1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * This file is part of UBIFS. 4 * 5 * Copyright (C) 2006-2008 Nokia Corporation. 6 * 7 * Authors: Artem Bityutskiy (Битюцкий Артём) 8 * Adrian Hunter 9 */ 10 11/* 12 * This file implements VFS file and inode operations for regular files, device 13 * nodes and symlinks as well as address space operations. 14 * 15 * UBIFS uses 2 page flags: @PG_private and @PG_checked. @PG_private is set if 16 * the page is dirty and is used for optimization purposes - dirty pages are 17 * not budgeted so the flag shows that 'ubifs_write_end()' should not release 18 * the budget for this page. The @PG_checked flag is set if full budgeting is 19 * required for the page e.g., when it corresponds to a file hole or it is 20 * beyond the file size. The budgeting is done in 'ubifs_write_begin()', because 21 * it is OK to fail in this function, and the budget is released in 22 * 'ubifs_write_end()'. So the @PG_private and @PG_checked flags carry 23 * information about how the page was budgeted, to make it possible to release 24 * the budget properly. 25 * 26 * A thing to keep in mind: inode @i_mutex is locked in most VFS operations we 27 * implement. However, this is not true for 'ubifs_writepage()', which may be 28 * called with @i_mutex unlocked. For example, when flusher thread is doing 29 * background write-back, it calls 'ubifs_writepage()' with unlocked @i_mutex. 30 * At "normal" work-paths the @i_mutex is locked in 'ubifs_writepage()', e.g. 31 * in the "sys_write -> alloc_pages -> direct reclaim path". So, in 32 * 'ubifs_writepage()' we are only guaranteed that the page is locked. 33 * 34 * Similarly, @i_mutex is not always locked in 'ubifs_readpage()', e.g., the 35 * read-ahead path does not lock it ("sys_read -> generic_file_aio_read -> 36 * ondemand_readahead -> readpage"). In case of readahead, @I_SYNC flag is not 37 * set as well. However, UBIFS disables readahead. 38 */ 39 40#include "ubifs.h" 41#include <linux/mount.h> 42#include <linux/slab.h> 43#include <linux/migrate.h> 44 45static int read_block(struct inode *inode, void *addr, unsigned int block, 46 struct ubifs_data_node *dn) 47{ 48 struct ubifs_info *c = inode->i_sb->s_fs_info; 49 int err, len, out_len; 50 union ubifs_key key; 51 unsigned int dlen; 52 53 data_key_init(c, &key, inode->i_ino, block); 54 err = ubifs_tnc_lookup(c, &key, dn); 55 if (err) { 56 if (err == -ENOENT) 57 /* Not found, so it must be a hole */ 58 memset(addr, 0, UBIFS_BLOCK_SIZE); 59 return err; 60 } 61 62 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 63 ubifs_inode(inode)->creat_sqnum); 64 len = le32_to_cpu(dn->size); 65 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 66 goto dump; 67 68 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 69 70 if (IS_ENCRYPTED(inode)) { 71 err = ubifs_decrypt(inode, dn, &dlen, block); 72 if (err) 73 goto dump; 74 } 75 76 out_len = UBIFS_BLOCK_SIZE; 77 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 78 le16_to_cpu(dn->compr_type)); 79 if (err || len != out_len) 80 goto dump; 81 82 /* 83 * Data length can be less than a full block, even for blocks that are 84 * not the last in the file (e.g., as a result of making a hole and 85 * appending data). Ensure that the remainder is zeroed out. 86 */ 87 if (len < UBIFS_BLOCK_SIZE) 88 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 89 90 return 0; 91 92dump: 93 ubifs_err(c, "bad data node (block %u, inode %lu)", 94 block, inode->i_ino); 95 ubifs_dump_node(c, dn, UBIFS_MAX_DATA_NODE_SZ); 96 return -EINVAL; 97} 98 99static int do_readpage(struct page *page) 100{ 101 void *addr; 102 int err = 0, i; 103 unsigned int block, beyond; 104 struct ubifs_data_node *dn; 105 struct inode *inode = page->mapping->host; 106 struct ubifs_info *c = inode->i_sb->s_fs_info; 107 loff_t i_size = i_size_read(inode); 108 109 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 110 inode->i_ino, page->index, i_size, page->flags); 111 ubifs_assert(c, !PageChecked(page)); 112 ubifs_assert(c, !PagePrivate(page)); 113 114 addr = kmap(page); 115 116 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 117 beyond = (i_size + UBIFS_BLOCK_SIZE - 1) >> UBIFS_BLOCK_SHIFT; 118 if (block >= beyond) { 119 /* Reading beyond inode */ 120 SetPageChecked(page); 121 memset(addr, 0, PAGE_SIZE); 122 goto out; 123 } 124 125 dn = kmalloc(UBIFS_MAX_DATA_NODE_SZ, GFP_NOFS); 126 if (!dn) { 127 err = -ENOMEM; 128 goto error; 129 } 130 131 i = 0; 132 while (1) { 133 int ret; 134 135 if (block >= beyond) { 136 /* Reading beyond inode */ 137 err = -ENOENT; 138 memset(addr, 0, UBIFS_BLOCK_SIZE); 139 } else { 140 ret = read_block(inode, addr, block, dn); 141 if (ret) { 142 err = ret; 143 if (err != -ENOENT) 144 break; 145 } else if (block + 1 == beyond) { 146 int dlen = le32_to_cpu(dn->size); 147 int ilen = i_size & (UBIFS_BLOCK_SIZE - 1); 148 149 if (ilen && ilen < dlen) 150 memset(addr + ilen, 0, dlen - ilen); 151 } 152 } 153 if (++i >= UBIFS_BLOCKS_PER_PAGE) 154 break; 155 block += 1; 156 addr += UBIFS_BLOCK_SIZE; 157 } 158 if (err) { 159 struct ubifs_info *c = inode->i_sb->s_fs_info; 160 if (err == -ENOENT) { 161 /* Not found, so it must be a hole */ 162 SetPageChecked(page); 163 dbg_gen("hole"); 164 goto out_free; 165 } 166 ubifs_err(c, "cannot read page %lu of inode %lu, error %d", 167 page->index, inode->i_ino, err); 168 goto error; 169 } 170 171out_free: 172 kfree(dn); 173out: 174 SetPageUptodate(page); 175 ClearPageError(page); 176 flush_dcache_page(page); 177 kunmap(page); 178 return 0; 179 180error: 181 kfree(dn); 182 ClearPageUptodate(page); 183 SetPageError(page); 184 flush_dcache_page(page); 185 kunmap(page); 186 return err; 187} 188 189/** 190 * release_new_page_budget - release budget of a new page. 191 * @c: UBIFS file-system description object 192 * 193 * This is a helper function which releases budget corresponding to the budget 194 * of one new page of data. 195 */ 196static void release_new_page_budget(struct ubifs_info *c) 197{ 198 struct ubifs_budget_req req = { .recalculate = 1, .new_page = 1 }; 199 200 ubifs_release_budget(c, &req); 201} 202 203/** 204 * release_existing_page_budget - release budget of an existing page. 205 * @c: UBIFS file-system description object 206 * 207 * This is a helper function which releases budget corresponding to the budget 208 * of changing one one page of data which already exists on the flash media. 