xref: /kernel/linux/linux-5.10/fs/ubifs/io.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * This file is part of UBIFS.
4 *
5 * Copyright (C) 2006-2008 Nokia Corporation.
6 * Copyright (C) 2006, 2007 University of Szeged, Hungary
7 *
8 * Authors: Artem Bityutskiy (Битюцкий Артём)
9 *          Adrian Hunter
10 *          Zoltan Sogor
11 */
12
13/*
14 * This file implements UBIFS I/O subsystem which provides various I/O-related
15 * helper functions (reading/writing/checking/validating nodes) and implements
16 * write-buffering support. Write buffers help to save space which otherwise
17 * would have been wasted for padding to the nearest minimal I/O unit boundary.
18 * Instead, data first goes to the write-buffer and is flushed when the
19 * buffer is full or when it is not used for some time (by timer). This is
20 * similar to the mechanism is used by JFFS2.
21 *
22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum
23 * write size (@c->max_write_size). The latter is the maximum amount of bytes
24 * the underlying flash is able to program at a time, and writing in
25 * @c->max_write_size units should presumably be faster. Obviously,
26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of
27 * @c->max_write_size bytes in size for maximum performance. However, when a
28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size
29 * boundary) which contains data is written, not the whole write-buffer,
30 * because this is more space-efficient.
31 *
32 * This optimization adds few complications to the code. Indeed, on the one
33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which
34 * also means aligning writes at the @c->max_write_size bytes offsets. On the
35 * other hand, we do not want to waste space when synchronizing the write
36 * buffer, so during synchronization we writes in smaller chunks. And this makes
37 * the next write offset to be not aligned to @c->max_write_size bytes. So the
38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned
39 * to @c->max_write_size bytes again. We do this by temporarily shrinking
40 * write-buffer size (@wbuf->size).
41 *
42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by
43 * mutexes defined inside these objects. Since sometimes upper-level code
44 * has to lock the write-buffer (e.g. journal space reservation code), many
45 * functions related to write-buffers have "nolock" suffix which means that the
46 * caller has to lock the write-buffer before calling this function.
47 *
48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not
49 * aligned, UBIFS starts the next node from the aligned address, and the padded
50 * bytes may contain any rubbish. In other words, UBIFS does not put padding
51 * bytes in those small gaps. Common headers of nodes store real node lengths,
52 * not aligned lengths. Indexing nodes also store real lengths in branches.
53 *
54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it
55 * uses padding nodes or padding bytes, if the padding node does not fit.
56 *
57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when
58 * they are read from the flash media.
59 */
60
61#include <linux/crc32.h>
62#include <linux/slab.h>
63#include "ubifs.h"
64
65/**
66 * ubifs_ro_mode - switch UBIFS to read read-only mode.
67 * @c: UBIFS file-system description object
68 * @err: error code which is the reason of switching to R/O mode
69 */
70void ubifs_ro_mode(struct ubifs_info *c, int err)
71{
72	if (!c->ro_error) {
73		c->ro_error = 1;
74		c->no_chk_data_crc = 0;
75		c->vfs_sb->s_flags |= SB_RDONLY;
76		ubifs_warn(c, "switched to read-only mode, error %d", err);
77		dump_stack();
78	}
79}
80
81/*
82 * Below are simple wrappers over UBI I/O functions which include some
83 * additional checks and UBIFS debugging stuff. See corresponding UBI function
84 * for more information.
85 */
86
87int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs,
88		   int len, int even_ebadmsg)
89{
90	int err;
91
92	err = ubi_read(c->ubi, lnum, buf, offs, len);
93	/*
94	 * In case of %-EBADMSG print the error message only if the
95	 * @even_ebadmsg is true.
