_SET))
1450		inode->i_gid = sbi->s_gid;
1451	else
1452		i_gid_write(inode, gid);
1453
1454	if (fe->icbTag.fileType != ICBTAG_FILE_TYPE_DIRECTORY &&
1455			sbi->s_fmode != UDF_INVALID_MODE)
1456		inode->i_mode = sbi->s_fmode;
1457	else if (fe->icbTag.fileType == ICBTAG_FILE_TYPE_DIRECTORY &&
1458			sbi->s_dmode != UDF_INVALID_MODE)
1459		inode->i_mode = sbi->s_dmode;
1460	else
1461		inode->i_mode = udf_convert_permissions(fe);
1462	inode->i_mode &= ~sbi->s_umask;
1463	iinfo->i_extraPerms = le32_to_cpu(fe->permissions) & ~FE_MAPPED_PERMS;
1464
1465	read_unlock(&sbi->s_cred_lock);
1466
1467	link_count = le16_to_cpu(fe->fileLinkCount);
1468	if (!link_count) {
1469		if (!hidden_inode) {
1470			ret = -ESTALE;
1471			goto out;
1472		}
1473		link_count = 1;
1474	}
1475	set_nlink(inode, link_count);
1476
1477	inode->i_size = le64_to_cpu(fe->informationLength);
1478	iinfo->i_lenExtents = inode->i_size;
1479
1480	if (iinfo->i_efe == 0) {
1481		inode->i_blocks = le64_to_cpu(fe->logicalBlocksRecorded) <<
1482			(inode->i_sb->s_blocksize_bits - 9);
1483
1484		udf_disk_stamp_to_time(&inode->i_atime, fe->accessTime);
1485		udf_disk_stamp_to_time(&inode->i_mtime, fe->modificationTime);
1486		udf_disk_stamp_to_time(&inode->i_ctime, fe->attrTime);
1487
1488		iinfo->i_unique = le64_to_cpu(fe->uniqueID);
1489		iinfo->i_lenEAttr = le32_to_cpu(fe->lengthExtendedAttr);
1490		iinfo->i_lenAlloc = le32_to_cpu(fe->lengthAllocDescs);
1491		iinfo->i_checkpoint = le32_to_cpu(fe->checkpoint);
1492		iinfo->i_streamdir = 0;
1493		iinfo->i_lenStreams = 0;
1494	} else {
1495		inode->i_blocks = le64_to_cpu(efe->logicalBlocksRecorded) <<
1496		    (inode->i_sb->s_blocksize_bits - 9);
1497
1498		udf_disk_stamp_to_time(&inode->i_atime, efe->accessTime);
1499		udf_disk_stamp_to_time(&inode->i_mtime, efe->modificationTime);
1500		udf_disk_stamp_to_time(&iinfo->i_crtime, efe->createTime);
1501		udf_disk_stamp_to_time(&inode->i_ctime, efe->attrTime);
1502
1503		iinfo->i_unique = le64_to_cpu(efe->uniqueID);
1504		iinfo->i_lenEAttr = le32_to_cpu(efe->lengthExtendedAttr);
1505		iinfo->i_lenAlloc = le32_to_cpu(efe->lengthAllocDescs);
1506		iinfo->i_checkpoint = le32_to_cpu(efe->checkpoint);
1507
1508		/* Named streams */
1509		iinfo->i_streamdir = (efe->streamDirectoryICB.extLength != 0);
1510		iinfo->i_locStreamdir =
1511			lelb_to_cpu(efe->streamDirectoryICB.extLocation);
1512		iinfo->i_lenStreams = le64_to_cpu(efe->objectSize);
1513		if (iinfo->i_lenStreams >= inode->i_size)
1514			iinfo->i_lenStreams -= inode->i_size;
1515		else
1516			iinfo->i_lenStreams = 0;
1517	}
1518	inode->i_generation = iinfo->i_unique;
1519
1520	/*
1521	 * Sanity check length of allocation descriptors and extended attrs to
1522	 * avoid integer overflows
1523	 */
1524	if (iinfo->i_lenEAttr > bs || iinfo->i_lenAlloc > bs)
1525		goto out;
1526	/* Now do exact checks */
1527	if (udf_file_entry_alloc_offset(inode) + iinfo->i_lenAlloc > bs)
1528		goto out;
1529	/* Sanity checks for files in ICB so that we don't get confused later */
1530	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB) {
1531		/*
1532		 * For file in ICB data is stored in allocation descriptor
1533		 * so sizes should match
1534		 */
1535		if (iinfo->i_lenAlloc != inode->i_size)
1536			goto out;
1537		/* File in ICB has to fit in there... */
1538		if (inode->i_size > bs - udf_file_entry_alloc_offset(inode))
1539			goto out;
1540	}
1541
1542	switch (fe->icbTag.fileType) {
1543	case ICBTAG_FILE_TYPE_DIRECTORY:
1544		inode->i_op = &udf_dir_inode_operations;
1545		inode->i_fop = &udf_dir_operations;
1546		inode->i_mode |= S_IFDIR;
1547		inc_nlink(inode);
1548		break;
1549	case ICBTAG_FILE_TYPE_REALTIME:
1550	case ICBTAG_FILE_TYPE_REGULAR:
1551	case ICBTAG_FILE_TYPE_UNDEF:
1552	case ICBTAG_FILE_TYPE_VAT20:
