xref: /kernel/linux/linux-5.10/fs/ubifs/tnc.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 *
7 * Authors: Adrian Hunter
8 *          Artem Bityutskiy (Битюцкий Артём)
9 */
10
11/*
12 * This file implements TNC (Tree Node Cache) which caches indexing nodes of
13 * the UBIFS B-tree.
14 *
15 * At the moment the locking rules of the TNC tree are quite simple and
16 * straightforward. We just have a mutex and lock it when we traverse the
17 * tree. If a znode is not in memory, we read it from flash while still having
18 * the mutex locked.
19 */
20
21#include <linux/crc32.h>
22#include <linux/slab.h>
23#include "ubifs.h"
24
25static int try_read_node(const struct ubifs_info *c, void *buf, int type,
26			 struct ubifs_zbranch *zbr);
27static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
28			      struct ubifs_zbranch *zbr, void *node);
29
30/*
31 * Returned codes of 'matches_name()' and 'fallible_matches_name()' functions.
32 * @NAME_LESS: name corresponding to the first argument is less than second
33 * @NAME_MATCHES: names match
34 * @NAME_GREATER: name corresponding to the second argument is greater than
35 *                first
36 * @NOT_ON_MEDIA: node referred by zbranch does not exist on the media
37 *
38 * These constants were introduce to improve readability.
39 */
40enum {
41	NAME_LESS    = 0,
42	NAME_MATCHES = 1,
43	NAME_GREATER = 2,
44	NOT_ON_MEDIA = 3,
45};
46
47static void do_insert_old_idx(struct ubifs_info *c,
48			      struct ubifs_old_idx *old_idx)
49{
50	struct ubifs_old_idx *o;
51	struct rb_node **p, *parent = NULL;
52
53	p = &c->old_idx.rb_node;
54	while (*p) {
55		parent = *p;
56		o = rb_entry(parent, struct ubifs_old_idx, rb);
57		if (old_idx->lnum < o->lnum)
58			p = &(*p)->rb_left;
59		else if (old_idx->lnum > o->lnum)
60			p = &(*p)->rb_right;
61		else if (old_idx->offs < o->offs)
62			p = &(*p)->rb_left;
63		else if (old_idx->offs > o->offs)
64			p = &(*p)->rb_right;
65		else {
66			ubifs_err(c, "old idx added twice!");
67			kfree(old_idx);
68		}
69	}
70	rb_link_node(&old_idx->rb, parent, p);
71	rb_insert_color(&old_idx->rb, &c->old_idx);
72}
73
74/**
75 * insert_old_idx - record an index node obsoleted since the last commit start.
76 * @c: UBIFS file-system description object
77 * @lnum: LEB number of obsoleted index node
78 * @offs: offset of obsoleted index node
79 *
80 * Returns %0 on success, and a negative error code on failure.
81 *
82 * For recovery, there must always be a complete intact version of the index on
83 * flash at all times. That is called the "old index". It is the index as at the
84 * time of the last successful commit. Many of the index nodes in the old index
85 * may be dirty, but they must not be erased until the next successful commit
86 * (at which point that index becomes the old index).
87 *
88 * That means that the garbage collection and the in-the-gaps method of
89 * committing must be able to determine if an index node is in the old index.
90 * Most of the old index nodes can be found by looking up the TNC using the
91 * 'lookup_znode()' function. However, some of the old index nodes may have
92 * been deleted from the current index or may have been changed so much that
93 * they cannot be easily found. In those cases, an entry is added to an RB-tree.
94 * That is what this function does. The RB-tree is ordered by LEB number and
95 * offset because they uniquely identify the old index node.
96 */
97static int insert_old_idx(struct ubifs_info *c, int lnum, int offs)
98{
99	struct ubifs_old_idx *old_idx;
100
101	old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
102	if (unlikely(!old_idx))
103		return -ENOMEM;
104	old_idx->lnum = lnum;
105	old_idx->offs = offs;
106	do_insert_old_idx(c, old_idx);
107
108	return 0;
109}
110
111/**
112 * insert_old_idx_znode - record a znode obsoleted since last commit start.
113 * @c: UBIFS file-system description object
114 * @znode: znode of obsoleted index node
115 *
116 * Returns %0 on success, and a negative error code on failure.
117 */
118int insert_old_idx_znode(struct ubifs_info *c, struct ubifs_znode *znode)
119{
120	if (znode->parent) {
121		struct ubifs_zbranch *zbr;
122
123		zbr = &znode->parent->zbranch[znode->iip];
124		if (zbr->len)
125			return insert_old_idx(c, zbr->lnum, zbr->offs);
126	} else
127		if (c->zroot.len)
128			return insert_old_idx(c, c->zroot.lnum,
129					      c->zroot.offs);
130	return 0;
131}
132
133/**
134 * ins_clr_old_idx_znode - record a znode obsoleted since last commit start.
135 * @c: UBIFS file-system description object
136 * @znode: znode of obsoleted index node
137 *
138 * Returns %0 on success, and a negative error code on failure.
139 */
140static int ins_clr_old_idx_znode(struct ubifs_info *c,
141				 struct ubifs_znode *znode)
142{
143	int err;
144
145	if (znode->parent) {
146		struct ubifs_zbranch *zbr;
147
148		zbr = &znode->parent->zbranch[znode->iip];
149		if (zbr->len) {
150			err = insert_old_idx(c, zbr->lnum, zbr->offs);
151			if (err)
152				return err;
153			zbr->lnum = 0;
154			zbr->offs = 0;
155			zbr->len = 0;
156		}
157	} else
158		if (c->zroot.len) {
159			err = insert_old_idx(c, c->zroot.lnum, c->zroot.offs);
160			if (err)
161				return err;
162			c->zroot.lnum = 0;
163			c->zroot.offs = 0;
164			c->zroot.len = 0;
165		}
166	return 0;
167}
168
169/**
170 * destroy_old_idx - destroy the old_idx RB-tree.
171 * @c: UBIFS file-system description object
172 *
173 * During start commit, the old_idx RB-tree is used to avoid overwriting index
174 * nodes that were in the index last commit but have since been deleted.  This
175 * is necessary for recovery i.e. the old index must be kept intact until the
176 * new index is successfully written.  The old-idx RB-tree is used for the
177 * in-the-gaps method of writing index nodes and is destroyed every commit.
178 */
179void destroy_old_idx(struct ubifs_info *c)
180{
181	struct ubifs_old_idx *old_idx, *n;
182
183	rbtree_postorder_for_each_entry_safe(old_idx, n, &c->old_idx, rb)
184		kfree(old_idx);
185
186	c->old_idx = RB_ROOT;
187}
188
189/**
190 * copy_znode - copy a dirty znode.
191 * @c: UBIFS file-system description object
192 * @znode: znode to copy
193 *
194 * A dirty znode being committed may not be changed, so it is copied.
195 */
196static struct ubifs_znode *copy_znode(struct ubifs_info *c,
197				      struct ubifs_znode *znode)
198{
199	struct ubifs_znode *zn;
200
201	zn = kmemdup(znode, c->max_znode_sz, GFP_NOFS);
202	if (unlikely(!zn))
203		return ERR_PTR(-ENOMEM);
204
205	zn->cnext = NULL;
206	__set_bit(DIRTY_ZNODE, &zn->flags);
207	__clear_bit(COW_ZNODE, &zn->flags);
208
209	return zn;
210}
211
212/**
213 * add_idx_dirt - add dirt due to a dirty znode.
214 * @c: UBIFS file-system description object
215 * @lnum: LEB number of index node
216 * @dirt: size of index node
217 *
218 * This function updates lprops dirty space and the new size of the index.
219 */
220static int add_idx_dirt(struct ubifs_info *c, int lnum, int dirt)
221{
222	c->calc_idx_sz -= ALIGN(dirt, 8);
223	return ubifs_add_dirt(c, lnum, dirt);
224}
225
226/**
227 * replace_znode - replace old znode with new znode.
228 * @c: UBIFS file-system description object
229 * @new_zn: new znode
230 * @old_zn: old znode
231 * @zbr: the branch of parent znode
232 *
233 * Replace old znode with new znode in TNC.
234 */
235static void replace_znode(struct ubifs_info *c, struct ubifs_znode *new_zn,
236			  struct ubifs_znode *old_zn, struct ubifs_zbranch *zbr)
237{
238	ubifs_assert(c, !ubifs_zn_obsolete(old_zn));
239	__set_bit(OBSOLETE_ZNODE, &old_zn->flags);
240
241	if (old_zn->level != 0) {
242		int i;
243		const int n = new_zn->child_cnt;
244
245		/* The children now have new parent */
246		for (i = 0; i < n; i++) {
247			struct ubifs_zbranch *child = &new_zn->zbranch[i];
248
249			if (child->znode)
250				child->znode->parent = new_zn;
251		}
252	}
253
254	zbr->znode = new_zn;
255	zbr->lnum = 0;
256	zbr->offs = 0;
257	zbr->len = 0;
258
259	atomic_long_inc(&c->dirty_zn_cnt);
260}
261
262/**
263 * dirty_cow_znode - ensure a znode is not being committed.
264 * @c: UBIFS file-system description object
265 * @zbr: branch of znode to check
266 *
267 * Returns dirtied znode on success or negative error code on failure.
268 */
269static struct ubifs_znode *dirty_cow_znode(struct ubifs_info *c,
270					   struct ubifs_zbranch *zbr)
271{
272	struct ubifs_znode *znode = zbr->znode;
273	struct ubifs_znode *zn;
274	int err;
275
276	if (!ubifs_zn_cow(znode)) {
277		/* znode is not being committed */
278		if (!test_and_set_bit(DIRTY_ZNODE, &znode->flags)) {
279			atomic_long_inc(&c->dirty_zn_cnt);
280			atomic_long_dec(&c->clean_zn_cnt);
281			atomic_long_dec(&ubifs_clean_zn_cnt);
282			err = add_idx_dirt(c, zbr->lnum, zbr->len);
283			if (unlikely(err))
284				return ERR_PTR(err);
285		}
286		return znode;
287	}
288
289	zn = copy_znode(c, znode);
290	if (IS_ERR(zn))
291		return zn;
292
293	if (zbr->len) {
294		struct ubifs_old_idx *old_idx;
295
296		old_idx = kmalloc(sizeof(struct ubifs_old_idx), GFP_NOFS);
297		if (unlikely(!old_idx)) {
298			err = -ENOMEM;
299			goto out;
300		}
301		old_idx->lnum = zbr->lnum;
302		old_idx->offs = zbr->offs;
303
304		err = add_idx_dirt(c, zbr->lnum, zbr->len);
305		if (err) {
306			kfree(old_idx);
307			goto out;
308		}
309
310		do_insert_old_idx(c, old_idx);
311	}
312
313	replace_znode(c, zn, znode, zbr);
314
315	return zn;
316
317out:
318	kfree(zn);
319	return ERR_PTR(err);
320}
321
322/**
323 * lnc_add - add a leaf node to the leaf node cache.
324 * @c: UBIFS file-system description object
325 * @zbr: zbranch of leaf node
326 * @node: leaf node
327 *
328 * Leaf nodes are non-index nodes directory entry nodes or data nodes. The
329 * purpose of the leaf node cache is to save re-reading the same leaf node over
330 * and over again. Most things are cached by VFS, however the file system must
331 * cache directory entries for readdir and for resolving hash collisions. The
332 * present implementation of the leaf node cache is extremely simple, and
333 * allows for error returns that are not used but that may be needed if a more
334 * complex implementation is created.
335 *
336 * Note, this function does not add the @node object to LNC directly, but
337 * allocates a copy of the object and adds the copy to LNC. The reason for this
338 * is that @node has been allocated outside of the TNC subsystem and will be
339 * used with @c->tnc_mutex unlock upon return from the TNC subsystem. But LNC
340 * may be changed at any time, e.g. freed by the shrinker.
341 */
342static int lnc_add(struct ubifs_info *c, struct ubifs_zbranch *zbr,
343		   const void *node)
344{
345	int err;
346	void *lnc_node;
347	const struct ubifs_dent_node *dent = node;
348
349	ubifs_assert(c, !zbr->leaf);
350	ubifs_assert(c, zbr->len != 0);
351	ubifs_assert(c, is_hash_key(c, &zbr->key));
352
353	err = ubifs_validate_entry(c, dent);
354	if (err) {
355		dump_stack();
356		ubifs_dump_node(c, dent, zbr->len);
357		return err;
358	}
359
360	lnc_node = kmemdup(node, zbr->len, GFP_NOFS);
361	if (!lnc_node)
362		/* We don't have to have the cache, so no error */
363		return 0;
364
365	zbr->leaf = lnc_node;
366	return 0;
367}
368
369 /**
370 * lnc_add_directly - add a leaf node to the leaf-node-cache.
371 * @c: UBIFS file-system description object
372 * @zbr: zbranch of leaf node
373 * @node: leaf node
374 *
375 * This function is similar to 'lnc_add()', but it does not create a copy of
376 * @node but inserts @node to TNC directly.
377 */
378static int lnc_add_directly(struct ubifs_info *c, struct ubifs_zbranch *zbr,
379			    void *node)
380{
381	int err;
382
383	ubifs_assert(c, !zbr->leaf);
384	ubifs_assert(c, zbr->len != 0);
385
386	err = ubifs_validate_entry(c, node);
387	if (err) {
388		dump_stack();
389		ubifs_dump_node(c, node, zbr->len);
390		return err;
391	}
392
393	zbr->leaf = node;
394	return 0;
395}
396
397/**
398 * lnc_free - remove a leaf node from the leaf node cache.
399 * @zbr: zbranch of leaf node
400 */
401static void lnc_free(struct ubifs_zbranch *zbr)
402{
403	if (!zbr->leaf)
404		return;
405	kfree(zbr->leaf);
406	zbr->leaf = NULL;
407}
408
409/**
410 * tnc_read_hashed_node - read a "hashed" leaf node.
411 * @c: UBIFS file-system description object
412 * @zbr: key and position of the node
413 * @node: node is returned here
414 *
415 * This function reads a "hashed" node defined by @zbr from the leaf node cache
416 * (in it is there) or from the hash media, in which case the node is also
417 * added to LNC. Returns zero in case of success or a negative negative error
418 * code in case of failure.
419 */
420static int tnc_read_hashed_node(struct ubifs_info *c, struct ubifs_zbranch *zbr,
421				void *node)
422{
423	int err;
424
425	ubifs_assert(c, is_hash_key(c, &zbr->key));
426
427	if (zbr->leaf) {
428		/* Read from the leaf node cache */
429		ubifs_assert(c, zbr->len != 0);
430		memcpy(node, zbr->leaf, zbr->len);
431		return 0;
432	}
433
434	if (c->replaying) {
435		err = fallible_read_node(c, &zbr->key, zbr, node);
436		/*
437		 * When the node was not found, return -ENOENT, 0 otherwise.
438		 * Negative return codes stay as-is.
439		 */
440		if (err == 0)
441			err = -ENOENT;
442		else if (err == 1)
443			err = 0;
444	} else {
445		err = ubifs_tnc_read_node(c, zbr, node);
446	}
447	if (err)
448		return err;
449
450	/* Add the node to the leaf node cache */
451	err = lnc_add(c, zbr, node);
452	return err;
453}
454
455/**
456 * try_read_node - read a node if it is a node.
457 * @c: UBIFS file-system description object
458 * @buf: buffer to read to
459 * @type: node type
460 * @zbr: the zbranch describing the node to read
461 *
462 * This function tries to read a node of known type and length, checks it and
463 * stores it in @buf. This function returns %1 if a node is present and %0 if
464 * a node is not present. A negative error code is returned for I/O errors.
