1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * Copyright (C) 2006, 2007 University of Szeged, Hungary 7 * 8 * Authors: Artem Bityutskiy (Битюцкий Артём) 9 * Adrian Hunter 10 * Zoltan Sogor 11 */ 12 13/* 14 * This file implements UBIFS I/O subsystem which provides various I/O-related 15 * helper functions (reading/writing/checking/validating nodes) and implements 16 * write-buffering support. Write buffers help to save space which otherwise 17 * would have been wasted for padding to the nearest minimal I/O unit boundary. 18 * Instead, data first goes to the write-buffer and is flushed when the 19 * buffer is full or when it is not used for some time (by timer). This is 20 * similar to the mechanism is used by JFFS2. 21 * 22 * UBIFS distinguishes between minimum write size (@c->min_io_size) and maximum 23 * write size (@c->max_write_size). The latter is the maximum amount of bytes 24 * the underlying flash is able to program at a time, and writing in 25 * @c->max_write_size units should presumably be faster. Obviously, 26 * @c->min_io_size <= @c->max_write_size. Write-buffers are of 27 * @c->max_write_size bytes in size for maximum performance. However, when a 28 * write-buffer is flushed, only the portion of it (aligned to @c->min_io_size 29 * boundary) which contains data is written, not the whole write-buffer, 30 * because this is more space-efficient. 31 * 32 * This optimization adds few complications to the code. Indeed, on the one 33 * hand, we want to write in optimal @c->max_write_size bytes chunks, which 34 * also means aligning writes at the @c->max_write_size bytes offsets. On the 35 * other hand, we do not want to waste space when synchronizing the write 36 * buffer, so during synchronization we writes in smaller chunks. And this makes 37 * the next write offset to be not aligned to @c->max_write_size bytes. So the 38 * have to make sure that the write-buffer offset (@wbuf->offs) becomes aligned 39 * to @c->max_write_size bytes again. We do this by temporarily shrinking 40 * write-buffer size (@wbuf->size). 41 * 42 * Write-buffers are defined by 'struct ubifs_wbuf' objects and protected by 43 * mutexes defined inside these objects. Since sometimes upper-level code 44 * has to lock the write-buffer (e.g. journal space reservation code), many 45 * functions related to write-buffers have "nolock" suffix which means that the 46 * caller has to lock the write-buffer before calling this function. 47 * 48 * UBIFS stores nodes at 64 bit-aligned addresses. If the node length is not 49 * aligned, UBIFS starts the next node from the aligned address, and the padded 50 * bytes may contain any rubbish. In other words, UBIFS does not put padding 51 * bytes in those small gaps. Common headers of nodes store real node lengths, 52 * not aligned lengths. Indexing nodes also store real lengths in branches. 53 * 54 * UBIFS uses padding when it pads to the next min. I/O unit. In this case it 55 * uses padding nodes or padding bytes, if the padding node does not fit. 56 * 57 * All UBIFS nodes are protected by CRC checksums and UBIFS checks CRC when 58 * they are read from the flash media. 59 */ 60 61#include <linux/crc32.h> 62#include <linux/slab.h> 63#include "ubifs.h" 64 65/** 66 * ubifs_ro_mode - switch UBIFS to read read-only mode. 67 * @c: UBIFS file-system description object 68 * @err: error code which is the reason of switching to R/O mode 69 */ 70void ubifs_ro_mode(struct ubifs_info *c, int err) 71{ 72 if (!c->ro_error) { 73 c->ro_error = 1; 74 c->no_chk_data_crc = 0; 75 c->vfs_sb->s_flags |= SB_RDONLY; 76 ubifs_warn(c, "switched to read-only mode, error %d", err); 77 dump_stack(); 78 } 79} 80 81/* 82 * Below are simple wrappers over UBI I/O functions which include some 83 * additional checks and UBIFS debugging stuff. See corresponding UBI function 84 * for more information. 85 */ 86 87int ubifs_leb_read(const struct ubifs_info *c, int lnum, void *buf, int offs, 88 int len, int even_ebadmsg) 89{ 90 int err; 91 92 err = ubi_read(c->ubi, lnum, buf, offs, len); 93 /* 94 * In case of %-EBADMSG print the error message only if the 95 * @even_ebadmsg is true. 96 */ 97 if (err && (err != -EBADMSG || even_ebadmsg)) { 98 ubifs_err(c, "reading %d bytes from LEB %d:%d failed, error %d", 99 len, lnum, offs, err); 100 dump_stack(); 101 } 102 return err; 103} 104 105int ubifs_leb_write(struct ubifs_info *c, int lnum, const void *buf, int offs, 106 int len) 107{ 108 int err; 109 110 ubifs_assert(c, !c->ro_media && !c->ro_mount); 111 if (c->ro_error) 112 return -EROFS; 113 if (!dbg_is_tst_rcvry(c)) 114 err = ubi_leb_write(c->ubi, lnum, buf, offs, len); 115 else 116 err = dbg_leb_write(c, lnum, buf, offs, len); 117 if (err) { 118 ubifs_err(c, "writing %d bytes to LEB %d:%d failed, error %d", 119 len, lnum, offs, err); 120 ubifs_ro_mode(c, err); 121 dump_stack(); 122 } 123 return err; 124} 125 126int ubifs_leb_change(struct ubifs_info *c, int lnum, const void *buf, int len) 127{ 128 int err; 129 130 ubifs_assert(c, !c->ro_media && !c->ro_mount); 131 if (c->ro_error) 132 return -EROFS; 133 if (!dbg_is_tst_rcvry(c)) 134 err = ubi_leb_change(c->ubi, lnum, buf, len); 135 else 136 err = dbg_leb_change(c, lnum, buf, len); 137 if (err) { 138 ubifs_err(c, "changing %d bytes in LEB %d failed, error %d", 139 len, lnum, err); 140 ubifs_ro_mode(c, err); 141 dump_stack(); 142 } 143 return err; 144} 145 146int ubifs_leb_unmap(struct ubifs_info *c, int lnum) 147{ 148 int err; 149 150 ubifs_assert(c, !c->ro_media && !c->ro_mount); 151 if (c->ro_error) 152 return -EROFS; 153 if (!dbg_is_tst_rcvry(c)) 154 err = ubi_leb_unmap(c->ubi, lnum); 155 else 156 err = dbg_leb_unmap(c, lnum); 157 if (err) { 158 ubifs_err(c, "unmap LEB %d failed, error %d", lnum, err); 159 ubifs_ro_mode(c, err); 160 dump_stack(); 161 } 162 return err; 163} 164 165int ubifs_leb_map(struct ubifs_info *c, int lnum) 166{ 167 int err; 168 169 ubifs_assert(c, !c->ro_media && !c->ro_mount); 170 if (c->ro_error) 171 return -EROFS; 172 if (!dbg_is_tst_rcvry(c)) 173 err = ubi_leb_map(c->ubi, lnum); 174 else 175 err = dbg_leb_map(c, lnum); 176 if (err) { 177 ubifs_err(c, "mapping LEB %d failed, error %d", lnum, err); 178 ubifs_ro_mode(c, err); 179 dump_stack(); 180 } 181 return err; 182} 183 184int ubifs_is_mapped(const struct ubifs_info *c, int lnum) 185{ 186 int err; 187 188 err = ubi_is_mapped(c->ubi, lnum); 189 if (err < 0) { 190 ubifs_err(c, "ubi_is_mapped failed for LEB %d, error %d", 191 lnum, err); 192 dump_stack(); 193 } 194 return err; 195} 196 197/** 198 * ubifs_check_node - check node. 199 * @c: UBIFS file-system description object 200 * @buf: node to check 201 * @len: node length 202 * @lnum: logical eraseblock number 203 * @offs: offset within the logical eraseblock 204 * @quiet: print no messages 205 * @must_chk_crc: indicates whether to always check the CRC 206 * 207 * This function checks node magic number and CRC checksum. This function also 208 * validates node length to prevent UBIFS from becoming crazy when an attacker 209 * feeds it a file-system image with incorrect nodes. For example, too large 210 * node length in the common header could cause UBIFS to read memory outside of 211 * allocated buffer when checking the CRC checksum. 212 * 213 * This function may skip data nodes CRC checking if @c->no_chk_data_crc is 214 * true, which is controlled by corresponding UBIFS mount option. However, if 215 * @must_chk_crc is true, then @c->no_chk_data_crc is ignored and CRC is 216 * checked. Similarly, if @c->mounting or @c->remounting_rw is true (we are 217 * mounting or re-mounting to R/W mode), @c->no_chk_data_crc is ignored and CRC 218 * is checked. This is because during mounting or re-mounting from R/O mode to 219 * R/W mode we may read journal nodes (when replying the journal or doing the 220 * recovery) and the journal nodes may potentially be corrupted, so checking is 221 * required. 222 * 223 * This function returns zero in case of success and %-EUCLEAN in case of bad 224 * CRC or magic. 225 */ 226int ubifs_check_node(const struct ubifs_info *c, const void *buf, int len, 227 int lnum, int offs, int quiet, int must_chk_crc) 228{ 229 int err = -EINVAL, type, node_len; 230 uint32_t crc, node_crc, magic; 231 const struct ubifs_ch *ch = buf; 232 233 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 234 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 235 236 magic = le32_to_cpu(ch->magic); 237 if (magic != UBIFS_NODE_MAGIC) { 238 if (!quiet) 239 ubifs_err(c, "bad magic %#08x, expected %#08x", 240 magic, UBIFS_NODE_MAGIC); 241 err = -EUCLEAN; 242 goto out; 243 } 244 245 type = ch->node_type; 246 if (type < 0 || type >= UBIFS_NODE_TYPES_CNT) { 247 if (!quiet) 248 ubifs_err(c, "bad node type %d", type); 249 goto out; 250 } 251 252 node_len = le32_to_cpu(ch->len); 253 if (node_len + offs > c->leb_size) 254 goto out_len; 255 256 if (c->ranges[type].max_len == 0) { 257 if (node_len != c->ranges[type].len) 258 goto out_len; 259 } else if (node_len < c->ranges[type].min_len || 260 node_len > c->ranges[type].max_len) 261 goto out_len; 262 263 if (!must_chk_crc && type == UBIFS_DATA_NODE && !c->mounting && 264 !c->remounting_rw && c->no_chk_data_crc) 265 return 0; 266 267 crc = crc32(UBIFS_CRC32_INIT, buf + 8, node_len - 8); 268 node_crc = le32_to_cpu(ch->crc); 269 if (crc != node_crc) { 270 if (!quiet) 271 ubifs_err(c, "bad CRC: calculated %#08x, read %#08x", 272 crc, node_crc); 273 err = -EUCLEAN; 274 goto out; 275 } 276 277 return 0; 278 279out_len: 280 if (!quiet) 281 ubifs_err(c, "bad node length %d", node_len); 282out: 283 if (!quiet) { 284 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 285 ubifs_dump_node(c, buf, len); 286 dump_stack(); 287 } 288 return err; 289} 290 291/** 292 * ubifs_pad - pad flash space. 