1// SPDX-License-Identifier: GPL-2.0 2/* 3 * linux/fs/proc/base.c 4 * 5 * Copyright (C) 1991, 1992 Linus Torvalds 6 * 7 * proc base directory handling functions 8 * 9 * 1999, Al Viro. Rewritten. Now it covers the whole per-process part. 10 * Instead of using magical inumbers to determine the kind of object 11 * we allocate and fill in-core inodes upon lookup. They don't even 12 * go into icache. We cache the reference to task_struct upon lookup too. 13 * Eventually it should become a filesystem in its own. We don't use the 14 * rest of procfs anymore. 15 * 16 * 17 * Changelog: 18 * 17-Jan-2005 19 * Allan Bezerra 20 * Bruna Moreira <bruna.moreira@indt.org.br> 21 * Edjard Mota <edjard.mota@indt.org.br> 22 * Ilias Biris <ilias.biris@indt.org.br> 23 * Mauricio Lin <mauricio.lin@indt.org.br> 24 * 25 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 26 * 27 * A new process specific entry (smaps) included in /proc. It shows the 28 * size of rss for each memory area. The maps entry lacks information 29 * about physical memory size (rss) for each mapped file, i.e., 30 * rss information for executables and library files. 31 * This additional information is useful for any tools that need to know 32 * about physical memory consumption for a process specific library. 33 * 34 * Changelog: 35 * 21-Feb-2005 36 * Embedded Linux Lab - 10LE Instituto Nokia de Tecnologia - INdT 37 * Pud inclusion in the page table walking. 38 * 39 * ChangeLog: 40 * 10-Mar-2005 41 * 10LE Instituto Nokia de Tecnologia - INdT: 42 * A better way to walks through the page table as suggested by Hugh Dickins. 43 * 44 * Simo Piiroinen <simo.piiroinen@nokia.com>: 45 * Smaps information related to shared, private, clean and dirty pages. 46 * 47 * Paul Mundt <paul.mundt@nokia.com>: 48 * Overall revision about smaps. 49 */ 50 51#include <linux/uaccess.h> 52 53#include <linux/errno.h> 54#include <linux/time.h> 55#include <linux/proc_fs.h> 56#include <linux/stat.h> 57 58#ifdef CONFIG_QOS_CTRL 59#include <linux/sched/qos_ctrl.h> 60#endif 61 62#include <linux/task_io_accounting_ops.h> 63#include <linux/init.h> 64#include <linux/capability.h> 65#include <linux/file.h> 66#include <linux/fdtable.h> 67#include <linux/generic-radix-tree.h> 68#include <linux/string.h> 69#include <linux/seq_file.h> 70#include <linux/namei.h> 71#include <linux/mnt_namespace.h> 72#include <linux/mm.h> 73#include <linux/swap.h> 74#include <linux/rcupdate.h> 75#include <linux/kallsyms.h> 76#include <linux/stacktrace.h> 77#include <linux/resource.h> 78#include <linux/module.h> 79#include <linux/mount.h> 80#include <linux/security.h> 81#include <linux/ptrace.h> 82#include <linux/tracehook.h> 83#include <linux/printk.h> 84#include <linux/cache.h> 85#include <linux/cgroup.h> 86#include <linux/cpuset.h> 87#include <linux/audit.h> 88#include <linux/poll.h> 89#include <linux/nsproxy.h> 90#include <linux/oom.h> 91#include <linux/elf.h> 92#include <linux/pid_namespace.h> 93#include <linux/user_namespace.h> 94#include <linux/fs_struct.h> 95#include <linux/slab.h> 96#include <linux/sched.h> 97#ifdef CONFIG_SCHED_RTG 98#include <linux/sched/rtg_ctrl.h> 99#endif 100#include <linux/sched/autogroup.h> 101#include <linux/sched/mm.h> 102#include <linux/sched/coredump.h> 103#include <linux/sched/debug.h> 104#include <linux/sched/stat.h> 105#include <linux/posix-timers.h> 106#include <linux/time_namespace.h> 107#include <linux/resctrl.h> 108#include <trace/events/oom.h> 109#include "internal.h" 110#include "fd.h" 111 112#include "../../lib/kstrtox.h" 113 114/* NOTE: 115 * Implementing inode permission operations in /proc is almost 116 * certainly an error. Permission checks need to happen during 117 * each system call not at open time. The reason is that most of 118 * what we wish to check for permissions in /proc varies at runtime. 119 * 120 * The classic example of a problem is opening file descriptors 121 * in /proc for a task before it execs a suid executable. 122 */ 123 124static u8 nlink_tid __ro_after_init; 125static u8 nlink_tgid __ro_after_init; 126 127struct pid_entry { 128 const char *name; 129 unsigned int len; 130 umode_t mode; 131 const struct inode_operations *iop; 132 const struct file_operations *fop; 133 union proc_op op; 134}; 135 136#define NOD(NAME, MODE, IOP, FOP, OP) { \ 137 .name = (NAME), \ 138 .len = sizeof(NAME) - 1, \ 139 .mode = MODE, \ 140 .iop = IOP, \ 141 .fop = FOP, \ 142 .op = OP, \ 143} 144 145#define DIR(NAME, MODE, iops, fops) \ 146 NOD(NAME, (S_IFDIR|(MODE)), &iops, &fops, {} ) 147#define LNK(NAME, get_link) \ 148 NOD(NAME, (S_IFLNK|S_IRWXUGO), \ 149 &proc_pid_link_inode_operations, NULL, \ 150 { .proc_get_link = get_link } ) 151#define REG(NAME, MODE, fops) \ 152 NOD(NAME, (S_IFREG|(MODE)), NULL, &fops, {}) 153#define ONE(NAME, MODE, show) \ 154 NOD(NAME, (S_IFREG|(MODE)), \ 155 NULL, &proc_single_file_operations, \ 156 { .proc_show = show } ) 157#define ATTR(LSM, NAME, MODE) \ 158 NOD(NAME, (S_IFREG|(MODE)), \ 159 NULL, &proc_pid_attr_operations, \ 160 { .lsm = LSM }) 161 162/* 163 * Count the number of hardlinks for the pid_entry table, excluding the . 164 * and .. links. 165 */ 166static unsigned int __init pid_entry_nlink(const struct pid_entry *entries, 167 unsigned int n) 168{ 169 unsigned int i; 170 unsigned int count; 171 172 count = 2; 173 for (i = 0; i < n; ++i) { 174 if (S_ISDIR(entries[i].mode)) 175 ++count; 176 } 177 178 return count; 179} 180 181static int get_task_root(struct task_struct *task, struct path *root) 182{ 183 int result = -ENOENT; 184 185 task_lock(task); 186 if (task->fs) { 187 get_fs_root(task->fs, root); 188 result = 0; 189 } 190 task_unlock(task); 191 return result; 192} 193 194static int proc_cwd_link(struct dentry *dentry, struct path *path) 195{ 196 struct task_struct *task = get_proc_task(d_inode(dentry)); 197 int result = -ENOENT; 198 199 if (task) { 200 task_lock(task); 201 if (task->fs) { 202 get_fs_pwd(task->fs, path); 203 result = 0; 204 } 205 task_unlock(task); 206 put_task_struct(task); 207 } 208 return result; 209} 210 211static int proc_root_link(struct dentry *dentry, struct path *path) 212{ 213 struct task_struct *task = get_proc_task(d_inode(dentry)); 214 int result = -ENOENT; 215 216 if (task) { 217 result = get_task_root(task, path); 218 put_task_struct(task); 219 } 220 return result; 221} 222 223/* 224 * If the user used setproctitle(), we just get the string from 225 * user space at arg_start, and limit it to a maximum of one page. 226 */ 227static ssize_t get_mm_proctitle(struct mm_struct *mm, char __user *buf, 228 size_t count, unsigned long pos, 229 unsigned long arg_start) 230{ 231 char *page; 232 int ret, got; 233 234 if (pos >= PAGE_SIZE) 235 return 0; 236 237 page = (char *)__get_free_page(GFP_KERNEL); 238 if (!page) 239 return -ENOMEM; 240 241 ret = 0; 242 got = access_remote_vm(mm, arg_start, page, PAGE_SIZE, FOLL_ANON); 243 if (got > 0) { 244 int len = strnlen(page, got); 245 246 /* Include the NUL character if it was found */ 247 if (len < got) 248 len++; 249 250 if (len > pos) { 251 len -= pos; 252 if (len > count) 253 len = count; 254 len -= copy_to_user(buf, page+pos, len); 255 if (!len) 256 len = -EFAULT; 257 ret = len; 258 } 259 } 260 free_page((unsigned long)page); 261 return ret; 262} 263 264static ssize_t get_mm_cmdline(struct mm_struct *mm, char __user *buf, 265 size_t count, loff_t *ppos) 266{ 267 unsigned long arg_start, arg_end, env_start, env_end; 268 unsigned long pos, len; 269 char *page, c; 270 271 /* Check if process spawned far enough to have cmdline. */ 272 if (!mm->env_end) 273 return 0; 274 275 spin_lock(&mm->arg_lock); 276 arg_start = mm->arg_start; 277 arg_end = mm->arg_end; 278 env_start = mm->env_start; 279 env_end = mm->env_end; 280 spin_unlock(&mm->arg_lock); 281 282 if (arg_start >= arg_end) 283 return 0; 284 285 /* 286 * We allow setproctitle() to overwrite the argument 287 * strings, and overflow past the original end. But 288 * only when it overflows into the environment area. 289 */ 290 if (env_start != arg_end || env_end < env_start) 291 env_start = env_end = arg_end; 292 len = env_end - arg_start; 293 294 /* We're not going to care if "*ppos" has high bits set */ 295 pos = *ppos; 296 if (pos >= len) 297 return 0; 298 if (count > len - pos) 299 count = len - pos; 300 if (!count) 301 return 0; 302 303 /* 304 * Magical special case: if the argv[] end byte is not 305 * zero, the user has overwritten it with setproctitle(3). 306 * 307 * Possible future enhancement: do this only once when 308 * pos is 0, and set a flag in the 'struct file'. 309 */ 310 if (access_remote_vm(mm, arg_end-1, &c, 1, FOLL_ANON) == 1 && c) 311 return get_mm_proctitle(mm, buf, count, pos, arg_start); 312 313 /* 314 * For the non-setproctitle() case we limit things strictly 315 * to the [arg_start, arg_end[ range. 316 */ 317 pos += arg_start; 318 if (pos < arg_start || pos >= arg_end) 319 return 0; 320 if (count > arg_end - pos) 321 count = arg_end - pos; 322 323 page = (char *)__get_free_page(GFP_KERNEL); 324 if (!page) 325 return -ENOMEM; 326 327 len = 0; 328 while (count) { 329 int got; 330 size_t size = min_t(size_t, PAGE_SIZE, count); 331 332 got = access_remote_vm(mm, pos, page, size, FOLL_ANON); 333 if (got <= 0) 334 break; 335 got -= copy_to_user(buf, page, got); 336 if (unlikely(!got)) { 337 if (!len) 338 len = -EFAULT; 339 break; 340 } 341 pos += got; 342 buf += got; 343 len += got; 344 count -= got; 345 } 346 347 free_page((unsigned long)page); 348 return len; 349} 350 351static ssize_t get_task_cmdline(struct task_struct *tsk, char __user *buf, 352 size_t count, loff_t *pos) 353{ 354 struct mm_struct *mm; 355 ssize_t ret; 356 357 mm = get_task_mm(tsk); 358 if (!mm) 359 return 0; 360 361 ret = get_mm_cmdline(mm, buf, count, pos); 362 mmput(mm); 363 return ret; 364} 365 366static ssize_t proc_pid_cmdline_read(struct file *file, char __user *buf, 367 size_t count, loff_t *pos) 368{ 369 struct task_struct *tsk; 370 ssize_t ret; 371 372 BUG_ON(*pos < 0); 373 374 tsk = get_proc_task(file_inode(file)); 375 if (!tsk) 376 return -ESRCH; 377 ret = get_task_cmdline(tsk, buf, count, pos); 378 put_task_struct(tsk); 379 if (ret > 0) 380 *pos += ret; 381 return ret; 382} 383 384static const struct file_operations proc_pid_cmdline_ops = { 385 .read = proc_pid_cmdline_read, 386 .llseek = generic_file_llseek, 387}; 388 389#ifdef CONFIG_KALLSYMS 390/* 391 * Provides a wchan file via kallsyms in a proper one-value-per-file format. 392 * Returns the resolved symbol. If that fails, simply return the address. 