465 * This function performs that same function as ubifs_read_node except that
466 * it does not require that there is actually a node present and instead
467 * the return code indicates if a node was read.
468 *
469 * Note, this function does not check CRC of data nodes if @c->no_chk_data_crc
470 * is true (it is controlled by corresponding mount option). However, if
471 * @c->mounting or @c->remounting_rw is true (we are mounting or re-mounting to
472 * R/W mode), @c->no_chk_data_crc is ignored and CRC is checked. This is
473 * because during mounting or re-mounting from R/O mode to R/W mode we may read
474 * journal nodes (when replying the journal or doing the recovery) and the
475 * journal nodes may potentially be corrupted, so checking is required.
476 */
477static int try_read_node(const struct ubifs_info *c, void *buf, int type,
478			 struct ubifs_zbranch *zbr)
479{
480	int len = zbr->len;
481	int lnum = zbr->lnum;
482	int offs = zbr->offs;
483	int err, node_len;
484	struct ubifs_ch *ch = buf;
485	uint32_t crc, node_crc;
486
487	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
488
489	err = ubifs_leb_read(c, lnum, buf, offs, len, 1);
490	if (err) {
491		ubifs_err(c, "cannot read node type %d from LEB %d:%d, error %d",
492			  type, lnum, offs, err);
493		return err;
494	}
495
496	if (le32_to_cpu(ch->magic) != UBIFS_NODE_MAGIC)
497		return 0;
498
499	if (ch->node_type != type)
500		return 0;
501
502	node_len = le32_to_cpu(ch->len);
503	if (node_len != len)
504		return 0;
505
506	if (type != UBIFS_DATA_NODE || !c->no_chk_data_crc || c->mounting ||
507	    c->remounting_rw) {
508		crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
509		node_crc = le32_to_cpu(ch->crc);
510		if (crc != node_crc)
511			return 0;
512	}
513
514	err = ubifs_node_check_hash(c, buf, zbr->hash);
515	if (err) {
516		ubifs_bad_hash(c, buf, zbr->hash, lnum, offs);
517		return 0;
518	}
519
520	return 1;
521}
522
523/**
524 * fallible_read_node - try to read a leaf node.
525 * @c: UBIFS file-system description object
526 * @key:  key of node to read
527 * @zbr:  position of node
528 * @node: node returned
529 *
530 * This function tries to read a node and returns %1 if the node is read, %0
531 * if the node is not present, and a negative error code in the case of error.
532 */
533static int fallible_read_node(struct ubifs_info *c, const union ubifs_key *key,
534			      struct ubifs_zbranch *zbr, void *node)
535{
536	int ret;
537
538	dbg_tnck(key, "LEB %d:%d, key ", zbr->lnum, zbr->offs);
539
540	ret = try_read_node(c, node, key_type(c, key), zbr);
541	if (ret == 1) {
542		union ubifs_key node_key;
543		struct ubifs_dent_node *dent = node;
544
545		/* All nodes have key in the same place */
546		key_read(c, &dent->key, &node_key);
547		if (keys_cmp(c, key, &node_key) != 0)
548			ret = 0;
549	}
550	if (ret == 0 && c->replaying)
551		dbg_mntk(key, "dangling branch LEB %d:%d len %d, key ",
552			zbr->lnum, zbr->offs, zbr->len);
553	return ret;
554}
555
556/**
557 * matches_name - determine if a direntry or xattr entry matches a given name.
558 * @c: UBIFS file-system description object
559 * @zbr: zbranch of dent
560 * @nm: name to match
561 *
562 * This function checks if xentry/direntry referred by zbranch @zbr matches name
563 * @nm. Returns %NAME_MATCHES if it does, %NAME_LESS if the name referred by
564 * @zbr is less than @nm, and %NAME_GREATER if it is greater than @nm. In case
565 * of failure, a negative error code is returned.
566 */
567static int matches_name(struct ubifs_info *c, struct ubifs_zbranch *zbr,
568			const struct fscrypt_name *nm)
569{
570	struct ubifs_dent_node *dent;
571	int nlen, err;
572
573	/* If possible, match against the dent in the leaf node cache */
574	if (!zbr->leaf) {
575		dent = kmalloc(zbr->len, GFP_NOFS);
576		if (!dent)
577			return -ENOMEM;
578
579		err = ubifs_tnc_read_node(c, zbr, dent);
580		if (err)
581			goto out_free;
582
583		/* Add the node to the leaf node cache */
584		err = lnc_add_directly(c, zbr, dent);
585		if (err)
586			goto out_free;
587	} else
588		dent = zbr->leaf;
589
590	nlen = le16_to_cpu(dent->nlen);
591	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
592	if (err == 0) {
593		if (nlen == fname_len(nm))
594			return NAME_MATCHES;
595		else if (nlen < fname_len(nm))
596			return NAME_LESS;
597		else
598			return NAME_GREATER;
599	} else if (err < 0)
600		return NAME_LESS;
601	else
602		return NAME_GREATER;
603
604out_free:
605	kfree(dent);
606	return err;
607}
608
609/**
610 * get_znode - get a TNC znode that may not be loaded yet.
611 * @c: UBIFS file-system description object
612 * @znode: parent znode
613 * @n: znode branch slot number
614 *
615 * This function returns the znode or a negative error code.
616 */
617static struct ubifs_znode *get_znode(struct ubifs_info *c,
618				     struct ubifs_znode *znode, int n)
619{
620	struct ubifs_zbranch *zbr;
621
622	zbr = &znode->zbranch[n];
623	if (zbr->znode)
624		znode = zbr->znode;
625	else
626		znode = ubifs_load_znode(c, zbr, znode, n);
627	return znode;
628}
629
630/**
631 * tnc_next - find next TNC entry.
632 * @c: UBIFS file-system description object
633 * @zn: znode is passed and returned here
634 * @n: znode branch slot number is passed and returned here
635 *
636 * This function returns %0 if the next TNC entry is found, %-ENOENT if there is
637 * no next entry, or a negative error code otherwise.
638 */
639static int tnc_next(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
640{
641	struct ubifs_znode *znode = *zn;
642	int nn = *n;
643
644	nn += 1;
645	if (nn < znode->child_cnt) {
646		*n = nn;
647		return 0;
648	}
649	while (1) {
650		struct ubifs_znode *zp;
651
652		zp = znode->parent;
653		if (!zp)
654			return -ENOENT;
655		nn = znode->iip + 1;
656		znode = zp;
657		if (nn < znode->child_cnt) {
658			znode = get_znode(c, znode, nn);
659			if (IS_ERR(znode))
660				return PTR_ERR(znode);
661			while (znode->level != 0) {
662				znode = get_znode(c, znode, 0);
663				if (IS_ERR(znode))
664					return PTR_ERR(znode);
665			}
666			nn = 0;
667			break;
668		}
669	}
670	*zn = znode;
671	*n = nn;
672	return 0;
673}
674
675/**
676 * tnc_prev - find previous TNC entry.
677 * @c: UBIFS file-system description object
678 * @zn: znode is returned here
679 * @n: znode branch slot number is passed and returned here
680 *
681 * This function returns %0 if the previous TNC entry is found, %-ENOENT if
682 * there is no next entry, or a negative error code otherwise.
683 */
684static int tnc_prev(struct ubifs_info *c, struct ubifs_znode **zn, int *n)
685{
686	struct ubifs_znode *znode = *zn;
687	int nn = *n;
688
689	if (nn > 0) {
690		*n = nn - 1;
691		return 0;
692	}
693	while (1) {
694		struct ubifs_znode *zp;
695
696		zp = znode->parent;
697		if (!zp)
698			return -ENOENT;
699		nn = znode->iip - 1;
700		znode = zp;
701		if (nn >= 0) {
702			znode = get_znode(c, znode, nn);
703			if (IS_ERR(znode))
704				return PTR_ERR(znode);
705			while (znode->level != 0) {
706				nn = znode->child_cnt - 1;
707				znode = get_znode(c, znode, nn);
708				if (IS_ERR(znode))
709					return PTR_ERR(znode);
710			}
711			nn = znode->child_cnt - 1;
712			break;
713		}
714	}
715	*zn = znode;
716	*n = nn;
717	return 0;
718}
719
720/**
721 * resolve_collision - resolve a collision.
722 * @c: UBIFS file-system description object
723 * @key: key of a directory or extended attribute entry
724 * @zn: znode is returned here
725 * @n: zbranch number is passed and returned here
726 * @nm: name of the entry
727 *
728 * This function is called for "hashed" keys to make sure that the found key
729 * really corresponds to the looked up node (directory or extended attribute
730 * entry). It returns %1 and sets @zn and @n if the collision is resolved.
731 * %0 is returned if @nm is not found and @zn and @n are set to the previous
732 * entry, i.e. to the entry after which @nm could follow if it were in TNC.
733 * This means that @n may be set to %-1 if the leftmost key in @zn is the
734 * previous one. A negative error code is returned on failures.
735 */
736static int resolve_collision(struct ubifs_info *c, const union ubifs_key *key,
737			     struct ubifs_znode **zn, int *n,
738			     const struct fscrypt_name *nm)
739{
740	int err;
741
742	err = matches_name(c, &(*zn)->zbranch[*n], nm);
743	if (unlikely(err < 0))
744		return err;
745	if (err == NAME_MATCHES)
746		return 1;
747
748	if (err == NAME_GREATER) {
749		/* Look left */
750		while (1) {
751			err = tnc_prev(c, zn, n);
752			if (err == -ENOENT) {
753				ubifs_assert(c, *n == 0);
754				*n = -1;
755				return 0;
756			}
757			if (err < 0)
758				return err;
759			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
760				/*
761				 * We have found the branch after which we would
762				 * like to insert, but inserting in this znode
763				 * may still be wrong. Consider the following 3
764				 * znodes, in the case where we are resolving a
765				 * collision with Key2.
766				 *
767				 *                  znode zp
768				 *            ----------------------
769				 * level 1     |  Key0  |  Key1  |
770				 *            -----------------------
771				 *                 |            |
772				 *       znode za  |            |  znode zb
773				 *          ------------      ------------
774				 * level 0  |  Key0  |        |  Key2  |
775				 *          ------------      ------------
776				 *
777				 * The lookup finds Key2 in znode zb. Lets say
778				 * there is no match and the name is greater so
779				 * we look left. When we find Key0, we end up
780				 * here. If we return now, we will insert into
781				 * znode za at slot n = 1.  But that is invalid
782				 * according to the parent's keys.  Key2 must
783				 * be inserted into znode zb.
784				 *
785				 * Note, this problem is not relevant for the
786				 * case when we go right, because
787				 * 'tnc_insert()' would correct the parent key.
788				 */
789				if (*n == (*zn)->child_cnt - 1) {
790					err = tnc_next(c, zn, n);
791					if (err) {
792						/* Should be impossible */
793						ubifs_assert(c, 0);
794						if (err == -ENOENT)
795							err = -EINVAL;
796						return err;
797					}
798					ubifs_assert(c, *n == 0);
799					*n = -1;
800				}
801				return 0;
802			}
803			err = matches_name(c, &(*zn)->zbranch[*n], nm);
804			if (err < 0)
805				return err;
806			if (err == NAME_LESS)
807				return 0;
808			if (err == NAME_MATCHES)
809				return 1;
810			ubifs_assert(c, err == NAME_GREATER);
811		}
812	} else {
813		int nn = *n;
814		struct ubifs_znode *znode = *zn;
815
816		/* Look right */
817		while (1) {
818			err = tnc_next(c, &znode, &nn);
819			if (err == -ENOENT)
820				return 0;
821			if (err < 0)
822				return err;
823			if (keys_cmp(c, &znode->zbranch[nn].key, key))
824				return 0;
825			err = matches_name(c, &znode->zbranch[nn], nm);
826			if (err < 0)
827				return err;
828			if (err == NAME_GREATER)
829				return 0;
830			*zn = znode;
831			*n = nn;
832			if (err == NAME_MATCHES)
833				return 1;
834			ubifs_assert(c, err == NAME_LESS);
835		}
836	}
837}
838
839/**
840 * fallible_matches_name - determine if a dent matches a given name.
841 * @c: UBIFS file-system description object
842 * @zbr: zbranch of dent
843 * @nm: name to match
844 *
845 * This is a "fallible" version of 'matches_name()' function which does not
846 * panic if the direntry/xentry referred by @zbr does not exist on the media.
847 *
848 * This function checks if xentry/direntry referred by zbranch @zbr matches name
849 * @nm. Returns %NAME_MATCHES it does, %NAME_LESS if the name referred by @zbr
850 * is less than @nm, %NAME_GREATER if it is greater than @nm, and @NOT_ON_MEDIA
851 * if xentry/direntry referred by @zbr does not exist on the media. A negative
852 * error code is returned in case of failure.
853 */
854static int fallible_matches_name(struct ubifs_info *c,
855				 struct ubifs_zbranch *zbr,
856				 const struct fscrypt_name *nm)
857{
858	struct ubifs_dent_node *dent;
859	int nlen, err;
860
861	/* If possible, match against the dent in the leaf node cache */
862	if (!zbr->leaf) {
863		dent = kmalloc(zbr->len, GFP_NOFS);
864		if (!dent)
865			return -ENOMEM;
866
867		err = fallible_read_node(c, &zbr->key, zbr, dent);
868		if (err < 0)
869			goto out_free;
870		if (err == 0) {
871			/* The node was not present */
872			err = NOT_ON_MEDIA;
873			goto out_free;
874		}
875		ubifs_assert(c, err == 1);
876
877		err = lnc_add_directly(c, zbr, dent);
878		if (err)
879			goto out_free;
880	} else
881		dent = zbr->leaf;
882
883	nlen = le16_to_cpu(dent->nlen);
884	err = memcmp(dent->name, fname_name(nm), min_t(int, nlen, fname_len(nm)));
885	if (err == 0) {
886		if (nlen == fname_len(nm))
887			return NAME_MATCHES;
888		else if (nlen < fname_len(nm))
889			return NAME_LESS;
890		else
891			return NAME_GREATER;
892	} else if (err < 0)
893		return NAME_LESS;
894	else
895		return NAME_GREATER;
896
897out_free:
898	kfree(dent);
899	return err;
900}
901
902/**
903 * fallible_resolve_collision - resolve a collision even if nodes are missing.
904 * @c: UBIFS file-system description object
905 * @key: key
906 * @zn: znode is returned here
907 * @n: branch number is passed and returned here
908 * @nm: name of directory entry
909 * @adding: indicates caller is adding a key to the TNC
910 *
911 * This is a "fallible" version of the 'resolve_collision()' function which
912 * does not panic if one of the nodes referred to by TNC does not exist on the
913 * media. This may happen when replaying the journal if a deleted node was
914 * Garbage-collected and the commit was not done. A branch that refers to a node
915 * that is not present is called a dangling branch. The following are the return
916 * codes for this function:
917 *  o if @nm was found, %1 is returned and @zn and @n are set to the found
918 *    branch;
919 *  o if we are @adding and @nm was not found, %0 is returned;
920 *  o if we are not @adding and @nm was not found, but a dangling branch was
921 *    found, then %1 is returned and @zn and @n are set to the dangling branch;
922 *  o a negative error code is returned in case of failure.
923 */
924static int fallible_resolve_collision(struct ubifs_info *c,
925				      const union ubifs_key *key,
926				      struct ubifs_znode **zn, int *n,
927				      const struct fscrypt_name *nm,
928				      int adding)
929{
930	struct ubifs_znode *o_znode = NULL, *znode = *zn;
931	int o_n, err, cmp, unsure = 0, nn = *n;
932
933	cmp = fallible_matches_name(c, &znode->zbranch[nn], nm);
934	if (unlikely(cmp < 0))
935		return cmp;
936	if (cmp == NAME_MATCHES)
937		return 1;
938	if (cmp == NOT_ON_MEDIA) {
939		o_znode = znode;
940		o_n = nn;
941		/*
942		 * We are unlucky and hit a dangling branch straight away.
