xref: /kernel/linux/linux-5.10/fs/udf/balloc.c (revision 8c2ecf20)
1/*
2 * balloc.c
3 *
4 * PURPOSE
5 *	Block allocation handling routines for the OSTA-UDF(tm) filesystem.
6 *
7 * COPYRIGHT
8 *	This file is distributed under the terms of the GNU General Public
9 *	License (GPL). Copies of the GPL can be obtained from:
10 *		ftp://prep.ai.mit.edu/pub/gnu/GPL
11 *	Each contributing author retains all rights to their own work.
12 *
13 *  (C) 1999-2001 Ben Fennema
14 *  (C) 1999 Stelias Computing Inc
15 *
16 * HISTORY
17 *
18 *  02/24/99 blf  Created.
19 *
20 */
21
22#include "udfdecl.h"
23
24#include <linux/bitops.h>
25
26#include "udf_i.h"
27#include "udf_sb.h"
28
29#define udf_clear_bit	__test_and_clear_bit_le
30#define udf_set_bit	__test_and_set_bit_le
31#define udf_test_bit	test_bit_le
32#define udf_find_next_one_bit	find_next_bit_le
33
34static int read_block_bitmap(struct super_block *sb,
35			     struct udf_bitmap *bitmap, unsigned int block,
36			     unsigned long bitmap_nr)
37{
38	struct buffer_head *bh = NULL;
39	int i;
40	int max_bits, off, count;
41	struct kernel_lb_addr loc;
42
43	loc.logicalBlockNum = bitmap->s_extPosition;
44	loc.partitionReferenceNum = UDF_SB(sb)->s_partition;
45
46	bh = udf_tread(sb, udf_get_lb_pblock(sb, &loc, block));
47	bitmap->s_block_bitmap[bitmap_nr] = bh;
48	if (!bh)
49		return -EIO;
50
51	/* Check consistency of Space Bitmap buffer. */
52	max_bits = sb->s_blocksize * 8;
53	if (!bitmap_nr) {
54		off = sizeof(struct spaceBitmapDesc) << 3;
55		count = min(max_bits - off, bitmap->s_nr_groups);
56	} else {
57		/*
58		 * Rough check if bitmap number is too big to have any bitmap
59		 * blocks reserved.
60		 */
61		if (bitmap_nr >
62		    (bitmap->s_nr_groups >> (sb->s_blocksize_bits + 3)) + 2)
63			return 0;
64		off = 0;
65		count = bitmap->s_nr_groups - bitmap_nr * max_bits +
66				(sizeof(struct spaceBitmapDesc) << 3);
67		count = min(count, max_bits);
68	}
69
70	for (i = 0; i < count; i++)
71		if (udf_test_bit(i + off, bh->b_data))
72			return -EFSCORRUPTED;
73	return 0;
74}
75
76static int __load_block_bitmap(struct super_block *sb,
77			       struct udf_bitmap *bitmap,
78			       unsigned int block_group)
79{
80	int retval = 0;
81	int nr_groups = bitmap->s_nr_groups;
82
83	if (block_group >= nr_groups) {
84		udf_debug("block_group (%u) > nr_groups (%d)\n",
85			  block_group, nr_groups);
86	}
87
88	if (bitmap->s_block_bitmap[block_group])
89		return block_group;
90
91	retval = read_block_bitmap(sb, bitmap, block_group, block_group);
92	if (retval < 0)
93		return retval;
94
95	return block_group;
96}
97
98static inline int load_block_bitmap(struct super_block *sb,
99				    struct udf_bitmap *bitmap,
100				    unsigned int block_group)
101{
102	int slot;
103
104	slot = __load_block_bitmap(sb, bitmap, block_group);
105
106	if (slot < 0)
107		return slot;
108
109	if (!bitmap->s_block_bitmap[slot])
110		return -EIO;
111
112	return slot;
113}
114
115static void udf_add_free_space(struct super_block *sb, u16 partition, u32 cnt)
116{
117	struct udf_sb_info *sbi = UDF_SB(sb);
118	struct logicalVolIntegrityDesc *lvid;
119
120	if (!sbi->s_lvid_bh)
121		return;
122
123	lvid = (struct logicalVolIntegrityDesc *)sbi->s_lvid_bh->b_data;
124	le32_add_cpu(&lvid->freeSpaceTable[partition], cnt);
125	udf_updated_lvid(sb);
126}
127
128static void udf_bitmap_free_blocks(struct super_block *sb,
129				   struct udf_bitmap *bitmap,
130				   struct kernel_lb_addr *bloc,