393 */ 394static int proc_pid_wchan(struct seq_file *m, struct pid_namespace *ns, 395 struct pid *pid, struct task_struct *task) 396{ 397 unsigned long wchan; 398 char symname[KSYM_NAME_LEN]; 399 400 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 401 goto print0; 402 403 wchan = get_wchan(task); 404 if (wchan && !lookup_symbol_name(wchan, symname)) { 405 seq_puts(m, symname); 406 return 0; 407 } 408 409print0: 410 seq_putc(m, '0'); 411 return 0; 412} 413#endif /* CONFIG_KALLSYMS */ 414 415static int lock_trace(struct task_struct *task) 416{ 417 int err = down_read_killable(&task->signal->exec_update_lock); 418 if (err) 419 return err; 420 if (!ptrace_may_access(task, PTRACE_MODE_ATTACH_FSCREDS)) { 421 up_read(&task->signal->exec_update_lock); 422 return -EPERM; 423 } 424 return 0; 425} 426 427static void unlock_trace(struct task_struct *task) 428{ 429 up_read(&task->signal->exec_update_lock); 430} 431 432#ifdef CONFIG_STACKTRACE 433 434#define MAX_STACK_TRACE_DEPTH 64 435 436static int proc_pid_stack(struct seq_file *m, struct pid_namespace *ns, 437 struct pid *pid, struct task_struct *task) 438{ 439 unsigned long *entries; 440 int err; 441 442 /* 443 * The ability to racily run the kernel stack unwinder on a running task 444 * and then observe the unwinder output is scary; while it is useful for 445 * debugging kernel issues, it can also allow an attacker to leak kernel 446 * stack contents. 447 * Doing this in a manner that is at least safe from races would require 448 * some work to ensure that the remote task can not be scheduled; and 449 * even then, this would still expose the unwinder as local attack 450 * surface. 451 * Therefore, this interface is restricted to root. 452 */ 453 if (!file_ns_capable(m->file, &init_user_ns, CAP_SYS_ADMIN)) 454 return -EACCES; 455 456 entries = kmalloc_array(MAX_STACK_TRACE_DEPTH, sizeof(*entries), 457 GFP_KERNEL); 458 if (!entries) 459 return -ENOMEM; 460 461 err = lock_trace(task); 462 if (!err) { 463 unsigned int i, nr_entries; 464 465 nr_entries = stack_trace_save_tsk(task, entries, 466 MAX_STACK_TRACE_DEPTH, 0); 467 468 for (i = 0; i < nr_entries; i++) { 469 seq_printf(m, "[<0>] %pB\n", (void *)entries[i]); 470 } 471 472 unlock_trace(task); 473 } 474 kfree(entries); 475 476 return err; 477} 478#endif 479 480#ifdef CONFIG_SCHED_INFO 481/* 482 * Provides /proc/PID/schedstat 483 */ 484static int proc_pid_schedstat(struct seq_file *m, struct pid_namespace *ns, 485 struct pid *pid, struct task_struct *task) 486{ 487 if (unlikely(!sched_info_on())) 488 seq_puts(m, "0 0 0\n"); 489 else 490 seq_printf(m, "%llu %llu %lu\n", 491 (unsigned long long)task->se.sum_exec_runtime, 492 (unsigned long long)task->sched_info.run_delay, 493 task->sched_info.pcount); 494 495 return 0; 496} 497#endif 498 499#ifdef CONFIG_LATENCYTOP 500static int lstats_show_proc(struct seq_file *m, void *v) 501{ 502 int i; 503 struct inode *inode = m->private; 504 struct task_struct *task = get_proc_task(inode); 505 506 if (!task) 507 return -ESRCH; 508 seq_puts(m, "Latency Top version : v0.1\n"); 509 for (i = 0; i < LT_SAVECOUNT; i++) { 510 struct latency_record *lr = &task->latency_record[i]; 511 if (lr->backtrace[0]) { 512 int q; 513 seq_printf(m, "%i %li %li", 514 lr->count, lr->time, lr->max); 515 for (q = 0; q < LT_BACKTRACEDEPTH; q++) { 516 unsigned long bt = lr->backtrace[q]; 517 518 if (!bt) 519 break; 520 seq_printf(m, " %ps", (void *)bt); 521 } 522 seq_putc(m, '\n'); 523 } 524 525 } 526 put_task_struct(task); 527 return 0; 528} 529 530static int lstats_open(struct inode *inode, struct file *file) 531{ 532 return single_open(file, lstats_show_proc, inode); 533} 534 535static ssize_t lstats_write(struct file *file, const char __user *buf, 536 size_t count, loff_t *offs) 537{ 538 struct task_struct *task = get_proc_task(file_inode(file)); 539 540 if (!task) 541 return -ESRCH; 542 clear_tsk_latency_tracing(task); 543 put_task_struct(task); 544 545 return count; 546} 547 548static const struct file_operations proc_lstats_operations = { 549 .open = lstats_open, 550 .read = seq_read, 551 .write = lstats_write, 552 .llseek = seq_lseek, 553 .release = single_release, 554}; 555 556#endif 557 558static int proc_oom_score(struct seq_file *m, struct pid_namespace *ns, 559 struct pid *pid, struct task_struct *task) 560{ 561 unsigned long totalpages = totalram_pages() + total_swap_pages; 562 unsigned long points = 0; 563 long badness; 564 565 badness = oom_badness(task, totalpages); 566 /* 567 * Special case OOM_SCORE_ADJ_MIN for all others scale the 568 * badness value into [0, 2000] range which we have been 569 * exporting for a long time so userspace might depend on it. 570 */ 571 if (badness != LONG_MIN) 572 points = (1000 + badness * 1000 / (long)totalpages) * 2 / 3; 573 574 seq_printf(m, "%lu\n", points); 575 576 return 0; 577} 578 579struct limit_names { 580 const char *name; 581 const char *unit; 582}; 583 584static const struct limit_names lnames[RLIM_NLIMITS] = { 585 [RLIMIT_CPU] = {"Max cpu time", "seconds"}, 586 [RLIMIT_FSIZE] = {"Max file size", "bytes"}, 587 [RLIMIT_DATA] = {"Max data size", "bytes"}, 588 [RLIMIT_STACK] = {"Max stack size", "bytes"}, 589 [RLIMIT_CORE] = {"Max core file size", "bytes"}, 590 [RLIMIT_RSS] = {"Max resident set", "bytes"}, 591 [RLIMIT_NPROC] = {"Max processes", "processes"}, 592 [RLIMIT_NOFILE] = {"Max open files", "files"}, 593 [RLIMIT_MEMLOCK] = {"Max locked memory", "bytes"}, 594 [RLIMIT_AS] = {"Max address space", "bytes"}, 595 [RLIMIT_LOCKS] = {"Max file locks", "locks"}, 596 [RLIMIT_SIGPENDING] = {"Max pending signals", "signals"}, 597 [RLIMIT_MSGQUEUE] = {"Max msgqueue size", "bytes"}, 598 [RLIMIT_NICE] = {"Max nice priority", NULL}, 599 [RLIMIT_RTPRIO] = {"Max realtime priority", NULL}, 600 [RLIMIT_RTTIME] = {"Max realtime timeout", "us"}, 601}; 602 603/* Display limits for a process */ 604static int proc_pid_limits(struct seq_file *m, struct pid_namespace *ns, 605 struct pid *pid, struct task_struct *task) 606{ 607 unsigned int i; 608 unsigned long flags; 609 610 struct rlimit rlim[RLIM_NLIMITS]; 611 612 if (!lock_task_sighand(task, &flags)) 613 return 0; 614 memcpy(rlim, task->signal->rlim, sizeof(struct rlimit) * RLIM_NLIMITS); 615 unlock_task_sighand(task, &flags); 616 617 /* 618 * print the file header 619 */ 620 seq_puts(m, "Limit " 621 "Soft Limit " 622 "Hard Limit " 623 "Units \n"); 624 625 for (i = 0; i < RLIM_NLIMITS; i++) { 626 if (rlim[i].rlim_cur == RLIM_INFINITY) 627 seq_printf(m, "%-25s %-20s ", 628 lnames[i].name, "unlimited"); 629 else 630 seq_printf(m, "%-25s %-20lu ", 631 lnames[i].name, rlim[i].rlim_cur); 632 633 if (rlim[i].rlim_max == RLIM_INFINITY) 634 seq_printf(m, "%-20s ", "unlimited"); 635 else 636 seq_printf(m, "%-20lu ", rlim[i].rlim_max); 637 638 if (lnames[i].unit) 639 seq_printf(m, "%-10s\n", lnames[i].unit); 640 else 641 seq_putc(m, '\n'); 642 } 643 644 return 0; 645} 646 647#ifdef CONFIG_HAVE_ARCH_TRACEHOOK 648static int proc_pid_syscall(struct seq_file *m, struct pid_namespace *ns, 649 struct pid *pid, struct task_struct *task) 650{ 651 struct syscall_info info; 652 u64 *args = &info.data.args[0]; 653 int res; 654 655 res = lock_trace(task); 656 if (res) 657 return res; 658 659 if (task_current_syscall(task, &info)) 660 seq_puts(m, "running\n"); 661 else if (info.data.nr < 0) 662 seq_printf(m, "%d 0x%llx 0x%llx\n", 663 info.data.nr, info.sp, info.data.instruction_pointer); 664 else 665 seq_printf(m, 666 "%d 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx 0x%llx\n", 667 info.data.nr, 668 args[0], args[1], args[2], args[3], args[4], args[5], 669 info.sp, info.data.instruction_pointer); 670 unlock_trace(task); 671 672 return 0; 673} 674#endif /* CONFIG_HAVE_ARCH_TRACEHOOK */ 675 676/************************************************************************/ 677/* Here the fs part begins */ 678/************************************************************************/ 679 680/* permission checks */ 681static int proc_fd_access_allowed(struct inode *inode) 682{ 683 struct task_struct *task; 684 int allowed = 0; 685 /* Allow access to a task's file descriptors if it is us or we 686 * may use ptrace attach to the process and find out that 687 * information. 688 */ 689 task = get_proc_task(inode); 690 if (task) { 691 allowed = ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 692 put_task_struct(task); 693 } 694 return allowed; 695} 696 697int proc_setattr(struct dentry *dentry, struct iattr *attr) 698{ 699 int error; 700 struct inode *inode = d_inode(dentry); 701 702 if (attr->ia_valid & ATTR_MODE) 703 return -EPERM; 704 705 error = setattr_prepare(dentry, attr); 706 if (error) 707 return error; 708 709 setattr_copy(inode, attr); 710 mark_inode_dirty(inode); 711 return 0; 712} 713 714/* 715 * May current process learn task's sched/cmdline info (for hide_pid_min=1) 716 * or euid/egid (for hide_pid_min=2)? 717 */ 718static bool has_pid_permissions(struct proc_fs_info *fs_info, 719 struct task_struct *task, 720 enum proc_hidepid hide_pid_min) 721{ 722 /* 723 * If 'hidpid' mount option is set force a ptrace check, 724 * we indicate that we are using a filesystem syscall 725 * by passing PTRACE_MODE_READ_FSCREDS 726 */ 727 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) 728 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 729 730 if (fs_info->hide_pid < hide_pid_min) 731 return true; 732 if (in_group_p(fs_info->pid_gid)) 733 return true; 734 return ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS); 735} 736 737 738static int proc_pid_permission(struct inode *inode, int mask) 739{ 740 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 741 struct task_struct *task; 742 bool has_perms; 743 744 task = get_proc_task(inode); 745 if (!task) 746 return -ESRCH; 747 has_perms = has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS); 748 put_task_struct(task); 749 750 if (!has_perms) { 751 if (fs_info->hide_pid == HIDEPID_INVISIBLE) { 752 /* 753 * Let's make getdents(), stat(), and open() 754 * consistent with each other. If a process 755 * may not stat() a file, it shouldn't be seen 756 * in procfs at all. 757 */ 758 return -ENOENT; 759 } 760 761 return -EPERM; 762 } 763 return generic_permission(inode, mask); 764} 765 766 767 768static const struct inode_operations proc_def_inode_operations = { 769 .setattr = proc_setattr, 770}; 771 772static int proc_single_show(struct seq_file *m, void *v) 773{ 774 struct inode *inode = m->private; 775 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 776 struct pid *pid = proc_pid(inode); 777 struct task_struct *task; 778 int ret; 779 780 task = get_pid_task(pid, PIDTYPE_PID); 781 if (!task) 782 return -ESRCH; 783 784 ret = PROC_I(inode)->op.proc_show(m, ns, pid, task); 785 786 put_task_struct(task); 787 return ret; 788} 789 790static int proc_single_open(struct inode *inode, struct file *filp) 791{ 792 return single_open(filp, proc_single_show, inode); 793} 794 795static const struct file_operations proc_single_file_operations = { 796 .open = proc_single_open, 797 .read = seq_read, 798 .llseek = seq_lseek, 799 .release = single_release, 