943		 * Now we do not really know where to go to find the needed
944		 * branch - to the left or to the right. Well, let's try left.
945		 */
946		unsure = 1;
947	} else if (!adding)
948		unsure = 1; /* Remove a dangling branch wherever it is */
949
950	if (cmp == NAME_GREATER || unsure) {
951		/* Look left */
952		while (1) {
953			err = tnc_prev(c, zn, n);
954			if (err == -ENOENT) {
955				ubifs_assert(c, *n == 0);
956				*n = -1;
957				break;
958			}
959			if (err < 0)
960				return err;
961			if (keys_cmp(c, &(*zn)->zbranch[*n].key, key)) {
962				/* See comments in 'resolve_collision()' */
963				if (*n == (*zn)->child_cnt - 1) {
964					err = tnc_next(c, zn, n);
965					if (err) {
966						/* Should be impossible */
967						ubifs_assert(c, 0);
968						if (err == -ENOENT)
969							err = -EINVAL;
970						return err;
971					}
972					ubifs_assert(c, *n == 0);
973					*n = -1;
974				}
975				break;
976			}
977			err = fallible_matches_name(c, &(*zn)->zbranch[*n], nm);
978			if (err < 0)
979				return err;
980			if (err == NAME_MATCHES)
981				return 1;
982			if (err == NOT_ON_MEDIA) {
983				o_znode = *zn;
984				o_n = *n;
985				continue;
986			}
987			if (!adding)
988				continue;
989			if (err == NAME_LESS)
990				break;
991			else
992				unsure = 0;
993		}
994	}
995
996	if (cmp == NAME_LESS || unsure) {
997		/* Look right */
998		*zn = znode;
999		*n = nn;
1000		while (1) {
1001			err = tnc_next(c, &znode, &nn);
1002			if (err == -ENOENT)
1003				break;
1004			if (err < 0)
1005				return err;
1006			if (keys_cmp(c, &znode->zbranch[nn].key, key))
1007				break;
1008			err = fallible_matches_name(c, &znode->zbranch[nn], nm);
1009			if (err < 0)
1010				return err;
1011			if (err == NAME_GREATER)
1012				break;
1013			*zn = znode;
1014			*n = nn;
1015			if (err == NAME_MATCHES)
1016				return 1;
1017			if (err == NOT_ON_MEDIA) {
1018				o_znode = znode;
1019				o_n = nn;
1020			}
1021		}
1022	}
1023
1024	/* Never match a dangling branch when adding */
1025	if (adding || !o_znode)
1026		return 0;
1027
1028	dbg_mntk(key, "dangling match LEB %d:%d len %d key ",
1029		o_znode->zbranch[o_n].lnum, o_znode->zbranch[o_n].offs,
1030		o_znode->zbranch[o_n].len);
1031	*zn = o_znode;
1032	*n = o_n;
1033	return 1;
1034}
1035
1036/**
1037 * matches_position - determine if a zbranch matches a given position.
1038 * @zbr: zbranch of dent
1039 * @lnum: LEB number of dent to match
1040 * @offs: offset of dent to match
1041 *
1042 * This function returns %1 if @lnum:@offs matches, and %0 otherwise.
1043 */
1044static int matches_position(struct ubifs_zbranch *zbr, int lnum, int offs)
1045{
1046	if (zbr->lnum == lnum && zbr->offs == offs)
1047		return 1;
1048	else
1049		return 0;
1050}
1051
1052/**
1053 * resolve_collision_directly - resolve a collision directly.
1054 * @c: UBIFS file-system description object
1055 * @key: key of directory entry
1056 * @zn: znode is passed and returned here
1057 * @n: zbranch number is passed and returned here
1058 * @lnum: LEB number of dent node to match
1059 * @offs: offset of dent node to match
1060 *
1061 * This function is used for "hashed" keys to make sure the found directory or
1062 * extended attribute entry node is what was looked for. It is used when the
1063 * flash address of the right node is known (@lnum:@offs) which makes it much
1064 * easier to resolve collisions (no need to read entries and match full
1065 * names). This function returns %1 and sets @zn and @n if the collision is
1066 * resolved, %0 if @lnum:@offs is not found and @zn and @n are set to the
1067 * previous directory entry. Otherwise a negative error code is returned.
1068 */
1069static int resolve_collision_directly(struct ubifs_info *c,
1070				      const union ubifs_key *key,
1071				      struct ubifs_znode **zn, int *n,
1072				      int lnum, int offs)
1073{
1074	struct ubifs_znode *znode;
1075	int nn, err;
1076
1077	znode = *zn;
1078	nn = *n;
1079	if (matches_position(&znode->zbranch[nn], lnum, offs))
1080		return 1;
1081
1082	/* Look left */
1083	while (1) {
1084		err = tnc_prev(c, &znode, &nn);
1085		if (err == -ENOENT)
1086			break;
1087		if (err < 0)
1088			return err;
1089		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1090			break;
1091		if (matches_position(&znode->zbranch[nn], lnum, offs)) {
1092			*zn = znode;
1093			*n = nn;
1094			return 1;
1095		}
1096	}
1097
1098	/* Look right */
1099	znode = *zn;
1100	nn = *n;
1101	while (1) {
1102		err = tnc_next(c, &znode, &nn);
1103		if (err == -ENOENT)
1104			return 0;
1105		if (err < 0)
1106			return err;
1107		if (keys_cmp(c, &znode->zbranch[nn].key, key))
1108			return 0;
1109		*zn = znode;
1110		*n = nn;
1111		if (matches_position(&znode->zbranch[nn], lnum, offs))
1112			return 1;
1113	}
1114}
1115
1116/**
1117 * dirty_cow_bottom_up - dirty a znode and its ancestors.
1118 * @c: UBIFS file-system description object
1119 * @znode: znode to dirty
1120 *
1121 * If we do not have a unique key that resides in a znode, then we cannot
1122 * dirty that znode from the top down (i.e. by using lookup_level0_dirty)
1123 * This function records the path back to the last dirty ancestor, and then
1124 * dirties the znodes on that path.
1125 */
1126static struct ubifs_znode *dirty_cow_bottom_up(struct ubifs_info *c,
1127					       struct ubifs_znode *znode)
1128{
1129	struct ubifs_znode *zp;
1130	int *path = c->bottom_up_buf, p = 0;
1131
1132	ubifs_assert(c, c->zroot.znode);
1133	ubifs_assert(c, znode);
1134	if (c->zroot.znode->level > BOTTOM_UP_HEIGHT) {
1135		kfree(c->bottom_up_buf);
1136		c->bottom_up_buf = kmalloc_array(c->zroot.znode->level,
1137						 sizeof(int),
1138						 GFP_NOFS);
1139		if (!c->bottom_up_buf)
1140			return ERR_PTR(-ENOMEM);
1141		path = c->bottom_up_buf;
1142	}
1143	if (c->zroot.znode->level) {
1144		/* Go up until parent is dirty */
1145		while (1) {
1146			int n;
1147
1148			zp = znode->parent;
1149			if (!zp)
1150				break;
1151			n = znode->iip;
1152			ubifs_assert(c, p < c->zroot.znode->level);
1153			path[p++] = n;
1154			if (!zp->cnext && ubifs_zn_dirty(znode))
1155				break;
1156			znode = zp;
1157		}
1158	}
1159
1160	/* Come back down, dirtying as we go */
1161	while (1) {
1162		struct ubifs_zbranch *zbr;
1163
1164		zp = znode->parent;
1165		if (zp) {
1166			ubifs_assert(c, path[p - 1] >= 0);
1167			ubifs_assert(c, path[p - 1] < zp->child_cnt);
1168			zbr = &zp->zbranch[path[--p]];
1169			znode = dirty_cow_znode(c, zbr);
1170		} else {
1171			ubifs_assert(c, znode == c->zroot.znode);
1172			znode = dirty_cow_znode(c, &c->zroot);
1173		}
1174		if (IS_ERR(znode) || !p)
1175			break;
1176		ubifs_assert(c, path[p - 1] >= 0);
1177		ubifs_assert(c, path[p - 1] < znode->child_cnt);
1178		znode = znode->zbranch[path[p - 1]].znode;
1179	}
1180
1181	return znode;
1182}
1183
1184/**
1185 * ubifs_lookup_level0 - search for zero-level znode.
1186 * @c: UBIFS file-system description object
1187 * @key:  key to lookup
1188 * @zn: znode is returned here
1189 * @n: znode branch slot number is returned here
1190 *
1191 * This function looks up the TNC tree and search for zero-level znode which
1192 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1193 * cases:
1194 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1195 *     is returned and slot number of the matched branch is stored in @n;
1196 *   o not exact match, which means that zero-level znode does not contain
1197 *     @key, then %0 is returned and slot number of the closest branch or %-1
1198 *     is stored in @n; In this case calling tnc_next() is mandatory.
1199 *   o @key is so small that it is even less than the lowest key of the
1200 *     leftmost zero-level node, then %0 is returned and %0 is stored in @n.
1201 *
1202 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1203 * function reads corresponding indexing nodes and inserts them to TNC. In
1204 * case of failure, a negative error code is returned.
1205 */
1206int ubifs_lookup_level0(struct ubifs_info *c, const union ubifs_key *key,
1207			struct ubifs_znode **zn, int *n)
1208{
1209	int err, exact;
1210	struct ubifs_znode *znode;
1211	time64_t time = ktime_get_seconds();
1212
1213	dbg_tnck(key, "search key ");
1214	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
1215
1216	znode = c->zroot.znode;
1217	if (unlikely(!znode)) {
1218		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1219		if (IS_ERR(znode))
1220			return PTR_ERR(znode);
1221	}
1222
1223	znode->time = time;
1224
1225	while (1) {
1226		struct ubifs_zbranch *zbr;
1227
1228		exact = ubifs_search_zbranch(c, znode, key, n);
1229
1230		if (znode->level == 0)
1231			break;
1232
1233		if (*n < 0)
1234			*n = 0;
1235		zbr = &znode->zbranch[*n];
1236
1237		if (zbr->znode) {
1238			znode->time = time;
1239			znode = zbr->znode;
1240			continue;
1241		}
1242
1243		/* znode is not in TNC cache, load it from the media */
1244		znode = ubifs_load_znode(c, zbr, znode, *n);
1245		if (IS_ERR(znode))
1246			return PTR_ERR(znode);
1247	}
1248
1249	*zn = znode;
1250	if (exact || !is_hash_key(c, key) || *n != -1) {
1251		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1252		return exact;
1253	}
1254
1255	/*
1256	 * Here is a tricky place. We have not found the key and this is a
1257	 * "hashed" key, which may collide. The rest of the code deals with
1258	 * situations like this:
1259	 *
1260	 *                  | 3 | 5 |
1261	 *                  /       \
1262	 *          | 3 | 5 |      | 6 | 7 | (x)
1263	 *
1264	 * Or more a complex example:
1265	 *
1266	 *                | 1 | 5 |
1267	 *                /       \
1268	 *       | 1 | 3 |         | 5 | 8 |
1269	 *              \           /
1270	 *          | 5 | 5 |   | 6 | 7 | (x)
1271	 *
1272	 * In the examples, if we are looking for key "5", we may reach nodes
1273	 * marked with "(x)". In this case what we have do is to look at the
1274	 * left and see if there is "5" key there. If there is, we have to
1275	 * return it.
1276	 *
1277	 * Note, this whole situation is possible because we allow to have
1278	 * elements which are equivalent to the next key in the parent in the
1279	 * children of current znode. For example, this happens if we split a
1280	 * znode like this: | 3 | 5 | 5 | 6 | 7 |, which results in something
1281	 * like this:
1282	 *                      | 3 | 5 |
1283	 *                       /     \
1284	 *                | 3 | 5 |   | 5 | 6 | 7 |
1285	 *                              ^
1286	 * And this becomes what is at the first "picture" after key "5" marked
1287	 * with "^" is removed. What could be done is we could prohibit
1288	 * splitting in the middle of the colliding sequence. Also, when
1289	 * removing the leftmost key, we would have to correct the key of the
1290	 * parent node, which would introduce additional complications. Namely,
1291	 * if we changed the leftmost key of the parent znode, the garbage
1292	 * collector would be unable to find it (GC is doing this when GC'ing
1293	 * indexing LEBs). Although we already have an additional RB-tree where
1294	 * we save such changed znodes (see 'ins_clr_old_idx_znode()') until
1295	 * after the commit. But anyway, this does not look easy to implement
1296	 * so we did not try this.
1297	 */
1298	err = tnc_prev(c, &znode, n);
1299	if (err == -ENOENT) {
1300		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1301		*n = -1;
1302		return 0;
1303	}
1304	if (unlikely(err < 0))
1305		return err;
1306	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1307		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1308		*n = -1;
1309		return 0;
1310	}
1311
1312	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1313	*zn = znode;
1314	return 1;
1315}
1316
1317/**
1318 * lookup_level0_dirty - search for zero-level znode dirtying.
1319 * @c: UBIFS file-system description object
1320 * @key:  key to lookup
1321 * @zn: znode is returned here
1322 * @n: znode branch slot number is returned here
1323 *
1324 * This function looks up the TNC tree and search for zero-level znode which
1325 * refers key @key. The found zero-level znode is returned in @zn. There are 3
1326 * cases:
1327 *   o exact match, i.e. the found zero-level znode contains key @key, then %1
1328 *     is returned and slot number of the matched branch is stored in @n;
1329 *   o not exact match, which means that zero-level znode does not contain @key
1330 *     then %0 is returned and slot number of the closed branch is stored in
1331 *     @n;
1332 *   o @key is so small that it is even less than the lowest key of the
1333 *     leftmost zero-level node, then %0 is returned and %-1 is stored in @n.
1334 *
1335 * Additionally all znodes in the path from the root to the located zero-level
1336 * znode are marked as dirty.
1337 *
1338 * Note, when the TNC tree is traversed, some znodes may be absent, then this
1339 * function reads corresponding indexing nodes and inserts them to TNC. In
1340 * case of failure, a negative error code is returned.
1341 */
1342static int lookup_level0_dirty(struct ubifs_info *c, const union ubifs_key *key,
1343			       struct ubifs_znode **zn, int *n)
1344{
1345	int err, exact;
1346	struct ubifs_znode *znode;
1347	time64_t time = ktime_get_seconds();
1348
1349	dbg_tnck(key, "search and dirty key ");
1350
1351	znode = c->zroot.znode;
1352	if (unlikely(!znode)) {
1353		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
1354		if (IS_ERR(znode))
1355			return PTR_ERR(znode);
1356	}
1357
1358	znode = dirty_cow_znode(c, &c->zroot);
1359	if (IS_ERR(znode))
1360		return PTR_ERR(znode);
1361
1362	znode->time = time;
1363
1364	while (1) {
1365		struct ubifs_zbranch *zbr;
1366
1367		exact = ubifs_search_zbranch(c, znode, key, n);
1368
1369		if (znode->level == 0)
1370			break;
1371
1372		if (*n < 0)
1373			*n = 0;
1374		zbr = &znode->zbranch[*n];
1375
1376		if (zbr->znode) {
1377			znode->time = time;
1378			znode = dirty_cow_znode(c, zbr);
1379			if (IS_ERR(znode))
1380				return PTR_ERR(znode);
1381			continue;
1382		}
1383
1384		/* znode is not in TNC cache, load it from the media */
1385		znode = ubifs_load_znode(c, zbr, znode, *n);
1386		if (IS_ERR(znode))
1387			return PTR_ERR(znode);
1388		znode = dirty_cow_znode(c, zbr);
1389		if (IS_ERR(znode))
1390			return PTR_ERR(znode);
1391	}
1392
1393	*zn = znode;
1394	if (exact || !is_hash_key(c, key) || *n != -1) {
1395		dbg_tnc("found %d, lvl %d, n %d", exact, znode->level, *n);
1396		return exact;
1397	}
1398
1399	/*
1400	 * See huge comment at 'lookup_level0_dirty()' what is the rest of the
1401	 * code.