1553		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1554			inode->i_data.a_ops = &udf_adinicb_aops;
1555		else
1556			inode->i_data.a_ops = &udf_aops;
1557		inode->i_op = &udf_file_inode_operations;
1558		inode->i_fop = &udf_file_operations;
1559		inode->i_mode |= S_IFREG;
1560		break;
1561	case ICBTAG_FILE_TYPE_BLOCK:
1562		inode->i_mode |= S_IFBLK;
1563		break;
1564	case ICBTAG_FILE_TYPE_CHAR:
1565		inode->i_mode |= S_IFCHR;
1566		break;
1567	case ICBTAG_FILE_TYPE_FIFO:
1568		init_special_inode(inode, inode->i_mode | S_IFIFO, 0);
1569		break;
1570	case ICBTAG_FILE_TYPE_SOCKET:
1571		init_special_inode(inode, inode->i_mode | S_IFSOCK, 0);
1572		break;
1573	case ICBTAG_FILE_TYPE_SYMLINK:
1574		inode->i_data.a_ops = &udf_symlink_aops;
1575		inode->i_op = &udf_symlink_inode_operations;
1576		inode_nohighmem(inode);
1577		inode->i_mode = S_IFLNK | 0777;
1578		break;
1579	case ICBTAG_FILE_TYPE_MAIN:
1580		udf_debug("METADATA FILE-----\n");
1581		break;
1582	case ICBTAG_FILE_TYPE_MIRROR:
1583		udf_debug("METADATA MIRROR FILE-----\n");
1584		break;
1585	case ICBTAG_FILE_TYPE_BITMAP:
1586		udf_debug("METADATA BITMAP FILE-----\n");
1587		break;
1588	default:
1589		udf_err(inode->i_sb, "(ino %lu) failed unknown file type=%u\n",
1590			inode->i_ino, fe->icbTag.fileType);
1591		goto out;
1592	}
1593	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1594		struct deviceSpec *dsea =
1595			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1596		if (dsea) {
1597			init_special_inode(inode, inode->i_mode,
1598				MKDEV(le32_to_cpu(dsea->majorDeviceIdent),
1599				      le32_to_cpu(dsea->minorDeviceIdent)));
1600			/* Developer ID ??? */
1601		} else
1602			goto out;
1603	}
1604	ret = 0;
1605out:
1606	brelse(bh);
1607	return ret;
1608}
1609
1610static int udf_alloc_i_data(struct inode *inode, size_t size)
1611{
1612	struct udf_inode_info *iinfo = UDF_I(inode);
1613	iinfo->i_data = kmalloc(size, GFP_KERNEL);
1614	if (!iinfo->i_data)
1615		return -ENOMEM;
1616	return 0;
1617}
1618
1619static umode_t udf_convert_permissions(struct fileEntry *fe)
1620{
1621	umode_t mode;
1622	uint32_t permissions;
1623	uint32_t flags;
1624
1625	permissions = le32_to_cpu(fe->permissions);
1626	flags = le16_to_cpu(fe->icbTag.flags);
1627
1628	mode =	((permissions) & 0007) |
1629		((permissions >> 2) & 0070) |
1630		((permissions >> 4) & 0700) |
1631		((flags & ICBTAG_FLAG_SETUID) ? S_ISUID : 0) |
1632		((flags & ICBTAG_FLAG_SETGID) ? S_ISGID : 0) |
1633		((flags & ICBTAG_FLAG_STICKY) ? S_ISVTX : 0);
1634
1635	return mode;
1636}
1637
1638void udf_update_extra_perms(struct inode *inode, umode_t mode)
1639{
1640	struct udf_inode_info *iinfo = UDF_I(inode);
1641
1642	/*
1643	 * UDF 2.01 sec. 3.3.3.3 Note 2:
1644	 * In Unix, delete permission tracks write
1645	 */
1646	iinfo->i_extraPerms &= ~FE_DELETE_PERMS;
1647	if (mode & 0200)
1648		iinfo->i_extraPerms |= FE_PERM_U_DELETE;
1649	if (mode & 0020)
1650		iinfo->i_extraPerms |= FE_PERM_G_DELETE;
1651	if (mode & 0002)
1652		iinfo->i_extraPerms |= FE_PERM_O_DELETE;
1653}
1654
1655int udf_write_inode(struct inode *inode, struct writeback_control *wbc)
1656{
1657	return udf_update_inode(inode, wbc->sync_mode == WB_SYNC_ALL);
1658}
1659
1660static int udf_sync_inode(struct inode *inode)
1661{
1662	return udf_update_inode(inode, 1);
1663}
1664
1665static void udf_adjust_time(struct udf_inode_info *iinfo, struct timespec64 time)
1666{
1667	if (iinfo->i_crtime.tv_sec > time.tv_sec ||
1668	    (iinfo->i_crtime.tv_sec == time.tv_sec &&
1669	     iinfo->i_crtime.tv_nsec > time.tv_nsec))
1670		iinfo->i_crtime = time;
1671}
1672
1673static int udf_update_inode(struct inode *inode, int do_sync)
1674{
1675	struct buffer_head *bh = NULL;
1676	struct fileEntry *fe;
1677	struct extendedFileEntry *efe;
1678	uint64_t lb_recorded;
1679	uint32_t udfperms;
1680	uint16_t icbflags;