800}; 801 802 803struct mm_struct *proc_mem_open(struct inode *inode, unsigned int mode) 804{ 805 struct task_struct *task = get_proc_task(inode); 806 struct mm_struct *mm = ERR_PTR(-ESRCH); 807 808 if (task) { 809 mm = mm_access(task, mode | PTRACE_MODE_FSCREDS); 810 put_task_struct(task); 811 812 if (!IS_ERR_OR_NULL(mm)) { 813 /* ensure this mm_struct can't be freed */ 814 mmgrab(mm); 815 /* but do not pin its memory */ 816 mmput(mm); 817 } 818 } 819 820 return mm; 821} 822 823static int __mem_open(struct inode *inode, struct file *file, unsigned int mode) 824{ 825 struct mm_struct *mm = proc_mem_open(inode, mode); 826 827 if (IS_ERR(mm)) 828 return PTR_ERR(mm); 829 830 file->private_data = mm; 831 return 0; 832} 833 834static int mem_open(struct inode *inode, struct file *file) 835{ 836 int ret = __mem_open(inode, file, PTRACE_MODE_ATTACH); 837 838 /* OK to pass negative loff_t, we can catch out-of-range */ 839 file->f_mode |= FMODE_UNSIGNED_OFFSET; 840 841 return ret; 842} 843 844static ssize_t mem_rw(struct file *file, char __user *buf, 845 size_t count, loff_t *ppos, int write) 846{ 847 struct mm_struct *mm = file->private_data; 848 unsigned long addr = *ppos; 849 ssize_t copied; 850 char *page; 851 unsigned int flags; 852 853 if (!mm) 854 return 0; 855 856 page = (char *)__get_free_page(GFP_KERNEL); 857 if (!page) 858 return -ENOMEM; 859 860 copied = 0; 861 if (!mmget_not_zero(mm)) 862 goto free; 863 864 flags = FOLL_FORCE | (write ? FOLL_WRITE : 0); 865 866 while (count > 0) { 867 size_t this_len = min_t(size_t, count, PAGE_SIZE); 868 869 if (write && copy_from_user(page, buf, this_len)) { 870 copied = -EFAULT; 871 break; 872 } 873 874 this_len = access_remote_vm(mm, addr, page, this_len, flags); 875 if (!this_len) { 876 if (!copied) 877 copied = -EIO; 878 break; 879 } 880 881 if (!write && copy_to_user(buf, page, this_len)) { 882 copied = -EFAULT; 883 break; 884 } 885 886 buf += this_len; 887 addr += this_len; 888 copied += this_len; 889 count -= this_len; 890 } 891 *ppos = addr; 892 893 mmput(mm); 894free: 895 free_page((unsigned long) page); 896 return copied; 897} 898 899static ssize_t mem_read(struct file *file, char __user *buf, 900 size_t count, loff_t *ppos) 901{ 902 return mem_rw(file, buf, count, ppos, 0); 903} 904 905static ssize_t mem_write(struct file *file, const char __user *buf, 906 size_t count, loff_t *ppos) 907{ 908 return mem_rw(file, (char __user*)buf, count, ppos, 1); 909} 910 911loff_t mem_lseek(struct file *file, loff_t offset, int orig) 912{ 913 loff_t ret = 0; 914 915 spin_lock(&file->f_lock); 916 switch (orig) { 917 case SEEK_CUR: 918 offset += file->f_pos; 919 /* fall through */ 920 case SEEK_SET: 921 /* to avoid userland mistaking f_pos=-9 as -EBADF=-9 */ 922 if ((unsigned long long)offset >= -MAX_ERRNO) 923 ret = -EOVERFLOW; 924 break; 925 default: 926 ret = -EINVAL; 927 } 928 929 if (!ret) { 930 if (offset < 0 && !(unsigned_offsets(file))) { 931 ret = -EINVAL; 932 } else { 933 file->f_pos = offset; 934 ret = file->f_pos; 935 force_successful_syscall_return(); 936 } 937 } 938 939 spin_unlock(&file->f_lock); 940 return ret; 941} 942 943static int mem_release(struct inode *inode, struct file *file) 944{ 945 struct mm_struct *mm = file->private_data; 946 if (mm) 947 mmdrop(mm); 948 return 0; 949} 950 951static const struct file_operations proc_mem_operations = { 952 .llseek = mem_lseek, 953 .read = mem_read, 954 .write = mem_write, 955 .open = mem_open, 956 .release = mem_release, 957}; 958 959static int environ_open(struct inode *inode, struct file *file) 960{ 961 return __mem_open(inode, file, PTRACE_MODE_READ); 962} 963 964static ssize_t environ_read(struct file *file, char __user *buf, 965 size_t count, loff_t *ppos) 966{ 967 char *page; 968 unsigned long src = *ppos; 969 int ret = 0; 970 struct mm_struct *mm = file->private_data; 971 unsigned long env_start, env_end; 972 973 /* Ensure the process spawned far enough to have an environment. */ 974 if (!mm || !mm->env_end) 975 return 0; 976 977 page = (char *)__get_free_page(GFP_KERNEL); 978 if (!page) 979 return -ENOMEM; 980 981 ret = 0; 982 if (!mmget_not_zero(mm)) 983 goto free; 984 985 spin_lock(&mm->arg_lock); 986 env_start = mm->env_start; 987 env_end = mm->env_end; 988 spin_unlock(&mm->arg_lock); 989 990 while (count > 0) { 991 size_t this_len, max_len; 992 int retval; 993 994 if (src >= (env_end - env_start)) 995 break; 996 997 this_len = env_end - (env_start + src); 998 999 max_len = min_t(size_t, PAGE_SIZE, count); 1000 this_len = min(max_len, this_len); 1001 1002 retval = access_remote_vm(mm, (env_start + src), page, this_len, FOLL_ANON); 1003 1004 if (retval <= 0) { 1005 ret = retval; 1006 break; 1007 } 1008 1009 if (copy_to_user(buf, page, retval)) { 1010 ret = -EFAULT; 1011 break; 1012 } 1013 1014 ret += retval; 1015 src += retval; 1016 buf += retval; 1017 count -= retval; 1018 } 1019 *ppos = src; 1020 mmput(mm); 1021 1022free: 1023 free_page((unsigned long) page); 1024 return ret; 1025} 1026 1027static const struct file_operations proc_environ_operations = { 1028 .open = environ_open, 1029 .read = environ_read, 1030 .llseek = generic_file_llseek, 1031 .release = mem_release, 1032}; 1033 1034static int auxv_open(struct inode *inode, struct file *file) 1035{ 1036 return __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 1037} 1038 1039static ssize_t auxv_read(struct file *file, char __user *buf, 1040 size_t count, loff_t *ppos) 1041{ 1042 struct mm_struct *mm = file->private_data; 1043 unsigned int nwords = 0; 1044 1045 if (!mm) 1046 return 0; 1047 do { 1048 nwords += 2; 1049 } while (mm->saved_auxv[nwords - 2] != 0); /* AT_NULL */ 1050 return simple_read_from_buffer(buf, count, ppos, mm->saved_auxv, 1051 nwords * sizeof(mm->saved_auxv[0])); 1052} 1053 1054static const struct file_operations proc_auxv_operations = { 1055 .open = auxv_open, 1056 .read = auxv_read, 1057 .llseek = generic_file_llseek, 1058 .release = mem_release, 1059}; 1060 1061static ssize_t oom_adj_read(struct file *file, char __user *buf, size_t count, 1062 loff_t *ppos) 1063{ 1064 struct task_struct *task = get_proc_task(file_inode(file)); 1065 char buffer[PROC_NUMBUF]; 1066 int oom_adj = OOM_ADJUST_MIN; 1067 size_t len; 1068 1069 if (!task) 1070 return -ESRCH; 1071 if (task->signal->oom_score_adj == OOM_SCORE_ADJ_MAX) 1072 oom_adj = OOM_ADJUST_MAX; 1073 else 1074 oom_adj = (task->signal->oom_score_adj * -OOM_DISABLE) / 1075 OOM_SCORE_ADJ_MAX; 1076 put_task_struct(task); 1077 if (oom_adj > OOM_ADJUST_MAX) 1078 oom_adj = OOM_ADJUST_MAX; 1079 len = snprintf(buffer, sizeof(buffer), "%d\n", oom_adj); 1080 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1081} 1082 1083static int __set_oom_adj(struct file *file, int oom_adj, bool legacy) 1084{ 1085 struct mm_struct *mm = NULL; 1086 struct task_struct *task; 1087 int err = 0; 1088 1089 task = get_proc_task(file_inode(file)); 1090 if (!task) 1091 return -ESRCH; 1092 1093 mutex_lock(&oom_adj_mutex); 1094 if (legacy) { 1095 if (oom_adj < task->signal->oom_score_adj && 1096 !capable(CAP_SYS_RESOURCE)) { 1097 err = -EACCES; 1098 goto err_unlock; 1099 } 1100 /* 1101 * /proc/pid/oom_adj is provided for legacy purposes, ask users to use 1102 * /proc/pid/oom_score_adj instead. 1103 */ 1104 pr_warn_once("%s (%d): /proc/%d/oom_adj is deprecated, please use /proc/%d/oom_score_adj instead.\n", 1105 current->comm, task_pid_nr(current), task_pid_nr(task), 1106 task_pid_nr(task)); 1107 } else { 1108 if ((short)oom_adj < task->signal->oom_score_adj_min && 1109 !capable(CAP_SYS_RESOURCE)) { 1110 err = -EACCES; 1111 goto err_unlock; 1112 } 1113 } 1114 1115 /* 1116 * Make sure we will check other processes sharing the mm if this is 1117 * not vfrok which wants its own oom_score_adj. 1118 * pin the mm so it doesn't go away and get reused after task_unlock 1119 */ 1120 if (!task->vfork_done) { 1121 struct task_struct *p = find_lock_task_mm(task); 1122 1123 if (p) { 1124 if (test_bit(MMF_MULTIPROCESS, &p->mm->flags)) { 1125 mm = p->mm; 1126 mmgrab(mm); 1127 } 1128 task_unlock(p); 1129 } 1130 } 1131 1132 task->signal->oom_score_adj = oom_adj; 1133 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1134 task->signal->oom_score_adj_min = (short)oom_adj; 1135 trace_oom_score_adj_update(task); 1136 1137 if (mm) { 1138 struct task_struct *p; 1139 1140 rcu_read_lock(); 1141 for_each_process(p) { 1142 if (same_thread_group(task, p)) 1143 continue; 1144 1145 /* do not touch kernel threads or the global init */ 1146 if (p->flags & PF_KTHREAD || is_global_init(p)) 1147 continue; 1148 1149 task_lock(p); 1150 if (!p->vfork_done && process_shares_mm(p, mm)) { 1151 p->signal->oom_score_adj = oom_adj; 1152 if (!legacy && has_capability_noaudit(current, CAP_SYS_RESOURCE)) 1153 p->signal->oom_score_adj_min = (short)oom_adj; 1154 } 1155 task_unlock(p); 1156 } 1157 rcu_read_unlock(); 1158 mmdrop(mm); 1159 } 1160err_unlock: 1161 mutex_unlock(&oom_adj_mutex); 1162 put_task_struct(task); 1163 return err; 1164} 1165 1166/* 1167 * /proc/pid/oom_adj exists solely for backwards compatibility with previous 1168 * kernels. The effective policy is defined by oom_score_adj, which has a 1169 * different scale: oom_adj grew exponentially and oom_score_adj grows linearly. 1170 * Values written to oom_adj are simply mapped linearly to oom_score_adj. 1171 * Processes that become oom disabled via oom_adj will still be oom disabled 1172 * with this implementation. 1173 * 1174 * oom_adj cannot be removed since existing userspace binaries use it. 1175 */ 1176static ssize_t oom_adj_write(struct file *file, const char __user *buf, 1177 size_t count, loff_t *ppos) 1178{ 1179 char buffer[PROC_NUMBUF]; 1180 int oom_adj; 1181 int err; 1182 1183 memset(buffer, 0, sizeof(buffer)); 1184 if (count > sizeof(buffer) - 1) 1185 count = sizeof(buffer) - 1; 1186 if (copy_from_user(buffer, buf, count)) { 1187 err = -EFAULT; 1188 goto out; 1189 } 1190 1191 err = kstrtoint(strstrip(buffer), 0, &oom_adj); 1192 if (err) 1193 goto out; 1194 if ((oom_adj < OOM_ADJUST_MIN || oom_adj > OOM_ADJUST_MAX) && 1195 oom_adj != OOM_DISABLE) { 1196 err = -EINVAL; 1197 goto out; 1198 } 1199 1200 /* 1201 * Scale /proc/pid/oom_score_adj appropriately ensuring that a maximum 1202 * value is always attainable. 