1402	 */
1403	err = tnc_prev(c, &znode, n);
1404	if (err == -ENOENT) {
1405		*n = -1;
1406		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1407		return 0;
1408	}
1409	if (unlikely(err < 0))
1410		return err;
1411	if (keys_cmp(c, key, &znode->zbranch[*n].key)) {
1412		*n = -1;
1413		dbg_tnc("found 0, lvl %d, n -1", znode->level);
1414		return 0;
1415	}
1416
1417	if (znode->cnext || !ubifs_zn_dirty(znode)) {
1418		znode = dirty_cow_bottom_up(c, znode);
1419		if (IS_ERR(znode))
1420			return PTR_ERR(znode);
1421	}
1422
1423	dbg_tnc("found 1, lvl %d, n %d", znode->level, *n);
1424	*zn = znode;
1425	return 1;
1426}
1427
1428/**
1429 * maybe_leb_gced - determine if a LEB may have been garbage collected.
1430 * @c: UBIFS file-system description object
1431 * @lnum: LEB number
1432 * @gc_seq1: garbage collection sequence number
1433 *
1434 * This function determines if @lnum may have been garbage collected since
1435 * sequence number @gc_seq1. If it may have been then %1 is returned, otherwise
1436 * %0 is returned.
1437 */
1438static int maybe_leb_gced(struct ubifs_info *c, int lnum, int gc_seq1)
1439{
1440	int gc_seq2, gced_lnum;
1441
1442	gced_lnum = c->gced_lnum;
1443	smp_rmb();
1444	gc_seq2 = c->gc_seq;
1445	/* Same seq means no GC */
1446	if (gc_seq1 == gc_seq2)
1447		return 0;
1448	/* Different by more than 1 means we don't know */
1449	if (gc_seq1 + 1 != gc_seq2)
1450		return 1;
1451	/*
1452	 * We have seen the sequence number has increased by 1. Now we need to
1453	 * be sure we read the right LEB number, so read it again.
1454	 */
1455	smp_rmb();
1456	if (gced_lnum != c->gced_lnum)
1457		return 1;
1458	/* Finally we can check lnum */
1459	if (gced_lnum == lnum)
1460		return 1;
1461	return 0;
1462}
1463
1464/**
1465 * ubifs_tnc_locate - look up a file-system node and return it and its location.
1466 * @c: UBIFS file-system description object
1467 * @key: node key to lookup
1468 * @node: the node is returned here
1469 * @lnum: LEB number is returned here
1470 * @offs: offset is returned here
1471 *
1472 * This function looks up and reads node with key @key. The caller has to make
1473 * sure the @node buffer is large enough to fit the node. Returns zero in case
1474 * of success, %-ENOENT if the node was not found, and a negative error code in
1475 * case of failure. The node location can be returned in @lnum and @offs.
1476 */
1477int ubifs_tnc_locate(struct ubifs_info *c, const union ubifs_key *key,
1478		     void *node, int *lnum, int *offs)
1479{
1480	int found, n, err, safely = 0, gc_seq1;
1481	struct ubifs_znode *znode;
1482	struct ubifs_zbranch zbr, *zt;
1483
1484again:
1485	mutex_lock(&c->tnc_mutex);
1486	found = ubifs_lookup_level0(c, key, &znode, &n);
1487	if (!found) {
1488		err = -ENOENT;
1489		goto out;
1490	} else if (found < 0) {
1491		err = found;
1492		goto out;
1493	}
1494	zt = &znode->zbranch[n];
1495	if (lnum) {
1496		*lnum = zt->lnum;
1497		*offs = zt->offs;
1498	}
1499	if (is_hash_key(c, key)) {
1500		/*
1501		 * In this case the leaf node cache gets used, so we pass the
1502		 * address of the zbranch and keep the mutex locked
1503		 */
1504		err = tnc_read_hashed_node(c, zt, node);
1505		goto out;
1506	}
1507	if (safely) {
1508		err = ubifs_tnc_read_node(c, zt, node);
1509		goto out;
1510	}
1511	/* Drop the TNC mutex prematurely and race with garbage collection */
1512	zbr = znode->zbranch[n];
1513	gc_seq1 = c->gc_seq;
1514	mutex_unlock(&c->tnc_mutex);
1515
1516	if (ubifs_get_wbuf(c, zbr.lnum)) {
1517		/* We do not GC journal heads */
1518		err = ubifs_tnc_read_node(c, &zbr, node);
1519		return err;
1520	}
1521
1522	err = fallible_read_node(c, key, &zbr, node);
1523	if (err <= 0 || maybe_leb_gced(c, zbr.lnum, gc_seq1)) {
1524		/*
1525		 * The node may have been GC'ed out from under us so try again
1526		 * while keeping the TNC mutex locked.
1527		 */
1528		safely = 1;
1529		goto again;
1530	}
1531	return 0;
1532
1533out:
1534	mutex_unlock(&c->tnc_mutex);
1535	return err;
1536}
1537
1538/**
1539 * ubifs_tnc_get_bu_keys - lookup keys for bulk-read.
1540 * @c: UBIFS file-system description object
1541 * @bu: bulk-read parameters and results
1542 *
1543 * Lookup consecutive data node keys for the same inode that reside
1544 * consecutively in the same LEB. This function returns zero in case of success
1545 * and a negative error code in case of failure.
1546 *
1547 * Note, if the bulk-read buffer length (@bu->buf_len) is known, this function
1548 * makes sure bulk-read nodes fit the buffer. Otherwise, this function prepares
1549 * maximum possible amount of nodes for bulk-read.
1550 */
1551int ubifs_tnc_get_bu_keys(struct ubifs_info *c, struct bu_info *bu)
1552{
1553	int n, err = 0, lnum = -1, offs;
1554	int len;
1555	unsigned int block = key_block(c, &bu->key);
1556	struct ubifs_znode *znode;
1557
1558	bu->cnt = 0;
1559	bu->blk_cnt = 0;
1560	bu->eof = 0;
1561
1562	mutex_lock(&c->tnc_mutex);
1563	/* Find first key */
1564	err = ubifs_lookup_level0(c, &bu->key, &znode, &n);
1565	if (err < 0)
1566		goto out;
1567	if (err) {
1568		/* Key found */
1569		len = znode->zbranch[n].len;
1570		/* The buffer must be big enough for at least 1 node */
1571		if (len > bu->buf_len) {
1572			err = -EINVAL;
1573			goto out;
1574		}
1575		/* Add this key */
1576		bu->zbranch[bu->cnt++] = znode->zbranch[n];
1577		bu->blk_cnt += 1;
1578		lnum = znode->zbranch[n].lnum;
1579		offs = ALIGN(znode->zbranch[n].offs + len, 8);
1580	}
1581	while (1) {
1582		struct ubifs_zbranch *zbr;
1583		union ubifs_key *key;
1584		unsigned int next_block;
1585
1586		/* Find next key */
1587		err = tnc_next(c, &znode, &n);
1588		if (err)
1589			goto out;
1590		zbr = &znode->zbranch[n];
1591		key = &zbr->key;
1592		/* See if there is another data key for this file */
1593		if (key_inum(c, key) != key_inum(c, &bu->key) ||
1594		    key_type(c, key) != UBIFS_DATA_KEY) {
1595			err = -ENOENT;
1596			goto out;
1597		}
1598		if (lnum < 0) {
1599			/* First key found */
1600			lnum = zbr->lnum;
1601			offs = ALIGN(zbr->offs + zbr->len, 8);
1602			len = zbr->len;
1603			if (len > bu->buf_len) {
1604				err = -EINVAL;
1605				goto out;
1606			}
1607		} else {
1608			/*
1609			 * The data nodes must be in consecutive positions in
1610			 * the same LEB.
1611			 */
1612			if (zbr->lnum != lnum || zbr->offs != offs)
1613				goto out;
1614			offs += ALIGN(zbr->len, 8);
1615			len = ALIGN(len, 8) + zbr->len;
1616			/* Must not exceed buffer length */
1617			if (len > bu->buf_len)
1618				goto out;
1619		}
1620		/* Allow for holes */
1621		next_block = key_block(c, key);
1622		bu->blk_cnt += (next_block - block - 1);
1623		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1624			goto out;
1625		block = next_block;
1626		/* Add this key */
1627		bu->zbranch[bu->cnt++] = *zbr;
1628		bu->blk_cnt += 1;
1629		/* See if we have room for more */
1630		if (bu->cnt >= UBIFS_MAX_BULK_READ)
1631			goto out;
1632		if (bu->blk_cnt >= UBIFS_MAX_BULK_READ)
1633			goto out;
1634	}
1635out:
1636	if (err == -ENOENT) {
1637		bu->eof = 1;
1638		err = 0;
1639	}
1640	bu->gc_seq = c->gc_seq;
1641	mutex_unlock(&c->tnc_mutex);
1642	if (err)
1643		return err;
1644	/*
1645	 * An enormous hole could cause bulk-read to encompass too many
1646	 * page cache pages, so limit the number here.
1647	 */
1648	if (bu->blk_cnt > UBIFS_MAX_BULK_READ)
1649		bu->blk_cnt = UBIFS_MAX_BULK_READ;
1650	/*
1651	 * Ensure that bulk-read covers a whole number of page cache
1652	 * pages.
1653	 */
1654	if (UBIFS_BLOCKS_PER_PAGE == 1 ||
1655	    !(bu->blk_cnt & (UBIFS_BLOCKS_PER_PAGE - 1)))
1656		return 0;
1657	if (bu->eof) {
1658		/* At the end of file we can round up */
1659		bu->blk_cnt += UBIFS_BLOCKS_PER_PAGE - 1;
1660		return 0;
1661	}
1662	/* Exclude data nodes that do not make up a whole page cache page */
1663	block = key_block(c, &bu->key) + bu->blk_cnt;
1664	block &= ~(UBIFS_BLOCKS_PER_PAGE - 1);
1665	while (bu->cnt) {
1666		if (key_block(c, &bu->zbranch[bu->cnt - 1].key) < block)
1667			break;
1668		bu->cnt -= 1;
1669	}
1670	return 0;
1671}
1672
1673/**
1674 * read_wbuf - bulk-read from a LEB with a wbuf.
1675 * @wbuf: wbuf that may overlap the read
1676 * @buf: buffer into which to read
1677 * @len: read length
1678 * @lnum: LEB number from which to read
1679 * @offs: offset from which to read
1680 *
1681 * This functions returns %0 on success or a negative error code on failure.
1682 */
1683static int read_wbuf(struct ubifs_wbuf *wbuf, void *buf, int len, int lnum,
1684		     int offs)
1685{
1686	const struct ubifs_info *c = wbuf->c;
1687	int rlen, overlap;
1688
1689	dbg_io("LEB %d:%d, length %d", lnum, offs, len);
1690	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1691	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1692	ubifs_assert(c, offs + len <= c->leb_size);
1693
1694	spin_lock(&wbuf->lock);
1695	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1696	if (!overlap) {
1697		/* We may safely unlock the write-buffer and read the data */
1698		spin_unlock(&wbuf->lock);
1699		return ubifs_leb_read(c, lnum, buf, offs, len, 0);
1700	}
1701
1702	/* Don't read under wbuf */
1703	rlen = wbuf->offs - offs;
1704	if (rlen < 0)
1705		rlen = 0;
1706
1707	/* Copy the rest from the write-buffer */
1708	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1709	spin_unlock(&wbuf->lock);
1710
1711	if (rlen > 0)
1712		/* Read everything that goes before write-buffer */
1713		return ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1714
1715	return 0;
1716}
1717
1718/**
1719 * validate_data_node - validate data nodes for bulk-read.
1720 * @c: UBIFS file-system description object
1721 * @buf: buffer containing data node to validate
1722 * @zbr: zbranch of data node to validate
1723 *
1724 * This functions returns %0 on success or a negative error code on failure.
1725 */
1726static int validate_data_node(struct ubifs_info *c, void *buf,
1727			      struct ubifs_zbranch *zbr)
1728{
1729	union ubifs_key key1;
1730	struct ubifs_ch *ch = buf;
1731	int err, len;
1732
1733	if (ch->node_type != UBIFS_DATA_NODE) {
1734		ubifs_err(c, "bad node type (%d but expected %d)",
1735			  ch->node_type, UBIFS_DATA_NODE);
1736		goto out_err;
1737	}
1738
1739	err = ubifs_check_node(c, buf, zbr->len, zbr->lnum, zbr->offs, 0, 0);
1740	if (err) {
1741		ubifs_err(c, "expected node type %d", UBIFS_DATA_NODE);
1742		goto out;
1743	}
1744
1745	err = ubifs_node_check_hash(c, buf, zbr->hash);
1746	if (err) {
1747		ubifs_bad_hash(c, buf, zbr->hash, zbr->lnum, zbr->offs);
1748		return err;
1749	}
1750
1751	len = le32_to_cpu(ch->len);
1752	if (len != zbr->len) {
1753		ubifs_err(c, "bad node length %d, expected %d", len, zbr->len);
1754		goto out_err;
1755	}
1756
1757	/* Make sure the key of the read node is correct */
1758	key_read(c, buf + UBIFS_KEY_OFFSET, &key1);
1759	if (!keys_eq(c, &zbr->key, &key1)) {
1760		ubifs_err(c, "bad key in node at LEB %d:%d",
1761			  zbr->lnum, zbr->offs);
1762		dbg_tnck(&zbr->key, "looked for key ");
1763		dbg_tnck(&key1, "found node's key ");
1764		goto out_err;
1765	}
1766
1767	return 0;
1768
1769out_err:
1770	err = -EINVAL;
1771out:
1772	ubifs_err(c, "bad node at LEB %d:%d", zbr->lnum, zbr->offs);
1773	ubifs_dump_node(c, buf, zbr->len);
1774	dump_stack();
1775	return err;
1776}
1777
1778/**
1779 * ubifs_tnc_bulk_read - read a number of data nodes in one go.
1780 * @c: UBIFS file-system description object
1781 * @bu: bulk-read parameters and results
1782 *
1783 * This functions reads and validates the data nodes that were identified by the
1784 * 'ubifs_tnc_get_bu_keys()' function. This functions returns %0 on success,
1785 * -EAGAIN to indicate a race with GC, or another negative error code on
1786 * failure.
1787 */
1788int ubifs_tnc_bulk_read(struct ubifs_info *c, struct bu_info *bu)
1789{
1790	int lnum = bu->zbranch[0].lnum, offs = bu->zbranch[0].offs, len, err, i;
1791	struct ubifs_wbuf *wbuf;
1792	void *buf;
1793
1794	len = bu->zbranch[bu->cnt - 1].offs;
1795	len += bu->zbranch[bu->cnt - 1].len - offs;
1796	if (len > bu->buf_len) {
1797		ubifs_err(c, "buffer too small %d vs %d", bu->buf_len, len);
1798		return -EINVAL;
1799	}
1800
1801	/* Do the read */
1802	wbuf = ubifs_get_wbuf(c, lnum);
1803	if (wbuf)
1804		err = read_wbuf(wbuf, bu->buf, len, lnum, offs);
1805	else
1806		err = ubifs_leb_read(c, lnum, bu->buf, offs, len, 0);
1807
1808	/* Check for a race with GC */
1809	if (maybe_leb_gced(c, lnum, bu->gc_seq))
1810		return -EAGAIN;
1811
1812	if (err && err != -EBADMSG) {
1813		ubifs_err(c, "failed to read from LEB %d:%d, error %d",
1814			  lnum, offs, err);
1815		dump_stack();
1816		dbg_tnck(&bu->key, "key ");
1817		return err;
1818	}
1819
1820	/* Validate the nodes read */
1821	buf = bu->buf;
1822	for (i = 0; i < bu->cnt; i++) {
1823		err = validate_data_node(c, buf, &bu->zbranch[i]);
1824		if (err)
1825			return err;
1826		buf = buf + ALIGN(bu->zbranch[i].len, 8);
1827	}
1828
1829	return 0;
1830}
1831
1832/**
1833 * do_lookup_nm- look up a "hashed" node.