1681	uint16_t crclen;
1682	int err = 0;
1683	struct udf_sb_info *sbi = UDF_SB(inode->i_sb);
1684	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
1685	struct udf_inode_info *iinfo = UDF_I(inode);
1686
1687	bh = udf_tgetblk(inode->i_sb,
1688			udf_get_lb_pblock(inode->i_sb, &iinfo->i_location, 0));
1689	if (!bh) {
1690		udf_debug("getblk failure\n");
1691		return -EIO;
1692	}
1693
1694	lock_buffer(bh);
1695	memset(bh->b_data, 0, inode->i_sb->s_blocksize);
1696	fe = (struct fileEntry *)bh->b_data;
1697	efe = (struct extendedFileEntry *)bh->b_data;
1698
1699	if (iinfo->i_use) {
1700		struct unallocSpaceEntry *use =
1701			(struct unallocSpaceEntry *)bh->b_data;
1702
1703		use->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1704		memcpy(bh->b_data + sizeof(struct unallocSpaceEntry),
1705		       iinfo->i_data, inode->i_sb->s_blocksize -
1706					sizeof(struct unallocSpaceEntry));
1707		use->descTag.tagIdent = cpu_to_le16(TAG_IDENT_USE);
1708		crclen = sizeof(struct unallocSpaceEntry);
1709
1710		goto finish;
1711	}
1712
1713	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_UID_FORGET))
1714		fe->uid = cpu_to_le32(UDF_INVALID_ID);
1715	else
1716		fe->uid = cpu_to_le32(i_uid_read(inode));
1717
1718	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_GID_FORGET))
1719		fe->gid = cpu_to_le32(UDF_INVALID_ID);
1720	else
1721		fe->gid = cpu_to_le32(i_gid_read(inode));
1722
1723	udfperms = ((inode->i_mode & 0007)) |
1724		   ((inode->i_mode & 0070) << 2) |
1725		   ((inode->i_mode & 0700) << 4);
1726
1727	udfperms |= iinfo->i_extraPerms;
1728	fe->permissions = cpu_to_le32(udfperms);
1729
1730	if (S_ISDIR(inode->i_mode) && inode->i_nlink > 0)
1731		fe->fileLinkCount = cpu_to_le16(inode->i_nlink - 1);
1732	else {
1733		if (iinfo->i_hidden)
1734			fe->fileLinkCount = cpu_to_le16(0);
1735		else
1736			fe->fileLinkCount = cpu_to_le16(inode->i_nlink);
1737	}
1738
1739	fe->informationLength = cpu_to_le64(inode->i_size);
1740
1741	if (S_ISCHR(inode->i_mode) || S_ISBLK(inode->i_mode)) {
1742		struct regid *eid;
1743		struct deviceSpec *dsea =
1744			(struct deviceSpec *)udf_get_extendedattr(inode, 12, 1);
1745		if (!dsea) {
1746			dsea = (struct deviceSpec *)
1747				udf_add_extendedattr(inode,
1748						     sizeof(struct deviceSpec) +
1749						     sizeof(struct regid), 12, 0x3);
1750			dsea->attrType = cpu_to_le32(12);
1751			dsea->attrSubtype = 1;
1752			dsea->attrLength = cpu_to_le32(
1753						sizeof(struct deviceSpec) +
1754						sizeof(struct regid));
1755			dsea->impUseLength = cpu_to_le32(sizeof(struct regid));
1756		}
1757		eid = (struct regid *)dsea->impUse;
1758		memset(eid, 0, sizeof(*eid));
1759		strcpy(eid->ident, UDF_ID_DEVELOPER);
1760		eid->identSuffix[0] = UDF_OS_CLASS_UNIX;
1761		eid->identSuffix[1] = UDF_OS_ID_LINUX;
1762		dsea->majorDeviceIdent = cpu_to_le32(imajor(inode));
1763		dsea->minorDeviceIdent = cpu_to_le32(iminor(inode));
1764	}
1765
1766	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_IN_ICB)
1767		lb_recorded = 0; /* No extents => no blocks! */
1768	else
1769		lb_recorded =
1770			(inode->i_blocks + (1 << (blocksize_bits - 9)) - 1) >>
1771			(blocksize_bits - 9);
1772
1773	if (iinfo->i_efe == 0) {
1774		memcpy(bh->b_data + sizeof(struct fileEntry),
1775		       iinfo->i_data,
1776		       inode->i_sb->s_blocksize - sizeof(struct fileEntry));
1777		fe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1778
1779		udf_time_to_disk_stamp(&fe->accessTime, inode->i_atime);
1780		udf_time_to_disk_stamp(&fe->modificationTime, inode->i_mtime);
1781		udf_time_to_disk_stamp(&fe->attrTime, inode->i_ctime);
1782		memset(&(fe->impIdent), 0, sizeof(struct regid));
1783		strcpy(fe->impIdent.ident, UDF_ID_DEVELOPER);
1784		fe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1785		fe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1786		fe->uniqueID = cpu_to_le64(iinfo->i_unique);