131				   uint32_t offset,
132				   uint32_t count)
133{
134	struct udf_sb_info *sbi = UDF_SB(sb);
135	struct buffer_head *bh = NULL;
136	struct udf_part_map *partmap;
137	unsigned long block;
138	unsigned long block_group;
139	unsigned long bit;
140	unsigned long i;
141	int bitmap_nr;
142	unsigned long overflow;
143
144	mutex_lock(&sbi->s_alloc_mutex);
145	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
146	if (bloc->logicalBlockNum + count < count ||
147	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
148		udf_debug("%u < %d || %u + %u > %u\n",
149			  bloc->logicalBlockNum, 0,
150			  bloc->logicalBlockNum, count,
151			  partmap->s_partition_len);
152		goto error_return;
153	}
154
155	block = bloc->logicalBlockNum + offset +
156		(sizeof(struct spaceBitmapDesc) << 3);
157
158	do {
159		overflow = 0;
160		block_group = block >> (sb->s_blocksize_bits + 3);
161		bit = block % (sb->s_blocksize << 3);
162
163		/*
164		* Check to see if we are freeing blocks across a group boundary.
165		*/
166		if (bit + count > (sb->s_blocksize << 3)) {
167			overflow = bit + count - (sb->s_blocksize << 3);
168			count -= overflow;
169		}
170		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
171		if (bitmap_nr < 0)
172			goto error_return;
173
174		bh = bitmap->s_block_bitmap[bitmap_nr];
175		for (i = 0; i < count; i++) {
176			if (udf_set_bit(bit + i, bh->b_data)) {
177				udf_debug("bit %lu already set\n", bit + i);
178				udf_debug("byte=%2x\n",
179					  ((__u8 *)bh->b_data)[(bit + i) >> 3]);
180			}
181		}
182		udf_add_free_space(sb, sbi->s_partition, count);
183		mark_buffer_dirty(bh);
184		if (overflow) {
185			block += count;
186			count = overflow;
187		}
188	} while (overflow);
189
190error_return:
191	mutex_unlock(&sbi->s_alloc_mutex);
192}
193
194static int udf_bitmap_prealloc_blocks(struct super_block *sb,
195				      struct udf_bitmap *bitmap,
196				      uint16_t partition, uint32_t first_block,
197				      uint32_t block_count)
198{
199	struct udf_sb_info *sbi = UDF_SB(sb);
200	int alloc_count = 0;
201	int bit, block, block_group;
202	int bitmap_nr;
203	struct buffer_head *bh;
204	__u32 part_len;
205
206	mutex_lock(&sbi->s_alloc_mutex);
207	part_len = sbi->s_partmaps[partition].s_partition_len;
208	if (first_block >= part_len)
209		goto out;
210
211	if (first_block + block_count > part_len)
212		block_count = part_len - first_block;
213
214	do {
215		block = first_block + (sizeof(struct spaceBitmapDesc) << 3);
216		block_group = block >> (sb->s_blocksize_bits + 3);
217
218		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
219		if (bitmap_nr < 0)
220			goto out;
221		bh = bitmap->s_block_bitmap[bitmap_nr];
222
223		bit = block % (sb->s_blocksize << 3);
224
225		while (bit < (sb->s_blocksize << 3) && block_count > 0) {
226			if (!udf_clear_bit(bit, bh->b_data))
227				goto out;
228			block_count--;
229			alloc_count++;
230			bit++;
231			block++;
232		}
233		mark_buffer_dirty(bh);
234	} while (block_count > 0);
235
236out:
237	udf_add_free_space(sb, partition, -alloc_count);
238	mutex_unlock(&sbi->s_alloc_mutex);
239	return alloc_count;
240}
241
242static udf_pblk_t udf_bitmap_new_block(struct super_block *sb,
243				struct udf_bitmap *bitmap, uint16_t partition,
244				uint32_t goal, int *err)
245{
246	struct udf_sb_info *sbi = UDF_SB(sb);
247	int newbit, bit = 0;
248	udf_pblk_t block;
249	int block_group, group_start;
250	int end_goal, nr_groups, bitmap_nr, i;