1834 * @c: UBIFS file-system description object
1835 * @key: node key to lookup
1836 * @node: the node is returned here
1837 * @nm: node name
1838 *
1839 * This function looks up and reads a node which contains name hash in the key.
1840 * Since the hash may have collisions, there may be many nodes with the same
1841 * key, so we have to sequentially look to all of them until the needed one is
1842 * found. This function returns zero in case of success, %-ENOENT if the node
1843 * was not found, and a negative error code in case of failure.
1844 */
1845static int do_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1846			void *node, const struct fscrypt_name *nm)
1847{
1848	int found, n, err;
1849	struct ubifs_znode *znode;
1850
1851	dbg_tnck(key, "key ");
1852	mutex_lock(&c->tnc_mutex);
1853	found = ubifs_lookup_level0(c, key, &znode, &n);
1854	if (!found) {
1855		err = -ENOENT;
1856		goto out_unlock;
1857	} else if (found < 0) {
1858		err = found;
1859		goto out_unlock;
1860	}
1861
1862	ubifs_assert(c, n >= 0);
1863
1864	err = resolve_collision(c, key, &znode, &n, nm);
1865	dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
1866	if (unlikely(err < 0))
1867		goto out_unlock;
1868	if (err == 0) {
1869		err = -ENOENT;
1870		goto out_unlock;
1871	}
1872
1873	err = tnc_read_hashed_node(c, &znode->zbranch[n], node);
1874
1875out_unlock:
1876	mutex_unlock(&c->tnc_mutex);
1877	return err;
1878}
1879
1880/**
1881 * ubifs_tnc_lookup_nm - look up a "hashed" node.
1882 * @c: UBIFS file-system description object
1883 * @key: node key to lookup
1884 * @node: the node is returned here
1885 * @nm: node name
1886 *
1887 * This function looks up and reads a node which contains name hash in the key.
1888 * Since the hash may have collisions, there may be many nodes with the same
1889 * key, so we have to sequentially look to all of them until the needed one is
1890 * found. This function returns zero in case of success, %-ENOENT if the node
1891 * was not found, and a negative error code in case of failure.
1892 */
1893int ubifs_tnc_lookup_nm(struct ubifs_info *c, const union ubifs_key *key,
1894			void *node, const struct fscrypt_name *nm)
1895{
1896	int err, len;
1897	const struct ubifs_dent_node *dent = node;
1898
1899	/*
1900	 * We assume that in most of the cases there are no name collisions and
1901	 * 'ubifs_tnc_lookup()' returns us the right direntry.
1902	 */
1903	err = ubifs_tnc_lookup(c, key, node);
1904	if (err)
1905		return err;
1906
1907	len = le16_to_cpu(dent->nlen);
1908	if (fname_len(nm) == len && !memcmp(dent->name, fname_name(nm), len))
1909		return 0;
1910
1911	/*
1912	 * Unluckily, there are hash collisions and we have to iterate over
1913	 * them look at each direntry with colliding name hash sequentially.
1914	 */
1915
1916	return do_lookup_nm(c, key, node, nm);
1917}
1918
1919static int search_dh_cookie(struct ubifs_info *c, const union ubifs_key *key,
1920			    struct ubifs_dent_node *dent, uint32_t cookie,
1921			    struct ubifs_znode **zn, int *n, int exact)
1922{
1923	int err;
1924	struct ubifs_znode *znode = *zn;
1925	struct ubifs_zbranch *zbr;
1926	union ubifs_key *dkey;
1927
1928	if (!exact) {
1929		err = tnc_next(c, &znode, n);
1930		if (err)
1931			return err;
1932	}
1933
1934	for (;;) {
1935		zbr = &znode->zbranch[*n];
1936		dkey = &zbr->key;
1937
1938		if (key_inum(c, dkey) != key_inum(c, key) ||
1939		    key_type(c, dkey) != key_type(c, key)) {
1940			return -ENOENT;
1941		}
1942
1943		err = tnc_read_hashed_node(c, zbr, dent);
1944		if (err)
1945			return err;
1946
1947		if (key_hash(c, key) == key_hash(c, dkey) &&
1948		    le32_to_cpu(dent->cookie) == cookie) {
1949			*zn = znode;
1950			return 0;
1951		}
1952
1953		err = tnc_next(c, &znode, n);
1954		if (err)
1955			return err;
1956	}
1957}
1958
1959static int do_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1960			struct ubifs_dent_node *dent, uint32_t cookie)
1961{
1962	int n, err;
1963	struct ubifs_znode *znode;
1964	union ubifs_key start_key;
1965
1966	ubifs_assert(c, is_hash_key(c, key));
1967
1968	lowest_dent_key(c, &start_key, key_inum(c, key));
1969
1970	mutex_lock(&c->tnc_mutex);
1971	err = ubifs_lookup_level0(c, &start_key, &znode, &n);
1972	if (unlikely(err < 0))
1973		goto out_unlock;
1974
1975	err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
1976
1977out_unlock:
1978	mutex_unlock(&c->tnc_mutex);
1979	return err;
1980}
1981
1982/**
1983 * ubifs_tnc_lookup_dh - look up a "double hashed" node.
1984 * @c: UBIFS file-system description object
1985 * @key: node key to lookup
1986 * @node: the node is returned here
1987 * @cookie: node cookie for collision resolution
1988 *
1989 * This function looks up and reads a node which contains name hash in the key.
1990 * Since the hash may have collisions, there may be many nodes with the same
1991 * key, so we have to sequentially look to all of them until the needed one
1992 * with the same cookie value is found.
1993 * This function returns zero in case of success, %-ENOENT if the node
1994 * was not found, and a negative error code in case of failure.
1995 */
1996int ubifs_tnc_lookup_dh(struct ubifs_info *c, const union ubifs_key *key,
1997			void *node, uint32_t cookie)
1998{
1999	int err;
2000	const struct ubifs_dent_node *dent = node;
2001
2002	if (!c->double_hash)
2003		return -EOPNOTSUPP;
2004
2005	/*
2006	 * We assume that in most of the cases there are no name collisions and
2007	 * 'ubifs_tnc_lookup()' returns us the right direntry.
2008	 */
2009	err = ubifs_tnc_lookup(c, key, node);
2010	if (err)
2011		return err;
2012
2013	if (le32_to_cpu(dent->cookie) == cookie)
2014		return 0;
2015
2016	/*
2017	 * Unluckily, there are hash collisions and we have to iterate over
2018	 * them look at each direntry with colliding name hash sequentially.
2019	 */
2020	return do_lookup_dh(c, key, node, cookie);
2021}
2022
2023/**
2024 * correct_parent_keys - correct parent znodes' keys.
2025 * @c: UBIFS file-system description object
2026 * @znode: znode to correct parent znodes for
2027 *
2028 * This is a helper function for 'tnc_insert()'. When the key of the leftmost
2029 * zbranch changes, keys of parent znodes have to be corrected. This helper
2030 * function is called in such situations and corrects the keys if needed.
2031 */
2032static void correct_parent_keys(const struct ubifs_info *c,
2033				struct ubifs_znode *znode)
2034{
2035	union ubifs_key *key, *key1;
2036
2037	ubifs_assert(c, znode->parent);
2038	ubifs_assert(c, znode->iip == 0);
2039
2040	key = &znode->zbranch[0].key;
2041	key1 = &znode->parent->zbranch[0].key;
2042
2043	while (keys_cmp(c, key, key1) < 0) {
2044		key_copy(c, key, key1);
2045		znode = znode->parent;
2046		znode->alt = 1;
2047		if (!znode->parent || znode->iip)
2048			break;
2049		key1 = &znode->parent->zbranch[0].key;
2050	}
2051}
2052
2053/**
2054 * insert_zbranch - insert a zbranch into a znode.
2055 * @c: UBIFS file-system description object
2056 * @znode: znode into which to insert
2057 * @zbr: zbranch to insert
2058 * @n: slot number to insert to
2059 *
2060 * This is a helper function for 'tnc_insert()'. UBIFS does not allow "gaps" in
2061 * znode's array of zbranches and keeps zbranches consolidated, so when a new
2062 * zbranch has to be inserted to the @znode->zbranches[]' array at the @n-th
2063 * slot, zbranches starting from @n have to be moved right.
2064 */
2065static void insert_zbranch(struct ubifs_info *c, struct ubifs_znode *znode,
2066			   const struct ubifs_zbranch *zbr, int n)
2067{
2068	int i;
2069
2070	ubifs_assert(c, ubifs_zn_dirty(znode));
2071
2072	if (znode->level) {
2073		for (i = znode->child_cnt; i > n; i--) {
2074			znode->zbranch[i] = znode->zbranch[i - 1];
2075			if (znode->zbranch[i].znode)
2076				znode->zbranch[i].znode->iip = i;
2077		}
2078		if (zbr->znode)
2079			zbr->znode->iip = n;
2080	} else
2081		for (i = znode->child_cnt; i > n; i--)
2082			znode->zbranch[i] = znode->zbranch[i - 1];
2083
2084	znode->zbranch[n] = *zbr;
2085	znode->child_cnt += 1;
2086
2087	/*
2088	 * After inserting at slot zero, the lower bound of the key range of
2089	 * this znode may have changed. If this znode is subsequently split
2090	 * then the upper bound of the key range may change, and furthermore
2091	 * it could change to be lower than the original lower bound. If that
2092	 * happens, then it will no longer be possible to find this znode in the
2093	 * TNC using the key from the index node on flash. That is bad because
2094	 * if it is not found, we will assume it is obsolete and may overwrite
2095	 * it. Then if there is an unclean unmount, we will start using the
2096	 * old index which will be broken.
2097	 *
2098	 * So we first mark znodes that have insertions at slot zero, and then
2099	 * if they are split we add their lnum/offs to the old_idx tree.
2100	 */
2101	if (n == 0)
2102		znode->alt = 1;
2103}
2104
2105/**
2106 * tnc_insert - insert a node into TNC.
2107 * @c: UBIFS file-system description object
2108 * @znode: znode to insert into
2109 * @zbr: branch to insert
2110 * @n: slot number to insert new zbranch to
2111 *
2112 * This function inserts a new node described by @zbr into znode @znode. If
2113 * znode does not have a free slot for new zbranch, it is split. Parent znodes
2114 * are splat as well if needed. Returns zero in case of success or a negative
2115 * error code in case of failure.
2116 */
2117static int tnc_insert(struct ubifs_info *c, struct ubifs_znode *znode,
2118		      struct ubifs_zbranch *zbr, int n)
2119{
2120	struct ubifs_znode *zn, *zi, *zp;
2121	int i, keep, move, appending = 0;
2122	union ubifs_key *key = &zbr->key, *key1;
2123
2124	ubifs_assert(c, n >= 0 && n <= c->fanout);
2125
2126	/* Implement naive insert for now */
2127again:
2128	zp = znode->parent;
2129	if (znode->child_cnt < c->fanout) {
2130		ubifs_assert(c, n != c->fanout);
2131		dbg_tnck(key, "inserted at %d level %d, key ", n, znode->level);
2132
2133		insert_zbranch(c, znode, zbr, n);
2134
2135		/* Ensure parent's key is correct */
2136		if (n == 0 && zp && znode->iip == 0)
2137			correct_parent_keys(c, znode);
2138
2139		return 0;
2140	}
2141
2142	/*
2143	 * Unfortunately, @znode does not have more empty slots and we have to
2144	 * split it.
2145	 */
2146	dbg_tnck(key, "splitting level %d, key ", znode->level);
2147
2148	if (znode->alt)
2149		/*
2150		 * We can no longer be sure of finding this znode by key, so we
2151		 * record it in the old_idx tree.
2152		 */
2153		ins_clr_old_idx_znode(c, znode);
2154
2155	zn = kzalloc(c->max_znode_sz, GFP_NOFS);
2156	if (!zn)
2157		return -ENOMEM;
2158	zn->parent = zp;
2159	zn->level = znode->level;
2160
2161	/* Decide where to split */
2162	if (znode->level == 0 && key_type(c, key) == UBIFS_DATA_KEY) {
2163		/* Try not to split consecutive data keys */
2164		if (n == c->fanout) {
2165			key1 = &znode->zbranch[n - 1].key;
2166			if (key_inum(c, key1) == key_inum(c, key) &&
2167			    key_type(c, key1) == UBIFS_DATA_KEY)
2168				appending = 1;
2169		} else
2170			goto check_split;
2171	} else if (appending && n != c->fanout) {
2172		/* Try not to split consecutive data keys */
2173		appending = 0;
2174check_split:
2175		if (n >= (c->fanout + 1) / 2) {
2176			key1 = &znode->zbranch[0].key;
2177			if (key_inum(c, key1) == key_inum(c, key) &&
2178			    key_type(c, key1) == UBIFS_DATA_KEY) {
2179				key1 = &znode->zbranch[n].key;
2180				if (key_inum(c, key1) != key_inum(c, key) ||
2181				    key_type(c, key1) != UBIFS_DATA_KEY) {
2182					keep = n;
2183					move = c->fanout - keep;
2184					zi = znode;
2185					goto do_split;
2186				}
2187			}
2188		}
2189	}
2190
2191	if (appending) {
2192		keep = c->fanout;
2193		move = 0;
2194	} else {
2195		keep = (c->fanout + 1) / 2;
2196		move = c->fanout - keep;
2197	}
2198
2199	/*
2200	 * Although we don't at present, we could look at the neighbors and see
2201	 * if we can move some zbranches there.