293 * @c: UBIFS file-system description object 294 * @buf: buffer to put padding to 295 * @pad: how many bytes to pad 296 * 297 * The flash media obliges us to write only in chunks of %c->min_io_size and 298 * when we have to write less data we add padding node to the write-buffer and 299 * pad it to the next minimal I/O unit's boundary. Padding nodes help when the 300 * media is being scanned. If the amount of wasted space is not enough to fit a 301 * padding node which takes %UBIFS_PAD_NODE_SZ bytes, we write padding bytes 302 * pattern (%UBIFS_PADDING_BYTE). 303 * 304 * Padding nodes are also used to fill gaps when the "commit-in-gaps" method is 305 * used. 306 */ 307void ubifs_pad(const struct ubifs_info *c, void *buf, int pad) 308{ 309 uint32_t crc; 310 311 ubifs_assert(c, pad >= 0); 312 313 if (pad >= UBIFS_PAD_NODE_SZ) { 314 struct ubifs_ch *ch = buf; 315 struct ubifs_pad_node *pad_node = buf; 316 317 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 318 ch->node_type = UBIFS_PAD_NODE; 319 ch->group_type = UBIFS_NO_NODE_GROUP; 320 ch->padding[0] = ch->padding[1] = 0; 321 ch->sqnum = 0; 322 ch->len = cpu_to_le32(UBIFS_PAD_NODE_SZ); 323 pad -= UBIFS_PAD_NODE_SZ; 324 pad_node->pad_len = cpu_to_le32(pad); 325 crc = crc32(UBIFS_CRC32_INIT, buf + 8, UBIFS_PAD_NODE_SZ - 8); 326 ch->crc = cpu_to_le32(crc); 327 memset(buf + UBIFS_PAD_NODE_SZ, 0, pad); 328 } else if (pad > 0) 329 /* Too little space, padding node won't fit */ 330 memset(buf, UBIFS_PADDING_BYTE, pad); 331} 332 333/** 334 * next_sqnum - get next sequence number. 335 * @c: UBIFS file-system description object 336 */ 337static unsigned long long next_sqnum(struct ubifs_info *c) 338{ 339 unsigned long long sqnum; 340 341 spin_lock(&c->cnt_lock); 342 sqnum = ++c->max_sqnum; 343 spin_unlock(&c->cnt_lock); 344 345 if (unlikely(sqnum >= SQNUM_WARN_WATERMARK)) { 346 if (sqnum >= SQNUM_WATERMARK) { 347 ubifs_err(c, "sequence number overflow %llu, end of life", 348 sqnum); 349 ubifs_ro_mode(c, -EINVAL); 350 } 351 ubifs_warn(c, "running out of sequence numbers, end of life soon"); 352 } 353 354 return sqnum; 355} 356 357void ubifs_init_node(struct ubifs_info *c, void *node, int len, int pad) 358{ 359 struct ubifs_ch *ch = node; 360 unsigned long long sqnum = next_sqnum(c); 361 362 ubifs_assert(c, len >= UBIFS_CH_SZ); 363 364 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 365 ch->len = cpu_to_le32(len); 366 ch->group_type = UBIFS_NO_NODE_GROUP; 367 ch->sqnum = cpu_to_le64(sqnum); 368 ch->padding[0] = ch->padding[1] = 0; 369 370 if (pad) { 371 len = ALIGN(len, 8); 372 pad = ALIGN(len, c->min_io_size) - len; 373 ubifs_pad(c, node + len, pad); 374 } 375} 376 377void ubifs_crc_node(struct ubifs_info *c, void *node, int len) 378{ 379 struct ubifs_ch *ch = node; 380 uint32_t crc; 381 382 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 383 ch->crc = cpu_to_le32(crc); 384} 385 386/** 387 * ubifs_prepare_node_hmac - prepare node to be written to flash. 388 * @c: UBIFS file-system description object 389 * @node: the node to pad 390 * @len: node length 391 * @hmac_offs: offset of the HMAC in the node 392 * @pad: if the buffer has to be padded 393 * 394 * This function prepares node at @node to be written to the media - it 395 * calculates node CRC, fills the common header, and adds proper padding up to 396 * the next minimum I/O unit if @pad is not zero. if @hmac_offs is positive then 397 * a HMAC is inserted into the node at the given offset. 398 * 399 * This function returns 0 for success or a negative error code otherwise. 400 */ 401int ubifs_prepare_node_hmac(struct ubifs_info *c, void *node, int len, 402 int hmac_offs, int pad) 403{ 404 int err; 405 406 ubifs_init_node(c, node, len, pad); 407 408 if (hmac_offs > 0) { 409 err = ubifs_node_insert_hmac(c, node, len, hmac_offs); 410 if (err) 411 return err; 412 } 413 414 ubifs_crc_node(c, node, len); 415 416 return 0; 417} 418 419/** 420 * ubifs_prepare_node - prepare node to be written to flash. 421 * @c: UBIFS file-system description object 422 * @node: the node to pad 423 * @len: node length 424 * @pad: if the buffer has to be padded 425 * 426 * This function prepares node at @node to be written to the media - it 427 * calculates node CRC, fills the common header, and adds proper padding up to 428 * the next minimum I/O unit if @pad is not zero. 429 */ 430void ubifs_prepare_node(struct ubifs_info *c, void *node, int len, int pad) 431{ 432 /* 433 * Deliberately ignore return value since this function can only fail 434 * when a hmac offset is given. 435 */ 436 ubifs_prepare_node_hmac(c, node, len, 0, pad); 437} 438 439/** 440 * ubifs_prep_grp_node - prepare node of a group to be written to flash. 441 * @c: UBIFS file-system description object 442 * @node: the node to pad 443 * @len: node length 444 * @last: indicates the last node of the group 445 * 446 * This function prepares node at @node to be written to the media - it 447 * calculates node CRC and fills the common header. 