209 */ 210static void release_existing_page_budget(struct ubifs_info *c) 211{ 212 struct ubifs_budget_req req = { .dd_growth = c->bi.page_budget}; 213 214 ubifs_release_budget(c, &req); 215} 216 217static int write_begin_slow(struct address_space *mapping, 218 loff_t pos, unsigned len, struct page **pagep, 219 unsigned flags) 220{ 221 struct inode *inode = mapping->host; 222 struct ubifs_info *c = inode->i_sb->s_fs_info; 223 pgoff_t index = pos >> PAGE_SHIFT; 224 struct ubifs_budget_req req = { .new_page = 1 }; 225 int err, appending = !!(pos + len > inode->i_size); 226 struct page *page; 227 228 dbg_gen("ino %lu, pos %llu, len %u, i_size %lld", 229 inode->i_ino, pos, len, inode->i_size); 230 231 /* 232 * At the slow path we have to budget before locking the page, because 233 * budgeting may force write-back, which would wait on locked pages and 234 * deadlock if we had the page locked. At this point we do not know 235 * anything about the page, so assume that this is a new page which is 236 * written to a hole. This corresponds to largest budget. Later the 237 * budget will be amended if this is not true. 238 */ 239 if (appending) 240 /* We are appending data, budget for inode change */ 241 req.dirtied_ino = 1; 242 243 err = ubifs_budget_space(c, &req); 244 if (unlikely(err)) 245 return err; 246 247 page = grab_cache_page_write_begin(mapping, index, flags); 248 if (unlikely(!page)) { 249 ubifs_release_budget(c, &req); 250 return -ENOMEM; 251 } 252 253 if (!PageUptodate(page)) { 254 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) 255 SetPageChecked(page); 256 else { 257 err = do_readpage(page); 258 if (err) { 259 unlock_page(page); 260 put_page(page); 261 ubifs_release_budget(c, &req); 262 return err; 263 } 264 } 265 } 266 267 if (PagePrivate(page)) 268 /* 269 * The page is dirty, which means it was budgeted twice: 270 * o first time the budget was allocated by the task which 271 * made the page dirty and set the PG_private flag; 272 * o and then we budgeted for it for the second time at the 273 * very beginning of this function. 274 * 275 * So what we have to do is to release the page budget we 276 * allocated. 277 */ 278 release_new_page_budget(c); 279 else if (!PageChecked(page)) 280 /* 281 * We are changing a page which already exists on the media. 282 * This means that changing the page does not make the amount 283 * of indexing information larger, and this part of the budget 284 * which we have already acquired may be released. 285 */ 286 ubifs_convert_page_budget(c); 287 288 if (appending) { 289 struct ubifs_inode *ui = ubifs_inode(inode); 290 291 /* 292 * 'ubifs_write_end()' is optimized from the fast-path part of 293 * 'ubifs_write_begin()' and expects the @ui_mutex to be locked 294 * if data is appended. 295 */ 296 mutex_lock(&ui->ui_mutex); 297 if (ui->dirty) 298 /* 299 * The inode is dirty already, so we may free the 300 * budget we allocated. 301 */ 302 ubifs_release_dirty_inode_budget(c, ui); 303 } 304 305 *pagep = page; 306 return 0; 307} 308 309/** 310 * allocate_budget - allocate budget for 'ubifs_write_begin()'. 311 * @c: UBIFS file-system description object 312 * @page: page to allocate budget for 313 * @ui: UBIFS inode object the page belongs to 314 * @appending: non-zero if the page is appended 315 * 316 * This is a helper function for 'ubifs_write_begin()' which allocates budget 317 * for the operation. The budget is allocated differently depending on whether 318 * this is appending, whether the page is dirty or not, and so on. This 319 * function leaves the @ui->ui_mutex locked in case of appending. Returns zero 320 * in case of success and %-ENOSPC in case of failure. 321 */ 322static int allocate_budget(struct ubifs_info *c, struct page *page, 323 struct ubifs_inode *ui, int appending) 324{ 325 struct ubifs_budget_req req = { .fast = 1 }; 326 327 if (PagePrivate(page)) { 328 if (!appending) 329 /* 330 * The page is dirty and we are not appending, which 331 * means no budget is needed at all. 332 */ 333 return 0; 334 335 mutex_lock(&ui->ui_mutex); 336 if (ui->dirty) 337 /* 338 * The page is dirty and we are appending, so the inode 339 * has to be marked as dirty. However, it is already 340 * dirty, so we do not need any budget. We may return, 341 * but @ui->ui_mutex hast to be left locked because we 342 * should prevent write-back from flushing the inode 343 * and freeing the budget. The lock will be released in 344 * 'ubifs_write_end()'. 345 */ 346 return 0; 347 348 /* 349 * The page is dirty, we are appending, the inode is clean, so 350 * we need to budget the inode change. 351 */ 352 req.dirtied_ino = 1; 353 } else { 354 if (PageChecked(page)) 355 /* 356 * The page corresponds to a hole and does not 357 * exist on the media. So changing it makes 358 * make the amount of indexing information 359 * larger, and we have to budget for a new 360 * page. 361 */ 362 req.new_page = 1; 363 else 364 /* 365 * Not a hole, the change will not add any new 366 * indexing information, budget for page 367 * change. 368 */ 369 req.dirtied_page = 1; 370 371 if (appending) { 372 mutex_lock(&ui->ui_mutex); 373 if (!ui->dirty) 374 /* 375 * The inode is clean but we will have to mark 376 * it as dirty because we are appending. This 377 * needs a budget. 378 */ 379 req.dirtied_ino = 1; 380 } 381 } 382 383 return ubifs_budget_space(c, &req); 384} 385 386/* 387 * This function is called when a page of data is going to be written. Since 388 * the page of data will not necessarily go to the flash straight away, UBIFS 389 * has to reserve space on the media for it, which is done by means of 390 * budgeting. 391 * 392 * This is the hot-path of the file-system and we are trying to optimize it as 393 * much as possible. For this reasons it is split on 2 parts - slow and fast. 394 * 395 * There many budgeting cases: 396 * o a new page is appended - we have to budget for a new page and for 397 * changing the inode; however, if the inode is already dirty, there is 398 * no need to budget for it; 399 * o an existing clean page is changed - we have budget for it; if the page 400 * does not exist on the media (a hole), we have to budget for a new 401 * page; otherwise, we may budget for changing an existing page; the 402 * difference between these cases is that changing an existing page does 403 * not introduce anything new to the FS indexing information, so it does 404 * not grow, and smaller budget is acquired in this case; 405 * o an existing dirty page is changed - no need to budget at all, because 406 * the page budget has been acquired by earlier, when the page has been 407 * marked dirty. 