251	struct buffer_head *bh = NULL;
252	char *ptr;
253	udf_pblk_t newblock = 0;
254
255	*err = -ENOSPC;
256	mutex_lock(&sbi->s_alloc_mutex);
257
258repeat:
259	if (goal >= sbi->s_partmaps[partition].s_partition_len)
260		goal = 0;
261
262	nr_groups = bitmap->s_nr_groups;
263	block = goal + (sizeof(struct spaceBitmapDesc) << 3);
264	block_group = block >> (sb->s_blocksize_bits + 3);
265	group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
266
267	bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
268	if (bitmap_nr < 0)
269		goto error_return;
270	bh = bitmap->s_block_bitmap[bitmap_nr];
271	ptr = memscan((char *)bh->b_data + group_start, 0xFF,
272		      sb->s_blocksize - group_start);
273
274	if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
275		bit = block % (sb->s_blocksize << 3);
276		if (udf_test_bit(bit, bh->b_data))
277			goto got_block;
278
279		end_goal = (bit + 63) & ~63;
280		bit = udf_find_next_one_bit(bh->b_data, end_goal, bit);
281		if (bit < end_goal)
282			goto got_block;
283
284		ptr = memscan((char *)bh->b_data + (bit >> 3), 0xFF,
285			      sb->s_blocksize - ((bit + 7) >> 3));
286		newbit = (ptr - ((char *)bh->b_data)) << 3;
287		if (newbit < sb->s_blocksize << 3) {
288			bit = newbit;
289			goto search_back;
290		}
291
292		newbit = udf_find_next_one_bit(bh->b_data,
293					       sb->s_blocksize << 3, bit);
294		if (newbit < sb->s_blocksize << 3) {
295			bit = newbit;
296			goto got_block;
297		}
298	}
299
300	for (i = 0; i < (nr_groups * 2); i++) {
301		block_group++;
302		if (block_group >= nr_groups)
303			block_group = 0;
304		group_start = block_group ? 0 : sizeof(struct spaceBitmapDesc);
305
306		bitmap_nr = load_block_bitmap(sb, bitmap, block_group);
307		if (bitmap_nr < 0)
308			goto error_return;
309		bh = bitmap->s_block_bitmap[bitmap_nr];
310		if (i < nr_groups) {
311			ptr = memscan((char *)bh->b_data + group_start, 0xFF,
312				      sb->s_blocksize - group_start);
313			if ((ptr - ((char *)bh->b_data)) < sb->s_blocksize) {
314				bit = (ptr - ((char *)bh->b_data)) << 3;
315				break;
316			}
317		} else {
318			bit = udf_find_next_one_bit(bh->b_data,
319						    sb->s_blocksize << 3,
320						    group_start << 3);
321			if (bit < sb->s_blocksize << 3)
322				break;
323		}
324	}
325	if (i >= (nr_groups * 2)) {
326		mutex_unlock(&sbi->s_alloc_mutex);
327		return newblock;
328	}
329	if (bit < sb->s_blocksize << 3)
330		goto search_back;
331	else
332		bit = udf_find_next_one_bit(bh->b_data, sb->s_blocksize << 3,
333					    group_start << 3);
334	if (bit >= sb->s_blocksize << 3) {
335		mutex_unlock(&sbi->s_alloc_mutex);
336		return 0;
337	}
338
339search_back:
340	i = 0;
341	while (i < 7 && bit > (group_start << 3) &&
342	       udf_test_bit(bit - 1, bh->b_data)) {
343		++i;
344		--bit;
345	}
346
347got_block:
348	newblock = bit + (block_group << (sb->s_blocksize_bits + 3)) -
349		(sizeof(struct spaceBitmapDesc) << 3);
350
351	if (newblock >= sbi->s_partmaps[partition].s_partition_len) {
352		/*
353		 * Ran off the end of the bitmap, and bits following are
354		 * non-compliant (not all zero)
355		 */
356		udf_err(sb, "bitmap for partition %d corrupted (block %u marked"
357			" as free, partition length is %u)\n", partition,
358			newblock, sbi->s_partmaps[partition].s_partition_len);
359		goto error_return;
360	}
361
362	if (!udf_clear_bit(bit, bh->b_data)) {
363		udf_debug("bit already cleared for block %d\n", bit);