96	 */
97	if (err && (err != -EBADMSG || even_ebadmsg)) {
98		ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d",
99			  len, lnum, offs, err);
100		dump_stack();
101	}
102	return err;
103}
104
105int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs,
106		    int len)
107{
108	int err;
109
110	ubifs_assert(c, !c->ro_media && !c->ro_mount);
111	if (c->ro_error)
112		return -EROFS;
113	if (!dbg_is_tst_rcvry(c))
114		err = ubi_leb_write(c->ubi, lnum, buf, offs, len);
115	else
116		err = dbg_leb_write(c, lnum, buf, offs, len);
117	if (err) {
118		ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d",
119			  len, lnum, offs, err);
120		ubifs_ro_mode(c, err);
121		dump_stack();
122	}
123	return err;
124}
125
126int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len)
127{
128	int err;
129
130	ubifs_assert(c, !c->ro_media && !c->ro_mount);
131	if (c->ro_error)
132		return -EROFS;
133	if (!dbg_is_tst_rcvry(c))
134		err = ubi_leb_change(c->ubi, lnum, buf, len);
135	else
136		err = dbg_leb_change(c, lnum, buf, len);
137	if (err) {
138		ubifs_err(c, "changing %d bytes in LEB %d failed, error %d",
139			  len, lnum, err);
140		ubifs_ro_mode(c, err);
141		dump_stack();
142	}
143	return err;
144}
145
146int ubifs_leb_unmap(struct ubifs_info *c, int lnum)
147{
148	int err;
149
150	ubifs_assert(c, !c->ro_media && !c->ro_mount);
151	if (c->ro_error)
152		return -EROFS;
153	if (!dbg_is_tst_rcvry(c))
154		err = ubi_leb_unmap(c->ubi, lnum);
155	else
156		err = dbg_leb_unmap(c, lnum);
157	if (err) {
158		ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err);
159		ubifs_ro_mode(c, err);
160		dump_stack();
161	}
162	return err;
163}
164
165int ubifs_leb_map(struct ubifs_info *c, int lnum)
166{
167	int err;
168
169	ubifs_assert(c, !c->ro_media && !c->ro_mount);
170	if (c->ro_error)
171		return -EROFS;
172	if (!dbg_is_tst_rcvry(c))
173		err = ubi_leb_map(c->ubi, lnum);
174	else
175		err = dbg_leb_map(c, lnum);
176	if (err) {
177		ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err);
178		ubifs_ro_mode(c, err);
179		dump_stack();
180	}
181	return err;
182}
183
184int ubifs_is_mapped(const struct ubifs_info *c, int lnum)
185{
186	int err;
187
188	err = ubi_is_mapped(c->ubi, lnum);
189	if (err < 0) {
190		ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d",
191			  lnum, err);
192		dump_stack();
193	}
194	return err;
195}
196
197/**
198 * ubifs_check_node - check node.
199 * @c: UBIFS file-system description object
200 * @buf: node to check
201 * @len: node length
202 * @lnum: logical eraseblock number
203 * @offs: offset within the logical eraseblock
204 * @quiet: print no messages
205 * @must_chk_crc: indicates whether to always check the CRC
206 *
207 * This function checks node magic number and CRC checksum. This function also
208 * validates node length to prevent UBIFS from becoming crazy when an attacker
209 * feeds it a file-system image with incorrect nodes. For example, too large
210 * node length in the common header could cause UBIFS to read memory outside of
211 * allocated buffer when checking the CRC checksum.
212 *
213 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is
214 * true, which is controlled by corresponding UBIFS mount option. However, if
215 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is
216 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are
217 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC
218 * is checked. This is because during mounting or re-mounting from R/O mode to
219 * R/W mode we may read journal nodes (when replying the journal or doing the
220 * recovery) and the journal nodes may potentially be corrupted, so checking is
221 * required.
222 *
223 * This function returns zero in case of success and %-EUCLEAN in case of bad
224 * CRC or magic.
225 */
226int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len,
227		     int lnum, int offs, int quiet, int must_chk_crc)
228{
229	int err = -EINVAL, type, node_len;
230	uint32_t crc, node_crc, magic;
231	const struct ubifs_ch *ch = buf;
232
233	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
234	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
235
236	magic = le32_to_cpu(ch->magic);
237	if (magic != UBIFS_NODE_MAGIC) {
238		if (!quiet)
239			ubifs_err(c, "bad magic %#08x, expected %#08x",
240				  magic, UBIFS_NODE_MAGIC);
241		err = -EUCLEAN;
242		goto out;
243	}
244
245	type = ch->node_type;
246	if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) {
247		if (!quiet)
248			ubifs_err(c, "bad node type %d", type);
249		goto out;
250	}
251
252	node_len = le32_to_cpu(ch->len);
253	if (node_len + offs > c->leb_size)
254		goto out_len;
255
256	if (c->ranges[type].max_len == 0) {
257		if (node_len != c->ranges[type].len)
258			goto out_len;
259	} else if (node_len < c->ranges[type].min_len ||
260		   node_len > c->ranges[type].max_len)
261		goto out_len;
262
263	if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting &&
264	    !c->remounting_rw && c->no_chk_data_crc)
265		return 0;
266
267	crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8);
268	node_crc = le32_to_cpu(ch->crc);
269	if (crc != node_crc) {
270		if (!quiet)
271			ubifs_err(c, "bad CRC: calculated %#08x, read %#08x",
272				  crc, node_crc);
273		err = -EUCLEAN;
274		goto out;
275	}
276
277	return 0;
278
279out_len:
280	if (!quiet)
281		ubifs_err(c, "bad node length %d", node_len);
282out:
283	if (!quiet) {
284		ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
285		ubifs_dump_node(c, buf, len);
286		dump_stack();
287	}
288	return err;
289}
290
291/**
292 * ubifs_pad - pad flash space.
293 * @c: UBIFS file-system description object
294 * @buf: buffer to put padding to
295 * @pad: how many bytes to pad
296 *
297 * The flash media obliges us to write only in chunks of %c->min_io_size and
298 * when we have to write less data we add padding node to the write-buffer and
299 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the
300 * media is being scanned. If the amount of wasted space is not enough to fit a
301 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes
302 * pattern (%UBIFS_PADDING_BYTE).
303 *
304 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is
305 * used.