448 */ 449void ubifs_prep_grp_node(struct ubifs_info *c, void *node, int len, int last) 450{ 451 uint32_t crc; 452 struct ubifs_ch *ch = node; 453 unsigned long long sqnum = next_sqnum(c); 454 455 ubifs_assert(c, len >= UBIFS_CH_SZ); 456 457 ch->magic = cpu_to_le32(UBIFS_NODE_MAGIC); 458 ch->len = cpu_to_le32(len); 459 if (last) 460 ch->group_type = UBIFS_LAST_OF_NODE_GROUP; 461 else 462 ch->group_type = UBIFS_IN_NODE_GROUP; 463 ch->sqnum = cpu_to_le64(sqnum); 464 ch->padding[0] = ch->padding[1] = 0; 465 crc = crc32(UBIFS_CRC32_INIT, node + 8, len - 8); 466 ch->crc = cpu_to_le32(crc); 467} 468 469/** 470 * wbuf_timer_callback - write-buffer timer callback function. 471 * @timer: timer data (write-buffer descriptor) 472 * 473 * This function is called when the write-buffer timer expires. 474 */ 475static enum hrtimer_restart wbuf_timer_callback_nolock(struct hrtimer *timer) 476{ 477 struct ubifs_wbuf *wbuf = container_of(timer, struct ubifs_wbuf, timer); 478 479 dbg_io("jhead %s", dbg_jhead(wbuf->jhead)); 480 wbuf->need_sync = 1; 481 wbuf->c->need_wbuf_sync = 1; 482 ubifs_wake_up_bgt(wbuf->c); 483 return HRTIMER_NORESTART; 484} 485 486/** 487 * new_wbuf_timer - start new write-buffer timer. 488 * @c: UBIFS file-system description object 489 * @wbuf: write-buffer descriptor 490 */ 491static void new_wbuf_timer_nolock(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 492{ 493 ktime_t softlimit = ms_to_ktime(dirty_writeback_interval * 10); 494 unsigned long long delta = dirty_writeback_interval; 495 496 /* centi to milli, milli to nano, then 10% */ 497 delta *= 10ULL * NSEC_PER_MSEC / 10ULL; 498 499 ubifs_assert(c, !hrtimer_active(&wbuf->timer)); 500 ubifs_assert(c, delta <= ULONG_MAX); 501 502 if (wbuf->no_timer) 503 return; 504 dbg_io("set timer for jhead %s, %llu-%llu millisecs", 505 dbg_jhead(wbuf->jhead), 506 div_u64(ktime_to_ns(softlimit), USEC_PER_SEC), 507 div_u64(ktime_to_ns(softlimit) + delta, USEC_PER_SEC)); 508 hrtimer_start_range_ns(&wbuf->timer, softlimit, delta, 509 HRTIMER_MODE_REL); 510} 511 512/** 513 * cancel_wbuf_timer - cancel write-buffer timer. 514 * @wbuf: write-buffer descriptor 515 */ 516static void cancel_wbuf_timer_nolock(struct ubifs_wbuf *wbuf) 517{ 518 if (wbuf->no_timer) 519 return; 520 wbuf->need_sync = 0; 521 hrtimer_cancel(&wbuf->timer); 522} 523 524/** 525 * ubifs_wbuf_sync_nolock - synchronize write-buffer. 526 * @wbuf: write-buffer to synchronize 527 * 528 * This function synchronizes write-buffer @buf and returns zero in case of 529 * success or a negative error code in case of failure. 530 * 531 * Note, although write-buffers are of @c->max_write_size, this function does 532 * not necessarily writes all @c->max_write_size bytes to the flash. Instead, 533 * if the write-buffer is only partially filled with data, only the used part 534 * of the write-buffer (aligned on @c->min_io_size boundary) is synchronized. 535 * This way we waste less space. 536 */ 537int ubifs_wbuf_sync_nolock(struct ubifs_wbuf *wbuf) 538{ 539 struct ubifs_info *c = wbuf->c; 540 int err, dirt, sync_len; 541 542 cancel_wbuf_timer_nolock(wbuf); 543 if (!wbuf->used || wbuf->lnum == -1) 544 /* Write-buffer is empty or not seeked */ 545 return 0; 546 547 dbg_io("LEB %d:%d, %d bytes, jhead %s", 548 wbuf->lnum, wbuf->offs, wbuf->used, dbg_jhead(wbuf->jhead)); 549 ubifs_assert(c, !(wbuf->avail & 7)); 550 ubifs_assert(c, wbuf->offs + wbuf->size <= c->leb_size); 551 ubifs_assert(c, wbuf->size >= c->min_io_size); 552 ubifs_assert(c, wbuf->size <= c->max_write_size); 553 ubifs_assert(c, wbuf->size % c->min_io_size == 0); 554 ubifs_assert(c, !c->ro_media && !c->ro_mount); 555 if (c->leb_size - wbuf->offs >= c->max_write_size) 556 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); 557 558 if (c->ro_error) 559 return -EROFS; 560 561 /* 562 * Do not write whole write buffer but write only the minimum necessary 563 * amount of min. I/O units. 564 */ 565 sync_len = ALIGN(wbuf->used, c->min_io_size); 566 dirt = sync_len - wbuf->used; 567 if (dirt) 568 ubifs_pad(c, wbuf->buf + wbuf->used, dirt); 569 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, sync_len); 570 if (err) 571 return err; 572 573 spin_lock(&wbuf->lock); 574 wbuf->offs += sync_len; 575 /* 576 * Now @wbuf->offs is not necessarily aligned to @c->max_write_size. 577 * But our goal is to optimize writes and make sure we write in 578 * @c->max_write_size chunks and to @c->max_write_size-aligned offset. 579 * Thus, if @wbuf->offs is not aligned to @c->max_write_size now, make 580 * sure that @wbuf->offs + @wbuf->size is aligned to 581 * @c->max_write_size. This way we make sure that after next 582 * write-buffer flush we are again at the optimal offset (aligned to 583 * @c->max_write_size). 584 */ 585 if (c->leb_size - wbuf->offs < c->max_write_size) 586 wbuf->size = c->leb_size - wbuf->offs; 587 else if (wbuf->offs & (c->max_write_size - 1)) 588 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 589 else 590 wbuf->size = c->max_write_size; 591 wbuf->avail = wbuf->size; 592 wbuf->used = 0; 593 wbuf->next_ino = 0; 594 spin_unlock(&wbuf->lock); 595 596 if (wbuf->sync_callback) 597 err = wbuf->sync_callback(c, wbuf->lnum, 598 c->leb_size - wbuf->offs, dirt); 599 return err; 600} 601 602/** 603 * ubifs_wbuf_seek_nolock - seek write-buffer. 