364		goto repeat;
365	}
366
367	mark_buffer_dirty(bh);
368
369	udf_add_free_space(sb, partition, -1);
370	mutex_unlock(&sbi->s_alloc_mutex);
371	*err = 0;
372	return newblock;
373
374error_return:
375	*err = -EIO;
376	mutex_unlock(&sbi->s_alloc_mutex);
377	return 0;
378}
379
380static void udf_table_free_blocks(struct super_block *sb,
381				  struct inode *table,
382				  struct kernel_lb_addr *bloc,
383				  uint32_t offset,
384				  uint32_t count)
385{
386	struct udf_sb_info *sbi = UDF_SB(sb);
387	struct udf_part_map *partmap;
388	uint32_t start, end;
389	uint32_t elen;
390	struct kernel_lb_addr eloc;
391	struct extent_position oepos, epos;
392	int8_t etype;
393	struct udf_inode_info *iinfo;
394
395	mutex_lock(&sbi->s_alloc_mutex);
396	partmap = &sbi->s_partmaps[bloc->partitionReferenceNum];
397	if (bloc->logicalBlockNum + count < count ||
398	    (bloc->logicalBlockNum + count) > partmap->s_partition_len) {
399		udf_debug("%u < %d || %u + %u > %u\n",
400			  bloc->logicalBlockNum, 0,
401			  bloc->logicalBlockNum, count,
402			  partmap->s_partition_len);
403		goto error_return;
404	}
405
406	iinfo = UDF_I(table);
407	udf_add_free_space(sb, sbi->s_partition, count);
408
409	start = bloc->logicalBlockNum + offset;
410	end = bloc->logicalBlockNum + offset + count - 1;
411
412	epos.offset = oepos.offset = sizeof(struct unallocSpaceEntry);
413	elen = 0;
414	epos.block = oepos.block = iinfo->i_location;
415	epos.bh = oepos.bh = NULL;
416
417	while (count &&
418	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
419		if (((eloc.logicalBlockNum +
420			(elen >> sb->s_blocksize_bits)) == start)) {
421			if ((0x3FFFFFFF - elen) <
422					(count << sb->s_blocksize_bits)) {
423				uint32_t tmp = ((0x3FFFFFFF - elen) >>
424							sb->s_blocksize_bits);
425				count -= tmp;
426				start += tmp;
427				elen = (etype << 30) |
428					(0x40000000 - sb->s_blocksize);
429			} else {
430				elen = (etype << 30) |
431					(elen +
432					(count << sb->s_blocksize_bits));
433				start += count;
434				count = 0;
435			}
436			udf_write_aext(table, &oepos, &eloc, elen, 1);
437		} else if (eloc.logicalBlockNum == (end + 1)) {
438			if ((0x3FFFFFFF - elen) <
439					(count << sb->s_blocksize_bits)) {
440				uint32_t tmp = ((0x3FFFFFFF - elen) >>
441						sb->s_blocksize_bits);
442				count -= tmp;
443				end -= tmp;
444				eloc.logicalBlockNum -= tmp;
445				elen = (etype << 30) |
446					(0x40000000 - sb->s_blocksize);
447			} else {
448				eloc.logicalBlockNum = start;
449				elen = (etype << 30) |
450					(elen +
451					(count << sb->s_blocksize_bits));
452				end -= count;
453				count = 0;
454			}
455			udf_write_aext(table, &oepos, &eloc, elen, 1);
456		}
457
458		if (epos.bh != oepos.bh) {
459			oepos.block = epos.block;
460			brelse(oepos.bh);
461			get_bh(epos.bh);
462			oepos.bh = epos.bh;
463			oepos.offset = 0;
464		} else {
465			oepos.offset = epos.offset;
466		}
467	}
468
469	if (count) {
470		/*
471		 * NOTE: we CANNOT use udf_add_aext here, as it can try to
472		 * allocate a new block, and since we hold the super block
473		 * lock already very bad things would happen :)
474		 *
475		 * We copy the behavior of udf_add_aext, but instead of
476		 * trying to allocate a new block close to the existing one,
477		 * we just steal a block from the extent we are trying to add.
478		 *
479		 * It would be nice if the blocks were close together, but it
480		 * isn't required.