306 */
307void ubifs_pad(const struct ubifs_info *c, void *buf, int pad)
308{
309	uint32_t crc;
310
311	ubifs_assert(c, pad >= 0);
312
313	if (pad >= UBIFS_PAD_NODE_SZ) {
314		struct ubifs_ch *ch = buf;
315		struct ubifs_pad_node *pad_node = buf;
316
317		ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
318		ch->node_type = UBIFS_PAD_NODE;
319		ch->group_type = UBIFS_NO_NODE_GROUP;
320		ch->padding[0] = ch->padding[1] = 0;
321		ch->sqnum = 0;
322		ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ);
323		pad -= UBIFS_PAD_NODE_SZ;
324		pad_node->pad_len = cpu_to_le32(pad);
325		crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8);
326		ch->crc = cpu_to_le32(crc);
327		memset(buf + UBIFS_PAD_NODE_SZ, 0, pad);
328	} else if (pad > 0)
329		/* Too little space, padding node won't fit */
330		memset(buf, UBIFS_PADDING_BYTE, pad);
331}
332
333/**
334 * next_sqnum - get next sequence number.
335 * @c: UBIFS file-system description object
336 */
337static unsigned long long next_sqnum(struct ubifs_info *c)
338{
339	unsigned long long sqnum;
340
341	spin_lock(&c->cnt_lock);
342	sqnum = ++c->max_sqnum;
343	spin_unlock(&c->cnt_lock);
344
345	if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) {
346		if (sqnum >= SQNUM_WATERMARK) {
347			ubifs_err(c, "sequence number overflow %llu, end of life",
348				  sqnum);
349			ubifs_ro_mode(c, -EINVAL);
350		}
351		ubifs_warn(c, "running out of sequence numbers, end of life soon");
352	}
353
354	return sqnum;
355}
356
357void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad)
358{
359	struct ubifs_ch *ch = node;
360	unsigned long long sqnum = next_sqnum(c);
361
362	ubifs_assert(c, len >= UBIFS_CH_SZ);
363
364	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
365	ch->len = cpu_to_le32(len);
366	ch->group_type = UBIFS_NO_NODE_GROUP;
367	ch->sqnum = cpu_to_le64(sqnum);
368	ch->padding[0] = ch->padding[1] = 0;
369
370	if (pad) {
371		len = ALIGN(len, 8);
372		pad = ALIGN(len, c->min_io_size) - len;
373		ubifs_pad(c, node + len, pad);
374	}
375}
376
377void ubifs_crc_node(struct ubifs_info *c, void *node, int len)
378{
379	struct ubifs_ch *ch = node;
380	uint32_t crc;
381
382	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
383	ch->crc = cpu_to_le32(crc);
384}
385
386/**
387 * ubifs_prepare_node_hmac - prepare node to be written to flash.
388 * @c: UBIFS file-system description object
389 * @node: the node to pad
390 * @len: node length
391 * @hmac_offs: offset of the HMAC in the node
392 * @pad: if the buffer has to be padded
393 *
394 * This function prepares node at @node to be written to the media - it
395 * calculates node CRC, fills the common header, and adds proper padding up to
396 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then
397 * a HMAC is inserted into the node at the given offset.
398 *
399 * This function returns 0 for success or a negative error code otherwise.
400 */
401int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len,
402			    int hmac_offs, int pad)
403{
404	int err;
405
406	ubifs_init_node(c, node, len, pad);
407
408	if (hmac_offs > 0) {
409		err = ubifs_node_insert_hmac(c, node, len, hmac_offs);
410		if (err)
411			return err;
412	}
413
414	ubifs_crc_node(c, node, len);
415
416	return 0;
417}
418
419/**
420 * ubifs_prepare_node - prepare node to be written to flash.
421 * @c: UBIFS file-system description object
422 * @node: the node to pad
423 * @len: node length
424 * @pad: if the buffer has to be padded
425 *
426 * This function prepares node at @node to be written to the media - it
427 * calculates node CRC, fills the common header, and adds proper padding up to
428 * the next minimum I/O unit if @pad is not zero.
429 */
430void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad)
431{
432	/*
433	 * Deliberately ignore return value since this function can only fail
434	 * when a hmac offset is given.
435	 */
436	ubifs_prepare_node_hmac(c, node, len, 0, pad);
437}
438
439/**
440 * ubifs_prep_grp_node - prepare node of a group to be written to flash.
441 * @c: UBIFS file-system description object
442 * @node: the node to pad
443 * @len: node length
444 * @last: indicates the last node of the group
445 *
446 * This function prepares node at @node to be written to the media - it
447 * calculates node CRC and fills the common header.
448 */
449void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last)
450{
451	uint32_t crc;
452	struct ubifs_ch *ch = node;
453	unsigned long long sqnum = next_sqnum(c);
454
455	ubifs_assert(c, len >= UBIFS_CH_SZ);
456
457	ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC);
458	ch->len = cpu_to_le32(len);
459	if (last)
460		ch->group_type = UBIFS_LAST_OF_NODE_GROUP;
461	else
462		ch->group_type = UBIFS_IN_NODE_GROUP;
463	ch->sqnum = cpu_to_le64(sqnum);
464	ch->padding[0] = ch->padding[1] = 0;
465	crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8);
466	ch->crc = cpu_to_le32(crc);
467}
468
469/**
470 * wbuf_timer_callback - write-buffer timer callback function.