604 * @wbuf: write-buffer 605 * @lnum: logical eraseblock number to seek to 606 * @offs: logical eraseblock offset to seek to 607 * 608 * This function targets the write-buffer to logical eraseblock @lnum:@offs. 609 * The write-buffer has to be empty. Returns zero in case of success and a 610 * negative error code in case of failure. 611 */ 612int ubifs_wbuf_seek_nolock(struct ubifs_wbuf *wbuf, int lnum, int offs) 613{ 614 const struct ubifs_info *c = wbuf->c; 615 616 dbg_io("LEB %d:%d, jhead %s", lnum, offs, dbg_jhead(wbuf->jhead)); 617 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt); 618 ubifs_assert(c, offs >= 0 && offs <= c->leb_size); 619 ubifs_assert(c, offs % c->min_io_size == 0 && !(offs & 7)); 620 ubifs_assert(c, lnum != wbuf->lnum); 621 ubifs_assert(c, wbuf->used == 0); 622 623 spin_lock(&wbuf->lock); 624 wbuf->lnum = lnum; 625 wbuf->offs = offs; 626 if (c->leb_size - wbuf->offs < c->max_write_size) 627 wbuf->size = c->leb_size - wbuf->offs; 628 else if (wbuf->offs & (c->max_write_size - 1)) 629 wbuf->size = ALIGN(wbuf->offs, c->max_write_size) - wbuf->offs; 630 else 631 wbuf->size = c->max_write_size; 632 wbuf->avail = wbuf->size; 633 wbuf->used = 0; 634 spin_unlock(&wbuf->lock); 635 636 return 0; 637} 638 639/** 640 * ubifs_bg_wbufs_sync - synchronize write-buffers. 641 * @c: UBIFS file-system description object 642 * 643 * This function is called by background thread to synchronize write-buffers. 644 * Returns zero in case of success and a negative error code in case of 645 * failure. 646 */ 647int ubifs_bg_wbufs_sync(struct ubifs_info *c) 648{ 649 int err, i; 650 651 ubifs_assert(c, !c->ro_media && !c->ro_mount); 652 if (!c->need_wbuf_sync) 653 return 0; 654 c->need_wbuf_sync = 0; 655 656 if (c->ro_error) { 657 err = -EROFS; 658 goto out_timers; 659 } 660 661 dbg_io("synchronize"); 662 for (i = 0; i < c->jhead_cnt; i++) { 663 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 664 665 cond_resched(); 666 667 /* 668 * If the mutex is locked then wbuf is being changed, so 669 * synchronization is not necessary. 670 */ 671 if (mutex_is_locked(&wbuf->io_mutex)) 672 continue; 673 674 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 675 if (!wbuf->need_sync) { 676 mutex_unlock(&wbuf->io_mutex); 677 continue; 678 } 679 680 err = ubifs_wbuf_sync_nolock(wbuf); 681 mutex_unlock(&wbuf->io_mutex); 682 if (err) { 683 ubifs_err(c, "cannot sync write-buffer, error %d", err); 684 ubifs_ro_mode(c, err); 685 goto out_timers; 686 } 687 } 688 689 return 0; 690 691out_timers: 692 /* Cancel all timers to prevent repeated errors */ 693 for (i = 0; i < c->jhead_cnt; i++) { 694 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 695 696 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 697 cancel_wbuf_timer_nolock(wbuf); 698 mutex_unlock(&wbuf->io_mutex); 699 } 700 return err; 701} 702 703/** 704 * ubifs_wbuf_write_nolock - write data to flash via write-buffer. 705 * @wbuf: write-buffer 706 * @buf: node to write 707 * @len: node length 708 * 709 * This function writes data to flash via write-buffer @wbuf. This means that 710 * the last piece of the node won't reach the flash media immediately if it 711 * does not take whole max. write unit (@c->max_write_size). Instead, the node 712 * will sit in RAM until the write-buffer is synchronized (e.g., by timer, or 713 * because more data are appended to the write-buffer). 714 * 715 * This function returns zero in case of success and a negative error code in 716 * case of failure. If the node cannot be written because there is no more 717 * space in this logical eraseblock, %-ENOSPC is returned. 718 */ 719int ubifs_wbuf_write_nolock(struct ubifs_wbuf *wbuf, void *buf, int len) 720{ 721 struct ubifs_info *c = wbuf->c; 722 int err, n, written = 0, aligned_len = ALIGN(len, 8); 723 724 dbg_io("%d bytes (%s) to jhead %s wbuf at LEB %d:%d", len, 725 dbg_ntype(((struct ubifs_ch *)buf)->node_type), 726 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs + wbuf->used); 727 ubifs_assert(c, len > 0 && wbuf->lnum >= 0 && wbuf->lnum < c->leb_cnt); 728 ubifs_assert(c, wbuf->offs >= 0 && wbuf->offs % c->min_io_size == 0); 729 ubifs_assert(c, !(wbuf->offs & 7) && wbuf->offs <= c->leb_size); 730 ubifs_assert(c, wbuf->avail > 0 && wbuf->avail <= wbuf->size); 731 ubifs_assert(c, wbuf->size >= c->min_io_size); 732 ubifs_assert(c, wbuf->size <= c->max_write_size); 733 ubifs_assert(c, wbuf->size % c->min_io_size == 0); 734 ubifs_assert(c, mutex_is_locked(&wbuf->io_mutex)); 735 ubifs_assert(c, !c->ro_media && !c->ro_mount); 736 ubifs_assert(c, !c->space_fixup); 737 if (c->leb_size - wbuf->offs >= c->max_write_size) 738 ubifs_assert(c, !((wbuf->offs + wbuf->size) % c->max_write_size)); 739 740 if (c->leb_size - wbuf->offs - wbuf->used < aligned_len) { 741 err = -ENOSPC; 742 goto out; 743 } 744 745 cancel_wbuf_timer_nolock(wbuf); 746 747 if (c->ro_error) 748 return -EROFS; 749 750 if (aligned_len <= wbuf->avail) { 751 /* 752 * The node is not very large and fits entirely within 753 * write-buffer. 