2202	 */
2203
2204	if (n < keep) {
2205		/* Insert into existing znode */
2206		zi = znode;
2207		move += 1;
2208		keep -= 1;
2209	} else {
2210		/* Insert into new znode */
2211		zi = zn;
2212		n -= keep;
2213		/* Re-parent */
2214		if (zn->level != 0)
2215			zbr->znode->parent = zn;
2216	}
2217
2218do_split:
2219
2220	__set_bit(DIRTY_ZNODE, &zn->flags);
2221	atomic_long_inc(&c->dirty_zn_cnt);
2222
2223	zn->child_cnt = move;
2224	znode->child_cnt = keep;
2225
2226	dbg_tnc("moving %d, keeping %d", move, keep);
2227
2228	/* Move zbranch */
2229	for (i = 0; i < move; i++) {
2230		zn->zbranch[i] = znode->zbranch[keep + i];
2231		/* Re-parent */
2232		if (zn->level != 0)
2233			if (zn->zbranch[i].znode) {
2234				zn->zbranch[i].znode->parent = zn;
2235				zn->zbranch[i].znode->iip = i;
2236			}
2237	}
2238
2239	/* Insert new key and branch */
2240	dbg_tnck(key, "inserting at %d level %d, key ", n, zn->level);
2241
2242	insert_zbranch(c, zi, zbr, n);
2243
2244	/* Insert new znode (produced by spitting) into the parent */
2245	if (zp) {
2246		if (n == 0 && zi == znode && znode->iip == 0)
2247			correct_parent_keys(c, znode);
2248
2249		/* Locate insertion point */
2250		n = znode->iip + 1;
2251
2252		/* Tail recursion */
2253		zbr->key = zn->zbranch[0].key;
2254		zbr->znode = zn;
2255		zbr->lnum = 0;
2256		zbr->offs = 0;
2257		zbr->len = 0;
2258		znode = zp;
2259
2260		goto again;
2261	}
2262
2263	/* We have to split root znode */
2264	dbg_tnc("creating new zroot at level %d", znode->level + 1);
2265
2266	zi = kzalloc(c->max_znode_sz, GFP_NOFS);
2267	if (!zi)
2268		return -ENOMEM;
2269
2270	zi->child_cnt = 2;
2271	zi->level = znode->level + 1;
2272
2273	__set_bit(DIRTY_ZNODE, &zi->flags);
2274	atomic_long_inc(&c->dirty_zn_cnt);
2275
2276	zi->zbranch[0].key = znode->zbranch[0].key;
2277	zi->zbranch[0].znode = znode;
2278	zi->zbranch[0].lnum = c->zroot.lnum;
2279	zi->zbranch[0].offs = c->zroot.offs;
2280	zi->zbranch[0].len = c->zroot.len;
2281	zi->zbranch[1].key = zn->zbranch[0].key;
2282	zi->zbranch[1].znode = zn;
2283
2284	c->zroot.lnum = 0;
2285	c->zroot.offs = 0;
2286	c->zroot.len = 0;
2287	c->zroot.znode = zi;
2288
2289	zn->parent = zi;
2290	zn->iip = 1;
2291	znode->parent = zi;
2292	znode->iip = 0;
2293
2294	return 0;
2295}
2296
2297/**
2298 * ubifs_tnc_add - add a node to TNC.
2299 * @c: UBIFS file-system description object
2300 * @key: key to add
2301 * @lnum: LEB number of node
2302 * @offs: node offset
2303 * @len: node length
2304 * @hash: The hash over the node
2305 *
2306 * This function adds a node with key @key to TNC. The node may be new or it may
2307 * obsolete some existing one. Returns %0 on success or negative error code on
2308 * failure.
2309 */
2310int ubifs_tnc_add(struct ubifs_info *c, const union ubifs_key *key, int lnum,
2311		  int offs, int len, const u8 *hash)
2312{
2313	int found, n, err = 0;
2314	struct ubifs_znode *znode;
2315
2316	mutex_lock(&c->tnc_mutex);
2317	dbg_tnck(key, "%d:%d, len %d, key ", lnum, offs, len);
2318	found = lookup_level0_dirty(c, key, &znode, &n);
2319	if (!found) {
2320		struct ubifs_zbranch zbr;
2321
2322		zbr.znode = NULL;
2323		zbr.lnum = lnum;
2324		zbr.offs = offs;
2325		zbr.len = len;
2326		ubifs_copy_hash(c, hash, zbr.hash);
2327		key_copy(c, key, &zbr.key);
2328		err = tnc_insert(c, znode, &zbr, n + 1);
2329	} else if (found == 1) {
2330		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2331
2332		lnc_free(zbr);
2333		err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2334		zbr->lnum = lnum;
2335		zbr->offs = offs;
2336		zbr->len = len;
2337		ubifs_copy_hash(c, hash, zbr->hash);
2338	} else
2339		err = found;
2340	if (!err)
2341		err = dbg_check_tnc(c, 0);
2342	mutex_unlock(&c->tnc_mutex);
2343
2344	return err;
2345}
2346
2347/**
2348 * ubifs_tnc_replace - replace a node in the TNC only if the old node is found.
2349 * @c: UBIFS file-system description object
2350 * @key: key to add
2351 * @old_lnum: LEB number of old node
2352 * @old_offs: old node offset
2353 * @lnum: LEB number of node
2354 * @offs: node offset
2355 * @len: node length
2356 *
2357 * This function replaces a node with key @key in the TNC only if the old node
2358 * is found.  This function is called by garbage collection when node are moved.
2359 * Returns %0 on success or negative error code on failure.
2360 */
2361int ubifs_tnc_replace(struct ubifs_info *c, const union ubifs_key *key,
2362		      int old_lnum, int old_offs, int lnum, int offs, int len)
2363{
2364	int found, n, err = 0;
2365	struct ubifs_znode *znode;
2366
2367	mutex_lock(&c->tnc_mutex);
2368	dbg_tnck(key, "old LEB %d:%d, new LEB %d:%d, len %d, key ", old_lnum,
2369		 old_offs, lnum, offs, len);
2370	found = lookup_level0_dirty(c, key, &znode, &n);
2371	if (found < 0) {
2372		err = found;
2373		goto out_unlock;
2374	}
2375
2376	if (found == 1) {
2377		struct ubifs_zbranch *zbr = &znode->zbranch[n];
2378
2379		found = 0;
2380		if (zbr->lnum == old_lnum && zbr->offs == old_offs) {
2381			lnc_free(zbr);
2382			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2383			if (err)
2384				goto out_unlock;
2385			zbr->lnum = lnum;
2386			zbr->offs = offs;
2387			zbr->len = len;
2388			found = 1;
2389		} else if (is_hash_key(c, key)) {
2390			found = resolve_collision_directly(c, key, &znode, &n,
2391							   old_lnum, old_offs);
2392			dbg_tnc("rc returned %d, znode %p, n %d, LEB %d:%d",
2393				found, znode, n, old_lnum, old_offs);
2394			if (found < 0) {
2395				err = found;
2396				goto out_unlock;
2397			}
2398
2399			if (found) {
2400				/* Ensure the znode is dirtied */
2401				if (znode->cnext || !ubifs_zn_dirty(znode)) {
2402					znode = dirty_cow_bottom_up(c, znode);
2403					if (IS_ERR(znode)) {
2404						err = PTR_ERR(znode);
2405						goto out_unlock;
2406					}
2407				}
2408				zbr = &znode->zbranch[n];
2409				lnc_free(zbr);
2410				err = ubifs_add_dirt(c, zbr->lnum,
2411						     zbr->len);
2412				if (err)
2413					goto out_unlock;
2414				zbr->lnum = lnum;
2415				zbr->offs = offs;
2416				zbr->len = len;
2417			}
2418		}
2419	}
2420
2421	if (!found)
2422		err = ubifs_add_dirt(c, lnum, len);
2423
2424	if (!err)
2425		err = dbg_check_tnc(c, 0);
2426
2427out_unlock:
2428	mutex_unlock(&c->tnc_mutex);
2429	return err;
2430}
2431
2432/**
2433 * ubifs_tnc_add_nm - add a "hashed" node to TNC.
2434 * @c: UBIFS file-system description object
2435 * @key: key to add
2436 * @lnum: LEB number of node
2437 * @offs: node offset
2438 * @len: node length
2439 * @hash: The hash over the node
2440 * @nm: node name
2441 *
2442 * This is the same as 'ubifs_tnc_add()' but it should be used with keys which
2443 * may have collisions, like directory entry keys.
2444 */
2445int ubifs_tnc_add_nm(struct ubifs_info *c, const union ubifs_key *key,
2446		     int lnum, int offs, int len, const u8 *hash,
2447		     const struct fscrypt_name *nm)
2448{
2449	int found, n, err = 0;
2450	struct ubifs_znode *znode;
2451
2452	mutex_lock(&c->tnc_mutex);
2453	dbg_tnck(key, "LEB %d:%d, key ", lnum, offs);
2454	found = lookup_level0_dirty(c, key, &znode, &n);
2455	if (found < 0) {
2456		err = found;
2457		goto out_unlock;
2458	}
2459
2460	if (found == 1) {
2461		if (c->replaying)
2462			found = fallible_resolve_collision(c, key, &znode, &n,
2463							   nm, 1);
2464		else
2465			found = resolve_collision(c, key, &znode, &n, nm);
2466		dbg_tnc("rc returned %d, znode %p, n %d", found, znode, n);
2467		if (found < 0) {
2468			err = found;
2469			goto out_unlock;
2470		}
2471
2472		/* Ensure the znode is dirtied */
2473		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2474			znode = dirty_cow_bottom_up(c, znode);
2475			if (IS_ERR(znode)) {
2476				err = PTR_ERR(znode);
2477				goto out_unlock;
2478			}
2479		}
2480
2481		if (found == 1) {
2482			struct ubifs_zbranch *zbr = &znode->zbranch[n];
2483
2484			lnc_free(zbr);
2485			err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2486			zbr->lnum = lnum;
2487			zbr->offs = offs;
2488			zbr->len = len;
2489			ubifs_copy_hash(c, hash, zbr->hash);
2490			goto out_unlock;
2491		}
2492	}
2493
2494	if (!found) {
2495		struct ubifs_zbranch zbr;
2496
2497		zbr.znode = NULL;
2498		zbr.lnum = lnum;
2499		zbr.offs = offs;
2500		zbr.len = len;
2501		ubifs_copy_hash(c, hash, zbr.hash);
2502		key_copy(c, key, &zbr.key);
2503		err = tnc_insert(c, znode, &zbr, n + 1);
2504		if (err)
2505			goto out_unlock;
2506		if (c->replaying) {
2507			/*
2508			 * We did not find it in the index so there may be a
2509			 * dangling branch still in the index. So we remove it
2510			 * by passing 'ubifs_tnc_remove_nm()' the same key but
2511			 * an unmatchable name.
2512			 */
2513			struct fscrypt_name noname = { .disk_name = { .name = "", .len = 1 } };
2514
2515			err = dbg_check_tnc(c, 0);
2516			mutex_unlock(&c->tnc_mutex);
2517			if (err)
2518				return err;
2519			return ubifs_tnc_remove_nm(c, key, &noname);
2520		}
2521	}
2522
2523out_unlock:
2524	if (!err)
2525		err = dbg_check_tnc(c, 0);
2526	mutex_unlock(&c->tnc_mutex);
2527	return err;
2528}
2529
2530/**
2531 * tnc_delete - delete a znode form TNC.
2532 * @c: UBIFS file-system description object
2533 * @znode: znode to delete from
2534 * @n: zbranch slot number to delete
2535 *
2536 * This function deletes a leaf node from @n-th slot of @znode. Returns zero in
2537 * case of success and a negative error code in case of failure.
2538 */
2539static int tnc_delete(struct ubifs_info *c, struct ubifs_znode *znode, int n)
2540{
2541	struct ubifs_zbranch *zbr;
2542	struct ubifs_znode *zp;
2543	int i, err;
2544
2545	/* Delete without merge for now */
2546	ubifs_assert(c, znode->level == 0);
2547	ubifs_assert(c, n >= 0 && n < c->fanout);
2548	dbg_tnck(&znode->zbranch[n].key, "deleting key ");
2549
2550	zbr = &znode->zbranch[n];
2551	lnc_free(zbr);
2552
2553	err = ubifs_add_dirt(c, zbr->lnum, zbr->len);
2554	if (err) {
2555		ubifs_dump_znode(c, znode);
2556		return err;
2557	}
2558
2559	/* We do not "gap" zbranch slots */
2560	for (i = n; i < znode->child_cnt - 1; i++)
2561		znode->zbranch[i] = znode->zbranch[i + 1];
2562	znode->child_cnt -= 1;
2563
2564	if (znode->child_cnt > 0)
2565		return 0;
2566
2567	/*
2568	 * This was the last zbranch, we have to delete this znode from the
2569	 * parent.
2570	 */
2571
2572	do {
2573		ubifs_assert(c, !ubifs_zn_obsolete(znode));
2574		ubifs_assert(c, ubifs_zn_dirty(znode));
2575
2576		zp = znode->parent;
2577		n = znode->iip;
2578
2579		atomic_long_dec(&c->dirty_zn_cnt);
2580
2581		err = insert_old_idx_znode(c, znode);
2582		if (err)
2583			return err;
2584
2585		if (znode->cnext) {
2586			__set_bit(OBSOLETE_ZNODE, &znode->flags);
2587			atomic_long_inc(&c->clean_zn_cnt);
2588			atomic_long_inc(&ubifs_clean_zn_cnt);
2589		} else
2590			kfree(znode);
2591		znode = zp;
2592	} while (znode->child_cnt == 1); /* while removing last child */
2593
2594	/* Remove from znode, entry n - 1 */
2595	znode->child_cnt -= 1;
2596	ubifs_assert(c, znode->level != 0);
2597	for (i = n; i < znode->child_cnt; i++) {
2598		znode->zbranch[i] = znode->zbranch[i + 1];
2599		if (znode->zbranch[i].znode)
2600			znode->zbranch[i].znode->iip = i;
2601	}
2602
2603	/*
2604	 * If this is the root and it has only 1 child then
2605	 * collapse the tree.
2606	 */
2607	if (!znode->parent) {
2608		while (znode->child_cnt == 1 && znode->level != 0) {
2609			zp = znode;
2610			zbr = &znode->zbranch[0];
2611			znode = get_znode(c, znode, 0);
2612			if (IS_ERR(znode))
2613				return PTR_ERR(znode);
2614			znode = dirty_cow_znode(c, zbr);
2615			if (IS_ERR(znode))
2616				return PTR_ERR(znode);
2617			znode->parent = NULL;
2618			znode->iip = 0;
2619			if (c->zroot.len) {
2620				err = insert_old_idx(c, c->zroot.lnum,
2621						     c->zroot.offs);
2622				if (err)
2623					return err;
2624			}
2625			c->zroot.lnum = zbr->lnum;
2626			c->zroot.offs = zbr->offs;
2627			c->zroot.len = zbr->len;
2628			c->zroot.znode = znode;
2629			ubifs_assert(c, !ubifs_zn_obsolete(zp));
2630			ubifs_assert(c, ubifs_zn_dirty(zp));
2631			atomic_long_dec(&c->dirty_zn_cnt);
2632
2633			if (zp->cnext) {
2634				__set_bit(OBSOLETE_ZNODE, &zp->flags);
2635				atomic_long_inc(&c->clean_zn_cnt);
2636				atomic_long_inc(&ubifs_clean_zn_cnt);
2637			} else
2638				kfree(zp);
2639		}
2640	}
2641
2642	return 0;
2643}
2644
2645/**
2646 * ubifs_tnc_remove - remove an index entry of a node.
2647 * @c: UBIFS file-system description object
2648 * @key: key of node
2649 *
2650 * Returns %0 on success or negative error code on failure.
2651 */
2652int ubifs_tnc_remove(struct ubifs_info *c, const union ubifs_key *key)
2653{
2654	int found, n, err = 0;
2655	struct ubifs_znode *znode;
2656
2657	mutex_lock(&c->tnc_mutex);
2658	dbg_tnck(key, "key ");
2659	found = lookup_level0_dirty(c, key, &znode, &n);
2660	if (found < 0) {
2661		err = found;
2662		goto out_unlock;
2663	}
2664	if (found == 1)
2665		err = tnc_delete(c, znode, n);
2666	if (!err)
2667		err = dbg_check_tnc(c, 0);
2668
2669out_unlock:
2670	mutex_unlock(&c->tnc_mutex);
2671	return err;
2672}
2673
2674/**
2675 * ubifs_tnc_remove_nm - remove an index entry for a "hashed" node.
2676 * @c: UBIFS file-system description object
2677 * @key: key of node
2678 * @nm: directory entry name
2679 *
2680 * Returns %0 on success or negative error code on failure.