1787		fe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1788		fe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1789		fe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1790		fe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_FE);
1791		crclen = sizeof(struct fileEntry);
1792	} else {
1793		memcpy(bh->b_data + sizeof(struct extendedFileEntry),
1794		       iinfo->i_data,
1795		       inode->i_sb->s_blocksize -
1796					sizeof(struct extendedFileEntry));
1797		efe->objectSize =
1798			cpu_to_le64(inode->i_size + iinfo->i_lenStreams);
1799		efe->logicalBlocksRecorded = cpu_to_le64(lb_recorded);
1800
1801		if (iinfo->i_streamdir) {
1802			struct long_ad *icb_lad = &efe->streamDirectoryICB;
1803
1804			icb_lad->extLocation =
1805				cpu_to_lelb(iinfo->i_locStreamdir);
1806			icb_lad->extLength =
1807				cpu_to_le32(inode->i_sb->s_blocksize);
1808		}
1809
1810		udf_adjust_time(iinfo, inode->i_atime);
1811		udf_adjust_time(iinfo, inode->i_mtime);
1812		udf_adjust_time(iinfo, inode->i_ctime);
1813
1814		udf_time_to_disk_stamp(&efe->accessTime, inode->i_atime);
1815		udf_time_to_disk_stamp(&efe->modificationTime, inode->i_mtime);
1816		udf_time_to_disk_stamp(&efe->createTime, iinfo->i_crtime);
1817		udf_time_to_disk_stamp(&efe->attrTime, inode->i_ctime);
1818
1819		memset(&(efe->impIdent), 0, sizeof(efe->impIdent));
1820		strcpy(efe->impIdent.ident, UDF_ID_DEVELOPER);
1821		efe->impIdent.identSuffix[0] = UDF_OS_CLASS_UNIX;
1822		efe->impIdent.identSuffix[1] = UDF_OS_ID_LINUX;
1823		efe->uniqueID = cpu_to_le64(iinfo->i_unique);
1824		efe->lengthExtendedAttr = cpu_to_le32(iinfo->i_lenEAttr);
1825		efe->lengthAllocDescs = cpu_to_le32(iinfo->i_lenAlloc);
1826		efe->checkpoint = cpu_to_le32(iinfo->i_checkpoint);
1827		efe->descTag.tagIdent = cpu_to_le16(TAG_IDENT_EFE);
1828		crclen = sizeof(struct extendedFileEntry);
1829	}
1830
1831finish:
1832	if (iinfo->i_strat4096) {
1833		fe->icbTag.strategyType = cpu_to_le16(4096);
1834		fe->icbTag.strategyParameter = cpu_to_le16(1);
1835		fe->icbTag.numEntries = cpu_to_le16(2);
1836	} else {
1837		fe->icbTag.strategyType = cpu_to_le16(4);
1838		fe->icbTag.numEntries = cpu_to_le16(1);
1839	}
1840
1841	if (iinfo->i_use)
1842		fe->icbTag.fileType = ICBTAG_FILE_TYPE_USE;
1843	else if (S_ISDIR(inode->i_mode))
1844		fe->icbTag.fileType = ICBTAG_FILE_TYPE_DIRECTORY;
1845	else if (S_ISREG(inode->i_mode))
1846		fe->icbTag.fileType = ICBTAG_FILE_TYPE_REGULAR;
1847	else if (S_ISLNK(inode->i_mode))
1848		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SYMLINK;
1849	else if (S_ISBLK(inode->i_mode))
1850		fe->icbTag.fileType = ICBTAG_FILE_TYPE_BLOCK;
1851	else if (S_ISCHR(inode->i_mode))
1852		fe->icbTag.fileType = ICBTAG_FILE_TYPE_CHAR;
1853	else if (S_ISFIFO(inode->i_mode))
1854		fe->icbTag.fileType = ICBTAG_FILE_TYPE_FIFO;
1855	else if (S_ISSOCK(inode->i_mode))
1856		fe->icbTag.fileType = ICBTAG_FILE_TYPE_SOCKET;
1857
1858	icbflags =	iinfo->i_alloc_type |
1859			((inode->i_mode & S_ISUID) ? ICBTAG_FLAG_SETUID : 0) |
1860			((inode->i_mode & S_ISGID) ? ICBTAG_FLAG_SETGID : 0) |
1861			((inode->i_mode & S_ISVTX) ? ICBTAG_FLAG_STICKY : 0) |
1862			(le16_to_cpu(fe->icbTag.flags) &
1863				~(ICBTAG_FLAG_AD_MASK | ICBTAG_FLAG_SETUID |
1864				ICBTAG_FLAG_SETGID | ICBTAG_FLAG_STICKY));
1865
1866	fe->icbTag.flags = cpu_to_le16(icbflags);
1867	if (sbi->s_udfrev >= 0x0200)
1868		fe->descTag.descVersion = cpu_to_le16(3);
1869	else
1870		fe->descTag.descVersion = cpu_to_le16(2);
1871	fe->descTag.tagSerialNum = cpu_to_le16(sbi->s_serial_number);
1872	fe->descTag.tagLocation = cpu_to_le32(
1873					iinfo->i_location.logicalBlockNum);
1874	crclen += iinfo->i_lenEAttr + iinfo->i_lenAlloc - sizeof(struct tag);