754 */ 755 memcpy(wbuf->buf + wbuf->used, buf, len); 756 if (aligned_len > len) { 757 ubifs_assert(c, aligned_len - len < 8); 758 ubifs_pad(c, wbuf->buf + wbuf->used + len, aligned_len - len); 759 } 760 761 if (aligned_len == wbuf->avail) { 762 dbg_io("flush jhead %s wbuf to LEB %d:%d", 763 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 764 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, 765 wbuf->offs, wbuf->size); 766 if (err) 767 goto out; 768 769 spin_lock(&wbuf->lock); 770 wbuf->offs += wbuf->size; 771 if (c->leb_size - wbuf->offs >= c->max_write_size) 772 wbuf->size = c->max_write_size; 773 else 774 wbuf->size = c->leb_size - wbuf->offs; 775 wbuf->avail = wbuf->size; 776 wbuf->used = 0; 777 wbuf->next_ino = 0; 778 spin_unlock(&wbuf->lock); 779 } else { 780 spin_lock(&wbuf->lock); 781 wbuf->avail -= aligned_len; 782 wbuf->used += aligned_len; 783 spin_unlock(&wbuf->lock); 784 } 785 786 goto exit; 787 } 788 789 if (wbuf->used) { 790 /* 791 * The node is large enough and does not fit entirely within 792 * current available space. We have to fill and flush 793 * write-buffer and switch to the next max. write unit. 794 */ 795 dbg_io("flush jhead %s wbuf to LEB %d:%d", 796 dbg_jhead(wbuf->jhead), wbuf->lnum, wbuf->offs); 797 memcpy(wbuf->buf + wbuf->used, buf, wbuf->avail); 798 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, 799 wbuf->size); 800 if (err) 801 goto out; 802 803 wbuf->offs += wbuf->size; 804 len -= wbuf->avail; 805 aligned_len -= wbuf->avail; 806 written += wbuf->avail; 807 } else if (wbuf->offs & (c->max_write_size - 1)) { 808 /* 809 * The write-buffer offset is not aligned to 810 * @c->max_write_size and @wbuf->size is less than 811 * @c->max_write_size. Write @wbuf->size bytes to make sure the 812 * following writes are done in optimal @c->max_write_size 813 * chunks. 814 */ 815 dbg_io("write %d bytes to LEB %d:%d", 816 wbuf->size, wbuf->lnum, wbuf->offs); 817 err = ubifs_leb_write(c, wbuf->lnum, buf, wbuf->offs, 818 wbuf->size); 819 if (err) 820 goto out; 821 822 wbuf->offs += wbuf->size; 823 len -= wbuf->size; 824 aligned_len -= wbuf->size; 825 written += wbuf->size; 826 } 827 828 /* 829 * The remaining data may take more whole max. write units, so write the 830 * remains multiple to max. write unit size directly to the flash media. 831 * We align node length to 8-byte boundary because we anyway flash wbuf 832 * if the remaining space is less than 8 bytes. 833 */ 834 n = aligned_len >> c->max_write_shift; 835 if (n) { 836 int m = n - 1; 837 838 dbg_io("write %d bytes to LEB %d:%d", n, wbuf->lnum, 839 wbuf->offs); 840 841 if (m) { 842 /* '(n-1)<<c->max_write_shift < len' is always true. */ 843 m <<= c->max_write_shift; 844 err = ubifs_leb_write(c, wbuf->lnum, buf + written, 845 wbuf->offs, m); 846 if (err) 847 goto out; 848 wbuf->offs += m; 849 aligned_len -= m; 850 len -= m; 851 written += m; 852 } 853 854 /* 855 * The non-written len of buf may be less than 'n' because 856 * parameter 'len' is not 8 bytes aligned, so here we read 857 * min(len, n) bytes from buf. 858 */ 859 n = 1 << c->max_write_shift; 860 memcpy(wbuf->buf, buf + written, min(len, n)); 861 if (n > len) { 862 ubifs_assert(c, n - len < 8); 863 ubifs_pad(c, wbuf->buf + len, n - len); 864 } 865 866 err = ubifs_leb_write(c, wbuf->lnum, wbuf->buf, wbuf->offs, n); 867 if (err) 868 goto out; 869 wbuf->offs += n; 870 aligned_len -= n; 871 len -= min(len, n); 872 written += n; 873 } 874 875 spin_lock(&wbuf->lock); 876 if (aligned_len) { 877 /* 878 * And now we have what's left and what does not take whole 879 * max. write unit, so write it to the write-buffer and we are 880 * done. 881 */ 882 memcpy(wbuf->buf, buf + written, len); 883 if (aligned_len > len) { 884 ubifs_assert(c, aligned_len - len < 8); 885 ubifs_pad(c, wbuf->buf + len, aligned_len - len); 886 } 887 } 888 889 if (c->leb_size - wbuf->offs >= c->max_write_size) 890 wbuf->size = c->max_write_size; 891 else 892 wbuf->size = c->leb_size - wbuf->offs; 893 wbuf->avail = wbuf->size - aligned_len; 894 wbuf->used = aligned_len; 895 wbuf->next_ino = 0; 896 spin_unlock(&wbuf->lock); 897 898exit: 899 if (wbuf->sync_callback) { 900 int free = c->leb_size - wbuf->offs - wbuf->used; 901 902 err = wbuf->sync_callback(c, wbuf->lnum, free, 0); 903 if (err) 904 goto out; 905 } 906 907 if (wbuf->used) 908 new_wbuf_timer_nolock(c, wbuf); 909 910 return 0; 911 912out: 913 ubifs_err(c, "cannot write %d bytes to LEB %d:%d, error %d", 914 len, wbuf->lnum, wbuf->offs, err); 915 ubifs_dump_node(c, buf, written + len); 916 dump_stack(); 917 ubifs_dump_leb(c, wbuf->lnum); 918 return err; 919} 920 921/** 922 * ubifs_write_node_hmac - write node to the media. 923 * @c: UBIFS file-system description object 924 * @buf: the node to write 925 * @len: node length 926 * @lnum: logical eraseblock number 927 * @offs: offset within the logical eraseblock 928 * @hmac_offs: offset of the HMAC within the node 929 * 930 * This function automatically fills node magic number, assigns sequence 931 * number, and calculates node CRC checksum. The length of the @buf buffer has 932 * to be aligned to the minimal I/O unit size. This function automatically 933 * appends padding node and padding bytes if needed. Returns zero in case of 934 * success and a negative error code in case of failure. 