1203 */ 1204 if (oom_adj == OOM_ADJUST_MAX) 1205 oom_adj = OOM_SCORE_ADJ_MAX; 1206 else 1207 oom_adj = (oom_adj * OOM_SCORE_ADJ_MAX) / -OOM_DISABLE; 1208 1209 err = __set_oom_adj(file, oom_adj, true); 1210out: 1211 return err < 0 ? err : count; 1212} 1213 1214static const struct file_operations proc_oom_adj_operations = { 1215 .read = oom_adj_read, 1216 .write = oom_adj_write, 1217 .llseek = generic_file_llseek, 1218}; 1219 1220static ssize_t oom_score_adj_read(struct file *file, char __user *buf, 1221 size_t count, loff_t *ppos) 1222{ 1223 struct task_struct *task = get_proc_task(file_inode(file)); 1224 char buffer[PROC_NUMBUF]; 1225 short oom_score_adj = OOM_SCORE_ADJ_MIN; 1226 size_t len; 1227 1228 if (!task) 1229 return -ESRCH; 1230 oom_score_adj = task->signal->oom_score_adj; 1231 put_task_struct(task); 1232 len = snprintf(buffer, sizeof(buffer), "%hd\n", oom_score_adj); 1233 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1234} 1235 1236static ssize_t oom_score_adj_write(struct file *file, const char __user *buf, 1237 size_t count, loff_t *ppos) 1238{ 1239 char buffer[PROC_NUMBUF]; 1240 int oom_score_adj; 1241 int err; 1242 1243 memset(buffer, 0, sizeof(buffer)); 1244 if (count > sizeof(buffer) - 1) 1245 count = sizeof(buffer) - 1; 1246 if (copy_from_user(buffer, buf, count)) { 1247 err = -EFAULT; 1248 goto out; 1249 } 1250 1251 err = kstrtoint(strstrip(buffer), 0, &oom_score_adj); 1252 if (err) 1253 goto out; 1254 if (oom_score_adj < OOM_SCORE_ADJ_MIN || 1255 oom_score_adj > OOM_SCORE_ADJ_MAX) { 1256 err = -EINVAL; 1257 goto out; 1258 } 1259 1260 err = __set_oom_adj(file, oom_score_adj, false); 1261out: 1262 return err < 0 ? err : count; 1263} 1264 1265static const struct file_operations proc_oom_score_adj_operations = { 1266 .read = oom_score_adj_read, 1267 .write = oom_score_adj_write, 1268 .llseek = default_llseek, 1269}; 1270 1271#ifdef CONFIG_AUDIT 1272#define TMPBUFLEN 11 1273static ssize_t proc_loginuid_read(struct file * file, char __user * buf, 1274 size_t count, loff_t *ppos) 1275{ 1276 struct inode * inode = file_inode(file); 1277 struct task_struct *task = get_proc_task(inode); 1278 ssize_t length; 1279 char tmpbuf[TMPBUFLEN]; 1280 1281 if (!task) 1282 return -ESRCH; 1283 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1284 from_kuid(file->f_cred->user_ns, 1285 audit_get_loginuid(task))); 1286 put_task_struct(task); 1287 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1288} 1289 1290static ssize_t proc_loginuid_write(struct file * file, const char __user * buf, 1291 size_t count, loff_t *ppos) 1292{ 1293 struct inode * inode = file_inode(file); 1294 uid_t loginuid; 1295 kuid_t kloginuid; 1296 int rv; 1297 1298 /* Don't let kthreads write their own loginuid */ 1299 if (current->flags & PF_KTHREAD) 1300 return -EPERM; 1301 1302 rcu_read_lock(); 1303 if (current != pid_task(proc_pid(inode), PIDTYPE_PID)) { 1304 rcu_read_unlock(); 1305 return -EPERM; 1306 } 1307 rcu_read_unlock(); 1308 1309 if (*ppos != 0) { 1310 /* No partial writes. */ 1311 return -EINVAL; 1312 } 1313 1314 rv = kstrtou32_from_user(buf, count, 10, &loginuid); 1315 if (rv < 0) 1316 return rv; 1317 1318 /* is userspace tring to explicitly UNSET the loginuid? */ 1319 if (loginuid == AUDIT_UID_UNSET) { 1320 kloginuid = INVALID_UID; 1321 } else { 1322 kloginuid = make_kuid(file->f_cred->user_ns, loginuid); 1323 if (!uid_valid(kloginuid)) 1324 return -EINVAL; 1325 } 1326 1327 rv = audit_set_loginuid(kloginuid); 1328 if (rv < 0) 1329 return rv; 1330 return count; 1331} 1332 1333static const struct file_operations proc_loginuid_operations = { 1334 .read = proc_loginuid_read, 1335 .write = proc_loginuid_write, 1336 .llseek = generic_file_llseek, 1337}; 1338 1339static ssize_t proc_sessionid_read(struct file * file, char __user * buf, 1340 size_t count, loff_t *ppos) 1341{ 1342 struct inode * inode = file_inode(file); 1343 struct task_struct *task = get_proc_task(inode); 1344 ssize_t length; 1345 char tmpbuf[TMPBUFLEN]; 1346 1347 if (!task) 1348 return -ESRCH; 1349 length = scnprintf(tmpbuf, TMPBUFLEN, "%u", 1350 audit_get_sessionid(task)); 1351 put_task_struct(task); 1352 return simple_read_from_buffer(buf, count, ppos, tmpbuf, length); 1353} 1354 1355static const struct file_operations proc_sessionid_operations = { 1356 .read = proc_sessionid_read, 1357 .llseek = generic_file_llseek, 1358}; 1359#endif 1360 1361#ifdef CONFIG_FAULT_INJECTION 1362static ssize_t proc_fault_inject_read(struct file * file, char __user * buf, 1363 size_t count, loff_t *ppos) 1364{ 1365 struct task_struct *task = get_proc_task(file_inode(file)); 1366 char buffer[PROC_NUMBUF]; 1367 size_t len; 1368 int make_it_fail; 1369 1370 if (!task) 1371 return -ESRCH; 1372 make_it_fail = task->make_it_fail; 1373 put_task_struct(task); 1374 1375 len = snprintf(buffer, sizeof(buffer), "%i\n", make_it_fail); 1376 1377 return simple_read_from_buffer(buf, count, ppos, buffer, len); 1378} 1379 1380static ssize_t proc_fault_inject_write(struct file * file, 1381 const char __user * buf, size_t count, loff_t *ppos) 1382{ 1383 struct task_struct *task; 1384 char buffer[PROC_NUMBUF]; 1385 int make_it_fail; 1386 int rv; 1387 1388 if (!capable(CAP_SYS_RESOURCE)) 1389 return -EPERM; 1390 memset(buffer, 0, sizeof(buffer)); 1391 if (count > sizeof(buffer) - 1) 1392 count = sizeof(buffer) - 1; 1393 if (copy_from_user(buffer, buf, count)) 1394 return -EFAULT; 1395 rv = kstrtoint(strstrip(buffer), 0, &make_it_fail); 1396 if (rv < 0) 1397 return rv; 1398 if (make_it_fail < 0 || make_it_fail > 1) 1399 return -EINVAL; 1400 1401 task = get_proc_task(file_inode(file)); 1402 if (!task) 1403 return -ESRCH; 1404 task->make_it_fail = make_it_fail; 1405 put_task_struct(task); 1406 1407 return count; 1408} 1409 1410static const struct file_operations proc_fault_inject_operations = { 1411 .read = proc_fault_inject_read, 1412 .write = proc_fault_inject_write, 1413 .llseek = generic_file_llseek, 1414}; 1415 1416static ssize_t proc_fail_nth_write(struct file *file, const char __user *buf, 1417 size_t count, loff_t *ppos) 1418{ 1419 struct task_struct *task; 1420 int err; 1421 unsigned int n; 1422 1423 err = kstrtouint_from_user(buf, count, 0, &n); 1424 if (err) 1425 return err; 1426 1427 task = get_proc_task(file_inode(file)); 1428 if (!task) 1429 return -ESRCH; 1430 task->fail_nth = n; 1431 put_task_struct(task); 1432 1433 return count; 1434} 1435 1436static ssize_t proc_fail_nth_read(struct file *file, char __user *buf, 1437 size_t count, loff_t *ppos) 1438{ 1439 struct task_struct *task; 1440 char numbuf[PROC_NUMBUF]; 1441 ssize_t len; 1442 1443 task = get_proc_task(file_inode(file)); 1444 if (!task) 1445 return -ESRCH; 1446 len = snprintf(numbuf, sizeof(numbuf), "%u\n", task->fail_nth); 1447 put_task_struct(task); 1448 return simple_read_from_buffer(buf, count, ppos, numbuf, len); 1449} 1450 1451static const struct file_operations proc_fail_nth_operations = { 1452 .read = proc_fail_nth_read, 1453 .write = proc_fail_nth_write, 1454}; 1455#endif 1456 1457 1458#ifdef CONFIG_SCHED_DEBUG 1459/* 1460 * Print out various scheduling related per-task fields: 1461 */ 1462static int sched_show(struct seq_file *m, void *v) 1463{ 1464 struct inode *inode = m->private; 1465 struct pid_namespace *ns = proc_pid_ns(inode->i_sb); 1466 struct task_struct *p; 1467 1468 p = get_proc_task(inode); 1469 if (!p) 1470 return -ESRCH; 1471 proc_sched_show_task(p, ns, m); 1472 1473 put_task_struct(p); 1474 1475 return 0; 1476} 1477 1478static ssize_t 1479sched_write(struct file *file, const char __user *buf, 1480 size_t count, loff_t *offset) 1481{ 1482 struct inode *inode = file_inode(file); 1483 struct task_struct *p; 1484 1485 p = get_proc_task(inode); 1486 if (!p) 1487 return -ESRCH; 1488 proc_sched_set_task(p); 1489 1490 put_task_struct(p); 1491 1492 return count; 1493} 1494 1495static int sched_open(struct inode *inode, struct file *filp) 1496{ 1497 return single_open(filp, sched_show, inode); 1498} 1499 1500static const struct file_operations proc_pid_sched_operations = { 1501 .open = sched_open, 1502 .read = seq_read, 1503 .write = sched_write, 1504 .llseek = seq_lseek, 1505 .release = single_release, 1506}; 1507 1508#endif 1509 1510#ifdef CONFIG_QOS_CTRL 1511long proc_qos_ctrl_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1512{ 1513 return do_qos_ctrl_ioctl(QOS_IOCTL_ABI_AARCH64, file, cmd, arg); 1514} 1515 1516#ifdef CONFIG_COMPAT 1517long proc_qos_ctrl_compat_ioctl(struct file *file, unsigned int cmd, unsigned long arg) 1518{ 1519 return do_qos_ctrl_ioctl(QOS_IOCTL_ABI_ARM32, file, cmd, 1520 (unsigned long)(compat_ptr((compat_uptr_t)arg))); 1521} 1522#endif 1523 1524int proc_qos_ctrl_open(struct inode *inode, struct file *filp) 1525{ 1526 return 0; 1527} 1528 1529static const struct file_operations proc_qos_ctrl_operations = { 1530 .open = proc_qos_ctrl_open, 1531 .unlocked_ioctl = proc_qos_ctrl_ioctl, 1532#ifdef CONFIG_COMPAT 1533 .compat_ioctl = proc_qos_ctrl_compat_ioctl, 1534#endif 1535}; 1536#endif 1537 1538#ifdef CONFIG_SCHED_RTG 1539static const struct file_operations proc_rtg_operations = { 1540 .open = proc_rtg_open, 1541 .unlocked_ioctl = proc_rtg_ioctl, 1542#ifdef CONFIG_COMPAT 1543 .compat_ioctl = proc_rtg_compat_ioctl, 1544#endif 1545}; 1546#endif 1547 1548#ifdef CONFIG_SCHED_RTG_DEBUG 1549static int sched_group_id_show(struct seq_file *m, void *v) 1550{ 1551 struct inode *inode = m->private; 1552 struct task_struct *p; 1553 1554 p = get_proc_task(inode); 1555 if (!p) 1556 return -ESRCH; 1557 1558 seq_printf(m, "%d\n", sched_get_group_id(p)); 1559 1560 put_task_struct(p); 1561 1562 return 0; 1563} 1564 1565static ssize_t 1566sched_group_id_write(struct file *file, const char __user *buf, 1567 size_t count, loff_t *offset) 1568{ 1569 struct inode *inode = file_inode(file); 1570 struct task_struct *p; 1571 char buffer[PROC_NUMBUF]; 1572 int group_id, err; 1573 1574 memset(buffer, 0, sizeof(buffer)); 1575 if (count > sizeof(buffer) - 1) 1576 count = sizeof(buffer) - 1; 1577 if (copy_from_user(buffer, buf, count)) { 1578 err = -EFAULT; 1579 goto out; 1580 } 1581 1582 err = kstrtoint(strstrip(buffer), 0, &group_id); 1583 if (err) 1584 goto out; 1585 1586 p = get_proc_task(inode); 1587 if (!p) 1588 return -ESRCH; 1589 1590 err = sched_set_group_id(p, group_id); 1591 1592 put_task_struct(p); 1593 1594out: 1595 return err < 0 ? err : count; 1596} 1597 1598static int sched_group_id_open(struct inode *inode, struct file *filp) 1599{ 1600 return single_open(filp, sched_group_id_show, inode); 1601} 1602 1603static const struct file_operations proc_pid_sched_group_id_operations = { 1604 .open = sched_group_id_open, 1605 .read = seq_read, 1606 .write = sched_group_id_write, 1607 .llseek = seq_lseek, 1608 .release = single_release, 1609}; 1610#endif /* CONFIG_SCHED_RTG_DEBUG */ 1611 1612#ifdef CONFIG_SCHED_AUTOGROUP 1613/* 1614 * Print out autogroup related information: 1615 */ 1616static int sched_autogroup_show(struct seq_file *m, void *v) 1617{ 1618 struct inode *inode = m->private; 1619 struct task_struct *p; 1620 1621 p = get_proc_task(inode); 1622 if (!p) 1623 return -ESRCH; 1624 proc_sched_autogroup_show_task(p, m); 1625 1626 put_task_struct(p); 1627 1628 return 0; 1629} 1630 1631static ssize_t 1632sched_autogroup_write(struct file *file, const char __user *buf, 1633 size_t count, loff_t *offset) 1634{ 1635 struct inode *inode = file_inode(file); 1636 struct task_struct *p; 1637 char buffer[PROC_NUMBUF]; 1638 int nice; 1639 int err; 1640 1641 memset(buffer, 0, sizeof(buffer)); 1642 if (count > sizeof(buffer) - 1) 1643 count = sizeof(buffer) - 1; 1644 if (copy_from_user(buffer, buf, count)) 1645 return -EFAULT; 1646 1647 err = kstrtoint(strstrip(buffer), 0, &nice); 1648 if (err < 0) 1649 return err; 1650 1651 p = get_proc_task(inode); 1652 if (!p) 1653 return -ESRCH; 1654 1655 err = proc_sched_autogroup_set_nice(p, nice); 1656 if (err) 1657 count = err; 1658 1659 put_task_struct(p); 1660 1661 return count; 1662} 1663 1664static int sched_autogroup_open(struct inode *inode, struct file *filp) 1665{ 1666 int ret; 1667 1668 ret = single_open(filp, sched_autogroup_show, NULL); 1669 if (!ret) { 1670 struct seq_file *m = filp->private_data; 1671 1672 m->private = inode; 1673 } 1674 return ret; 1675} 1676 1677static const struct file_operations proc_pid_sched_autogroup_operations = { 1678 .open = sched_autogroup_open, 1679 .read = seq_read, 1680 .write = sched_autogroup_write, 1681 .llseek = seq_lseek, 1682 .release = single_release, 1683}; 1684 1685#endif /* CONFIG_SCHED_AUTOGROUP */ 1686 1687#ifdef CONFIG_SCHED_WALT 1688static int sched_init_task_load_show(struct seq_file *m, void *v) 1689{ 1690 struct inode *inode = m->private; 1691 struct task_struct *p; 1692 1693 p = get_proc_task(inode); 1694 if (!p) 1695 return -ESRCH; 1696 1697 seq_printf(m, "%d\n", sched_get_init_task_load(p)); 1698 1699 put_task_struct(p); 1700 1701 return 0; 1702} 1703 1704static ssize_t 1705sched_init_task_load_write(struct file *file, const char __user *buf, 1706 size_t count, loff_t *offset) 1707{ 1708 struct inode *inode = file_inode(file); 1709 struct task_struct *p; 1710 char buffer[PROC_NUMBUF]; 1711 int init_task_load, err; 1712 1713 memset(buffer, 0, sizeof(buffer)); 1714 if (count > sizeof(buffer) - 1) 1715 count = sizeof(buffer) - 1; 1716 if (copy_from_user(buffer, buf, count)) { 1717 err = -EFAULT; 1718 goto out; 1719 } 1720 1721 err = kstrtoint(strstrip(buffer), 0, &init_task_load); 1722 if (err) 1723 goto out; 1724 1725 p = get_proc_task(inode); 1726 if (!p) 1727 return -ESRCH; 1728 1729 err = sched_set_init_task_load(p, init_task_load); 1730 1731 put_task_struct(p); 1732 1733out: 1734 return err < 0 ? err : count; 1735} 1736 1737static int sched_init_task_load_open(struct inode *inode, struct file *filp) 1738{ 1739 return single_open(filp, sched_init_task_load_show, inode); 1740} 1741 1742static const struct file_operations proc_pid_sched_init_task_load_operations = { 1743 .open = sched_init_task_load_open, 1744 .read = seq_read, 1745 .write = sched_init_task_load_write, 1746 .llseek = seq_lseek, 1747 .release = single_release, 1748}; 1749#endif /* CONFIG_SCHED_WALT */ 1750 1751#ifdef CONFIG_TIME_NS 1752static int timens_offsets_show(struct seq_file *m, void *v) 1753{ 1754 struct task_struct *p; 1755 1756 p = get_proc_task(file_inode(m->file)); 1757 if (!p) 1758 return -ESRCH; 1759 proc_timens_show_offsets(p, m); 1760 1761 put_task_struct(p); 1762 1763 return 0; 1764} 1765 1766static ssize_t timens_offsets_write(struct file *file, const char __user *buf, 1767 size_t count, loff_t *ppos) 1768{ 1769 struct inode *inode = file_inode(file); 1770 struct proc_timens_offset offsets[2]; 1771 char *kbuf = NULL, *pos, *next_line; 1772 struct task_struct *p; 1773 int ret, noffsets; 1774 1775 /* Only allow < page size writes at the beginning of the file */ 1776 if ((*ppos != 0) || (count >= PAGE_SIZE)) 1777 return -EINVAL; 1778 1779 /* Slurp in the user data */ 1780 kbuf = memdup_user_nul(buf, count); 1781 if (IS_ERR(kbuf)) 1782 return PTR_ERR(kbuf); 1783 1784 /* Parse the user data */ 1785 ret = -EINVAL; 1786 noffsets = 0; 1787 for (pos = kbuf; pos; pos = next_line) { 1788 struct proc_timens_offset *off = &offsets[noffsets]; 1789 char clock[10]; 1790 int err; 1791 1792 /* Find the end of line and ensure we don't look past it */ 1793 next_line = strchr(pos, '\n'); 1794 if (next_line) { 1795 *next_line = '\0'; 1796 next_line++; 1797 if (*next_line == '\0') 1798 next_line = NULL; 1799 } 1800 1801 err = sscanf(pos, "%9s %lld %lu", clock, 1802 &off->val.tv_sec, &off->val.tv_nsec); 1803 if (err != 3 || off->val.tv_nsec >= NSEC_PER_SEC) 1804 goto out; 1805 1806 clock[sizeof(clock) - 1] = 0; 1807 if (strcmp(clock, "monotonic") == 0 || 1808 strcmp(clock, __stringify(CLOCK_MONOTONIC)) == 0) 1809 off->clockid = CLOCK_MONOTONIC; 1810 else if (strcmp(clock, "boottime") == 0 || 1811 strcmp(clock, __stringify(CLOCK_BOOTTIME)) == 0) 1812 off->clockid = CLOCK_BOOTTIME; 1813 else 1814 goto out; 1815 1816 noffsets++; 1817 if (noffsets == ARRAY_SIZE(offsets)) { 1818 if (next_line) 1819 count = next_line - kbuf; 1820 break; 1821 } 1822 } 1823 1824 ret = -ESRCH; 1825 p = get_proc_task(inode); 1826 if (!p) 1827 goto out; 1828 ret = proc_timens_set_offset(file, p, offsets, noffsets); 1829 put_task_struct(p); 1830 if (ret) 1831 goto out; 1832 1833 ret = count; 1834out: 1835 kfree(kbuf); 1836 return ret; 1837} 1838 1839static int timens_offsets_open(struct inode *inode, struct file *filp) 1840{ 1841 return single_open(filp, timens_offsets_show, inode); 1842} 1843 1844static const struct file_operations proc_timens_offsets_operations = { 1845 .open = timens_offsets_open, 1846 .read = seq_read, 1847 .write = timens_offsets_write, 1848 .llseek = seq_lseek, 1849 .release = single_release, 1850}; 1851#endif /* CONFIG_TIME_NS */ 1852 1853static ssize_t comm_write(struct file *file, const char __user *buf, 1854 size_t count, loff_t *offset) 1855{ 1856 struct inode *inode = file_inode(file); 1857 struct task_struct *p; 1858 char buffer[TASK_COMM_LEN]; 1859 const size_t maxlen = sizeof(buffer) - 1; 1860 1861 memset(buffer, 0, sizeof(buffer)); 1862 if (copy_from_user(buffer, buf, count > maxlen ? maxlen : count)) 1863 return -EFAULT; 1864 1865 p = get_proc_task(inode); 1866 if (!p) 1867 return -ESRCH; 1868 1869 if (same_thread_group(current, p)) 1870 set_task_comm(p, buffer); 1871 else 1872 count = -EINVAL; 1873 1874 put_task_struct(p); 1875 1876 return count; 1877} 1878 1879static int comm_show(struct seq_file *m, void *v) 1880{ 1881 struct inode *inode = m->private; 1882 struct task_struct *p; 1883 1884 p = get_proc_task(inode); 1885 if (!p) 1886 return -ESRCH; 1887 1888 proc_task_name(m, p, false); 1889 seq_putc(m, '\n'); 1890 1891 put_task_struct(p); 1892 1893 return 0; 1894} 1895 1896static int comm_open(struct inode *inode, struct file *filp) 1897{ 1898 return single_open(filp, comm_show, inode); 1899} 1900 1901static const struct file_operations proc_pid_set_comm_operations = { 1902 .open = comm_open, 1903 .read = seq_read, 1904 .write = comm_write, 1905 .llseek = seq_lseek, 1906 .release = single_release, 1907}; 1908 1909static int proc_exe_link(struct dentry *dentry, struct path *exe_path) 1910{ 1911 struct task_struct *task; 1912 struct file *exe_file; 1913 1914 task = get_proc_task(d_inode(dentry)); 1915 if (!task) 1916 return -ENOENT; 1917 exe_file = get_task_exe_file(task); 1918 put_task_struct(task); 1919 if (exe_file) { 1920 *exe_path = exe_file->f_path; 1921 path_get(&exe_file->f_path); 1922 fput(exe_file); 1923 return 0; 1924 } else 1925 return -ENOENT; 1926} 1927 1928static const char *proc_pid_get_link(struct dentry *dentry, 1929 struct inode *inode, 1930 struct delayed_call *done) 1931{ 1932 struct path path; 1933 int error = -EACCES; 1934 1935 if (!dentry) 1936 return ERR_PTR(-ECHILD); 1937 1938 /* Are we allowed to snoop on the tasks file descriptors? */ 1939 if (!proc_fd_access_allowed(inode)) 1940 goto out; 1941 1942 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1943 if (error) 1944 goto out; 1945 1946 error = nd_jump_link(&path); 1947out: 1948 return ERR_PTR(error); 1949} 1950 1951static int do_proc_readlink(struct path *path, char __user *buffer, int buflen) 1952{ 1953 char *tmp = (char *)__get_free_page(GFP_KERNEL); 1954 char *pathname; 1955 int len; 1956 1957 if (!tmp) 1958 return -ENOMEM; 1959 1960 pathname = d_path(path, tmp, PAGE_SIZE); 1961 len = PTR_ERR(pathname); 1962 if (IS_ERR(pathname)) 1963 goto out; 1964 len = tmp + PAGE_SIZE - 1 - pathname; 1965 1966 if (len > buflen) 1967 len = buflen; 1968 if (copy_to_user(buffer, pathname, len)) 1969 len = -EFAULT; 1970 out: 1971 free_page((unsigned long)tmp); 1972 return len; 1973} 1974 1975static int proc_pid_readlink(struct dentry * dentry, char __user * buffer, int buflen) 1976{ 1977 int error = -EACCES; 1978 struct inode *inode = d_inode(dentry); 1979 struct path path; 1980 1981 /* Are we allowed to snoop on the tasks file descriptors? */ 1982 if (!proc_fd_access_allowed(inode)) 1983 goto out; 1984 1985 error = PROC_I(inode)->op.proc_get_link(dentry, &path); 1986 if (error) 1987 goto out; 1988 1989 error = do_proc_readlink(&path, buffer, buflen); 1990 path_put(&path); 1991out: 1992 return error; 1993} 1994 1995const struct inode_operations proc_pid_link_inode_operations = { 1996 .readlink = proc_pid_readlink, 1997 .get_link = proc_pid_get_link, 1998 .setattr = proc_setattr, 1999}; 2000 2001 2002/* building an inode */ 2003 2004void task_dump_owner(struct task_struct *task, umode_t mode, 2005 kuid_t *ruid, kgid_t *rgid) 2006{ 2007 /* Depending on the state of dumpable compute who should own a 2008 * proc file for a task. 2009 */ 2010 const struct cred *cred; 2011 kuid_t uid; 2012 kgid_t gid; 2013 2014 if (unlikely(task->flags & PF_KTHREAD)) { 2015 *ruid = GLOBAL_ROOT_UID; 2016 *rgid = GLOBAL_ROOT_GID; 2017 return; 2018 } 2019 2020 /* Default to the tasks effective ownership */ 2021 rcu_read_lock(); 2022 cred = __task_cred(task); 2023 uid = cred->euid; 2024 gid = cred->egid; 2025 rcu_read_unlock(); 2026 2027 /* 2028 * Before the /proc/pid/status file was created the only way to read 2029 * the effective uid of a /process was to stat /proc/pid. Reading 2030 * /proc/pid/status is slow enough that procps and other packages 2031 * kept stating /proc/pid. To keep the rules in /proc simple I have 2032 * made this apply to all per process world readable and executable 2033 * directories. 