471 * @timer: timer data (write-buffer descriptor)
472 *
473 * This function is called when the write-buffer timer expires.
474 */
475static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer)
476{
477	struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer);
478
479	dbg_io("jhead %s", dbg_jhead(wbuf->jhead));
480	wbuf->need_sync = 1;
481	wbuf->c->need_wbuf_sync = 1;
482	ubifs_wake_up_bgt(wbuf->c);
483	return HRTIMER_NORESTART;
484}
485
486/**
487 * new_wbuf_timer - start new write-buffer timer.
488 * @c: UBIFS file-system description object
489 * @wbuf: write-buffer descriptor
490 */
491static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
492{
493	ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10);
494	unsigned long long delta = dirty_writeback_interval;
495
496	/* centi to milli, milli to nano, then 10% */
497	delta *= 10ULL * NSEC_PER_MSEC / 10ULL;
498
499	ubifs_assert(c, !hrtimer_active(&wbuf->timer));
500	ubifs_assert(c, delta <= ULONG_MAX);
501
502	if (wbuf->no_timer)
503		return;
504	dbg_io("set timer for jhead %s, %llu-%llu millisecs",
505	       dbg_jhead(wbuf->jhead),
506	       div_u64(ktime_to_ns(softlimit), USEC_PER_SEC),
507	       div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC));
508	hrtimer_start_range_ns(&wbuf->timer, softlimit, delta,
509			       HRTIMER_MODE_REL);
510}
511
512/**
513 * cancel_wbuf_timer - cancel write-buffer timer.
514 * @wbuf: write-buffer descriptor
515 */
516static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf)
517{
518	if (wbuf->no_timer)
519		return;
520	wbuf->need_sync = 0;
521	hrtimer_cancel(&wbuf->timer);
522}
523
524/**
525 * ubifs_wbuf_sync_nolock - synchronize write-buffer.
526 * @wbuf: write-buffer to synchronize
527 *
528 * This function synchronizes write-buffer @buf and returns zero in case of
529 * success or a negative error code in case of failure.
530 *
531 * Note, although write-buffers are of @c->max_write_size, this function does
532 * not necessarily writes all @c->max_write_size bytes to the flash. Instead,
533 * if the write-buffer is only partially filled with data, only the used part
534 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized.
535 * This way we waste less space.
536 */
537int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf)
538{
539	struct ubifs_info *c = wbuf->c;
540	int err, dirt, sync_len;
541
542	cancel_wbuf_timer_nolock(wbuf);
543	if (!wbuf->used || wbuf->lnum == -1)
544		/* Write-buffer is empty or not seeked */
545		return 0;
546
547	dbg_io("LEB %d:%d, %d bytes, jhead %s",
548	       wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead));
549	ubifs_assert(c, !(wbuf->avail & 7));
550	ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size);
551	ubifs_assert(c, wbuf->size >= c->min_io_size);
552	ubifs_assert(c, wbuf->size <= c->max_write_size);
553	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
554	ubifs_assert(c, !c->ro_media && !c->ro_mount);
555	if (c->leb_size - wbuf->offs >= c->max_write_size)
556		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
557
558	if (c->ro_error)
559		return -EROFS;
560
561	/*
562	 * Do not write whole write buffer but write only the minimum necessary
563	 * amount of min. I/O units.
564	 */
565	sync_len = ALIGN(wbuf->used, c->min_io_size);
566	dirt = sync_len - wbuf->used;
567	if (dirt)
568		ubifs_pad(c, wbuf->buf + wbuf->used, dirt);
569	err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len);
570	if (err)
571		return err;
572
573	spin_lock(&wbuf->lock);
574	wbuf->offs += sync_len;
575	/*
576	 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size.
577	 * But our goal is to optimize writes and make sure we write in
578	 * @c->max_write_size chunks and to @c->max_write_size-aligned offset.
579	 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make
580	 * sure that @wbuf->offs + @wbuf->size is aligned to
581	 * @c->max_write_size. This way we make sure that after next
582	 * write-buffer flush we are again at the optimal offset (aligned to
583	 * @c->max_write_size).
584	 */
585	if (c->leb_size - wbuf->offs < c->max_write_size)
586		wbuf->size = c->leb_size - wbuf->offs;
587	else if (wbuf->offs & (c->max_write_size - 1))
588		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
589	else
590		wbuf->size = c->max_write_size;
591	wbuf->avail = wbuf->size;
592	wbuf->used = 0;
593	wbuf->next_ino = 0;
594	spin_unlock(&wbuf->lock);
595
596	if (wbuf->sync_callback)
597		err = wbuf->sync_callback(c, wbuf->lnum,
598					  c->leb_size - wbuf->offs, dirt);
599	return err;
600}
601
602/**
603 * ubifs_wbuf_seek_nolock - seek write-buffer.
604 * @wbuf: write-buffer
605 * @lnum: logical eraseblock number to seek to
606 * @offs: logical eraseblock offset to seek to
607 *
608 * This function targets the write-buffer to logical eraseblock @lnum:@offs.