935 */ 936int ubifs_write_node_hmac(struct ubifs_info *c, void *buf, int len, int lnum, 937 int offs, int hmac_offs) 938{ 939 int err, buf_len = ALIGN(len, c->min_io_size); 940 941 dbg_io("LEB %d:%d, %s, length %d (aligned %d)", 942 lnum, offs, dbg_ntype(((struct ubifs_ch *)buf)->node_type), len, 943 buf_len); 944 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 945 ubifs_assert(c, offs % c->min_io_size == 0 && offs < c->leb_size); 946 ubifs_assert(c, !c->ro_media && !c->ro_mount); 947 ubifs_assert(c, !c->space_fixup); 948 949 if (c->ro_error) 950 return -EROFS; 951 952 err = ubifs_prepare_node_hmac(c, buf, len, hmac_offs, 1); 953 if (err) 954 return err; 955 956 err = ubifs_leb_write(c, lnum, buf, offs, buf_len); 957 if (err) 958 ubifs_dump_node(c, buf, len); 959 960 return err; 961} 962 963/** 964 * ubifs_write_node - write node to the media. 965 * @c: UBIFS file-system description object 966 * @buf: the node to write 967 * @len: node length 968 * @lnum: logical eraseblock number 969 * @offs: offset within the logical eraseblock 970 * 971 * This function automatically fills node magic number, assigns sequence 972 * number, and calculates node CRC checksum. The length of the @buf buffer has 973 * to be aligned to the minimal I/O unit size. This function automatically 974 * appends padding node and padding bytes if needed. Returns zero in case of 975 * success and a negative error code in case of failure. 976 */ 977int ubifs_write_node(struct ubifs_info *c, void *buf, int len, int lnum, 978 int offs) 979{ 980 return ubifs_write_node_hmac(c, buf, len, lnum, offs, -1); 981} 982 983/** 984 * ubifs_read_node_wbuf - read node from the media or write-buffer. 985 * @wbuf: wbuf to check for un-written data 986 * @buf: buffer to read to 987 * @type: node type 988 * @len: node length 989 * @lnum: logical eraseblock number 990 * @offs: offset within the logical eraseblock 991 * 992 * This function reads a node of known type and length, checks it and stores 993 * in @buf. If the node partially or fully sits in the write-buffer, this 994 * function takes data from the buffer, otherwise it reads the flash media. 995 * Returns zero in case of success, %-EUCLEAN if CRC mismatched and a negative 996 * error code in case of failure. 997 */ 998int ubifs_read_node_wbuf(struct ubifs_wbuf *wbuf, void *buf, int type, int len, 999 int lnum, int offs) 1000{ 1001 const struct ubifs_info *c = wbuf->c; 1002 int err, rlen, overlap; 1003 struct ubifs_ch *ch = buf; 1004 1005 dbg_io("LEB %d:%d, %s, length %d, jhead %s", lnum, offs, 1006 dbg_ntype(type), len, dbg_jhead(wbuf->jhead)); 1007 ubifs_assert(c, wbuf && lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1008 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1009 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); 1010 1011 spin_lock(&wbuf->lock); 1012 overlap = (lnum == wbuf->lnum && offs + len > wbuf->offs); 1013 if (!overlap) { 1014 /* We may safely unlock the write-buffer and read the data */ 1015 spin_unlock(&wbuf->lock); 1016 return ubifs_read_node(c, buf, type, len, lnum, offs); 1017 } 1018 1019 /* Don't read under wbuf */ 1020 rlen = wbuf->offs - offs; 1021 if (rlen < 0) 1022 rlen = 0; 1023 1024 /* Copy the rest from the write-buffer */ 1025 memcpy(buf + rlen, wbuf->buf + offs + rlen - wbuf->offs, len - rlen); 1026 spin_unlock(&wbuf->lock); 1027 1028 if (rlen > 0) { 1029 /* Read everything that goes before write-buffer */ 1030 err = ubifs_leb_read(c, lnum, buf, offs, rlen, 0); 1031 if (err && err != -EBADMSG) 1032 return err; 1033 } 1034 1035 if (type != ch->node_type) { 1036 ubifs_err(c, "bad node type (%d but expected %d)", 1037 ch->node_type, type); 1038 goto out; 1039 } 1040 1041 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); 1042 if (err) { 1043 ubifs_err(c, "expected node type %d", type); 1044 return err; 1045 } 1046 1047 rlen = le32_to_cpu(ch->len); 1048 if (rlen != len) { 1049 ubifs_err(c, "bad node length %d, expected %d", rlen, len); 1050 goto out; 1051 } 1052 1053 return 0; 1054 1055out: 1056 ubifs_err(c, "bad node at LEB %d:%d", lnum, offs); 1057 ubifs_dump_node(c, buf, len); 1058 dump_stack(); 1059 return -EINVAL; 1060} 1061 1062/** 1063 * ubifs_read_node - read node. 1064 * @c: UBIFS file-system description object 1065 * @buf: buffer to read to 1066 * @type: node type 1067 * @len: node length (not aligned) 1068 * @lnum: logical eraseblock number 1069 * @offs: offset within the logical eraseblock 1070 * 1071 * This function reads a node of known type and and length, checks it and 1072 * stores in @buf. Returns zero in case of success, %-EUCLEAN if CRC mismatched 1073 * and a negative error code in case of failure. 