2034 */ 2035 if (mode != (S_IFDIR|S_IRUGO|S_IXUGO)) { 2036 struct mm_struct *mm; 2037 task_lock(task); 2038 mm = task->mm; 2039 /* Make non-dumpable tasks owned by some root */ 2040 if (mm) { 2041 if (get_dumpable(mm) != SUID_DUMP_USER) { 2042 struct user_namespace *user_ns = mm->user_ns; 2043 2044 uid = make_kuid(user_ns, 0); 2045 if (!uid_valid(uid)) 2046 uid = GLOBAL_ROOT_UID; 2047 2048 gid = make_kgid(user_ns, 0); 2049 if (!gid_valid(gid)) 2050 gid = GLOBAL_ROOT_GID; 2051 } 2052 } else { 2053 uid = GLOBAL_ROOT_UID; 2054 gid = GLOBAL_ROOT_GID; 2055 } 2056 task_unlock(task); 2057 } 2058 *ruid = uid; 2059 *rgid = gid; 2060} 2061 2062void proc_pid_evict_inode(struct proc_inode *ei) 2063{ 2064 struct pid *pid = ei->pid; 2065 2066 if (S_ISDIR(ei->vfs_inode.i_mode)) { 2067 spin_lock(&pid->lock); 2068 hlist_del_init_rcu(&ei->sibling_inodes); 2069 spin_unlock(&pid->lock); 2070 } 2071 2072 put_pid(pid); 2073} 2074 2075struct inode *proc_pid_make_inode(struct super_block *sb, 2076 struct task_struct *task, umode_t mode) 2077{ 2078 struct inode * inode; 2079 struct proc_inode *ei; 2080 struct pid *pid; 2081 2082 /* We need a new inode */ 2083 2084 inode = new_inode(sb); 2085 if (!inode) 2086 goto out; 2087 2088 /* Common stuff */ 2089 ei = PROC_I(inode); 2090 inode->i_mode = mode; 2091 inode->i_ino = get_next_ino(); 2092 inode->i_mtime = inode->i_atime = inode->i_ctime = current_time(inode); 2093 inode->i_op = &proc_def_inode_operations; 2094 2095 /* 2096 * grab the reference to task. 2097 */ 2098 pid = get_task_pid(task, PIDTYPE_PID); 2099 if (!pid) 2100 goto out_unlock; 2101 2102 /* Let the pid remember us for quick removal */ 2103 ei->pid = pid; 2104 2105 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2106 security_task_to_inode(task, inode); 2107 2108out: 2109 return inode; 2110 2111out_unlock: 2112 iput(inode); 2113 return NULL; 2114} 2115 2116/* 2117 * Generating an inode and adding it into @pid->inodes, so that task will 2118 * invalidate inode's dentry before being released. 2119 * 2120 * This helper is used for creating dir-type entries under '/proc' and 2121 * '/proc/<tgid>/task'. Other entries(eg. fd, stat) under '/proc/<tgid>' 2122 * can be released by invalidating '/proc/<tgid>' dentry. 2123 * In theory, dentries under '/proc/<tgid>/task' can also be released by 2124 * invalidating '/proc/<tgid>' dentry, we reserve it to handle single 2125 * thread exiting situation: Any one of threads should invalidate its 2126 * '/proc/<tgid>/task/<pid>' dentry before released. 2127 */ 2128static struct inode *proc_pid_make_base_inode(struct super_block *sb, 2129 struct task_struct *task, umode_t mode) 2130{ 2131 struct inode *inode; 2132 struct proc_inode *ei; 2133 struct pid *pid; 2134 2135 inode = proc_pid_make_inode(sb, task, mode); 2136 if (!inode) 2137 return NULL; 2138 2139 /* Let proc_flush_pid find this directory inode */ 2140 ei = PROC_I(inode); 2141 pid = ei->pid; 2142 spin_lock(&pid->lock); 2143 hlist_add_head_rcu(&ei->sibling_inodes, &pid->inodes); 2144 spin_unlock(&pid->lock); 2145 2146 return inode; 2147} 2148 2149int pid_getattr(const struct path *path, struct kstat *stat, 2150 u32 request_mask, unsigned int query_flags) 2151{ 2152 struct inode *inode = d_inode(path->dentry); 2153 struct proc_fs_info *fs_info = proc_sb_info(inode->i_sb); 2154 struct task_struct *task; 2155 2156 generic_fillattr(inode, stat); 2157 2158 stat->uid = GLOBAL_ROOT_UID; 2159 stat->gid = GLOBAL_ROOT_GID; 2160 rcu_read_lock(); 2161 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2162 if (task) { 2163 if (!has_pid_permissions(fs_info, task, HIDEPID_INVISIBLE)) { 2164 rcu_read_unlock(); 2165 /* 2166 * This doesn't prevent learning whether PID exists, 2167 * it only makes getattr() consistent with readdir(). 2168 */ 2169 return -ENOENT; 2170 } 2171 task_dump_owner(task, inode->i_mode, &stat->uid, &stat->gid); 2172 } 2173 rcu_read_unlock(); 2174 return 0; 2175} 2176 2177/* dentry stuff */ 2178 2179/* 2180 * Set <pid>/... inode ownership (can change due to setuid(), etc.) 2181 */ 2182void pid_update_inode(struct task_struct *task, struct inode *inode) 2183{ 2184 task_dump_owner(task, inode->i_mode, &inode->i_uid, &inode->i_gid); 2185 2186 inode->i_mode &= ~(S_ISUID | S_ISGID); 2187 security_task_to_inode(task, inode); 2188} 2189 2190/* 2191 * Rewrite the inode's ownerships here because the owning task may have 2192 * performed a setuid(), etc. 2193 * 2194 */ 2195static int pid_revalidate(struct dentry *dentry, unsigned int flags) 2196{ 2197 struct inode *inode; 2198 struct task_struct *task; 2199 2200 if (flags & LOOKUP_RCU) 2201 return -ECHILD; 2202 2203 inode = d_inode(dentry); 2204 task = get_proc_task(inode); 2205 2206 if (task) { 2207 pid_update_inode(task, inode); 2208 put_task_struct(task); 2209 return 1; 2210 } 2211 return 0; 2212} 2213 2214static inline bool proc_inode_is_dead(struct inode *inode) 2215{ 2216 return !proc_pid(inode)->tasks[PIDTYPE_PID].first; 2217} 2218 2219int pid_delete_dentry(const struct dentry *dentry) 2220{ 2221 /* Is the task we represent dead? 2222 * If so, then don't put the dentry on the lru list, 2223 * kill it immediately. 2224 */ 2225 return proc_inode_is_dead(d_inode(dentry)); 2226} 2227 2228const struct dentry_operations pid_dentry_operations = 2229{ 2230 .d_revalidate = pid_revalidate, 2231 .d_delete = pid_delete_dentry, 2232}; 2233 2234/* Lookups */ 2235 2236/* 2237 * Fill a directory entry. 2238 * 2239 * If possible create the dcache entry and derive our inode number and 2240 * file type from dcache entry. 2241 * 2242 * Since all of the proc inode numbers are dynamically generated, the inode 2243 * numbers do not exist until the inode is cache. This means creating the 2244 * the dcache entry in readdir is necessary to keep the inode numbers 2245 * reported by readdir in sync with the inode numbers reported 2246 * by stat. 2247 */ 2248bool proc_fill_cache(struct file *file, struct dir_context *ctx, 2249 const char *name, unsigned int len, 2250 instantiate_t instantiate, struct task_struct *task, const void *ptr) 2251{ 2252 struct dentry *child, *dir = file->f_path.dentry; 2253 struct qstr qname = QSTR_INIT(name, len); 2254 struct inode *inode; 2255 unsigned type = DT_UNKNOWN; 2256 ino_t ino = 1; 2257 2258 child = d_hash_and_lookup(dir, &qname); 2259 if (!child) { 2260 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 2261 child = d_alloc_parallel(dir, &qname, &wq); 2262 if (IS_ERR(child)) 2263 goto end_instantiate; 2264 if (d_in_lookup(child)) { 2265 struct dentry *res; 2266 res = instantiate(child, task, ptr); 2267 d_lookup_done(child); 2268 if (unlikely(res)) { 2269 dput(child); 2270 child = res; 2271 if (IS_ERR(child)) 2272 goto end_instantiate; 2273 } 2274 } 2275 } 2276 inode = d_inode(child); 2277 ino = inode->i_ino; 2278 type = inode->i_mode >> 12; 2279 dput(child); 2280end_instantiate: 2281 return dir_emit(ctx, name, len, ino, type); 2282} 2283 2284/* 2285 * dname_to_vma_addr - maps a dentry name into two unsigned longs 2286 * which represent vma start and end addresses. 2287 */ 2288static int dname_to_vma_addr(struct dentry *dentry, 2289 unsigned long *start, unsigned long *end) 2290{ 2291 const char *str = dentry->d_name.name; 2292 unsigned long long sval, eval; 2293 unsigned int len; 2294 2295 if (str[0] == '0' && str[1] != '-') 2296 return -EINVAL; 2297 len = _parse_integer(str, 16, &sval); 2298 if (len & KSTRTOX_OVERFLOW) 2299 return -EINVAL; 2300 if (sval != (unsigned long)sval) 2301 return -EINVAL; 2302 str += len; 2303 2304 if (*str != '-') 2305 return -EINVAL; 2306 str++; 2307 2308 if (str[0] == '0' && str[1]) 2309 return -EINVAL; 2310 len = _parse_integer(str, 16, &eval); 2311 if (len & KSTRTOX_OVERFLOW) 2312 return -EINVAL; 2313 if (eval != (unsigned long)eval) 2314 return -EINVAL; 2315 str += len; 2316 2317 if (*str != '\0') 2318 return -EINVAL; 2319 2320 *start = sval; 2321 *end = eval; 2322 2323 return 0; 2324} 2325 2326static int map_files_d_revalidate(struct dentry *dentry, unsigned int flags) 2327{ 2328 unsigned long vm_start, vm_end; 2329 bool exact_vma_exists = false; 2330 struct mm_struct *mm = NULL; 2331 struct task_struct *task; 2332 struct inode *inode; 2333 int status = 0; 2334 2335 if (flags & LOOKUP_RCU) 2336 return -ECHILD; 2337 2338 inode = d_inode(dentry); 2339 task = get_proc_task(inode); 2340 if (!task) 2341 goto out_notask; 2342 2343 mm = mm_access(task, PTRACE_MODE_READ_FSCREDS); 2344 if (IS_ERR_OR_NULL(mm)) 2345 goto out; 2346 2347 if (!dname_to_vma_addr(dentry, &vm_start, &vm_end)) { 2348 status = mmap_read_lock_killable(mm); 2349 if (!status) { 2350 exact_vma_exists = !!find_exact_vma(mm, vm_start, 2351 vm_end); 2352 mmap_read_unlock(mm); 2353 } 2354 } 2355 2356 mmput(mm); 2357 2358 if (exact_vma_exists) { 2359 task_dump_owner(task, 0, &inode->i_uid, &inode->i_gid); 2360 2361 security_task_to_inode(task, inode); 2362 status = 1; 2363 } 2364 2365out: 2366 put_task_struct(task); 2367 2368out_notask: 2369 return status; 2370} 2371 2372static const struct dentry_operations tid_map_files_dentry_operations = { 2373 .d_revalidate = map_files_d_revalidate, 2374 .d_delete = pid_delete_dentry, 2375}; 2376 2377static int map_files_get_link(struct dentry *dentry, struct path *path) 2378{ 2379 unsigned long vm_start, vm_end; 2380 struct vm_area_struct *vma; 2381 struct task_struct *task; 2382 struct mm_struct *mm; 2383 int rc; 2384 2385 rc = -ENOENT; 2386 task = get_proc_task(d_inode(dentry)); 2387 if (!task) 2388 goto out; 2389 2390 mm = get_task_mm(task); 2391 put_task_struct(task); 2392 if (!mm) 2393 goto out; 2394 2395 rc = dname_to_vma_addr(dentry, &vm_start, &vm_end); 2396 if (rc) 2397 goto out_mmput; 2398 2399 rc = mmap_read_lock_killable(mm); 2400 if (rc) 2401 goto out_mmput; 2402 2403 rc = -ENOENT; 2404 vma = find_exact_vma(mm, vm_start, vm_end); 2405 if (vma && vma->vm_file) { 2406 *path = vma->vm_file->f_path; 2407 path_get(path); 2408 rc = 0; 2409 } 2410 mmap_read_unlock(mm); 2411 2412out_mmput: 2413 mmput(mm); 2414out: 2415 return rc; 2416} 2417 2418struct map_files_info { 2419 unsigned long start; 2420 unsigned long end; 2421 fmode_t mode; 2422}; 2423 2424/* 2425 * Only allow CAP_SYS_ADMIN and CAP_CHECKPOINT_RESTORE to follow the links, due 2426 * to concerns about how the symlinks may be used to bypass permissions on 2427 * ancestor directories in the path to the file in question. 