609 * The write-buffer has to be empty. Returns zero in case of success and a
610 * negative error code in case of failure.
611 */
612int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs)
613{
614	const struct ubifs_info *c = wbuf->c;
615
616	dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead));
617	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt);
618	ubifs_assert(c, offs >= 0 && offs <= c->leb_size);
619	ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7));
620	ubifs_assert(c, lnum != wbuf->lnum);
621	ubifs_assert(c, wbuf->used == 0);
622
623	spin_lock(&wbuf->lock);
624	wbuf->lnum = lnum;
625	wbuf->offs = offs;
626	if (c->leb_size - wbuf->offs < c->max_write_size)
627		wbuf->size = c->leb_size - wbuf->offs;
628	else if (wbuf->offs & (c->max_write_size - 1))
629		wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs;
630	else
631		wbuf->size = c->max_write_size;
632	wbuf->avail = wbuf->size;
633	wbuf->used = 0;
634	spin_unlock(&wbuf->lock);
635
636	return 0;
637}
638
639/**
640 * ubifs_bg_wbufs_sync - synchronize write-buffers.
641 * @c: UBIFS file-system description object
642 *
643 * This function is called by background thread to synchronize write-buffers.
644 * Returns zero in case of success and a negative error code in case of
645 * failure.
646 */
647int ubifs_bg_wbufs_sync(struct ubifs_info *c)
648{
649	int err, i;
650
651	ubifs_assert(c, !c->ro_media && !c->ro_mount);
652	if (!c->need_wbuf_sync)
653		return 0;
654	c->need_wbuf_sync = 0;
655
656	if (c->ro_error) {
657		err = -EROFS;
658		goto out_timers;
659	}
660
661	dbg_io("synchronize");
662	for (i = 0; i < c->jhead_cnt; i++) {
663		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
664
665		cond_resched();
666
667		/*
668		 * If the mutex is locked then wbuf is being changed, so
669		 * synchronization is not necessary.
670		 */
671		if (mutex_is_locked(&wbuf->io_mutex))
672			continue;
673
674		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
675		if (!wbuf->need_sync) {
676			mutex_unlock(&wbuf->io_mutex);
677			continue;
678		}
679
680		err = ubifs_wbuf_sync_nolock(wbuf);
681		mutex_unlock(&wbuf->io_mutex);
682		if (err) {
683			ubifs_err(c, "cannot sync write-buffer, error %d", err);
684			ubifs_ro_mode(c, err);
685			goto out_timers;
686		}
687	}
688
689	return 0;
690
691out_timers:
692	/* Cancel all timers to prevent repeated errors */
693	for (i = 0; i < c->jhead_cnt; i++) {
694		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
695
696		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
697		cancel_wbuf_timer_nolock(wbuf);
698		mutex_unlock(&wbuf->io_mutex);
699	}
700	return err;
701}
702
703/**
704 * ubifs_wbuf_write_nolock - write data to flash via write-buffer.
705 * @wbuf: write-buffer
706 * @buf: node to write
707 * @len: node length
708 *
709 * This function writes data to flash via write-buffer @wbuf. This means that
710 * the last piece of the node won't reach the flash media immediately if it
711 * does not take whole max. write unit (@c->max_write_size). Instead, the node
712 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or
713 * because more data are appended to the write-buffer).
714 *
715 * This function returns zero in case of success and a negative error code in
716 * case of failure. If the node cannot be written because there is no more
717 * space in this logical eraseblock, %-ENOSPC is returned.
718 */
719int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len)
720{
721	struct ubifs_info *c = wbuf->c;
722	int err, n, written = 0, aligned_len = ALIGN(len, 8);
723
724	dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len,
725	       dbg_ntype(((struct ubifs_ch *)buf)->node_type),
726	       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used);
727	ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt);
728	ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0);
729	ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size);
730	ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size);
731	ubifs_assert(c, wbuf->size >= c->min_io_size);
732	ubifs_assert(c, wbuf->size <= c->max_write_size);
733	ubifs_assert(c, wbuf->size % c->min_io_size == 0);
734	ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex));
735	ubifs_assert(c, !c->ro_media && !c->ro_mount);
736	ubifs_assert(c, !c->space_fixup);
737	if (c->leb_size - wbuf->offs >= c->max_write_size)
738		ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size));
739
740	if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) {
741		err = -ENOSPC;
742		goto out;
743	}
744
745	cancel_wbuf_timer_nolock(wbuf);
746
747	if (c->ro_error)
748		return -EROFS;
749
750	if (aligned_len <= wbuf->avail) {
751		/*
752		 * The node is not very large and fits entirely within
753		 * write-buffer.