481		 */
482
483		int adsize;
484
485		eloc.logicalBlockNum = start;
486		elen = EXT_RECORDED_ALLOCATED |
487			(count << sb->s_blocksize_bits);
488
489		if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
490			adsize = sizeof(struct short_ad);
491		else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
492			adsize = sizeof(struct long_ad);
493		else {
494			brelse(oepos.bh);
495			brelse(epos.bh);
496			goto error_return;
497		}
498
499		if (epos.offset + (2 * adsize) > sb->s_blocksize) {
500			/* Steal a block from the extent being free'd */
501			udf_setup_indirect_aext(table, eloc.logicalBlockNum,
502						&epos);
503
504			eloc.logicalBlockNum++;
505			elen -= sb->s_blocksize;
506		}
507
508		/* It's possible that stealing the block emptied the extent */
509		if (elen)
510			__udf_add_aext(table, &epos, &eloc, elen, 1);
511	}
512
513	brelse(epos.bh);
514	brelse(oepos.bh);
515
516error_return:
517	mutex_unlock(&sbi->s_alloc_mutex);
518	return;
519}
520
521static int udf_table_prealloc_blocks(struct super_block *sb,
522				     struct inode *table, uint16_t partition,
523				     uint32_t first_block, uint32_t block_count)
524{
525	struct udf_sb_info *sbi = UDF_SB(sb);
526	int alloc_count = 0;
527	uint32_t elen, adsize;
528	struct kernel_lb_addr eloc;
529	struct extent_position epos;
530	int8_t etype = -1;
531	struct udf_inode_info *iinfo;
532
533	if (first_block >= sbi->s_partmaps[partition].s_partition_len)
534		return 0;
535
536	iinfo = UDF_I(table);
537	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
538		adsize = sizeof(struct short_ad);
539	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
540		adsize = sizeof(struct long_ad);
541	else
542		return 0;
543
544	mutex_lock(&sbi->s_alloc_mutex);
545	epos.offset = sizeof(struct unallocSpaceEntry);
546	epos.block = iinfo->i_location;
547	epos.bh = NULL;
548	eloc.logicalBlockNum = 0xFFFFFFFF;
549
550	while (first_block != eloc.logicalBlockNum &&
551	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
552		udf_debug("eloc=%u, elen=%u, first_block=%u\n",
553			  eloc.logicalBlockNum, elen, first_block);
554		; /* empty loop body */
555	}
556
557	if (first_block == eloc.logicalBlockNum) {
558		epos.offset -= adsize;
559
560		alloc_count = (elen >> sb->s_blocksize_bits);
561		if (alloc_count > block_count) {
562			alloc_count = block_count;
563			eloc.logicalBlockNum += alloc_count;
564			elen -= (alloc_count << sb->s_blocksize_bits);
565			udf_write_aext(table, &epos, &eloc,
566					(etype << 30) | elen, 1);
567		} else
568			udf_delete_aext(table, epos);
569	} else {
570		alloc_count = 0;
571	}
572
573	brelse(epos.bh);
574
575	if (alloc_count)
576		udf_add_free_space(sb, partition, -alloc_count);
577	mutex_unlock(&sbi->s_alloc_mutex);
578	return alloc_count;
579}
580
581static udf_pblk_t udf_table_new_block(struct super_block *sb,
582			       struct inode *table, uint16_t partition,
583			       uint32_t goal, int *err)
584{
585	struct udf_sb_info *sbi = UDF_SB(sb);
586	uint32_t spread = 0xFFFFFFFF, nspread = 0xFFFFFFFF;
587	udf_pblk_t newblock = 0;
588	uint32_t adsize;
589	uint32_t elen, goal_elen = 0;
590	struct kernel_lb_addr eloc, goal_eloc;
591	struct extent_position epos, goal_epos;
592	int8_t etype;
593	struct udf_inode_info *iinfo = UDF_I(table);
594
595	*err = -ENOSPC;
596
597	if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_SHORT)
598		adsize = sizeof(struct short_ad);
599	else if (iinfo->i_alloc_type == ICBTAG_FLAG_AD_LONG)
600		adsize = sizeof(struct long_ad);
601	else
602		return newblock;
603
604	mutex_lock(&sbi->s_alloc_mutex);
605	if (goal >= sbi->s_partmaps[partition].s_partition_len)
606		goal = 0;
607
608	/* We search for the closest matching block to goal. If we find
609	   a exact hit, we stop. Otherwise we keep going till we run out
610	   of extents. We store the buffer_head, bloc, and extoffset
611	   of the current closest match and use that when we are done.