2428 */ 2429static const char * 2430proc_map_files_get_link(struct dentry *dentry, 2431 struct inode *inode, 2432 struct delayed_call *done) 2433{ 2434 if (!checkpoint_restore_ns_capable(&init_user_ns)) 2435 return ERR_PTR(-EPERM); 2436 2437 return proc_pid_get_link(dentry, inode, done); 2438} 2439 2440/* 2441 * Identical to proc_pid_link_inode_operations except for get_link() 2442 */ 2443static const struct inode_operations proc_map_files_link_inode_operations = { 2444 .readlink = proc_pid_readlink, 2445 .get_link = proc_map_files_get_link, 2446 .setattr = proc_setattr, 2447}; 2448 2449static struct dentry * 2450proc_map_files_instantiate(struct dentry *dentry, 2451 struct task_struct *task, const void *ptr) 2452{ 2453 fmode_t mode = (fmode_t)(unsigned long)ptr; 2454 struct proc_inode *ei; 2455 struct inode *inode; 2456 2457 inode = proc_pid_make_inode(dentry->d_sb, task, S_IFLNK | 2458 ((mode & FMODE_READ ) ? S_IRUSR : 0) | 2459 ((mode & FMODE_WRITE) ? S_IWUSR : 0)); 2460 if (!inode) 2461 return ERR_PTR(-ENOENT); 2462 2463 ei = PROC_I(inode); 2464 ei->op.proc_get_link = map_files_get_link; 2465 2466 inode->i_op = &proc_map_files_link_inode_operations; 2467 inode->i_size = 64; 2468 2469 d_set_d_op(dentry, &tid_map_files_dentry_operations); 2470 return d_splice_alias(inode, dentry); 2471} 2472 2473static struct dentry *proc_map_files_lookup(struct inode *dir, 2474 struct dentry *dentry, unsigned int flags) 2475{ 2476 unsigned long vm_start, vm_end; 2477 struct vm_area_struct *vma; 2478 struct task_struct *task; 2479 struct dentry *result; 2480 struct mm_struct *mm; 2481 2482 result = ERR_PTR(-ENOENT); 2483 task = get_proc_task(dir); 2484 if (!task) 2485 goto out; 2486 2487 result = ERR_PTR(-EACCES); 2488 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2489 goto out_put_task; 2490 2491 result = ERR_PTR(-ENOENT); 2492 if (dname_to_vma_addr(dentry, &vm_start, &vm_end)) 2493 goto out_put_task; 2494 2495 mm = get_task_mm(task); 2496 if (!mm) 2497 goto out_put_task; 2498 2499 result = ERR_PTR(-EINTR); 2500 if (mmap_read_lock_killable(mm)) 2501 goto out_put_mm; 2502 2503 result = ERR_PTR(-ENOENT); 2504 vma = find_exact_vma(mm, vm_start, vm_end); 2505 if (!vma) 2506 goto out_no_vma; 2507 2508 if (vma->vm_file) 2509 result = proc_map_files_instantiate(dentry, task, 2510 (void *)(unsigned long)vma->vm_file->f_mode); 2511 2512out_no_vma: 2513 mmap_read_unlock(mm); 2514out_put_mm: 2515 mmput(mm); 2516out_put_task: 2517 put_task_struct(task); 2518out: 2519 return result; 2520} 2521 2522static const struct inode_operations proc_map_files_inode_operations = { 2523 .lookup = proc_map_files_lookup, 2524 .permission = proc_fd_permission, 2525 .setattr = proc_setattr, 2526}; 2527 2528static int 2529proc_map_files_readdir(struct file *file, struct dir_context *ctx) 2530{ 2531 struct vm_area_struct *vma; 2532 struct task_struct *task; 2533 struct mm_struct *mm; 2534 unsigned long nr_files, pos, i; 2535 GENRADIX(struct map_files_info) fa; 2536 struct map_files_info *p; 2537 int ret; 2538 2539 genradix_init(&fa); 2540 2541 ret = -ENOENT; 2542 task = get_proc_task(file_inode(file)); 2543 if (!task) 2544 goto out; 2545 2546 ret = -EACCES; 2547 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) 2548 goto out_put_task; 2549 2550 ret = 0; 2551 if (!dir_emit_dots(file, ctx)) 2552 goto out_put_task; 2553 2554 mm = get_task_mm(task); 2555 if (!mm) 2556 goto out_put_task; 2557 2558 ret = mmap_read_lock_killable(mm); 2559 if (ret) { 2560 mmput(mm); 2561 goto out_put_task; 2562 } 2563 2564 nr_files = 0; 2565 2566 /* 2567 * We need two passes here: 2568 * 2569 * 1) Collect vmas of mapped files with mmap_lock taken 2570 * 2) Release mmap_lock and instantiate entries 2571 * 2572 * otherwise we get lockdep complained, since filldir() 2573 * routine might require mmap_lock taken in might_fault(). 2574 */ 2575 2576 for (vma = mm->mmap, pos = 2; vma; vma = vma->vm_next) { 2577 if (!vma->vm_file) 2578 continue; 2579 if (++pos <= ctx->pos) 2580 continue; 2581 2582 p = genradix_ptr_alloc(&fa, nr_files++, GFP_KERNEL); 2583 if (!p) { 2584 ret = -ENOMEM; 2585 mmap_read_unlock(mm); 2586 mmput(mm); 2587 goto out_put_task; 2588 } 2589 2590 p->start = vma->vm_start; 2591 p->end = vma->vm_end; 2592 p->mode = vma->vm_file->f_mode; 2593 } 2594 mmap_read_unlock(mm); 2595 mmput(mm); 2596 2597 for (i = 0; i < nr_files; i++) { 2598 char buf[4 * sizeof(long) + 2]; /* max: %lx-%lx\0 */ 2599 unsigned int len; 2600 2601 p = genradix_ptr(&fa, i); 2602 len = snprintf(buf, sizeof(buf), "%lx-%lx", p->start, p->end); 2603 if (!proc_fill_cache(file, ctx, 2604 buf, len, 2605 proc_map_files_instantiate, 2606 task, 2607 (void *)(unsigned long)p->mode)) 2608 break; 2609 ctx->pos++; 2610 } 2611 2612out_put_task: 2613 put_task_struct(task); 2614out: 2615 genradix_free(&fa); 2616 return ret; 2617} 2618 2619static const struct file_operations proc_map_files_operations = { 2620 .read = generic_read_dir, 2621 .iterate_shared = proc_map_files_readdir, 2622 .llseek = generic_file_llseek, 2623}; 2624 2625#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 2626struct timers_private { 2627 struct pid *pid; 2628 struct task_struct *task; 2629 struct sighand_struct *sighand; 2630 struct pid_namespace *ns; 2631 unsigned long flags; 2632}; 2633 2634static void *timers_start(struct seq_file *m, loff_t *pos) 2635{ 2636 struct timers_private *tp = m->private; 2637 2638 tp->task = get_pid_task(tp->pid, PIDTYPE_PID); 2639 if (!tp->task) 2640 return ERR_PTR(-ESRCH); 2641 2642 tp->sighand = lock_task_sighand(tp->task, &tp->flags); 2643 if (!tp->sighand) 2644 return ERR_PTR(-ESRCH); 2645 2646 return seq_list_start(&tp->task->signal->posix_timers, *pos); 2647} 2648 2649static void *timers_next(struct seq_file *m, void *v, loff_t *pos) 2650{ 2651 struct timers_private *tp = m->private; 2652 return seq_list_next(v, &tp->task->signal->posix_timers, pos); 2653} 2654 2655static void timers_stop(struct seq_file *m, void *v) 2656{ 2657 struct timers_private *tp = m->private; 2658 2659 if (tp->sighand) { 2660 unlock_task_sighand(tp->task, &tp->flags); 2661 tp->sighand = NULL; 2662 } 2663 2664 if (tp->task) { 2665 put_task_struct(tp->task); 2666 tp->task = NULL; 2667 } 2668} 2669 2670static int show_timer(struct seq_file *m, void *v) 2671{ 2672 struct k_itimer *timer; 2673 struct timers_private *tp = m->private; 2674 int notify; 2675 static const char * const nstr[] = { 2676 [SIGEV_SIGNAL] = "signal", 2677 [SIGEV_NONE] = "none", 2678 [SIGEV_THREAD] = "thread", 2679 }; 2680 2681 timer = list_entry((struct list_head *)v, struct k_itimer, list); 2682 notify = timer->it_sigev_notify; 2683 2684 seq_printf(m, "ID: %d\n", timer->it_id); 2685 seq_printf(m, "signal: %d/%px\n", 2686 timer->sigq->info.si_signo, 2687 timer->sigq->info.si_value.sival_ptr); 2688 seq_printf(m, "notify: %s/%s.%d\n", 2689 nstr[notify & ~SIGEV_THREAD_ID], 2690 (notify & SIGEV_THREAD_ID) ? "tid" : "pid", 2691 pid_nr_ns(timer->it_pid, tp->ns)); 2692 seq_printf(m, "ClockID: %d\n", timer->it_clock); 2693 2694 return 0; 2695} 2696 2697static const struct seq_operations proc_timers_seq_ops = { 2698 .start = timers_start, 2699 .next = timers_next, 2700 .stop = timers_stop, 2701 .show = show_timer, 2702}; 2703 2704static int proc_timers_open(struct inode *inode, struct file *file) 2705{ 2706 struct timers_private *tp; 2707 2708 tp = __seq_open_private(file, &proc_timers_seq_ops, 2709 sizeof(struct timers_private)); 2710 if (!tp) 2711 return -ENOMEM; 2712 2713 tp->pid = proc_pid(inode); 2714 tp->ns = proc_pid_ns(inode->i_sb); 2715 return 0; 2716} 2717 2718static const struct file_operations proc_timers_operations = { 2719 .open = proc_timers_open, 2720 .read = seq_read, 2721 .llseek = seq_lseek, 2722 .release = seq_release_private, 2723}; 2724#endif 2725 2726static ssize_t timerslack_ns_write(struct file *file, const char __user *buf, 2727 size_t count, loff_t *offset) 2728{ 2729 struct inode *inode = file_inode(file); 2730 struct task_struct *p; 2731 u64 slack_ns; 2732 int err; 2733 2734 err = kstrtoull_from_user(buf, count, 10, &slack_ns); 2735 if (err < 0) 2736 return err; 2737 2738 p = get_proc_task(inode); 2739 if (!p) 2740 return -ESRCH; 2741 2742 if (p != current) { 2743 rcu_read_lock(); 2744 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2745 rcu_read_unlock(); 2746 count = -EPERM; 2747 goto out; 2748 } 2749 rcu_read_unlock(); 2750 2751 err = security_task_setscheduler(p); 2752 if (err) { 2753 count = err; 2754 goto out; 2755 } 2756 } 2757 2758 task_lock(p); 2759 if (slack_ns == 0) 2760 p->timer_slack_ns = p->default_timer_slack_ns; 2761 else 2762 p->timer_slack_ns = slack_ns; 2763 task_unlock(p); 2764 2765out: 2766 put_task_struct(p); 2767 2768 return count; 2769} 2770 2771static int timerslack_ns_show(struct seq_file *m, void *v) 2772{ 2773 struct inode *inode = m->private; 2774 struct task_struct *p; 2775 int err = 0; 2776 2777 p = get_proc_task(inode); 2778 if (!p) 2779 return -ESRCH; 2780 2781 if (p != current) { 2782 rcu_read_lock(); 2783 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) { 2784 rcu_read_unlock(); 2785 err = -EPERM; 2786 goto out; 2787 } 2788 rcu_read_unlock(); 2789 2790 err = security_task_getscheduler(p); 2791 if (err) 2792 goto out; 2793 } 2794 2795 task_lock(p); 2796 seq_printf(m, "%llu\n", p->timer_slack_ns); 2797 task_unlock(p); 2798 2799out: 2800 put_task_struct(p); 2801 2802 return err; 2803} 2804 2805static int timerslack_ns_open(struct inode *inode, struct file *filp) 2806{ 2807 return single_open(filp, timerslack_ns_show, inode); 2808} 2809 2810static const struct file_operations proc_pid_set_timerslack_ns_operations = { 2811 .open = timerslack_ns_open, 2812 .read = seq_read, 2813 .write = timerslack_ns_write, 2814 .llseek = seq_lseek, 2815 .release = single_release, 2816}; 2817 2818static struct dentry *proc_pident_instantiate(struct dentry *dentry, 2819 struct task_struct *task, const void *ptr) 2820{ 2821 const struct pid_entry *p = ptr; 2822 struct inode *inode; 2823 struct proc_inode *ei; 2824 2825 inode = proc_pid_make_inode(dentry->d_sb, task, p->mode); 2826 if (!inode) 2827 return ERR_PTR(-ENOENT); 2828 2829 ei = PROC_I(inode); 2830 if (S_ISDIR(inode->i_mode)) 2831 set_nlink(inode, 2); /* Use getattr to fix if necessary */ 2832 if (p->iop) 2833 inode->i_op = p->iop; 2834 if (p->fop) 2835 inode->i_fop = p->fop; 2836 ei->op = p->op; 2837 pid_update_inode(task, inode); 2838 d_set_d_op(dentry, &pid_dentry_operations); 2839 return d_splice_alias(inode, dentry); 2840} 2841 2842static struct dentry *proc_pident_lookup(struct inode *dir, 2843 struct dentry *dentry, 2844 const struct pid_entry *p, 2845 const struct pid_entry *end) 2846{ 2847 struct task_struct *task = get_proc_task(dir); 2848 struct dentry *res = ERR_PTR(-ENOENT); 2849 2850 if (!task) 2851 goto out_no_task; 2852 2853 /* 2854 * Yes, it does not scale. And it should not. Don't add 2855 * new entries into /proc/<tgid>/ without very good reasons. 