408 * 409 * UBIFS budgeting sub-system may force write-back if it thinks there is no 410 * space to reserve. This imposes some locking restrictions and makes it 411 * impossible to take into account the above cases, and makes it impossible to 412 * optimize budgeting. 413 * 414 * The solution for this is that the fast path of 'ubifs_write_begin()' assumes 415 * there is a plenty of flash space and the budget will be acquired quickly, 416 * without forcing write-back. The slow path does not make this assumption. 417 */ 418static int ubifs_write_begin(struct file *file, struct address_space *mapping, 419 loff_t pos, unsigned len, unsigned flags, 420 struct page **pagep, void **fsdata) 421{ 422 struct inode *inode = mapping->host; 423 struct ubifs_info *c = inode->i_sb->s_fs_info; 424 struct ubifs_inode *ui = ubifs_inode(inode); 425 pgoff_t index = pos >> PAGE_SHIFT; 426 int err, appending = !!(pos + len > inode->i_size); 427 int skipped_read = 0; 428 struct page *page; 429 430 ubifs_assert(c, ubifs_inode(inode)->ui_size == inode->i_size); 431 ubifs_assert(c, !c->ro_media && !c->ro_mount); 432 433 if (unlikely(c->ro_error)) 434 return -EROFS; 435 436 /* Try out the fast-path part first */ 437 page = grab_cache_page_write_begin(mapping, index, flags); 438 if (unlikely(!page)) 439 return -ENOMEM; 440 441 if (!PageUptodate(page)) { 442 /* The page is not loaded from the flash */ 443 if (!(pos & ~PAGE_MASK) && len == PAGE_SIZE) { 444 /* 445 * We change whole page so no need to load it. But we 446 * do not know whether this page exists on the media or 447 * not, so we assume the latter because it requires 448 * larger budget. The assumption is that it is better 449 * to budget a bit more than to read the page from the 450 * media. Thus, we are setting the @PG_checked flag 451 * here. 452 */ 453 SetPageChecked(page); 454 skipped_read = 1; 455 } else { 456 err = do_readpage(page); 457 if (err) { 458 unlock_page(page); 459 put_page(page); 460 return err; 461 } 462 } 463 } 464 465 err = allocate_budget(c, page, ui, appending); 466 if (unlikely(err)) { 467 ubifs_assert(c, err == -ENOSPC); 468 /* 469 * If we skipped reading the page because we were going to 470 * write all of it, then it is not up to date. 471 */ 472 if (skipped_read) 473 ClearPageChecked(page); 474 /* 475 * Budgeting failed which means it would have to force 476 * write-back but didn't, because we set the @fast flag in the 477 * request. Write-back cannot be done now, while we have the 478 * page locked, because it would deadlock. Unlock and free 479 * everything and fall-back to slow-path. 480 */ 481 if (appending) { 482 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 483 mutex_unlock(&ui->ui_mutex); 484 } 485 unlock_page(page); 486 put_page(page); 487 488 return write_begin_slow(mapping, pos, len, pagep, flags); 489 } 490 491 /* 492 * Whee, we acquired budgeting quickly - without involving 493 * garbage-collection, committing or forcing write-back. We return 494 * with @ui->ui_mutex locked if we are appending pages, and unlocked 495 * otherwise. This is an optimization (slightly hacky though). 496 */ 497 *pagep = page; 498 return 0; 499 500} 501 502/** 503 * cancel_budget - cancel budget. 504 * @c: UBIFS file-system description object 505 * @page: page to cancel budget for 506 * @ui: UBIFS inode object the page belongs to 507 * @appending: non-zero if the page is appended 508 * 509 * This is a helper function for a page write operation. It unlocks the 510 * @ui->ui_mutex in case of appending. 511 */ 512static void cancel_budget(struct ubifs_info *c, struct page *page, 513 struct ubifs_inode *ui, int appending) 514{ 515 if (appending) { 516 if (!ui->dirty) 517 ubifs_release_dirty_inode_budget(c, ui); 518 mutex_unlock(&ui->ui_mutex); 519 } 520 if (!PagePrivate(page)) { 521 if (PageChecked(page)) 522 release_new_page_budget(c); 523 else 524 release_existing_page_budget(c); 525 } 526} 527 528static int ubifs_write_end(struct file *file, struct address_space *mapping, 529 loff_t pos, unsigned len, unsigned copied, 530 struct page *page, void *fsdata) 531{ 532 struct inode *inode = mapping->host; 533 struct ubifs_inode *ui = ubifs_inode(inode); 534 struct ubifs_info *c = inode->i_sb->s_fs_info; 535 loff_t end_pos = pos + len; 536 int appending = !!(end_pos > inode->i_size); 537 538 dbg_gen("ino %lu, pos %llu, pg %lu, len %u, copied %d, i_size %lld", 539 inode->i_ino, pos, page->index, len, copied, inode->i_size); 540 541 if (unlikely(copied < len && len == PAGE_SIZE)) { 542 /* 543 * VFS copied less data to the page that it intended and 544 * declared in its '->write_begin()' call via the @len 545 * argument. If the page was not up-to-date, and @len was 546 * @PAGE_SIZE, the 'ubifs_write_begin()' function did 547 * not load it from the media (for optimization reasons). This 548 * means that part of the page contains garbage. So read the 549 * page now. 550 */ 551 dbg_gen("copied %d instead of %d, read page and repeat", 552 copied, len); 553 cancel_budget(c, page, ui, appending); 554 ClearPageChecked(page); 555 556 /* 557 * Return 0 to force VFS to repeat the whole operation, or the 558 * error code if 'do_readpage()' fails. 559 */ 560 copied = do_readpage(page); 561 goto out; 562 } 563 564 if (len == PAGE_SIZE) 565 SetPageUptodate(page); 566 567 if (!PagePrivate(page)) { 568 attach_page_private(page, (void *)1); 569 atomic_long_inc(&c->dirty_pg_cnt); 570 __set_page_dirty_nobuffers(page); 571 } 572 573 if (appending) { 574 i_size_write(inode, end_pos); 575 ui->ui_size = end_pos; 576 /* 577 * Note, we do not set @I_DIRTY_PAGES (which means that the 578 * inode has dirty pages), this has been done in 579 * '__set_page_dirty_nobuffers()'. 580 */ 581 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 582 ubifs_assert(c, mutex_is_locked(&ui->ui_mutex)); 583 mutex_unlock(&ui->ui_mutex); 584 } 585 586out: 587 unlock_page(page); 588 put_page(page); 589 return copied; 590} 591 592/** 593 * populate_page - copy data nodes into a page for bulk-read. 594 * @c: UBIFS file-system description object 595 * @page: page 596 * @bu: bulk-read information 597 * @n: next zbranch slot 598 * 599 * This function returns %0 on success and a negative error code on failure. 