1875	fe->descTag.descCRCLength = cpu_to_le16(crclen);
1876	fe->descTag.descCRC = cpu_to_le16(crc_itu_t(0, (char *)fe + sizeof(struct tag),
1877						  crclen));
1878	fe->descTag.tagChecksum = udf_tag_checksum(&fe->descTag);
1879
1880	set_buffer_uptodate(bh);
1881	unlock_buffer(bh);
1882
1883	/* write the data blocks */
1884	mark_buffer_dirty(bh);
1885	if (do_sync) {
1886		sync_dirty_buffer(bh);
1887		if (buffer_write_io_error(bh)) {
1888			udf_warn(inode->i_sb, "IO error syncing udf inode [%08lx]\n",
1889				 inode->i_ino);
1890			err = -EIO;
1891		}
1892	}
1893	brelse(bh);
1894
1895	return err;
1896}
1897
1898struct inode *__udf_iget(struct super_block *sb, struct kernel_lb_addr *ino,
1899			 bool hidden_inode)
1900{
1901	unsigned long block = udf_get_lb_pblock(sb, ino, 0);
1902	struct inode *inode = iget_locked(sb, block);
1903	int err;
1904
1905	if (!inode)
1906		return ERR_PTR(-ENOMEM);
1907
1908	if (!(inode->i_state & I_NEW)) {
1909		if (UDF_I(inode)->i_hidden != hidden_inode) {
1910			iput(inode);
1911			return ERR_PTR(-EFSCORRUPTED);
1912		}
1913		return inode;
1914	}
1915
1916	memcpy(&UDF_I(inode)->i_location, ino, sizeof(struct kernel_lb_addr));
1917	err = udf_read_inode(inode, hidden_inode);
1918	if (err < 0) {
1919		iget_failed(inode);
1920		return ERR_PTR(err);
1921	}
1922	unlock_new_inode(inode);
1923
1924	return inode;
1925}
1926
1927int udf_setup_indirect_aext(struct inode *inode, udf_pblk_t block,
1928			    struct extent_position *epos)
1929{
1930	struct super_block *sb = inode->i_sb;
1931	struct buffer_head *bh;
1932	struct allocExtDesc *aed;
1933	struct extent_position nepos;
1934	struct kernel_lb_addr neloc;
1935	int ver, adsize;
1936
1937	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
1938		adsize = sizeof(struct short_ad);
1939	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
1940		adsize = sizeof(struct long_ad);
1941	else
1942		return -EIO;
1943
1944	neloc.logicalBlockNum = block;
1945	neloc.partitionReferenceNum = epos->block.partitionReferenceNum;
1946
1947	bh = udf_tgetblk(sb, udf_get_lb_pblock(sb, &neloc, 0));
1948	if (!bh)
1949		return -EIO;
1950	lock_buffer(bh);
1951	memset(bh->b_data, 0x00, sb->s_blocksize);
1952	set_buffer_uptodate(bh);
1953	unlock_buffer(bh);
1954	mark_buffer_dirty_inode(bh, inode);
1955
1956	aed = (struct allocExtDesc *)(bh->b_data);
1957	if (!UDF_QUERY_FLAG(sb, UDF_FLAG_STRICT)) {
1958		aed->previousAllocExtLocation =
1959				cpu_to_le32(epos->block.logicalBlockNum);
1960	}
1961	aed->lengthAllocDescs = cpu_to_le32(0);
1962	if (UDF_SB(sb)->s_udfrev >= 0x0200)
1963		ver = 3;
1964	else
1965		ver = 2;
1966	udf_new_tag(bh->b_data, TAG_IDENT_AED, ver, 1, block,
1967		    sizeof(struct tag));
1968
1969	nepos.block = neloc;
1970	nepos.offset = sizeof(struct allocExtDesc);
1971	nepos.bh = bh;
1972
1973	/*
1974	 * Do we have to copy current last extent to make space for indirect
1975	 * one?
1976	 */
1977	if (epos->offset + adsize > sb->s_blocksize) {
1978		struct kernel_lb_addr cp_loc;
1979		uint32_t cp_len;
1980		int cp_type;
1981
1982		epos->offset -= adsize;
1983		cp_type = udf_current_aext(inode, epos, &cp_loc, &cp_len, 0);
1984		cp_len |= ((uint32_t)cp_type) << 30;
1985
1986		__udf_add_aext(inode, &nepos, &cp_loc, cp_len, 1);
1987		udf_write_aext(inode, epos, &nepos.block,
1988			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1989	} else {
1990		__udf_add_aext(inode, epos, &nepos.block,
1991			       sb->s_blocksize | EXT_NEXT_EXTENT_ALLOCDESCS, 0);
1992	}
1993
1994	brelse(epos->bh);
1995	*epos = nepos;
1996
1997	return 0;
1998}
1999
2000/*
2001 * Append extent at the given position - should be the first free one in inode
2002 * / indirect extent. This function assumes there is enough space in the inode
2003 * or indirect extent. Use udf_add_aext() if you didn't check for this before.