754		 */
755		memcpy(wbuf->buf + wbuf->used, buf, len);
756		if (aligned_len > len) {
757			ubifs_assert(c, aligned_len - len < 8);
758			ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len);
759		}
760
761		if (aligned_len == wbuf->avail) {
762			dbg_io("flush jhead %s wbuf to LEB %d:%d",
763			       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
764			err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf,
765					      wbuf->offs, wbuf->size);
766			if (err)
767				goto out;
768
769			spin_lock(&wbuf->lock);
770			wbuf->offs += wbuf->size;
771			if (c->leb_size - wbuf->offs >= c->max_write_size)
772				wbuf->size = c->max_write_size;
773			else
774				wbuf->size = c->leb_size - wbuf->offs;
775			wbuf->avail = wbuf->size;
776			wbuf->used = 0;
777			wbuf->next_ino = 0;
778			spin_unlock(&wbuf->lock);
779		} else {
780			spin_lock(&wbuf->lock);
781			wbuf->avail -= aligned_len;
782			wbuf->used += aligned_len;
783			spin_unlock(&wbuf->lock);
784		}
785
786		goto exit;
787	}
788
789	if (wbuf->used) {
790		/*
791		 * The node is large enough and does not fit entirely within
792		 * current available space. We have to fill and flush
793		 * write-buffer and switch to the next max. write unit.
794		 */
795		dbg_io("flush jhead %s wbuf to LEB %d:%d",
796		       dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs);
797		memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail);
798		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs,
799				      wbuf->size);
800		if (err)
801			goto out;
802
803		wbuf->offs += wbuf->size;
804		len -= wbuf->avail;
805		aligned_len -= wbuf->avail;
806		written += wbuf->avail;
807	} else if (wbuf->offs & (c->max_write_size - 1)) {
808		/*
809		 * The write-buffer offset is not aligned to
810		 * @c->max_write_size and @wbuf->size is less than
811		 * @c->max_write_size. Write @wbuf->size bytes to make sure the
812		 * following writes are done in optimal @c->max_write_size
813		 * chunks.
814		 */
815		dbg_io("write %d bytes to LEB %d:%d",
816		       wbuf->size, wbuf->lnum, wbuf->offs);
817		err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs,
818				      wbuf->size);
819		if (err)
820			goto out;
821
822		wbuf->offs += wbuf->size;
823		len -= wbuf->size;
824		aligned_len -= wbuf->size;
825		written += wbuf->size;
826	}
827
828	/*
829	 * The remaining data may take more whole max. write units, so write the
830	 * remains multiple to max. write unit size directly to the flash media.
831	 * We align node length to 8-byte boundary because we anyway flash wbuf
832	 * if the remaining space is less than 8 bytes.
833	 */
834	n = aligned_len >> c->max_write_shift;
835	if (n) {
836		int m = n - 1;
837
838		dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum,
839		       wbuf->offs);
840
841		if (m) {
842			/* '(n-1)<<c->max_write_shift < len' is always true. */
843			m <<= c->max_write_shift;
844			err = ubifs_leb_write(c, wbuf->lnum, buf + written,
845					      wbuf->offs, m);
846			if (err)
847				goto out;
848			wbuf->offs += m;
849			aligned_len -= m;
850			len -= m;
851			written += m;
852		}
853
854		/*
855		 * The non-written len of buf may be less than 'n' because
856		 * parameter 'len' is not 8 bytes aligned, so here we read
857		 * min(len, n) bytes from buf.
858		 */
859		n = 1 << c->max_write_shift;
860		memcpy(wbuf->buf, buf + written, min(len, n));
861		if (n > len) {
862			ubifs_assert(c, n - len < 8);
863			ubifs_pad(c, wbuf->buf + len, n - len);
864		}
865
866		err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n);
867		if (err)
868			goto out;
869		wbuf->offs += n;
870		aligned_len -= n;
871		len -= min(len, n);
872		written += n;
873	}
874
875	spin_lock(&wbuf->lock);
876	if (aligned_len) {
877		/*
878		 * And now we have what's left and what does not take whole
879		 * max. write unit, so write it to the write-buffer and we are
880		 * done.
881		 */
882		memcpy(wbuf->buf, buf + written, len);
883		if (aligned_len > len) {
884			ubifs_assert(c, aligned_len - len < 8);
885			ubifs_pad(c, wbuf->buf + len, aligned_len - len);
886		}
887	}
888
889	if (c->leb_size - wbuf->offs >= c->max_write_size)
890		wbuf->size = c->max_write_size;
891	else
892		wbuf->size = c->leb_size - wbuf->offs;
893	wbuf->avail = wbuf->size - aligned_len;
894	wbuf->used = aligned_len;
895	wbuf->next_ino = 0;
896	spin_unlock(&wbuf->lock);
897
898exit:
899	if (wbuf->sync_callback) {
900		int free = c->leb_size - wbuf->offs - wbuf->used;
901
902		err = wbuf->sync_callback(c, wbuf->lnum, free, 0);
903		if (err)
904			goto out;
905	}
906
907	if (wbuf->used)
908		new_wbuf_timer_nolock(c, wbuf);
909
910	return 0;
911
912out:
913	ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d",
914		  len, wbuf->lnum, wbuf->offs, err);
915	ubifs_dump_node(c, buf, written + len);
916	dump_stack();
917	ubifs_dump_leb(c, wbuf->lnum);
918	return err;
919}
920
921/**
922 * ubifs_write_node_hmac - write node to the media.