600 */ 601static int populate_page(struct ubifs_info *c, struct page *page, 602 struct bu_info *bu, int *n) 603{ 604 int i = 0, nn = *n, offs = bu->zbranch[0].offs, hole = 0, read = 0; 605 struct inode *inode = page->mapping->host; 606 loff_t i_size = i_size_read(inode); 607 unsigned int page_block; 608 void *addr, *zaddr; 609 pgoff_t end_index; 610 611 dbg_gen("ino %lu, pg %lu, i_size %lld, flags %#lx", 612 inode->i_ino, page->index, i_size, page->flags); 613 614 addr = zaddr = kmap(page); 615 616 end_index = (i_size - 1) >> PAGE_SHIFT; 617 if (!i_size || page->index > end_index) { 618 hole = 1; 619 memset(addr, 0, PAGE_SIZE); 620 goto out_hole; 621 } 622 623 page_block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 624 while (1) { 625 int err, len, out_len, dlen; 626 627 if (nn >= bu->cnt) { 628 hole = 1; 629 memset(addr, 0, UBIFS_BLOCK_SIZE); 630 } else if (key_block(c, &bu->zbranch[nn].key) == page_block) { 631 struct ubifs_data_node *dn; 632 633 dn = bu->buf + (bu->zbranch[nn].offs - offs); 634 635 ubifs_assert(c, le64_to_cpu(dn->ch.sqnum) > 636 ubifs_inode(inode)->creat_sqnum); 637 638 len = le32_to_cpu(dn->size); 639 if (len <= 0 || len > UBIFS_BLOCK_SIZE) 640 goto out_err; 641 642 dlen = le32_to_cpu(dn->ch.len) - UBIFS_DATA_NODE_SZ; 643 out_len = UBIFS_BLOCK_SIZE; 644 645 if (IS_ENCRYPTED(inode)) { 646 err = ubifs_decrypt(inode, dn, &dlen, page_block); 647 if (err) 648 goto out_err; 649 } 650 651 err = ubifs_decompress(c, &dn->data, dlen, addr, &out_len, 652 le16_to_cpu(dn->compr_type)); 653 if (err || len != out_len) 654 goto out_err; 655 656 if (len < UBIFS_BLOCK_SIZE) 657 memset(addr + len, 0, UBIFS_BLOCK_SIZE - len); 658 659 nn += 1; 660 read = (i << UBIFS_BLOCK_SHIFT) + len; 661 } else if (key_block(c, &bu->zbranch[nn].key) < page_block) { 662 nn += 1; 663 continue; 664 } else { 665 hole = 1; 666 memset(addr, 0, UBIFS_BLOCK_SIZE); 667 } 668 if (++i >= UBIFS_BLOCKS_PER_PAGE) 669 break; 670 addr += UBIFS_BLOCK_SIZE; 671 page_block += 1; 672 } 673 674 if (end_index == page->index) { 675 int len = i_size & (PAGE_SIZE - 1); 676 677 if (len && len < read) 678 memset(zaddr + len, 0, read - len); 679 } 680 681out_hole: 682 if (hole) { 683 SetPageChecked(page); 684 dbg_gen("hole"); 685 } 686 687 SetPageUptodate(page); 688 ClearPageError(page); 689 flush_dcache_page(page); 690 kunmap(page); 691 *n = nn; 692 return 0; 693 694out_err: 695 ClearPageUptodate(page); 696 SetPageError(page); 697 flush_dcache_page(page); 698 kunmap(page); 699 ubifs_err(c, "bad data node (block %u, inode %lu)", 700 page_block, inode->i_ino); 701 return -EINVAL; 702} 703 704/** 705 * ubifs_do_bulk_read - do bulk-read. 706 * @c: UBIFS file-system description object 707 * @bu: bulk-read information 708 * @page1: first page to read 709 * 710 * This function returns %1 if the bulk-read is done, otherwise %0 is returned. 711 */ 712static int ubifs_do_bulk_read(struct ubifs_info *c, struct bu_info *bu, 713 struct page *page1) 714{ 715 pgoff_t offset = page1->index, end_index; 716 struct address_space *mapping = page1->mapping; 717 struct inode *inode = mapping->host; 718 struct ubifs_inode *ui = ubifs_inode(inode); 719 int err, page_idx, page_cnt, ret = 0, n = 0; 720 int allocate = bu->buf ? 0 : 1; 721 loff_t isize; 722 gfp_t ra_gfp_mask = readahead_gfp_mask(mapping) & ~__GFP_FS; 723 724 err = ubifs_tnc_get_bu_keys(c, bu); 725 if (err) 726 goto out_warn; 727 728 if (bu->eof) { 729 /* Turn off bulk-read at the end of the file */ 730 ui->read_in_a_row = 1; 731 ui->bulk_read = 0; 732 } 733 734 page_cnt = bu->blk_cnt >> UBIFS_BLOCKS_PER_PAGE_SHIFT; 735 if (!page_cnt) { 736 /* 737 * This happens when there are multiple blocks per page and the 738 * blocks for the first page we are looking for, are not 739 * together. If all the pages were like this, bulk-read would 740 * reduce performance, so we turn it off for a while. 741 */ 742 goto out_bu_off; 743 } 744 745 if (bu->cnt) { 746 if (allocate) { 747 /* 748 * Allocate bulk-read buffer depending on how many data 749 * nodes we are going to read. 750 */ 751 bu->buf_len = bu->zbranch[bu->cnt - 1].offs + 752 bu->zbranch[bu->cnt - 1].len - 753 bu->zbranch[0].offs; 754 ubifs_assert(c, bu->buf_len > 0); 755 ubifs_assert(c, bu->buf_len <= c->leb_size); 756 bu->buf = kmalloc(bu->buf_len, GFP_NOFS | __GFP_NOWARN); 757 if (!bu->buf) 758 goto out_bu_off; 759 } 760 761 err = ubifs_tnc_bulk_read(c, bu); 762 if (err) 763 goto out_warn; 764 } 765 766 err = populate_page(c, page1, bu, &n); 767 if (err) 768 goto out_warn; 769 770 unlock_page(page1); 771 ret = 1; 772 773 isize = i_size_read(inode); 774 if (isize == 0) 775 goto out_free; 776 end_index = ((isize - 1) >> PAGE_SHIFT); 777 778 for (page_idx = 1; page_idx < page_cnt; page_idx++) { 779 pgoff_t page_offset = offset + page_idx; 780 struct page *page; 781 782 if (page_offset > end_index) 783 break; 784 page = pagecache_get_page(mapping, page_offset, 785 FGP_LOCK|FGP_ACCESSED|FGP_CREAT|FGP_NOWAIT, 786 ra_gfp_mask); 787 if (!page) 788 break; 789 if (!PageUptodate(page)) 790 err = populate_page(c, page, bu, &n); 791 unlock_page(page); 792 put_page(page); 793 if (err) 794 break; 795 } 796 797 ui->last_page_read = offset + page_idx - 1; 798 799out_free: 800 if (allocate) 801 kfree(bu->buf); 802 return ret; 803 804out_warn: 805 ubifs_warn(c, "ignoring error %d and skipping bulk-read", err); 806 goto out_free; 807 808out_bu_off: 809 ui->read_in_a_row = ui->bulk_read = 0; 810 goto out_free; 811} 812 813/** 814 * ubifs_bulk_read - determine whether to bulk-read and, if so, do it. 815 * @page: page from which to start bulk-read. 816 * 817 * Some flash media are capable of reading sequentially at faster rates. UBIFS 818 * bulk-read facility is designed to take advantage of that, by reading in one 819 * go consecutive data nodes that are also located consecutively in the same 820 * LEB. This function returns %1 if a bulk-read is done and %0 otherwise. 821 */ 822static int ubifs_bulk_read(struct page *page) 823{ 824 struct inode *inode = page->mapping->host; 825 struct ubifs_info *c = inode->i_sb->s_fs_info; 826 struct ubifs_inode *ui = ubifs_inode(inode); 827 pgoff_t index = page->index, last_page_read = ui->last_page_read; 828 struct bu_info *bu; 829 int err = 0, allocated = 0; 830 831 ui->last_page_read = index; 832 if (!c->bulk_read) 833 return 0; 834 835 /* 836 * Bulk-read is protected by @ui->ui_mutex, but it is an optimization, 837 * so don't bother if we cannot lock the mutex. 838 */ 839 if (!mutex_trylock(&ui->ui_mutex)) 840 return 0; 841 842 if (index != last_page_read + 1) { 843 /* Turn off bulk-read if we stop reading sequentially */ 844 ui->read_in_a_row = 1; 845 if (ui->bulk_read) 846 ui->bulk_read = 0; 847 goto out_unlock; 848 } 849 850 if (!ui->bulk_read) { 851 ui->read_in_a_row += 1; 852 if (ui->read_in_a_row < 3) 853 goto out_unlock; 854 /* Three reads in a row, so switch on bulk-read */ 855 ui->bulk_read = 1; 856 } 857 858 /* 859 * If possible, try to use pre-allocated bulk-read information, which 860 * is protected by @c->bu_mutex. 