2681 */
2682int ubifs_tnc_remove_nm(struct ubifs_info *c, const union ubifs_key *key,
2683			const struct fscrypt_name *nm)
2684{
2685	int n, err;
2686	struct ubifs_znode *znode;
2687
2688	mutex_lock(&c->tnc_mutex);
2689	dbg_tnck(key, "key ");
2690	err = lookup_level0_dirty(c, key, &znode, &n);
2691	if (err < 0)
2692		goto out_unlock;
2693
2694	if (err) {
2695		if (c->replaying)
2696			err = fallible_resolve_collision(c, key, &znode, &n,
2697							 nm, 0);
2698		else
2699			err = resolve_collision(c, key, &znode, &n, nm);
2700		dbg_tnc("rc returned %d, znode %p, n %d", err, znode, n);
2701		if (err < 0)
2702			goto out_unlock;
2703		if (err) {
2704			/* Ensure the znode is dirtied */
2705			if (znode->cnext || !ubifs_zn_dirty(znode)) {
2706				znode = dirty_cow_bottom_up(c, znode);
2707				if (IS_ERR(znode)) {
2708					err = PTR_ERR(znode);
2709					goto out_unlock;
2710				}
2711			}
2712			err = tnc_delete(c, znode, n);
2713		}
2714	}
2715
2716out_unlock:
2717	if (!err)
2718		err = dbg_check_tnc(c, 0);
2719	mutex_unlock(&c->tnc_mutex);
2720	return err;
2721}
2722
2723/**
2724 * ubifs_tnc_remove_dh - remove an index entry for a "double hashed" node.
2725 * @c: UBIFS file-system description object
2726 * @key: key of node
2727 * @cookie: node cookie for collision resolution
2728 *
2729 * Returns %0 on success or negative error code on failure.
2730 */
2731int ubifs_tnc_remove_dh(struct ubifs_info *c, const union ubifs_key *key,
2732			uint32_t cookie)
2733{
2734	int n, err;
2735	struct ubifs_znode *znode;
2736	struct ubifs_dent_node *dent;
2737	struct ubifs_zbranch *zbr;
2738
2739	if (!c->double_hash)
2740		return -EOPNOTSUPP;
2741
2742	mutex_lock(&c->tnc_mutex);
2743	err = lookup_level0_dirty(c, key, &znode, &n);
2744	if (err <= 0)
2745		goto out_unlock;
2746
2747	zbr = &znode->zbranch[n];
2748	dent = kmalloc(UBIFS_MAX_DENT_NODE_SZ, GFP_NOFS);
2749	if (!dent) {
2750		err = -ENOMEM;
2751		goto out_unlock;
2752	}
2753
2754	err = tnc_read_hashed_node(c, zbr, dent);
2755	if (err)
2756		goto out_free;
2757
2758	/* If the cookie does not match, we're facing a hash collision. */
2759	if (le32_to_cpu(dent->cookie) != cookie) {
2760		union ubifs_key start_key;
2761
2762		lowest_dent_key(c, &start_key, key_inum(c, key));
2763
2764		err = ubifs_lookup_level0(c, &start_key, &znode, &n);
2765		if (unlikely(err < 0))
2766			goto out_free;
2767
2768		err = search_dh_cookie(c, key, dent, cookie, &znode, &n, err);
2769		if (err)
2770			goto out_free;
2771	}
2772
2773	if (znode->cnext || !ubifs_zn_dirty(znode)) {
2774		znode = dirty_cow_bottom_up(c, znode);
2775		if (IS_ERR(znode)) {
2776			err = PTR_ERR(znode);
2777			goto out_free;
2778		}
2779	}
2780	err = tnc_delete(c, znode, n);
2781
2782out_free:
2783	kfree(dent);
2784out_unlock:
2785	if (!err)
2786		err = dbg_check_tnc(c, 0);
2787	mutex_unlock(&c->tnc_mutex);
2788	return err;
2789}
2790
2791/**
2792 * key_in_range - determine if a key falls within a range of keys.
2793 * @c: UBIFS file-system description object
2794 * @key: key to check
2795 * @from_key: lowest key in range
2796 * @to_key: highest key in range
2797 *
2798 * This function returns %1 if the key is in range and %0 otherwise.
2799 */
2800static int key_in_range(struct ubifs_info *c, union ubifs_key *key,
2801			union ubifs_key *from_key, union ubifs_key *to_key)
2802{
2803	if (keys_cmp(c, key, from_key) < 0)
2804		return 0;
2805	if (keys_cmp(c, key, to_key) > 0)
2806		return 0;
2807	return 1;
2808}
2809
2810/**
2811 * ubifs_tnc_remove_range - remove index entries in range.
2812 * @c: UBIFS file-system description object
2813 * @from_key: lowest key to remove
2814 * @to_key: highest key to remove
2815 *
2816 * This function removes index entries starting at @from_key and ending at
2817 * @to_key.  This function returns zero in case of success and a negative error
2818 * code in case of failure.
2819 */
2820int ubifs_tnc_remove_range(struct ubifs_info *c, union ubifs_key *from_key,
2821			   union ubifs_key *to_key)
2822{
2823	int i, n, k, err = 0;
2824	struct ubifs_znode *znode;
2825	union ubifs_key *key;
2826
2827	mutex_lock(&c->tnc_mutex);
2828	while (1) {
2829		/* Find first level 0 znode that contains keys to remove */
2830		err = ubifs_lookup_level0(c, from_key, &znode, &n);
2831		if (err < 0)
2832			goto out_unlock;
2833
2834		if (err)
2835			key = from_key;
2836		else {
2837			err = tnc_next(c, &znode, &n);
2838			if (err == -ENOENT) {
2839				err = 0;
2840				goto out_unlock;
2841			}
2842			if (err < 0)
2843				goto out_unlock;
2844			key = &znode->zbranch[n].key;
2845			if (!key_in_range(c, key, from_key, to_key)) {
2846				err = 0;
2847				goto out_unlock;
2848			}
2849		}
2850
2851		/* Ensure the znode is dirtied */
2852		if (znode->cnext || !ubifs_zn_dirty(znode)) {
2853			znode = dirty_cow_bottom_up(c, znode);
2854			if (IS_ERR(znode)) {
2855				err = PTR_ERR(znode);
2856				goto out_unlock;
2857			}
2858		}
2859
2860		/* Remove all keys in range except the first */
2861		for (i = n + 1, k = 0; i < znode->child_cnt; i++, k++) {
2862			key = &znode->zbranch[i].key;
2863			if (!key_in_range(c, key, from_key, to_key))
2864				break;
2865			lnc_free(&znode->zbranch[i]);
2866			err = ubifs_add_dirt(c, znode->zbranch[i].lnum,
2867					     znode->zbranch[i].len);
2868			if (err) {
2869				ubifs_dump_znode(c, znode);
2870				goto out_unlock;
2871			}
2872			dbg_tnck(key, "removing key ");
2873		}
2874		if (k) {
2875			for (i = n + 1 + k; i < znode->child_cnt; i++)
2876				znode->zbranch[i - k] = znode->zbranch[i];
2877			znode->child_cnt -= k;
2878		}
2879
2880		/* Now delete the first */
2881		err = tnc_delete(c, znode, n);
2882		if (err)
2883			goto out_unlock;
2884	}
2885
2886out_unlock:
2887	if (!err)
2888		err = dbg_check_tnc(c, 0);
2889	mutex_unlock(&c->tnc_mutex);
2890	return err;
2891}
2892
2893/**
2894 * ubifs_tnc_remove_ino - remove an inode from TNC.
2895 * @c: UBIFS file-system description object
2896 * @inum: inode number to remove
2897 *
2898 * This function remove inode @inum and all the extended attributes associated
2899 * with the anode from TNC and returns zero in case of success or a negative
2900 * error code in case of failure.
2901 */
2902int ubifs_tnc_remove_ino(struct ubifs_info *c, ino_t inum)
2903{
2904	union ubifs_key key1, key2;
2905	struct ubifs_dent_node *xent, *pxent = NULL;
2906	struct fscrypt_name nm = {0};
2907
2908	dbg_tnc("ino %lu", (unsigned long)inum);
2909
2910	/*
2911	 * Walk all extended attribute entries and remove them together with
2912	 * corresponding extended attribute inodes.
2913	 */
2914	lowest_xent_key(c, &key1, inum);
2915	while (1) {
2916		ino_t xattr_inum;
2917		int err;
2918
2919		xent = ubifs_tnc_next_ent(c, &key1, &nm);
2920		if (IS_ERR(xent)) {
2921			err = PTR_ERR(xent);
2922			if (err == -ENOENT)
2923				break;
2924			kfree(pxent);
2925			return err;
2926		}
2927
2928		xattr_inum = le64_to_cpu(xent->inum);
2929		dbg_tnc("xent '%s', ino %lu", xent->name,
2930			(unsigned long)xattr_inum);
2931
2932		ubifs_evict_xattr_inode(c, xattr_inum);
2933
2934		fname_name(&nm) = xent->name;
2935		fname_len(&nm) = le16_to_cpu(xent->nlen);
2936		err = ubifs_tnc_remove_nm(c, &key1, &nm);
2937		if (err) {
2938			kfree(pxent);
2939			kfree(xent);
2940			return err;
2941		}
2942
2943		lowest_ino_key(c, &key1, xattr_inum);
2944		highest_ino_key(c, &key2, xattr_inum);
2945		err = ubifs_tnc_remove_range(c, &key1, &key2);
2946		if (err) {
2947			kfree(pxent);
2948			kfree(xent);
2949			return err;
2950		}
2951
2952		kfree(pxent);
2953		pxent = xent;
2954		key_read(c, &xent->key, &key1);
2955	}
2956
2957	kfree(pxent);
2958	lowest_ino_key(c, &key1, inum);
2959	highest_ino_key(c, &key2, inum);
2960
2961	return ubifs_tnc_remove_range(c, &key1, &key2);
2962}
2963
2964/**
2965 * ubifs_tnc_next_ent - walk directory or extended attribute entries.
2966 * @c: UBIFS file-system description object
2967 * @key: key of last entry
2968 * @nm: name of last entry found or %NULL
2969 *
2970 * This function finds and reads the next directory or extended attribute entry
2971 * after the given key (@key) if there is one. @nm is used to resolve
2972 * collisions.
2973 *
2974 * If the name of the current entry is not known and only the key is known,
2975 * @nm->name has to be %NULL. In this case the semantics of this function is a
2976 * little bit different and it returns the entry corresponding to this key, not
2977 * the next one. If the key was not found, the closest "right" entry is
2978 * returned.
2979 *
2980 * If the fist entry has to be found, @key has to contain the lowest possible
2981 * key value for this inode and @name has to be %NULL.
2982 *
2983 * This function returns the found directory or extended attribute entry node
2984 * in case of success, %-ENOENT is returned if no entry was found, and a
2985 * negative error code is returned in case of failure.
2986 */
2987struct ubifs_dent_node *ubifs_tnc_next_ent(struct ubifs_info *c,
2988					   union ubifs_key *key,
2989					   const struct fscrypt_name *nm)
2990{
2991	int n, err, type = key_type(c, key);
2992	struct ubifs_znode *znode;
2993	struct ubifs_dent_node *dent;
2994	struct ubifs_zbranch *zbr;
2995	union ubifs_key *dkey;
2996
2997	dbg_tnck(key, "key ");
2998	ubifs_assert(c, is_hash_key(c, key));
2999
3000	mutex_lock(&c->tnc_mutex);
3001	err = ubifs_lookup_level0(c, key, &znode, &n);
3002	if (unlikely(err < 0))
3003		goto out_unlock;
3004
3005	if (fname_len(nm) > 0) {
3006		if (err) {
3007			/* Handle collisions */
3008			if (c->replaying)
3009				err = fallible_resolve_collision(c, key, &znode, &n,
3010							 nm, 0);
3011			else
3012				err = resolve_collision(c, key, &znode, &n, nm);
3013			dbg_tnc("rc returned %d, znode %p, n %d",
3014				err, znode, n);
3015			if (unlikely(err < 0))
3016				goto out_unlock;
3017		}
3018
3019		/* Now find next entry */
3020		err = tnc_next(c, &znode, &n);
3021		if (unlikely(err))
3022			goto out_unlock;
3023	} else {
3024		/*
3025		 * The full name of the entry was not given, in which case the
3026		 * behavior of this function is a little different and it
3027		 * returns current entry, not the next one.
3028		 */
3029		if (!err) {
3030			/*
3031			 * However, the given key does not exist in the TNC
3032			 * tree and @znode/@n variables contain the closest
3033			 * "preceding" element. Switch to the next one.
3034			 */
3035			err = tnc_next(c, &znode, &n);
3036			if (err)
3037				goto out_unlock;
3038		}
3039	}
3040
3041	zbr = &znode->zbranch[n];
3042	dent = kmalloc(zbr->len, GFP_NOFS);
3043	if (unlikely(!dent)) {
3044		err = -ENOMEM;
3045		goto out_unlock;
3046	}
3047
3048	/*
3049	 * The above 'tnc_next()' call could lead us to the next inode, check
3050	 * this.
3051	 */
3052	dkey = &zbr->key;
3053	if (key_inum(c, dkey) != key_inum(c, key) ||
3054	    key_type(c, dkey) != type) {
3055		err = -ENOENT;
3056		goto out_free;
3057	}
3058
3059	err = tnc_read_hashed_node(c, zbr, dent);
3060	if (unlikely(err))
3061		goto out_free;
3062
3063	mutex_unlock(&c->tnc_mutex);
3064	return dent;
3065
3066out_free:
3067	kfree(dent);
3068out_unlock:
3069	mutex_unlock(&c->tnc_mutex);
3070	return ERR_PTR(err);
3071}
3072
3073/**
3074 * tnc_destroy_cnext - destroy left-over obsolete znodes from a failed commit.
3075 * @c: UBIFS file-system description object
3076 *
3077 * Destroy left-over obsolete znodes from a failed commit.
3078 */
3079static void tnc_destroy_cnext(struct ubifs_info *c)
3080{
3081	struct ubifs_znode *cnext;
3082
3083	if (!c->cnext)
3084		return;
3085	ubifs_assert(c, c->cmt_state == COMMIT_BROKEN);
3086	cnext = c->cnext;
3087	do {
3088		struct ubifs_znode *znode = cnext;
3089
3090		cnext = cnext->cnext;
3091		if (ubifs_zn_obsolete(znode))
3092			kfree(znode);
3093		else if (!ubifs_zn_cow(znode)) {
3094			/*
3095			 * Don't forget to update clean znode count after
3096			 * committing failed, because ubifs will check this
3097			 * count while closing tnc. Non-obsolete znode could
3098			 * be re-dirtied during committing process, so dirty
3099			 * flag is untrustable. The flag 'COW_ZNODE' is set
3100			 * for each dirty znode before committing, and it is
3101			 * cleared as long as the znode become clean, so we
3102			 * can statistic clean znode count according to this
3103			 * flag.
3104			 */
3105			atomic_long_inc(&c->clean_zn_cnt);
3106			atomic_long_inc(&ubifs_clean_zn_cnt);
3107		}
3108	} while (cnext && cnext != c->cnext);
3109}
3110
3111/**
3112 * ubifs_tnc_close - close TNC subsystem and free all related resources.
3113 * @c: UBIFS file-system description object
3114 */
3115void ubifs_tnc_close(struct ubifs_info *c)
3116{
3117	tnc_destroy_cnext(c);
3118	if (c->zroot.znode) {
3119		long n, freed;
3120
3121		n = atomic_long_read(&c->clean_zn_cnt);
3122		freed = ubifs_destroy_tnc_subtree(c, c->zroot.znode);
3123		ubifs_assert(c, freed == n);
3124		atomic_long_sub(n, &ubifs_clean_zn_cnt);
3125	}
3126	kfree(c->gap_lebs);
3127	kfree(c->ilebs);
3128	destroy_old_idx(c);
3129}
3130
3131/**
3132 * left_znode - get the znode to the left.
3133 * @c: UBIFS file-system description object
3134 * @znode: znode
3135 *
3136 * This function returns a pointer to the znode to the left of @znode or NULL if
3137 * there is not one. A negative error code is returned on failure.