923 * @c: UBIFS file-system description object
924 * @buf: the node to write
925 * @len: node length
926 * @lnum: logical eraseblock number
927 * @offs: offset within the logical eraseblock
928 * @hmac_offs: offset of the HMAC within the node
929 *
930 * This function automatically fills node magic number, assigns sequence
931 * number, and calculates node CRC checksum. The length of the @buf buffer has
932 * to be aligned to the minimal I/O unit size. This function automatically
933 * appends padding node and padding bytes if needed. Returns zero in case of
934 * success and a negative error code in case of failure.
935 */
936int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum,
937			  int offs, int hmac_offs)
938{
939	int err, buf_len = ALIGN(len, c->min_io_size);
940
941	dbg_io("LEB %d:%d, %s, length %d (aligned %d)",
942	       lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len,
943	       buf_len);
944	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
945	ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size);
946	ubifs_assert(c, !c->ro_media && !c->ro_mount);
947	ubifs_assert(c, !c->space_fixup);
948
949	if (c->ro_error)
950		return -EROFS;
951
952	err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1);
953	if (err)
954		return err;
955
956	err = ubifs_leb_write(c, lnum, buf, offs, buf_len);
957	if (err)
958		ubifs_dump_node(c, buf, len);
959
960	return err;
961}
962
963/**
964 * ubifs_write_node - write node to the media.
965 * @c: UBIFS file-system description object
966 * @buf: the node to write
967 * @len: node length
968 * @lnum: logical eraseblock number
969 * @offs: offset within the logical eraseblock
970 *
971 * This function automatically fills node magic number, assigns sequence
972 * number, and calculates node CRC checksum. The length of the @buf buffer has
973 * to be aligned to the minimal I/O unit size. This function automatically
974 * appends padding node and padding bytes if needed. Returns zero in case of
975 * success and a negative error code in case of failure.
976 */
977int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum,
978		     int offs)
979{
980	return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1);
981}
982
983/**
984 * ubifs_read_node_wbuf - read node from the media or write-buffer.
985 * @wbuf: wbuf to check for un-written data
986 * @buf: buffer to read to
987 * @type: node type
988 * @len: node length
989 * @lnum: logical eraseblock number
990 * @offs: offset within the logical eraseblock
991 *
992 * This function reads a node of known type and length, checks it and stores
993 * in @buf. If the node partially or fully sits in the write-buffer, this
994 * function takes data from the buffer, otherwise it reads the flash media.
995 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative
996 * error code in case of failure.
997 */
998int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len,
999			 int lnum, int offs)
1000{
1001	const struct ubifs_info *c = wbuf->c;
1002	int err, rlen, overlap;
1003	struct ubifs_ch *ch = buf;
1004
1005	dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs,
1006	       dbg_ntype(type), len, dbg_jhead(wbuf->jhead));
1007	ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1008	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1009	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1010
1011	spin_lock(&wbuf->lock);
1012	overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs);
1013	if (!overlap) {
1014		/* We may safely unlock the write-buffer and read the data */
1015		spin_unlock(&wbuf->lock);
1016		return ubifs_read_node(c, buf, type, len, lnum, offs);
1017	}
1018
1019	/* Don't read under wbuf */
1020	rlen = wbuf->offs - offs;
1021	if (rlen < 0)
1022		rlen = 0;
1023
1024	/* Copy the rest from the write-buffer */
1025	memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen);
1026	spin_unlock(&wbuf->lock);
1027
1028	if (rlen > 0) {
1029		/* Read everything that goes before write-buffer */
1030		err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0);
1031		if (err && err != -EBADMSG)
1032			return err;
1033	}
1034
1035	if (type != ch->node_type) {
1036		ubifs_err(c, "bad node type (%d but expected %d)",
1037			  ch->node_type, type);
1038		goto out;
1039	}
1040
1041	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1042	if (err) {
1043		ubifs_err(c, "expected node type %d", type);
1044		return err;
1045	}
1046
1047	rlen = le32_to_cpu(ch->len);
1048	if (rlen != len) {
1049		ubifs_err(c, "bad node length %d, expected %d", rlen, len);
1050		goto out;
1051	}
1052
1053	return 0;
1054
1055out:
1056	ubifs_err(c, "bad node at LEB %d:%d", lnum, offs);
1057	ubifs_dump_node(c, buf, len);
1058	dump_stack();
1059	return -EINVAL;
1060}
1061
1062/**
1063 * ubifs_read_node - read node.
1064 * @c: UBIFS file-system description object
1065 * @buf: buffer to read to
1066 * @type: node type
1067 * @len: node length (not aligned)
1068 * @lnum: logical eraseblock number
1069 * @offs: offset within the logical eraseblock
1070 *
1071 * This function reads a node of known type and and length, checks it and
1072 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched
1073 * and a negative error code in case of failure.