861 */ 862 if (mutex_trylock(&c->bu_mutex)) 863 bu = &c->bu; 864 else { 865 bu = kmalloc(sizeof(struct bu_info), GFP_NOFS | __GFP_NOWARN); 866 if (!bu) 867 goto out_unlock; 868 869 bu->buf = NULL; 870 allocated = 1; 871 } 872 873 bu->buf_len = c->max_bu_buf_len; 874 data_key_init(c, &bu->key, inode->i_ino, 875 page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT); 876 err = ubifs_do_bulk_read(c, bu, page); 877 878 if (!allocated) 879 mutex_unlock(&c->bu_mutex); 880 else 881 kfree(bu); 882 883out_unlock: 884 mutex_unlock(&ui->ui_mutex); 885 return err; 886} 887 888static int ubifs_readpage(struct file *file, struct page *page) 889{ 890 if (ubifs_bulk_read(page)) 891 return 0; 892 do_readpage(page); 893 unlock_page(page); 894 return 0; 895} 896 897static int do_writepage(struct page *page, int len) 898{ 899 int err = 0, i, blen; 900 unsigned int block; 901 void *addr; 902 union ubifs_key key; 903 struct inode *inode = page->mapping->host; 904 struct ubifs_info *c = inode->i_sb->s_fs_info; 905 906#ifdef UBIFS_DEBUG 907 struct ubifs_inode *ui = ubifs_inode(inode); 908 spin_lock(&ui->ui_lock); 909 ubifs_assert(c, page->index <= ui->synced_i_size >> PAGE_SHIFT); 910 spin_unlock(&ui->ui_lock); 911#endif 912 913 /* Update radix tree tags */ 914 set_page_writeback(page); 915 916 addr = kmap(page); 917 block = page->index << UBIFS_BLOCKS_PER_PAGE_SHIFT; 918 i = 0; 919 while (len) { 920 blen = min_t(int, len, UBIFS_BLOCK_SIZE); 921 data_key_init(c, &key, inode->i_ino, block); 922 err = ubifs_jnl_write_data(c, inode, &key, addr, blen); 923 if (err) 924 break; 925 if (++i >= UBIFS_BLOCKS_PER_PAGE) 926 break; 927 block += 1; 928 addr += blen; 929 len -= blen; 930 } 931 if (err) { 932 SetPageError(page); 933 ubifs_err(c, "cannot write page %lu of inode %lu, error %d", 934 page->index, inode->i_ino, err); 935 ubifs_ro_mode(c, err); 936 } 937 938 ubifs_assert(c, PagePrivate(page)); 939 if (PageChecked(page)) 940 release_new_page_budget(c); 941 else 942 release_existing_page_budget(c); 943 944 atomic_long_dec(&c->dirty_pg_cnt); 945 detach_page_private(page); 946 ClearPageChecked(page); 947 948 kunmap(page); 949 unlock_page(page); 950 end_page_writeback(page); 951 return err; 952} 953 954/* 955 * When writing-back dirty inodes, VFS first writes-back pages belonging to the 956 * inode, then the inode itself. For UBIFS this may cause a problem. Consider a 957 * situation when a we have an inode with size 0, then a megabyte of data is 958 * appended to the inode, then write-back starts and flushes some amount of the 959 * dirty pages, the journal becomes full, commit happens and finishes, and then 960 * an unclean reboot happens. When the file system is mounted next time, the 961 * inode size would still be 0, but there would be many pages which are beyond 962 * the inode size, they would be indexed and consume flash space. Because the 963 * journal has been committed, the replay would not be able to detect this 964 * situation and correct the inode size. This means UBIFS would have to scan 965 * whole index and correct all inode sizes, which is long an unacceptable. 966 * 967 * To prevent situations like this, UBIFS writes pages back only if they are 968 * within the last synchronized inode size, i.e. the size which has been 969 * written to the flash media last time. Otherwise, UBIFS forces inode 970 * write-back, thus making sure the on-flash inode contains current inode size, 971 * and then keeps writing pages back. 972 * 973 * Some locking issues explanation. 'ubifs_writepage()' first is called with 974 * the page locked, and it locks @ui_mutex. However, write-back does take inode 975 * @i_mutex, which means other VFS operations may be run on this inode at the 976 * same time. And the problematic one is truncation to smaller size, from where 977 * we have to call 'truncate_setsize()', which first changes @inode->i_size, 978 * then drops the truncated pages. And while dropping the pages, it takes the 979 * page lock. This means that 'do_truncation()' cannot call 'truncate_setsize()' 980 * with @ui_mutex locked, because it would deadlock with 'ubifs_writepage()'. 981 * This means that @inode->i_size is changed while @ui_mutex is unlocked. 982 * 983 * XXX(truncate): with the new truncate sequence this is not true anymore, 984 * and the calls to truncate_setsize can be move around freely. They should 985 * be moved to the very end of the truncate sequence. 986 * 987 * But in 'ubifs_writepage()' we have to guarantee that we do not write beyond 988 * inode size. How do we do this if @inode->i_size may became smaller while we 989 * are in the middle of 'ubifs_writepage()'? The UBIFS solution is the 990 * @ui->ui_isize "shadow" field which UBIFS uses instead of @inode->i_size 991 * internally and updates it under @ui_mutex. 992 * 993 * Q: why we do not worry that if we race with truncation, we may end up with a 994 * situation when the inode is truncated while we are in the middle of 995 * 'do_writepage()', so we do write beyond inode size? 996 * A: If we are in the middle of 'do_writepage()', truncation would be locked 997 * on the page lock and it would not write the truncated inode node to the 998 * journal before we have finished. 999 */ 1000static int ubifs_writepage(struct page *page, struct writeback_control *wbc) 1001{ 1002 struct inode *inode = page->mapping->host; 1003 struct ubifs_info *c = inode->i_sb->s_fs_info; 1004 struct ubifs_inode *ui = ubifs_inode(inode); 1005 loff_t i_size = i_size_read(inode), synced_i_size; 1006 pgoff_t end_index = i_size >> PAGE_SHIFT; 1007 int err, len = i_size & (PAGE_SIZE - 1); 1008 void *kaddr; 1009 1010 dbg_gen("ino %lu, pg %lu, pg flags %#lx", 1011 inode->i_ino, page->index, page->flags); 1012 ubifs_assert(c, PagePrivate(page)); 1013 1014 /* Is the page fully outside @i_size? (truncate in progress) */ 1015 if (page->index > end_index || (page->index == end_index && !len)) { 1016 err = 0; 1017 goto out_unlock; 1018 } 1019 1020 spin_lock(&ui->ui_lock); 1021 synced_i_size = ui->synced_i_size; 1022 spin_unlock(&ui->ui_lock); 1023 1024 /* Is the page fully inside @i_size? */ 1025 if (page->index < end_index) { 1026 if (page->index >= synced_i_size >> PAGE_SHIFT) { 1027 err = inode->i_sb->s_op->write_inode(inode, NULL); 1028 if (err) 1029 goto out_redirty; 1030 /* 1031 * The inode has been written, but the write-buffer has 1032 * not been synchronized, so in case of an unclean 1033 * reboot we may end up with some pages beyond inode 1034 * size, but they