612	 */
613	epos.offset = sizeof(struct unallocSpaceEntry);
614	epos.block = iinfo->i_location;
615	epos.bh = goal_epos.bh = NULL;
616
617	while (spread &&
618	       (etype = udf_next_aext(table, &epos, &eloc, &elen, 1)) != -1) {
619		if (goal >= eloc.logicalBlockNum) {
620			if (goal < eloc.logicalBlockNum +
621					(elen >> sb->s_blocksize_bits))
622				nspread = 0;
623			else
624				nspread = goal - eloc.logicalBlockNum -
625					(elen >> sb->s_blocksize_bits);
626		} else {
627			nspread = eloc.logicalBlockNum - goal;
628		}
629
630		if (nspread < spread) {
631			spread = nspread;
632			if (goal_epos.bh != epos.bh) {
633				brelse(goal_epos.bh);
634				goal_epos.bh = epos.bh;
635				get_bh(goal_epos.bh);
636			}
637			goal_epos.block = epos.block;
638			goal_epos.offset = epos.offset - adsize;
639			goal_eloc = eloc;
640			goal_elen = (etype << 30) | elen;
641		}
642	}
643
644	brelse(epos.bh);
645
646	if (spread == 0xFFFFFFFF) {
647		brelse(goal_epos.bh);
648		mutex_unlock(&sbi->s_alloc_mutex);
649		return 0;
650	}
651
652	/* Only allocate blocks from the beginning of the extent.
653	   That way, we only delete (empty) extents, never have to insert an
654	   extent because of splitting */
655	/* This works, but very poorly.... */
656
657	newblock = goal_eloc.logicalBlockNum;
658	goal_eloc.logicalBlockNum++;
659	goal_elen -= sb->s_blocksize;
660
661	if (goal_elen)
662		udf_write_aext(table, &goal_epos, &goal_eloc, goal_elen, 1);
663	else
664		udf_delete_aext(table, goal_epos);
665	brelse(goal_epos.bh);
666
667	udf_add_free_space(sb, partition, -1);
668
669	mutex_unlock(&sbi->s_alloc_mutex);
670	*err = 0;
671	return newblock;
672}
673
674void udf_free_blocks(struct super_block *sb, struct inode *inode,
675		     struct kernel_lb_addr *bloc, uint32_t offset,
676		     uint32_t count)
677{
678	uint16_t partition = bloc->partitionReferenceNum;
679	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
680
681	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP) {
682		udf_bitmap_free_blocks(sb, map->s_uspace.s_bitmap,
683				       bloc, offset, count);
684	} else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE) {
685		udf_table_free_blocks(sb, map->s_uspace.s_table,
686				      bloc, offset, count);
687	}
688
689	if (inode) {
690		inode_sub_bytes(inode,
691				((sector_t)count) << sb->s_blocksize_bits);
692	}
693}
694
695inline int udf_prealloc_blocks(struct super_block *sb,
696			       struct inode *inode,
697			       uint16_t partition, uint32_t first_block,
698			       uint32_t block_count)
699{
700	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
701	int allocated;
702
703	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
704		allocated = udf_bitmap_prealloc_blocks(sb,
705						       map->s_uspace.s_bitmap,
706						       partition, first_block,
707						       block_count);
708	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
709		allocated = udf_table_prealloc_blocks(sb,
710						      map->s_uspace.s_table,
711						      partition, first_block,
712						      block_count);
713	else
714		return 0;
715
716	if (inode && allocated > 0)
717		inode_add_bytes(inode, allocated << sb->s_blocksize_bits);
718	return allocated;
719}
720
721inline udf_pblk_t udf_new_block(struct super_block *sb,
722			 struct inode *inode,
723			 uint16_t partition, uint32_t goal, int *err)
724{
725	struct udf_part_map *map = &UDF_SB(sb)->s_partmaps[partition];
726	udf_pblk_t block;
727
728	if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_BITMAP)
729		block = udf_bitmap_new_block(sb,
730					     map->s_uspace.s_bitmap,
731					     partition, goal, err);
732	else if (map->s_partition_flags & UDF_PART_FLAG_UNALLOC_TABLE)
733		block = udf_table_new_block(sb,
734					    map->s_uspace.s_table,
735					    partition, goal, err);
736	else {
737		*err = -EIO;
738		return 0;
739	}
740	if (inode && block)
741		inode_add_bytes(inode, sb->s_blocksize);
742	return block;
743}
744