2004 */
2005int __udf_add_aext(struct inode *inode, struct extent_position *epos,
2006		   struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2007{
2008	struct udf_inode_info *iinfo = UDF_I(inode);
2009	struct allocExtDesc *aed;
2010	int adsize;
2011
2012	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2013		adsize = sizeof(struct short_ad);
2014	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2015		adsize = sizeof(struct long_ad);
2016	else
2017		return -EIO;
2018
2019	if (!epos->bh) {
2020		WARN_ON(iinfo->i_lenAlloc !=
2021			epos->offset - udf_file_entry_alloc_offset(inode));
2022	} else {
2023		aed = (struct allocExtDesc *)epos->bh->b_data;
2024		WARN_ON(le32_to_cpu(aed->lengthAllocDescs) !=
2025			epos->offset - sizeof(struct allocExtDesc));
2026		WARN_ON(epos->offset + adsize > inode->i_sb->s_blocksize);
2027	}
2028
2029	udf_write_aext(inode, epos, eloc, elen, inc);
2030
2031	if (!epos->bh) {
2032		iinfo->i_lenAlloc += adsize;
2033		mark_inode_dirty(inode);
2034	} else {
2035		aed = (struct allocExtDesc *)epos->bh->b_data;
2036		le32_add_cpu(&aed->lengthAllocDescs, adsize);
2037		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2038				UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2039			udf_update_tag(epos->bh->b_data,
2040					epos->offset + (inc ? 0 : adsize));
2041		else
2042			udf_update_tag(epos->bh->b_data,
2043					sizeof(struct allocExtDesc));
2044		mark_buffer_dirty_inode(epos->bh, inode);
2045	}
2046
2047	return 0;
2048}
2049
2050/*
2051 * Append extent at given position - should be the first free one in inode
2052 * / indirect extent. Takes care of allocating and linking indirect blocks.
2053 */
2054int udf_add_aext(struct inode *inode, struct extent_position *epos,
2055		 struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2056{
2057	int adsize;
2058	struct super_block *sb = inode->i_sb;
2059
2060	if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2061		adsize = sizeof(struct short_ad);
2062	else if (UDF_I(inode)->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2063		adsize = sizeof(struct long_ad);
2064	else
2065		return -EIO;
2066
2067	if (epos->offset + (2 * adsize) > sb->s_blocksize) {
2068		int err;
2069		udf_pblk_t new_block;
2070
2071		new_block = udf_new_block(sb, NULL,
2072					  epos->block.partitionReferenceNum,
2073					  epos->block.logicalBlockNum, &err);
2074		if (!new_block)
2075			return -ENOSPC;
2076
2077		err = udf_setup_indirect_aext(inode, new_block, epos);
2078		if (err)
2079			return err;
2080	}
2081
2082	return __udf_add_aext(inode, epos, eloc, elen, inc);
2083}
2084
2085void udf_write_aext(struct inode *inode, struct extent_position *epos,
2086		    struct kernel_lb_addr *eloc, uint32_t elen, int inc)
2087{
2088	int adsize;
2089	uint8_t *ptr;
2090	struct short_ad *sad;
2091	struct long_ad *lad;
2092	struct udf_inode_info *iinfo = UDF_I(inode);
2093
2094	if (!epos->bh)
2095		ptr = iinfo->i_data + epos->offset -
2096			udf_file_entry_alloc_offset(inode) +
2097			iinfo->i_lenEAttr;
2098	else
2099		ptr = epos->bh->b_data + epos->offset;
2100
2101	switch (iinfo->i_alloc_type) {
2102	case ICBTAG_FLAG_AD_SHORT:
2103		sad = (struct short_ad *)ptr;
2104		sad->extLength = cpu_to_le32(elen);
2105		sad->extPosition = cpu_to_le32(eloc->logicalBlockNum);
2106		adsize = sizeof(struct short_ad);
2107		break;
2108	case ICBTAG_FLAG_AD_LONG:
2109		lad = (struct long_ad *)ptr;
2110		lad->extLength = cpu_to_le32(elen);
2111		lad->extLocation = cpu_to_lelb(*eloc);
2112		memset(lad->impUse, 0x00, sizeof(lad->impUse));
2113		adsize = sizeof(struct long_ad);
2114		break;
2115	default:
2116		return;
2117	}
2118
2119	if (epos->bh) {
2120		if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2121		    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201) {
2122			struct allocExtDesc *aed =
2123				(struct allocExtDesc *)epos->bh->b_data;
2124			udf_update_tag(epos->bh->b_data,
2125				       le32_to_cpu(aed->lengthAllocDescs) +
2126				       sizeof(struct allocExtDesc));
2127		}
2128		mark_buffer_dirty_inode(epos->bh, inode);
2129	} else {
2130		mark_inode_dirty(inode);
2131	}
2132
2133	if (inc)
2134		epos->offset += adsize;
2135}
2136
2137/*
2138 * Only 1 indirect extent in a row really makes sense but allow upto 16 in case
2139 * someone does some weird stuff.