would be in the journal (because 1035 * commit flushes write buffers) and recovery would deal 1036 * with this. 1037 */ 1038 } 1039 return do_writepage(page, PAGE_SIZE); 1040 } 1041 1042 /* 1043 * The page straddles @i_size. It must be zeroed out on each and every 1044 * writepage invocation because it may be mmapped. "A file is mapped 1045 * in multiples of the page size. For a file that is not a multiple of 1046 * the page size, the remaining memory is zeroed when mapped, and 1047 * writes to that region are not written out to the file." 1048 */ 1049 kaddr = kmap_atomic(page); 1050 memset(kaddr + len, 0, PAGE_SIZE - len); 1051 flush_dcache_page(page); 1052 kunmap_atomic(kaddr); 1053 1054 if (i_size > synced_i_size) { 1055 err = inode->i_sb->s_op->write_inode(inode, NULL); 1056 if (err) 1057 goto out_redirty; 1058 } 1059 1060 return do_writepage(page, len); 1061out_redirty: 1062 /* 1063 * redirty_page_for_writepage() won't call ubifs_dirty_inode() because 1064 * it passes I_DIRTY_PAGES flag while calling __mark_inode_dirty(), so 1065 * there is no need to do space budget for dirty inode. 1066 */ 1067 redirty_page_for_writepage(wbc, page); 1068out_unlock: 1069 unlock_page(page); 1070 return err; 1071} 1072 1073/** 1074 * do_attr_changes - change inode attributes. 1075 * @inode: inode to change attributes for 1076 * @attr: describes attributes to change 1077 */ 1078static void do_attr_changes(struct inode *inode, const struct iattr *attr) 1079{ 1080 if (attr->ia_valid & ATTR_UID) 1081 inode->i_uid = attr->ia_uid; 1082 if (attr->ia_valid & ATTR_GID) 1083 inode->i_gid = attr->ia_gid; 1084 if (attr->ia_valid & ATTR_ATIME) 1085 inode->i_atime = attr->ia_atime; 1086 if (attr->ia_valid & ATTR_MTIME) 1087 inode->i_mtime = attr->ia_mtime; 1088 if (attr->ia_valid & ATTR_CTIME) 1089 inode->i_ctime = attr->ia_ctime; 1090 if (attr->ia_valid & ATTR_MODE) { 1091 umode_t mode = attr->ia_mode; 1092 1093 if (!in_group_p(inode->i_gid) && !capable(CAP_FSETID)) 1094 mode &= ~S_ISGID; 1095 inode->i_mode = mode; 1096 } 1097} 1098 1099/** 1100 * do_truncation - truncate an inode. 1101 * @c: UBIFS file-system description object 1102 * @inode: inode to truncate 1103 * @attr: inode attribute changes description 1104 * 1105 * This function implements VFS '->setattr()' call when the inode is truncated 1106 * to a smaller size. Returns zero in case of success and a negative error code 1107 * in case of failure. 1108 */ 1109static int do_truncation(struct ubifs_info *c, struct inode *inode, 1110 const struct iattr *attr) 1111{ 1112 int err; 1113 struct ubifs_budget_req req; 1114 loff_t old_size = inode->i_size, new_size = attr->ia_size; 1115 int offset = new_size & (UBIFS_BLOCK_SIZE - 1), budgeted = 1; 1116 struct ubifs_inode *ui = ubifs_inode(inode); 1117 1118 dbg_gen("ino %lu, size %lld -> %lld", inode->i_ino, old_size, new_size); 1119 memset(&req, 0, sizeof(struct ubifs_budget_req)); 1120 1121 /* 1122 * If this is truncation to a smaller size, and we do not truncate on a 1123 * block boundary, budget for changing one data block, because the last 1124 * block will be re-written. 1125 */ 1126 if (new_size & (UBIFS_BLOCK_SIZE - 1)) 1127 req.dirtied_page = 1; 1128 1129 req.dirtied_ino = 1; 1130 /* A funny way to budget for truncation node */ 1131 req.dirtied_ino_d = UBIFS_TRUN_NODE_SZ; 1132 err = ubifs_budget_space(c, &req); 1133 if (err) { 1134 /* 1135 * Treat truncations to zero as deletion and always allow them, 1136 * just like we do for '->unlink()'. 1137 */ 1138 if (new_size || err != -ENOSPC) 1139 return err; 1140 budgeted = 0; 1141 } 1142 1143 truncate_setsize(inode, new_size); 1144 1145 if (offset) { 1146 pgoff_t index = new_size >> PAGE_SHIFT; 1147 struct page *page; 1148 1149 page = find_lock_page(inode->i_mapping, index); 1150 if (page) { 1151 if (PageDirty(page)) { 1152 /* 1153 * 'ubifs_jnl_truncate()' will try to truncate 1154 * the last data node, but it contains 1155 * out-of-date data because the page is dirty. 1156 * Write the page now, so that 1157 * 'ubifs_jnl_truncate()' will see an already 1158 * truncated (and up to date) data node. 1159 */ 1160 ubifs_assert(c, PagePrivate(page)); 1161 1162 clear_page_dirty_for_io(page); 1163 if (UBIFS_BLOCKS_PER_PAGE_SHIFT) 1164 offset = new_size & 1165 (PAGE_SIZE - 1); 1166 err = do_writepage(page, offset); 1167 put_page(page); 1168 if (err) 1169 goto out_budg; 1170 /* 1171 * We could now tell 'ubifs_jnl_truncate()' not 1172 * to read the last block. 1173 */ 1174 } else { 1175 /* 1176 * We could 'kmap()' the page and pass the data 1177 * to 'ubifs_jnl_truncate()' to save it from 1178 * having to read it. 1179 */ 1180 unlock_page(page); 1181 put_page(page); 1182 } 1183 } 1184 } 1185 1186 mutex_lock(&ui->ui_mutex); 1187 ui->ui_size = inode->i_size; 1188 /* Truncation changes inode [mc]time */ 1189 inode->i_mtime = inode->i_ctime = current_time(inode); 1190 /* Other attributes may be changed at the same time as well */ 1191 do_attr_changes(inode, attr); 1192 err = ubifs_jnl_truncate(c, inode, old_size, new_size); 1193 mutex_unlock(&ui->ui_mutex); 1194 1195out_budg: 1196 if (budgeted) 1197 ubifs_release_budget(c, &req); 1198 else { 1199 c->bi.nospace = c->bi.nospace_rp = 0; 1200 smp_wmb(); 1201 } 1202 return err; 1203} 1204 1205/** 1206 * do_setattr - change inode attributes. 1207 * @c: UBIFS file-system description object 1208 * @inode: inode to change attributes for 1209 * @attr: inode attribute changes description 1210 * 1211 * This function implements VFS '->setattr()' call for all cases except 1212 * truncations to smaller size. Returns zero in case of success and a negative 1213 * error code in case of failure. 