1074 */
1075int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len,
1076		    int lnum, int offs)
1077{
1078	int err, l;
1079	struct ubifs_ch *ch = buf;
1080
1081	dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len);
1082	ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0);
1083	ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size);
1084	ubifs_assert(c, !(offs & 7) && offs < c->leb_size);
1085	ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT);
1086
1087	err = ubifs_leb_read(c, lnum, buf, offs, len, 0);
1088	if (err && err != -EBADMSG)
1089		return err;
1090
1091	if (type != ch->node_type) {
1092		ubifs_errc(c, "bad node type (%d but expected %d)",
1093			   ch->node_type, type);
1094		goto out;
1095	}
1096
1097	err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0);
1098	if (err) {
1099		ubifs_errc(c, "expected node type %d", type);
1100		return err;
1101	}
1102
1103	l = le32_to_cpu(ch->len);
1104	if (l != len) {
1105		ubifs_errc(c, "bad node length %d, expected %d", l, len);
1106		goto out;
1107	}
1108
1109	return 0;
1110
1111out:
1112	ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum,
1113		   offs, ubi_is_mapped(c->ubi, lnum));
1114	if (!c->probing) {
1115		ubifs_dump_node(c, buf, len);
1116		dump_stack();
1117	}
1118	return -EINVAL;
1119}
1120
1121/**
1122 * ubifs_wbuf_init - initialize write-buffer.
1123 * @c: UBIFS file-system description object
1124 * @wbuf: write-buffer to initialize
1125 *
1126 * This function initializes write-buffer. Returns zero in case of success
1127 * %-ENOMEM in case of failure.
1128 */
1129int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf)
1130{
1131	size_t size;
1132
1133	wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL);
1134	if (!wbuf->buf)
1135		return -ENOMEM;
1136
1137	size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t);
1138	wbuf->inodes = kmalloc(size, GFP_KERNEL);
1139	if (!wbuf->inodes) {
1140		kfree(wbuf->buf);
1141		wbuf->buf = NULL;
1142		return -ENOMEM;
1143	}
1144
1145	wbuf->used = 0;
1146	wbuf->lnum = wbuf->offs = -1;
1147	/*
1148	 * If the LEB starts at the max. write size aligned address, then
1149	 * write-buffer size has to be set to @c->max_write_size. Otherwise,
1150	 * set it to something smaller so that it ends at the closest max.
1151	 * write size boundary.
1152	 */
1153	size = c->max_write_size - (c->leb_start % c->max_write_size);
1154	wbuf->avail = wbuf->size = size;
1155	wbuf->sync_callback = NULL;
1156	mutex_init(&wbuf->io_mutex);
1157	spin_lock_init(&wbuf->lock);
1158	wbuf->c = c;
1159	wbuf->next_ino = 0;
1160
1161	hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
1162	wbuf->timer.function = wbuf_timer_callback_nolock;
1163	return 0;
1164}
1165
1166/**
1167 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array.
1168 * @wbuf: the write-buffer where to add
1169 * @inum: the inode number
1170 *
1171 * This function adds an inode number to the inode array of the write-buffer.
1172 */
1173void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum)
1174{
1175	if (!wbuf->buf)
1176		/* NOR flash or something similar */
1177		return;
1178
1179	spin_lock(&wbuf->lock);
1180	if (wbuf->used)
1181		wbuf->inodes[wbuf->next_ino++] = inum;
1182	spin_unlock(&wbuf->lock);
1183}
1184
1185/**
1186 * wbuf_has_ino - returns if the wbuf contains data from the inode.
1187 * @wbuf: the write-buffer
1188 * @inum: the inode number
1189 *
1190 * This function returns with %1 if the write-buffer contains some data from the
1191 * given inode otherwise it returns with %0.
1192 */
1193static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum)
1194{
1195	int i, ret = 0;
1196
1197	spin_lock(&wbuf->lock);
1198	for (i = 0; i < wbuf->next_ino; i++)
1199		if (inum == wbuf->inodes[i]) {
1200			ret = 1;
1201			break;
1202		}
1203	spin_unlock(&wbuf->lock);
1204
1205	return ret;
1206}
1207
1208/**
1209 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode.
1210 * @c: UBIFS file-system description object
1211 * @inode: inode to synchronize
1212 *
1213 * This function synchronizes write-buffers which contain nodes belonging to
1214 * @inode. Returns zero in case of success and a negative error code in case of
1215 * failure.
1216 */
1217int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode)
1218{
1219	int i, err = 0;
1220
1221	for (i = 0; i < c->jhead_cnt; i++) {
1222		struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf;
1223
1224		if (i == GCHD)
1225			/*
1226			 * GC head is special, do not look at it. Even if the
1227			 * head contains something related to this inode, it is
1228			 * a _copy_ of corresponding on-flash node which sits
1229			 * somewhere else.
1230			 */
1231			continue;
1232
1233		if (!wbuf_has_ino(wbuf, inode->i_ino))
1234			continue;
1235
1236		mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead);
1237		if (wbuf_has_ino(wbuf, inode->i_ino))
1238			err = ubifs_wbuf_sync_nolock(wbuf);
1239		mutex_unlock(&wbuf->io_mutex);
1240
1241		if (err) {
1242			ubifs_ro_mode(c, err);
1243			return err;
1244		}
1245	}
1246	return 0;
1247}
1248