2140 */
2141#define UDF_MAX_INDIR_EXTS 16
2142
2143int8_t udf_next_aext(struct inode *inode, struct extent_position *epos,
2144		     struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2145{
2146	int8_t etype;
2147	unsigned int indirections = 0;
2148
2149	while ((etype = udf_current_aext(inode, epos, eloc, elen, inc)) ==
2150	       (EXT_NEXT_EXTENT_ALLOCDESCS >> 30)) {
2151		udf_pblk_t block;
2152
2153		if (++indirections > UDF_MAX_INDIR_EXTS) {
2154			udf_err(inode->i_sb,
2155				"too many indirect extents in inode %lu\n",
2156				inode->i_ino);
2157			return -1;
2158		}
2159
2160		epos->block = *eloc;
2161		epos->offset = sizeof(struct allocExtDesc);
2162		brelse(epos->bh);
2163		block = udf_get_lb_pblock(inode->i_sb, &epos->block, 0);
2164		epos->bh = udf_tread(inode->i_sb, block);
2165		if (!epos->bh) {
2166			udf_debug("reading block %u failed!\n", block);
2167			return -1;
2168		}
2169	}
2170
2171	return etype;
2172}
2173
2174int8_t udf_current_aext(struct inode *inode, struct extent_position *epos,
2175			struct kernel_lb_addr *eloc, uint32_t *elen, int inc)
2176{
2177	int alen;
2178	int8_t etype;
2179	uint8_t *ptr;
2180	struct short_ad *sad;
2181	struct long_ad *lad;
2182	struct udf_inode_info *iinfo = UDF_I(inode);
2183
2184	if (!epos->bh) {
2185		if (!epos->offset)
2186			epos->offset = udf_file_entry_alloc_offset(inode);
2187		ptr = iinfo->i_data + epos->offset -
2188			udf_file_entry_alloc_offset(inode) +
2189			iinfo->i_lenEAttr;
2190		alen = udf_file_entry_alloc_offset(inode) +
2191							iinfo->i_lenAlloc;
2192	} else {
2193		if (!epos->offset)
2194			epos->offset = sizeof(struct allocExtDesc);
2195		ptr = epos->bh->b_data + epos->offset;
2196		alen = sizeof(struct allocExtDesc) +
2197			le32_to_cpu(((struct allocExtDesc *)epos->bh->b_data)->
2198							lengthAllocDescs);
2199	}
2200
2201	switch (iinfo->i_alloc_type) {
2202	case ICBTAG_FLAG_AD_SHORT:
2203		sad = udf_get_fileshortad(ptr, alen, &epos->offset, inc);
2204		if (!sad)
2205			return -1;
2206		etype = le32_to_cpu(sad->extLength) >> 30;
2207		eloc->logicalBlockNum = le32_to_cpu(sad->extPosition);
2208		eloc->partitionReferenceNum =
2209				iinfo->i_location.partitionReferenceNum;
2210		*elen = le32_to_cpu(sad->extLength) & UDF_EXTENT_LENGTH_MASK;
2211		break;
2212	case ICBTAG_FLAG_AD_LONG:
2213		lad = udf_get_filelongad(ptr, alen, &epos->offset, inc);
2214		if (!lad)
2215			return -1;
2216		etype = le32_to_cpu(lad->extLength) >> 30;
2217		*eloc = lelb_to_cpu(lad->extLocation);
2218		*elen = le32_to_cpu(lad->extLength) & UDF_EXTENT_LENGTH_MASK;
2219		break;
2220	default:
2221		udf_debug("alloc_type = %u unsupported\n", iinfo->i_alloc_type);
2222		return -1;
2223	}
2224
2225	return etype;
2226}
2227
2228static int udf_insert_aext(struct inode *inode, struct extent_position epos,
2229			   struct kernel_lb_addr neloc, uint32_t nelen)
2230{
2231	struct kernel_lb_addr oeloc;
2232	uint32_t oelen;
2233	int8_t etype;
2234	int err;
2235
2236	if (epos.bh)
2237		get_bh(epos.bh);
2238
2239	while ((etype = udf_next_aext(inode, &epos, &oeloc, &oelen, 0)) != -1) {
2240		udf_write_aext(inode, &epos, &neloc, nelen, 1);
2241		neloc = oeloc;
2242		nelen = (etype << 30) | oelen;
2243	}
2244	err = udf_add_aext(inode, &epos, &neloc, nelen, 1);
2245	brelse(epos.bh);
2246
2247	return err;
2248}
2249
2250int8_t udf_delete_aext(struct inode *inode, struct extent_position epos)
2251{
2252	struct extent_position oepos;
2253	int adsize;
2254	int8_t etype;
2255	struct allocExtDesc *aed;
2256	struct udf_inode_info *iinfo;
2257	struct kernel_lb_addr eloc;
2258	uint32_t elen;
2259
2260	if (epos.bh) {
2261		get_bh(epos.bh);
2262		get_bh(epos.bh);
2263	}
2264
2265	iinfo = UDF_I(inode);
2266	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
2267		adsize = sizeof(struct short_ad);
2268	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