1214 */ 1215static int do_setattr(struct ubifs_info *c, struct inode *inode, 1216 const struct iattr *attr) 1217{ 1218 int err, release; 1219 loff_t new_size = attr->ia_size; 1220 struct ubifs_inode *ui = ubifs_inode(inode); 1221 struct ubifs_budget_req req = { .dirtied_ino = 1, 1222 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1223 1224 err = ubifs_budget_space(c, &req); 1225 if (err) 1226 return err; 1227 1228 if (attr->ia_valid & ATTR_SIZE) { 1229 dbg_gen("size %lld -> %lld", inode->i_size, new_size); 1230 truncate_setsize(inode, new_size); 1231 } 1232 1233 mutex_lock(&ui->ui_mutex); 1234 if (attr->ia_valid & ATTR_SIZE) { 1235 /* Truncation changes inode [mc]time */ 1236 inode->i_mtime = inode->i_ctime = current_time(inode); 1237 /* 'truncate_setsize()' changed @i_size, update @ui_size */ 1238 ui->ui_size = inode->i_size; 1239 } 1240 1241 do_attr_changes(inode, attr); 1242 1243 release = ui->dirty; 1244 if (attr->ia_valid & ATTR_SIZE) 1245 /* 1246 * Inode length changed, so we have to make sure 1247 * @I_DIRTY_DATASYNC is set. 1248 */ 1249 __mark_inode_dirty(inode, I_DIRTY_DATASYNC); 1250 else 1251 mark_inode_dirty_sync(inode); 1252 mutex_unlock(&ui->ui_mutex); 1253 1254 if (release) 1255 ubifs_release_budget(c, &req); 1256 if (IS_SYNC(inode)) 1257 err = inode->i_sb->s_op->write_inode(inode, NULL); 1258 return err; 1259} 1260 1261int ubifs_setattr(struct dentry *dentry, struct iattr *attr) 1262{ 1263 int err; 1264 struct inode *inode = d_inode(dentry); 1265 struct ubifs_info *c = inode->i_sb->s_fs_info; 1266 1267 dbg_gen("ino %lu, mode %#x, ia_valid %#x", 1268 inode->i_ino, inode->i_mode, attr->ia_valid); 1269 err = setattr_prepare(dentry, attr); 1270 if (err) 1271 return err; 1272 1273 err = dbg_check_synced_i_size(c, inode); 1274 if (err) 1275 return err; 1276 1277 err = fscrypt_prepare_setattr(dentry, attr); 1278 if (err) 1279 return err; 1280 1281 if ((attr->ia_valid & ATTR_SIZE) && attr->ia_size < inode->i_size) 1282 /* Truncation to a smaller size */ 1283 err = do_truncation(c, inode, attr); 1284 else 1285 err = do_setattr(c, inode, attr); 1286 1287 return err; 1288} 1289 1290static void ubifs_invalidatepage(struct page *page, unsigned int offset, 1291 unsigned int length) 1292{ 1293 struct inode *inode = page->mapping->host; 1294 struct ubifs_info *c = inode->i_sb->s_fs_info; 1295 1296 ubifs_assert(c, PagePrivate(page)); 1297 if (offset || length < PAGE_SIZE) 1298 /* Partial page remains dirty */ 1299 return; 1300 1301 if (PageChecked(page)) 1302 release_new_page_budget(c); 1303 else 1304 release_existing_page_budget(c); 1305 1306 atomic_long_dec(&c->dirty_pg_cnt); 1307 detach_page_private(page); 1308 ClearPageChecked(page); 1309} 1310 1311int ubifs_fsync(struct file *file, loff_t start, loff_t end, int datasync) 1312{ 1313 struct inode *inode = file->f_mapping->host; 1314 struct ubifs_info *c = inode->i_sb->s_fs_info; 1315 int err; 1316 1317 dbg_gen("syncing inode %lu", inode->i_ino); 1318 1319 if (c->ro_mount) 1320 /* 1321 * For some really strange reasons VFS does not filter out 1322 * 'fsync()' for R/O mounted file-systems as per 2.6.39. 1323 */ 1324 return 0; 1325 1326 err = file_write_and_wait_range(file, start, end); 1327 if (err) 1328 return err; 1329 inode_lock(inode); 1330 1331 /* Synchronize the inode unless this is a 'datasync()' call. */ 1332 if (!datasync || (inode->i_state & I_DIRTY_DATASYNC)) { 1333 err = inode->i_sb->s_op->write_inode(inode, NULL); 1334 if (err) 1335 goto out; 1336 } 1337 1338 /* 1339 * Nodes related to this inode may still sit in a write-buffer. Flush 1340 * them. 1341 */ 1342 err = ubifs_sync_wbufs_by_inode(c, inode); 1343out: 1344 inode_unlock(inode); 1345 return err; 1346} 1347 1348/** 1349 * mctime_update_needed - check if mtime or ctime update is needed. 1350 * @inode: the inode to do the check for 1351 * @now: current time 1352 * 1353 * This helper function checks if the inode mtime/ctime should be updated or 1354 * not. If current values of the time-stamps are within the UBIFS inode time 1355 * granularity, they are not updated. This is an optimization. 1356 */ 1357static inline int mctime_update_needed(const struct inode *inode, 1358 const struct timespec64 *now) 1359{ 1360 if (!timespec64_equal(&inode->i_mtime, now) || 1361 !timespec64_equal(&inode->i_ctime, now)) 1362 return 1; 1363 return 0; 1364} 1365 1366/** 1367 * ubifs_update_time - update time of inode. 1368 * @inode: inode to update 1369 * 1370 * This function updates time of the inode. 1371 */ 1372int ubifs_update_time(struct inode *inode, struct timespec64 *time, 1373 int flags) 1374{ 1375 struct ubifs_inode *ui = ubifs_inode(inode); 1376 struct ubifs_info *c = inode->i_sb->s_fs_info; 1377 struct ubifs_budget_req req = { .dirtied_ino = 1, 1378 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1379 int err, release; 1380 1381 if (!IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1382 return generic_update_time(inode, time, flags); 1383 1384 err = ubifs_budget_space(c, &req); 1385 if (err) 1386 return err; 1387 1388 mutex_lock(&ui->ui_mutex); 1389 if (flags & S_ATIME) 1390 inode->i_atime = *time; 1391 if (flags & S_CTIME) 1392 inode->i_ctime = *time; 1393 if (flags & S_MTIME) 1394 inode->i_mtime = *time; 1395 1396 release = ui->dirty; 1397 __mark_inode_dirty(inode, I_DIRTY_SYNC); 1398 mutex_unlock(&ui->ui_mutex); 1399 if (release) 1400 ubifs_release_budget(c, &req); 1401 return 0; 1402} 1403 1404/** 1405 * update_mctime - update mtime and ctime of an inode. 1406 * @inode: inode to update 1407 * 1408 * This function updates mtime and ctime of the inode if it is not equivalent to 1409 * current time. Returns zero in case of success and a negative error code in 1410 * case of failure. 1411 */ 1412static int update_mctime(struct inode *inode) 1413{ 1414 struct timespec64 now = current_time(inode); 1415 struct ubifs_inode *ui = ubifs_inode(inode); 1416 struct ubifs_info *c = inode->i_sb->s_fs_info; 1417 1418 if (mctime_update_needed(inode, &now)) { 1419 int err, release; 1420 struct ubifs_budget_req req = { .dirtied_ino = 1, 1421 .dirtied_ino_d = ALIGN(ui->data_len, 8) }; 1422 1423 err = ubifs_budget_space(c, &req); 1424 if (err) 1425 return err; 1426 1427 mutex_lock(&ui->ui_mutex); 1428 inode->i_mtime = inode->i_ctime = current_time(inode); 1429 release = ui->dirty; 1430 mark_inode_dirty_sync(inode); 1431 mutex_unlock(&ui->ui_mutex); 1432 if (release) 1433 ubifs_release_budget(c, &req); 1434 } 1435 1436 return 0; 1437} 1438 1439static ssize_t ubifs_write_iter(struct kiocb *iocb, struct iov_iter *from) 1440{ 1441 int err = update_mctime(file_inode(iocb->ki_filp)); 1442 if (err) 1443 return err; 1444 1445 return generic_file_write_iter(iocb, from); 1446} 1447 1448static int ubifs_set_page_dirty(struct page *page) 1449{ 1450 int ret; 1451 struct inode *inode = page->mapping->host; 1452 struct ubifs_info *c = inode->i_sb->s_fs_info; 1453 1454 ret = __set_page_dirty_nobuffers(page); 1455 /* 1456 * An attempt to dirty a page without budgeting for it - should not 1457 * happen. 