3138 */
3139static struct ubifs_znode *left_znode(struct ubifs_info *c,
3140				      struct ubifs_znode *znode)
3141{
3142	int level = znode->level;
3143
3144	while (1) {
3145		int n = znode->iip - 1;
3146
3147		/* Go up until we can go left */
3148		znode = znode->parent;
3149		if (!znode)
3150			return NULL;
3151		if (n >= 0) {
3152			/* Now go down the rightmost branch to 'level' */
3153			znode = get_znode(c, znode, n);
3154			if (IS_ERR(znode))
3155				return znode;
3156			while (znode->level != level) {
3157				n = znode->child_cnt - 1;
3158				znode = get_znode(c, znode, n);
3159				if (IS_ERR(znode))
3160					return znode;
3161			}
3162			break;
3163		}
3164	}
3165	return znode;
3166}
3167
3168/**
3169 * right_znode - get the znode to the right.
3170 * @c: UBIFS file-system description object
3171 * @znode: znode
3172 *
3173 * This function returns a pointer to the znode to the right of @znode or NULL
3174 * if there is not one. A negative error code is returned on failure.
3175 */
3176static struct ubifs_znode *right_znode(struct ubifs_info *c,
3177				       struct ubifs_znode *znode)
3178{
3179	int level = znode->level;
3180
3181	while (1) {
3182		int n = znode->iip + 1;
3183
3184		/* Go up until we can go right */
3185		znode = znode->parent;
3186		if (!znode)
3187			return NULL;
3188		if (n < znode->child_cnt) {
3189			/* Now go down the leftmost branch to 'level' */
3190			znode = get_znode(c, znode, n);
3191			if (IS_ERR(znode))
3192				return znode;
3193			while (znode->level != level) {
3194				znode = get_znode(c, znode, 0);
3195				if (IS_ERR(znode))
3196					return znode;
3197			}
3198			break;
3199		}
3200	}
3201	return znode;
3202}
3203
3204/**
3205 * lookup_znode - find a particular indexing node from TNC.
3206 * @c: UBIFS file-system description object
3207 * @key: index node key to lookup
3208 * @level: index node level
3209 * @lnum: index node LEB number
3210 * @offs: index node offset
3211 *
3212 * This function searches an indexing node by its first key @key and its
3213 * address @lnum:@offs. It looks up the indexing tree by pulling all indexing
3214 * nodes it traverses to TNC. This function is called for indexing nodes which
3215 * were found on the media by scanning, for example when garbage-collecting or
3216 * when doing in-the-gaps commit. This means that the indexing node which is
3217 * looked for does not have to have exactly the same leftmost key @key, because
3218 * the leftmost key may have been changed, in which case TNC will contain a
3219 * dirty znode which still refers the same @lnum:@offs. This function is clever
3220 * enough to recognize such indexing nodes.
3221 *
3222 * Note, if a znode was deleted or changed too much, then this function will
3223 * not find it. For situations like this UBIFS has the old index RB-tree
3224 * (indexed by @lnum:@offs).
3225 *
3226 * This function returns a pointer to the znode found or %NULL if it is not
3227 * found. A negative error code is returned on failure.
3228 */
3229static struct ubifs_znode *lookup_znode(struct ubifs_info *c,
3230					union ubifs_key *key, int level,
3231					int lnum, int offs)
3232{
3233	struct ubifs_znode *znode, *zn;
3234	int n, nn;
3235
3236	ubifs_assert(c, key_type(c, key) < UBIFS_INVALID_KEY);
3237
3238	/*
3239	 * The arguments have probably been read off flash, so don't assume
3240	 * they are valid.
3241	 */
3242	if (level < 0)
3243		return ERR_PTR(-EINVAL);
3244
3245	/* Get the root znode */
3246	znode = c->zroot.znode;
3247	if (!znode) {
3248		znode = ubifs_load_znode(c, &c->zroot, NULL, 0);
3249		if (IS_ERR(znode))
3250			return znode;
3251	}
3252	/* Check if it is the one we are looking for */
3253	if (c->zroot.lnum == lnum && c->zroot.offs == offs)
3254		return znode;
3255	/* Descend to the parent level i.e. (level + 1) */
3256	if (level >= znode->level)
3257		return NULL;
3258	while (1) {
3259		ubifs_search_zbranch(c, znode, key, &n);
3260		if (n < 0) {
3261			/*
3262			 * We reached a znode where the leftmost key is greater
3263			 * than the key we are searching for. This is the same
3264			 * situation as the one described in a huge comment at
3265			 * the end of the 'ubifs_lookup_level0()' function. And
3266			 * for exactly the same reasons we have to try to look
3267			 * left before giving up.
3268			 */
3269			znode = left_znode(c, znode);
3270			if (!znode)
3271				return NULL;
3272			if (IS_ERR(znode))
3273				return znode;
3274			ubifs_search_zbranch(c, znode, key, &n);
3275			ubifs_assert(c, n >= 0);
3276		}
3277		if (znode->level == level + 1)
3278			break;
3279		znode = get_znode(c, znode, n);
3280		if (IS_ERR(znode))
3281			return znode;
3282	}
3283	/* Check if the child is the one we are looking for */
3284	if (znode->zbranch[n].lnum == lnum && znode->zbranch[n].offs == offs)
3285		return get_znode(c, znode, n);
3286	/* If the key is unique, there is nowhere else to look */
3287	if (!is_hash_key(c, key))
3288		return NULL;
3289	/*
3290	 * The key is not unique and so may be also in the znodes to either
3291	 * side.
3292	 */
3293	zn = znode;
3294	nn = n;
3295	/* Look left */
3296	while (1) {
3297		/* Move one branch to the left */
3298		if (n)
3299			n -= 1;
3300		else {
3301			znode = left_znode(c, znode);
3302			if (!znode)
3303				break;
3304			if (IS_ERR(znode))
3305				return znode;
3306			n = znode->child_cnt - 1;
3307		}
3308		/* Check it */
3309		if (znode->zbranch[n].lnum == lnum &&
3310		    znode->zbranch[n].offs == offs)
3311			return get_znode(c, znode, n);
3312		/* Stop if the key is less than the one we are looking for */
3313		if (keys_cmp(c, &znode->zbranch[n].key, key) < 0)
3314			break;
3315	}
3316	/* Back to the middle */
3317	znode = zn;
3318	n = nn;
3319	/* Look right */
3320	while (1) {
3321		/* Move one branch to the right */
3322		if (++n >= znode->child_cnt) {
3323			znode = right_znode(c, znode);
3324			if (!znode)
3325				break;
3326			if (IS_ERR(znode))
3327				return znode;
3328			n = 0;
3329		}
3330		/* Check it */
3331		if (znode->zbranch[n].lnum == lnum &&
3332		    znode->zbranch[n].offs == offs)
3333			return get_znode(c, znode, n);
3334		/* Stop if the key is greater than the one we are looking for */
3335		if (keys_cmp(c, &znode->zbranch[n].key, key) > 0)
3336			break;
3337	}
3338	return NULL;
3339}
3340
3341/**
3342 * is_idx_node_in_tnc - determine if an index node is in the TNC.
3343 * @c: UBIFS file-system description object
3344 * @key: key of index node
3345 * @level: index node level
3346 * @lnum: LEB number of index node
3347 * @offs: offset of index node
3348 *
3349 * This function returns %0 if the index node is not referred to in the TNC, %1
3350 * if the index node is referred to in the TNC and the corresponding znode is
3351 * dirty, %2 if an index node is referred to in the TNC and the corresponding
3352 * znode is clean, and a negative error code in case of failure.
3353 *
3354 * Note, the @key argument has to be the key of the first child. Also note,
3355 * this function relies on the fact that 0:0 is never a valid LEB number and
3356 * offset for a main-area node.
3357 */
3358int is_idx_node_in_tnc(struct ubifs_info *c, union ubifs_key *key, int level,
3359		       int lnum, int offs)
3360{
3361	struct ubifs_znode *znode;
3362
3363	znode = lookup_znode(c, key, level, lnum, offs);
3364	if (!znode)
3365		return 0;
3366	if (IS_ERR(znode))
3367		return PTR_ERR(znode);
3368
3369	return ubifs_zn_dirty(znode) ? 1 : 2;
3370}
3371
3372/**
3373 * is_leaf_node_in_tnc - determine if a non-indexing not is in the TNC.
3374 * @c: UBIFS file-system description object
3375 * @key: node key
3376 * @lnum: node LEB number
3377 * @offs: node offset
3378 *
3379 * This function returns %1 if the node is referred to in the TNC, %0 if it is
3380 * not, and a negative error code in case of failure.
3381 *
3382 * Note, this function relies on the fact that 0:0 is never a valid LEB number
3383 * and offset for a main-area node.
3384 */
3385static int is_leaf_node_in_tnc(struct ubifs_info *c, union ubifs_key *key,
3386			       int lnum, int offs)
3387{
3388	struct ubifs_zbranch *zbr;
3389	struct ubifs_znode *znode, *zn;
3390	int n, found, err, nn;
3391	const int unique = !is_hash_key(c, key);
3392
3393	found = ubifs_lookup_level0(c, key, &znode, &n);
3394	if (found < 0)
3395		return found; /* Error code */
3396	if (!found)
3397		return 0;
3398	zbr = &znode->zbranch[n];
3399	if (lnum == zbr->lnum && offs == zbr->offs)
3400		return 1; /* Found it */
3401	if (unique)
3402		return 0;
3403	/*
3404	 * Because the key is not unique, we have to look left
3405	 * and right as well
3406	 */
3407	zn = znode;
3408	nn = n;
3409	/* Look left */
3410	while (1) {
3411		err = tnc_prev(c, &znode, &n);
3412		if (err == -ENOENT)
3413			break;
3414		if (err)
3415			return err;
3416		if (keys_cmp(c, key, &znode->zbranch[n].key))
3417			break;
3418		zbr = &znode->zbranch[n];
3419		if (lnum == zbr->lnum && offs == zbr->offs)
3420			return 1; /* Found it */
3421	}
3422	/* Look right */
3423	znode = zn;
3424	n = nn;
3425	while (1) {
3426		err = tnc_next(c, &znode, &n);
3427		if (err) {
3428			if (err == -ENOENT)
3429				return 0;
3430			return err;
3431		}
3432		if (keys_cmp(c, key, &znode->zbranch[n].key))
3433			break;
3434		zbr = &znode->zbranch[n];
3435		if (lnum == zbr->lnum && offs == zbr->offs)
3436			return 1; /* Found it */
3437	}
3438	return 0;
3439}
3440
3441/**
3442 * ubifs_tnc_has_node - determine whether a node is in the TNC.
3443 * @c: UBIFS file-system description object
3444 * @key: node key
3445 * @level: index node level (if it is an index node)
3446 * @lnum: node LEB number
3447 * @offs: node offset
3448 * @is_idx: non-zero if the node is an index node
3449 *
3450 * This function returns %1 if the node is in the TNC, %0 if it is not, and a
3451 * negative error code in case of failure. For index nodes, @key has to be the
3452 * key of the first child. An index node is considered to be in the TNC only if
3453 * the corresponding znode is clean or has not been loaded.
3454 */
3455int ubifs_tnc_has_node(struct ubifs_info *c, union ubifs_key *key, int level,
3456		       int lnum, int offs, int is_idx)
3457{
3458	int err;
3459
3460	mutex_lock(&c->tnc_mutex);
3461	if (is_idx) {
3462		err = is_idx_node_in_tnc(c, key, level, lnum, offs);
3463		if (err < 0)
3464			goto out_unlock;
3465		if (err == 1)
3466			/* The index node was found but it was dirty */
3467			err = 0;
3468		else if (err == 2)
3469			/* The index node was found and it was clean */
3470			err = 1;
3471		else
3472			BUG_ON(err != 0);
3473	} else
3474		err = is_leaf_node_in_tnc(c, key, lnum, offs);
3475
3476out_unlock:
3477	mutex_unlock(&c->tnc_mutex);
3478	return err;
3479}
3480
3481/**
3482 * ubifs_dirty_idx_node - dirty an index node.
3483 * @c: UBIFS file-system description object
3484 * @key: index node key
3485 * @level: index node level
3486 * @lnum: index node LEB number
3487 * @offs: index node offset
3488 *
3489 * This function loads and dirties an index node so that it can be garbage
3490 * collected. The @key argument has to be the key of the first child. This
3491 * function relies on the fact that 0:0 is never a valid LEB number and offset
3492 * for a main-area node. Returns %0 on success and a negative error code on
3493 * failure.
3494 */
3495int ubifs_dirty_idx_node(struct ubifs_info *c, union ubifs_key *key, int level,
3496			 int lnum, int offs)
3497{
3498	struct ubifs_znode *znode;
3499	int err = 0;
3500
3501	mutex_lock(&c->tnc_mutex);
3502	znode = lookup_znode(c, key, level, lnum, offs);
3503	if (!znode)
3504		goto out_unlock;
3505	if (IS_ERR(znode)) {
3506		err = PTR_ERR(znode);
3507		goto out_unlock;
3508	}
3509	znode = dirty_cow_bottom_up(c, znode);
3510	if (IS_ERR(znode)) {
3511		err = PTR_ERR(znode);
3512		goto out_unlock;
3513	}
3514
3515out_unlock:
3516	mutex_unlock(&c->tnc_mutex);
3517	return err;
3518}
3519
3520/**
3521 * dbg_check_inode_size - check if inode size is correct.
3522 * @c: UBIFS file-system description object
3523 * @inode: inode to check
3524 * @size: inode size
3525 *
3526 * This function makes sure that the inode size (@size) is correct and it does
3527 * not have any pages beyond @size. Returns zero if the inode is OK, %-EINVAL
3528 * if it has a data page beyond @size, and other negative error code in case of
3529 * other errors.
3530 */
3531int dbg_check_inode_size(struct ubifs_info *c, const struct inode *inode,
3532			 loff_t size)
3533{
3534	int err, n;
3535	union ubifs_key from_key, to_key, *key;
3536	struct ubifs_znode *znode;
3537	unsigned int block;
3538
3539	if (!S_ISREG(inode->i_mode))
3540		return 0;
3541	if (!dbg_is_chk_gen(c))
3542		return 0;
3543
3544	block = (size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT;
3545	data_key_init(c, &from_key, inode->i_ino, block);
3546	highest_data_key(c, &to_key, inode->i_ino);
3547
3548	mutex_lock(&c->tnc_mutex);
3549	err = ubifs_lookup_level0(c, &from_key, &znode, &n);
3550	if (err < 0)
3551		goto out_unlock;
3552
3553	if (err) {
3554		key = &from_key;
3555		goto out_dump;
3556	}
3557
3558	err = tnc_next(c, &znode, &n);
3559	if (err == -ENOENT) {
3560		err = 0;
3561		goto out_unlock;
3562	}
3563	if (err < 0)
3564		goto out_unlock;
3565
3566	ubifs_assert(c, err == 0);
3567	key = &znode->zbranch[n].key;
3568	if (!key_in_range(c, key, &from_key, &to_key))
3569		goto out_unlock;
3570
3571out_dump:
3572	block = key_block(c, key);
3573	ubifs_err(c, "inode %lu has size %lld, but there are data at offset %lld",
3574		  (unsigned long)inode->i_ino, size,
3575		  ((loff_t)block) << UBIFS_BLOCK_SHIFT);
3576	mutex_unlock(&c->tnc_mutex);
3577	ubifs_dump_inode(c, inode);
3578	dump_stack();
3579	return -EINVAL;
3580
3581out_unlock:
3582	mutex_unlock(&c->tnc_mutex);
3583	return err;
3584}
3585