2269		adsize = sizeof(struct long_ad);
2270	else
2271		adsize = 0;
2272
2273	oepos = epos;
2274	if (udf_next_aext(inode, &epos, &eloc, &elen, 1) == -1)
2275		return -1;
2276
2277	while ((etype = udf_next_aext(inode, &epos, &eloc, &elen, 1)) != -1) {
2278		udf_write_aext(inode, &oepos, &eloc, (etype << 30) | elen, 1);
2279		if (oepos.bh != epos.bh) {
2280			oepos.block = epos.block;
2281			brelse(oepos.bh);
2282			get_bh(epos.bh);
2283			oepos.bh = epos.bh;
2284			oepos.offset = epos.offset - adsize;
2285		}
2286	}
2287	memset(&eloc, 0x00, sizeof(struct kernel_lb_addr));
2288	elen = 0;
2289
2290	if (epos.bh != oepos.bh) {
2291		udf_free_blocks(inode->i_sb, inode, &epos.block, 0, 1);
2292		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2293		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2294		if (!oepos.bh) {
2295			iinfo->i_lenAlloc -= (adsize * 2);
2296			mark_inode_dirty(inode);
2297		} else {
2298			aed = (struct allocExtDesc *)oepos.bh->b_data;
2299			le32_add_cpu(&aed->lengthAllocDescs, -(2 * adsize));
2300			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2301			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2302				udf_update_tag(oepos.bh->b_data,
2303						oepos.offset - (2 * adsize));
2304			else
2305				udf_update_tag(oepos.bh->b_data,
2306						sizeof(struct allocExtDesc));
2307			mark_buffer_dirty_inode(oepos.bh, inode);
2308		}
2309	} else {
2310		udf_write_aext(inode, &oepos, &eloc, elen, 1);
2311		if (!oepos.bh) {
2312			iinfo->i_lenAlloc -= adsize;
2313			mark_inode_dirty(inode);
2314		} else {
2315			aed = (struct allocExtDesc *)oepos.bh->b_data;
2316			le32_add_cpu(&aed->lengthAllocDescs, -adsize);
2317			if (!UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_STRICT) ||
2318			    UDF_SB(inode->i_sb)->s_udfrev >= 0x0201)
2319				udf_update_tag(oepos.bh->b_data,
2320						epos.offset - adsize);
2321			else
2322				udf_update_tag(oepos.bh->b_data,
2323						sizeof(struct allocExtDesc));
2324			mark_buffer_dirty_inode(oepos.bh, inode);
2325		}
2326	}
2327
2328	brelse(epos.bh);
2329	brelse(oepos.bh);
2330
2331	return (elen >> 30);
2332}
2333
2334int8_t inode_bmap(struct inode *inode, sector_t block,
2335		  struct extent_position *pos, struct kernel_lb_addr *eloc,
2336		  uint32_t *elen, sector_t *offset)
2337{
2338	unsigned char blocksize_bits = inode->i_sb->s_blocksize_bits;
2339	loff_t lbcount = 0, bcount = (loff_t) block << blocksize_bits;
2340	int8_t etype;
2341	struct udf_inode_info *iinfo;
2342
2343	iinfo = UDF_I(inode);
2344	if (!udf_read_extent_cache(inode, bcount, &lbcount, pos)) {
2345		pos->offset = 0;
2346		pos->block = iinfo->i_location;
2347		pos->bh = NULL;
2348	}
2349	*elen = 0;
2350	do {
2351		etype = udf_next_aext(inode, pos, eloc, elen, 1);
2352		if (etype == -1) {
2353			*offset = (bcount - lbcount) >> blocksize_bits;
2354			iinfo->i_lenExtents = lbcount;
2355			return -1;
2356		}
2357		lbcount += *elen;
2358	} while (lbcount <= bcount);
2359	/* update extent cache */
2360	udf_update_extent_cache(inode, lbcount - *elen, pos);
2361	*offset = (bcount + *elen - lbcount) >> blocksize_bits;
2362
2363	return etype;
2364}
2365
2366udf_pblk_t udf_block_map(struct inode *inode, sector_t block)
2367{
2368	struct kernel_lb_addr eloc;
2369	uint32_t elen;
2370	sector_t offset;
2371	struct extent_position epos = {};
2372	udf_pblk_t ret;
2373
2374	down_read(&UDF_I(inode)->i_data_sem);
2375
2376	if (inode_bmap(inode, block, &epos, &eloc, &elen, &offset) ==
2377						(EXT_RECORDED_ALLOCATED >> 30))
2378		ret = udf_get_lb_pblock(inode->i_sb, &eloc, offset);
2379	else
2380		ret = 0;
2381
2382	up_read(&UDF_I(inode)->i_data_sem);
2383	brelse(epos.bh);
2384
2385	if (UDF_QUERY_FLAG(inode->i_sb, UDF_FLAG_VARCONV))
2386		return udf_fixed_to_variable(ret);
2387	else
2388		return ret;
2389}
2390