1458 */ 1459 ubifs_assert(c, ret == 0); 1460 return ret; 1461} 1462 1463#ifdef CONFIG_MIGRATION 1464static int ubifs_migrate_page(struct address_space *mapping, 1465 struct page *newpage, struct page *page, enum migrate_mode mode) 1466{ 1467 int rc; 1468 1469 rc = migrate_page_move_mapping(mapping, newpage, page, 0); 1470 if (rc != MIGRATEPAGE_SUCCESS) 1471 return rc; 1472 1473 if (PagePrivate(page)) { 1474 detach_page_private(page); 1475 attach_page_private(newpage, (void *)1); 1476 } 1477 1478 if (mode != MIGRATE_SYNC_NO_COPY) 1479 migrate_page_copy(newpage, page); 1480 else 1481 migrate_page_states(newpage, page); 1482 return MIGRATEPAGE_SUCCESS; 1483} 1484#endif 1485 1486static int ubifs_releasepage(struct page *page, gfp_t unused_gfp_flags) 1487{ 1488 struct inode *inode = page->mapping->host; 1489 struct ubifs_info *c = inode->i_sb->s_fs_info; 1490 1491 /* 1492 * An attempt to release a dirty page without budgeting for it - should 1493 * not happen. 1494 */ 1495 if (PageWriteback(page)) 1496 return 0; 1497 ubifs_assert(c, PagePrivate(page)); 1498 ubifs_assert(c, 0); 1499 detach_page_private(page); 1500 ClearPageChecked(page); 1501 return 1; 1502} 1503 1504/* 1505 * mmap()d file has taken write protection fault and is being made writable. 1506 * UBIFS must ensure page is budgeted for. 1507 */ 1508static vm_fault_t ubifs_vm_page_mkwrite(struct vm_fault *vmf) 1509{ 1510 struct page *page = vmf->page; 1511 struct inode *inode = file_inode(vmf->vma->vm_file); 1512 struct ubifs_info *c = inode->i_sb->s_fs_info; 1513 struct timespec64 now = current_time(inode); 1514 struct ubifs_budget_req req = { .new_page = 1 }; 1515 int err, update_time; 1516 1517 dbg_gen("ino %lu, pg %lu, i_size %lld", inode->i_ino, page->index, 1518 i_size_read(inode)); 1519 ubifs_assert(c, !c->ro_media && !c->ro_mount); 1520 1521 if (unlikely(c->ro_error)) 1522 return VM_FAULT_SIGBUS; /* -EROFS */ 1523 1524 /* 1525 * We have not locked @page so far so we may budget for changing the 1526 * page. Note, we cannot do this after we locked the page, because 1527 * budgeting may cause write-back which would cause deadlock. 1528 * 1529 * At the moment we do not know whether the page is dirty or not, so we 1530 * assume that it is not and budget for a new page. We could look at 1531 * the @PG_private flag and figure this out, but we may race with write 1532 * back and the page state may change by the time we lock it, so this 1533 * would need additional care. We do not bother with this at the 1534 * moment, although it might be good idea to do. Instead, we allocate 1535 * budget for a new page and amend it later on if the page was in fact 1536 * dirty. 1537 * 1538 * The budgeting-related logic of this function is similar to what we 1539 * do in 'ubifs_write_begin()' and 'ubifs_write_end()'. Glance there 1540 * for more comments. 1541 */ 1542 update_time = mctime_update_needed(inode, &now); 1543 if (update_time) 1544 /* 1545 * We have to change inode time stamp which requires extra 1546 * budgeting. 1547 */ 1548 req.dirtied_ino = 1; 1549 1550 err = ubifs_budget_space(c, &req); 1551 if (unlikely(err)) { 1552 if (err == -ENOSPC) 1553 ubifs_warn(c, "out of space for mmapped file (inode number %lu)", 1554 inode->i_ino); 1555 return VM_FAULT_SIGBUS; 1556 } 1557 1558 lock_page(page); 1559 if (unlikely(page->mapping != inode->i_mapping || 1560 page_offset(page) > i_size_read(inode))) { 1561 /* Page got truncated out from underneath us */ 1562 goto sigbus; 1563 } 1564 1565 if (PagePrivate(page)) 1566 release_new_page_budget(c); 1567 else { 1568 if (!PageChecked(page)) 1569 ubifs_convert_page_budget(c); 1570 attach_page_private(page, (void *)1); 1571 atomic_long_inc(&c->dirty_pg_cnt); 1572 __set_page_dirty_nobuffers(page); 1573 } 1574 1575 if (update_time) { 1576 int release; 1577 struct ubifs_inode *ui = ubifs_inode(inode); 1578 1579 mutex_lock(&ui->ui_mutex); 1580 inode->i_mtime = inode->i_ctime = current_time(inode); 1581 release = ui->dirty; 1582 mark_inode_dirty_sync(inode); 1583 mutex_unlock(&ui->ui_mutex); 1584 if (release) 1585 ubifs_release_dirty_inode_budget(c, ui); 1586 } 1587 1588 wait_for_stable_page(page); 1589 return VM_FAULT_LOCKED; 1590 1591sigbus: 1592 unlock_page(page); 1593 ubifs_release_budget(c, &req); 1594 return VM_FAULT_SIGBUS; 1595} 1596 1597static const struct vm_operations_struct ubifs_file_vm_ops = { 1598 .fault = filemap_fault, 1599 .map_pages = filemap_map_pages, 1600 .page_mkwrite = ubifs_vm_page_mkwrite, 1601}; 1602 1603static int ubifs_file_mmap(struct file *file, struct vm_area_struct *vma) 1604{ 1605 int err; 1606 1607 err = generic_file_mmap(file, vma); 1608 if (err) 1609 return err; 1610 vma->vm_ops = &ubifs_file_vm_ops; 1611 1612 if (IS_ENABLED(CONFIG_UBIFS_ATIME_SUPPORT)) 1613 file_accessed(file); 1614 1615 return 0; 1616} 1617 1618static const char *ubifs_get_link(struct dentry *dentry, 1619 struct inode *inode, 1620 struct delayed_call *done) 1621{ 1622 struct ubifs_inode *ui = ubifs_inode(inode); 1623 1624 if (!IS_ENCRYPTED(inode)) 1625 return ui->data; 1626 1627 if (!dentry) 1628 return ERR_PTR(-ECHILD); 1629 1630 return fscrypt_get_symlink(inode, ui->data, ui->data_len, done); 1631} 1632 1633static int ubifs_symlink_getattr(const struct path *path, struct kstat *stat, 1634 u32 request_mask, unsigned int query_flags) 1635{ 1636 ubifs_getattr(path, stat, request_mask, query_flags); 1637 1638 if (IS_ENCRYPTED(d_inode(path->dentry))) 1639 return fscrypt_symlink_getattr(path, stat); 1640 return 0; 1641} 1642 1643const struct address_space_operations ubifs_file_address_operations = { 1644 .readpage = ubifs_readpage, 1645 .writepage = ubifs_writepage, 1646 .write_begin = ubifs_write_begin, 1647 .write_end = ubifs_write_end, 1648 .invalidatepage = ubifs_invalidatepage, 1649 .set_page_dirty = ubifs_set_page_dirty, 1650#ifdef CONFIG_MIGRATION 1651 .migratepage = ubifs_migrate_page, 1652#endif 1653 .releasepage = ubifs_releasepage, 1654}; 1655 1656const struct inode_operations ubifs_file_inode_operations = { 1657 .setattr = ubifs_setattr, 1658 .getattr = ubifs_getattr, 1659#ifdef CONFIG_UBIFS_FS_XATTR 1660 .listxattr = ubifs_listxattr, 1661#endif 1662 .update_time = ubifs_update_time, 1663}; 1664 1665const struct inode_operations ubifs_symlink_inode_operations = { 1666 .get_link = ubifs_get_link, 1667 .setattr = ubifs_setattr, 1668 .getattr = ubifs_symlink_getattr, 1669#ifdef CONFIG_UBIFS_FS_XATTR 1670 .listxattr = ubifs_listxattr, 1671#endif 1672 .update_time = ubifs_update_time, 1673}; 1674 1675const struct file_operations ubifs_file_operations = { 1676 .llseek = generic_file_llseek, 1677 .read_iter = generic_file_read_iter, 1678 .write_iter = ubifs_write_iter, 1679 .mmap = ubifs_file_mmap, 1680 .fsync = ubifs_fsync, 1681 .unlocked_ioctl = ubifs_ioctl, 1682 .splice_read = generic_file_splice_read, 1683 .splice_write = iter_file_splice_write, 1684 .open = fscrypt_file_open, 1685#ifdef CONFIG_COMPAT 1686 .compat_ioctl = ubifs_compat_ioctl, 1687#endif 1688}; 1689