1074 */ 1075int ubifs_read_node(const struct ubifs_info *c, void *buf, int type, int len, 1076 int lnum, int offs) 1077{ 1078 int err, l; 1079 struct ubifs_ch *ch = buf; 1080 1081 dbg_io("LEB %d:%d, %s, length %d", lnum, offs, dbg_ntype(type), len); 1082 ubifs_assert(c, lnum >= 0 && lnum < c->leb_cnt && offs >= 0); 1083 ubifs_assert(c, len >= UBIFS_CH_SZ && offs + len <= c->leb_size); 1084 ubifs_assert(c, !(offs & 7) && offs < c->leb_size); 1085 ubifs_assert(c, type >= 0 && type < UBIFS_NODE_TYPES_CNT); 1086 1087 err = ubifs_leb_read(c, lnum, buf, offs, len, 0); 1088 if (err && err != -EBADMSG) 1089 return err; 1090 1091 if (type != ch->node_type) { 1092 ubifs_errc(c, "bad node type (%d but expected %d)", 1093 ch->node_type, type); 1094 goto out; 1095 } 1096 1097 err = ubifs_check_node(c, buf, len, lnum, offs, 0, 0); 1098 if (err) { 1099 ubifs_errc(c, "expected node type %d", type); 1100 return err; 1101 } 1102 1103 l = le32_to_cpu(ch->len); 1104 if (l != len) { 1105 ubifs_errc(c, "bad node length %d, expected %d", l, len); 1106 goto out; 1107 } 1108 1109 return 0; 1110 1111out: 1112 ubifs_errc(c, "bad node at LEB %d:%d, LEB mapping status %d", lnum, 1113 offs, ubi_is_mapped(c->ubi, lnum)); 1114 if (!c->probing) { 1115 ubifs_dump_node(c, buf, len); 1116 dump_stack(); 1117 } 1118 return -EINVAL; 1119} 1120 1121/** 1122 * ubifs_wbuf_init - initialize write-buffer. 1123 * @c: UBIFS file-system description object 1124 * @wbuf: write-buffer to initialize 1125 * 1126 * This function initializes write-buffer. Returns zero in case of success 1127 * %-ENOMEM in case of failure. 1128 */ 1129int ubifs_wbuf_init(struct ubifs_info *c, struct ubifs_wbuf *wbuf) 1130{ 1131 size_t size; 1132 1133 wbuf->buf = kmalloc(c->max_write_size, GFP_KERNEL); 1134 if (!wbuf->buf) 1135 return -ENOMEM; 1136 1137 size = (c->max_write_size / UBIFS_CH_SZ + 1) * sizeof(ino_t); 1138 wbuf->inodes = kmalloc(size, GFP_KERNEL); 1139 if (!wbuf->inodes) { 1140 kfree(wbuf->buf); 1141 wbuf->buf = NULL; 1142 return -ENOMEM; 1143 } 1144 1145 wbuf->used = 0; 1146 wbuf->lnum = wbuf->offs = -1; 1147 /* 1148 * If the LEB starts at the max. write size aligned address, then 1149 * write-buffer size has to be set to @c->max_write_size. Otherwise, 1150 * set it to something smaller so that it ends at the closest max. 1151 * write size boundary. 1152 */ 1153 size = c->max_write_size - (c->leb_start % c->max_write_size); 1154 wbuf->avail = wbuf->size = size; 1155 wbuf->sync_callback = NULL; 1156 mutex_init(&wbuf->io_mutex); 1157 spin_lock_init(&wbuf->lock); 1158 wbuf->c = c; 1159 wbuf->next_ino = 0; 1160 1161 hrtimer_init(&wbuf->timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL); 1162 wbuf->timer.function = wbuf_timer_callback_nolock; 1163 return 0; 1164} 1165 1166/** 1167 * ubifs_wbuf_add_ino_nolock - add an inode number into the wbuf inode array. 1168 * @wbuf: the write-buffer where to add 1169 * @inum: the inode number 1170 * 1171 * This function adds an inode number to the inode array of the write-buffer. 1172 */ 1173void ubifs_wbuf_add_ino_nolock(struct ubifs_wbuf *wbuf, ino_t inum) 1174{ 1175 if (!wbuf->buf) 1176 /* NOR flash or something similar */ 1177 return; 1178 1179 spin_lock(&wbuf->lock); 1180 if (wbuf->used) 1181 wbuf->inodes[wbuf->next_ino++] = inum; 1182 spin_unlock(&wbuf->lock); 1183} 1184 1185/** 1186 * wbuf_has_ino - returns if the wbuf contains data from the inode. 1187 * @wbuf: the write-buffer 1188 * @inum: the inode number 1189 * 1190 * This function returns with %1 if the write-buffer contains some data from the 1191 * given inode otherwise it returns with %0. 1192 */ 1193static int wbuf_has_ino(struct ubifs_wbuf *wbuf, ino_t inum) 1194{ 1195 int i, ret = 0; 1196 1197 spin_lock(&wbuf->lock); 1198 for (i = 0; i < wbuf->next_ino; i++) 1199 if (inum == wbuf->inodes[i]) { 1200 ret = 1; 1201 break; 1202 } 1203 spin_unlock(&wbuf->lock); 1204 1205 return ret; 1206} 1207 1208/** 1209 * ubifs_sync_wbufs_by_inode - synchronize write-buffers for an inode. 1210 * @c: UBIFS file-system description object 1211 * @inode: inode to synchronize 1212 * 1213 * This function synchronizes write-buffers which contain nodes belonging to 1214 * @inode. Returns zero in case of success and a negative error code in case of 1215 * failure. 1216 */ 1217int ubifs_sync_wbufs_by_inode(struct ubifs_info *c, struct inode *inode) 1218{ 1219 int i, err = 0; 1220 1221 for (i = 0; i < c->jhead_cnt; i++) { 1222 struct ubifs_wbuf *wbuf = &c->jheads[i].wbuf; 1223 1224 if (i == GCHD) 1225 /* 1226 * GC head is special, do not look at it. Even if the 1227 * head contains something related to this inode, it is 1228 * a _copy_ of corresponding on-flash node which sits 1229 * somewhere else. 1230 */ 1231 continue; 1232 1233 if (!wbuf_has_ino(wbuf, inode->i_ino)) 1234 continue; 1235 1236 mutex_lock_nested(&wbuf->io_mutex, wbuf->jhead); 1237 if (wbuf_has_ino(wbuf, inode->i_ino)) 1238 err = ubifs_wbuf_sync_nolock(wbuf); 1239 mutex_unlock(&wbuf->io_mutex); 1240 1241 if (err) { 1242 ubifs_ro_mode(c, err); 1243 return err; 1244 } 1245 } 1246 return 0; 1247} 1248