2856 */ 2857 for (; p < end; p++) { 2858 if (p->len != dentry->d_name.len) 2859 continue; 2860 if (!memcmp(dentry->d_name.name, p->name, p->len)) { 2861 res = proc_pident_instantiate(dentry, task, p); 2862 break; 2863 } 2864 } 2865 put_task_struct(task); 2866out_no_task: 2867 return res; 2868} 2869 2870static int proc_pident_readdir(struct file *file, struct dir_context *ctx, 2871 const struct pid_entry *ents, unsigned int nents) 2872{ 2873 struct task_struct *task = get_proc_task(file_inode(file)); 2874 const struct pid_entry *p; 2875 2876 if (!task) 2877 return -ENOENT; 2878 2879 if (!dir_emit_dots(file, ctx)) 2880 goto out; 2881 2882 if (ctx->pos >= nents + 2) 2883 goto out; 2884 2885 for (p = ents + (ctx->pos - 2); p < ents + nents; p++) { 2886 if (!proc_fill_cache(file, ctx, p->name, p->len, 2887 proc_pident_instantiate, task, p)) 2888 break; 2889 ctx->pos++; 2890 } 2891out: 2892 put_task_struct(task); 2893 return 0; 2894} 2895 2896#ifdef CONFIG_SECURITY 2897static int proc_pid_attr_open(struct inode *inode, struct file *file) 2898{ 2899 file->private_data = NULL; 2900 __mem_open(inode, file, PTRACE_MODE_READ_FSCREDS); 2901 return 0; 2902} 2903 2904static ssize_t proc_pid_attr_read(struct file * file, char __user * buf, 2905 size_t count, loff_t *ppos) 2906{ 2907 struct inode * inode = file_inode(file); 2908 char *p = NULL; 2909 ssize_t length; 2910 struct task_struct *task = get_proc_task(inode); 2911 2912 if (!task) 2913 return -ESRCH; 2914 2915 length = security_getprocattr(task, PROC_I(inode)->op.lsm, 2916 (char*)file->f_path.dentry->d_name.name, 2917 &p); 2918 put_task_struct(task); 2919 if (length > 0) 2920 length = simple_read_from_buffer(buf, count, ppos, p, length); 2921 kfree(p); 2922 return length; 2923} 2924 2925static ssize_t proc_pid_attr_write(struct file * file, const char __user * buf, 2926 size_t count, loff_t *ppos) 2927{ 2928 struct inode * inode = file_inode(file); 2929 struct task_struct *task; 2930 void *page; 2931 int rv; 2932 2933 /* A task may only write when it was the opener. */ 2934 if (file->private_data != current->mm) 2935 return -EPERM; 2936 2937 rcu_read_lock(); 2938 task = pid_task(proc_pid(inode), PIDTYPE_PID); 2939 if (!task) { 2940 rcu_read_unlock(); 2941 return -ESRCH; 2942 } 2943 /* A task may only write its own attributes. */ 2944 if (current != task) { 2945 rcu_read_unlock(); 2946 return -EACCES; 2947 } 2948 /* Prevent changes to overridden credentials. */ 2949 if (current_cred() != current_real_cred()) { 2950 rcu_read_unlock(); 2951 return -EBUSY; 2952 } 2953 rcu_read_unlock(); 2954 2955 if (count > PAGE_SIZE) 2956 count = PAGE_SIZE; 2957 2958 /* No partial writes. */ 2959 if (*ppos != 0) 2960 return -EINVAL; 2961 2962 page = memdup_user(buf, count); 2963 if (IS_ERR(page)) { 2964 rv = PTR_ERR(page); 2965 goto out; 2966 } 2967 2968 /* Guard against adverse ptrace interaction */ 2969 rv = mutex_lock_interruptible(¤t->signal->cred_guard_mutex); 2970 if (rv < 0) 2971 goto out_free; 2972 2973 rv = security_setprocattr(PROC_I(inode)->op.lsm, 2974 file->f_path.dentry->d_name.name, page, 2975 count); 2976 mutex_unlock(¤t->signal->cred_guard_mutex); 2977out_free: 2978 kfree(page); 2979out: 2980 return rv; 2981} 2982 2983static const struct file_operations proc_pid_attr_operations = { 2984 .open = proc_pid_attr_open, 2985 .read = proc_pid_attr_read, 2986 .write = proc_pid_attr_write, 2987 .llseek = generic_file_llseek, 2988 .release = mem_release, 2989}; 2990 2991#define LSM_DIR_OPS(LSM) \ 2992static int proc_##LSM##_attr_dir_iterate(struct file *filp, \ 2993 struct dir_context *ctx) \ 2994{ \ 2995 return proc_pident_readdir(filp, ctx, \ 2996 LSM##_attr_dir_stuff, \ 2997 ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 2998} \ 2999\ 3000static const struct file_operations proc_##LSM##_attr_dir_ops = { \ 3001 .read = generic_read_dir, \ 3002 .iterate = proc_##LSM##_attr_dir_iterate, \ 3003 .llseek = default_llseek, \ 3004}; \ 3005\ 3006static struct dentry *proc_##LSM##_attr_dir_lookup(struct inode *dir, \ 3007 struct dentry *dentry, unsigned int flags) \ 3008{ \ 3009 return proc_pident_lookup(dir, dentry, \ 3010 LSM##_attr_dir_stuff, \ 3011 LSM##_attr_dir_stuff + ARRAY_SIZE(LSM##_attr_dir_stuff)); \ 3012} \ 3013\ 3014static const struct inode_operations proc_##LSM##_attr_dir_inode_ops = { \ 3015 .lookup = proc_##LSM##_attr_dir_lookup, \ 3016 .getattr = pid_getattr, \ 3017 .setattr = proc_setattr, \ 3018} 3019 3020#ifdef CONFIG_SECURITY_SMACK 3021static const struct pid_entry smack_attr_dir_stuff[] = { 3022 ATTR("smack", "current", 0666), 3023}; 3024LSM_DIR_OPS(smack); 3025#endif 3026 3027#ifdef CONFIG_SECURITY_APPARMOR 3028static const struct pid_entry apparmor_attr_dir_stuff[] = { 3029 ATTR("apparmor", "current", 0666), 3030 ATTR("apparmor", "prev", 0444), 3031 ATTR("apparmor", "exec", 0666), 3032}; 3033LSM_DIR_OPS(apparmor); 3034#endif 3035 3036static const struct pid_entry attr_dir_stuff[] = { 3037 ATTR(NULL, "current", 0666), 3038 ATTR(NULL, "prev", 0444), 3039 ATTR(NULL, "exec", 0666), 3040 ATTR(NULL, "fscreate", 0666), 3041 ATTR(NULL, "keycreate", 0666), 3042 ATTR(NULL, "sockcreate", 0666), 3043#ifdef CONFIG_SECURITY_SMACK 3044 DIR("smack", 0555, 3045 proc_smack_attr_dir_inode_ops, proc_smack_attr_dir_ops), 3046#endif 3047#ifdef CONFIG_SECURITY_APPARMOR 3048 DIR("apparmor", 0555, 3049 proc_apparmor_attr_dir_inode_ops, proc_apparmor_attr_dir_ops), 3050#endif 3051}; 3052 3053static int proc_attr_dir_readdir(struct file *file, struct dir_context *ctx) 3054{ 3055 return proc_pident_readdir(file, ctx, 3056 attr_dir_stuff, ARRAY_SIZE(attr_dir_stuff)); 3057} 3058 3059static const struct file_operations proc_attr_dir_operations = { 3060 .read = generic_read_dir, 3061 .iterate_shared = proc_attr_dir_readdir, 3062 .llseek = generic_file_llseek, 3063}; 3064 3065static struct dentry *proc_attr_dir_lookup(struct inode *dir, 3066 struct dentry *dentry, unsigned int flags) 3067{ 3068 return proc_pident_lookup(dir, dentry, 3069 attr_dir_stuff, 3070 attr_dir_stuff + ARRAY_SIZE(attr_dir_stuff)); 3071} 3072 3073static const struct inode_operations proc_attr_dir_inode_operations = { 3074 .lookup = proc_attr_dir_lookup, 3075 .getattr = pid_getattr, 3076 .setattr = proc_setattr, 3077}; 3078 3079#endif 3080 3081#ifdef CONFIG_ELF_CORE 3082static ssize_t proc_coredump_filter_read(struct file *file, char __user *buf, 3083 size_t count, loff_t *ppos) 3084{ 3085 struct task_struct *task = get_proc_task(file_inode(file)); 3086 struct mm_struct *mm; 3087 char buffer[PROC_NUMBUF]; 3088 size_t len; 3089 int ret; 3090 3091 if (!task) 3092 return -ESRCH; 3093 3094 ret = 0; 3095 mm = get_task_mm(task); 3096 if (mm) { 3097 len = snprintf(buffer, sizeof(buffer), "%08lx\n", 3098 ((mm->flags & MMF_DUMP_FILTER_MASK) >> 3099 MMF_DUMP_FILTER_SHIFT)); 3100 mmput(mm); 3101 ret = simple_read_from_buffer(buf, count, ppos, buffer, len); 3102 } 3103 3104 put_task_struct(task); 3105 3106 return ret; 3107} 3108 3109static ssize_t proc_coredump_filter_write(struct file *file, 3110 const char __user *buf, 3111 size_t count, 3112 loff_t *ppos) 3113{ 3114 struct task_struct *task; 3115 struct mm_struct *mm; 3116 unsigned int val; 3117 int ret; 3118 int i; 3119 unsigned long mask; 3120 3121 ret = kstrtouint_from_user(buf, count, 0, &val); 3122 if (ret < 0) 3123 return ret; 3124 3125 ret = -ESRCH; 3126 task = get_proc_task(file_inode(file)); 3127 if (!task) 3128 goto out_no_task; 3129 3130 mm = get_task_mm(task); 3131 if (!mm) 3132 goto out_no_mm; 3133 ret = 0; 3134 3135 for (i = 0, mask = 1; i < MMF_DUMP_FILTER_BITS; i++, mask <<= 1) { 3136 if (val & mask) 3137 set_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3138 else 3139 clear_bit(i + MMF_DUMP_FILTER_SHIFT, &mm->flags); 3140 } 3141 3142 mmput(mm); 3143 out_no_mm: 3144 put_task_struct(task); 3145 out_no_task: 3146 if (ret < 0) 3147 return ret; 3148 return count; 3149} 3150 3151static const struct file_operations proc_coredump_filter_operations = { 3152 .read = proc_coredump_filter_read, 3153 .write = proc_coredump_filter_write, 3154 .llseek = generic_file_llseek, 3155}; 3156#endif 3157 3158#ifdef CONFIG_TASK_IO_ACCOUNTING 3159static int do_io_accounting(struct task_struct *task, struct seq_file *m, int whole) 3160{ 3161 struct task_io_accounting acct = task->ioac; 3162 unsigned long flags; 3163 int result; 3164 3165 result = down_read_killable(&task->signal->exec_update_lock); 3166 if (result) 3167 return result; 3168 3169 if (!ptrace_may_access(task, PTRACE_MODE_READ_FSCREDS)) { 3170 result = -EACCES; 3171 goto out_unlock; 3172 } 3173 3174 if (whole && lock_task_sighand(task, &flags)) { 3175 struct task_struct *t = task; 3176 3177 task_io_accounting_add(&acct, &task->signal->ioac); 3178 while_each_thread(task, t) 3179 task_io_accounting_add(&acct, &t->ioac); 3180 3181 unlock_task_sighand(task, &flags); 3182 } 3183 seq_printf(m, 3184 "rchar: %llu\n" 3185 "wchar: %llu\n" 3186 "syscr: %llu\n" 3187 "syscw: %llu\n" 3188 "read_bytes: %llu\n" 3189 "write_bytes: %llu\n" 3190 "cancelled_write_bytes: %llu\n", 3191 (unsigned long long)acct.rchar, 3192 (unsigned long long)acct.wchar, 3193 (unsigned long long)acct.syscr, 3194 (unsigned long long)acct.syscw, 3195 (unsigned long long)acct.read_bytes, 3196 (unsigned long long)acct.write_bytes, 3197 (unsigned long long)acct.cancelled_write_bytes); 3198 result = 0; 3199 3200out_unlock: 3201 up_read(&task->signal->exec_update_lock); 3202 return result; 3203} 3204 3205static int proc_tid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3206 struct pid *pid, struct task_struct *task) 3207{ 3208 return do_io_accounting(task, m, 0); 3209} 3210 3211static int proc_tgid_io_accounting(struct seq_file *m, struct pid_namespace *ns, 3212 struct pid *pid, struct task_struct *task) 3213{ 3214 return do_io_accounting(task, m, 1); 3215} 3216#endif /* CONFIG_TASK_IO_ACCOUNTING */ 3217 3218#ifdef CONFIG_USER_NS 3219static int proc_id_map_open(struct inode *inode, struct file *file, 3220 const struct seq_operations *seq_ops) 3221{ 3222 struct user_namespace *ns = NULL; 3223 struct task_struct *task; 3224 struct seq_file *seq; 3225 int ret = -EINVAL; 3226 3227 task = get_proc_task(inode); 3228 if (task) { 3229 rcu_read_lock(); 3230 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3231 rcu_read_unlock(); 3232 put_task_struct(task); 3233 } 3234 if (!ns) 3235 goto err; 3236 3237 ret = seq_open(file, seq_ops); 3238 if (ret) 3239 goto err_put_ns; 3240 3241 seq = file->private_data; 3242 seq->private = ns; 3243 3244 return 0; 3245err_put_ns: 3246 put_user_ns(ns); 3247err: 3248 return ret; 3249} 3250 3251static int proc_id_map_release(struct inode *inode, struct file *file) 3252{ 3253 struct seq_file *seq = file->private_data; 3254 struct user_namespace *ns = seq->private; 3255 put_user_ns(ns); 3256 return seq_release(inode, file); 3257} 3258 3259static int proc_uid_map_open(struct inode *inode, struct file *file) 3260{ 3261 return proc_id_map_open(inode, file, &proc_uid_seq_operations); 3262} 3263 3264static int proc_gid_map_open(struct inode *inode, struct file *file) 3265{ 3266 return proc_id_map_open(inode, file, &proc_gid_seq_operations); 3267} 3268 3269static int proc_projid_map_open(struct inode *inode, struct file *file) 3270{ 3271 return proc_id_map_open(inode, file, &proc_projid_seq_operations); 3272} 3273 3274static const struct file_operations proc_uid_map_operations = { 3275 .open = proc_uid_map_open, 3276 .write = proc_uid_map_write, 3277 .read = seq_read, 3278 .llseek = seq_lseek, 3279 .release = proc_id_map_release, 3280}; 3281 3282static const struct file_operations proc_gid_map_operations = { 3283 .open = proc_gid_map_open, 3284 .write = proc_gid_map_write, 3285 .read = seq_read, 3286 .llseek = seq_lseek, 3287 .release = proc_id_map_release, 3288}; 3289 3290static const struct file_operations proc_projid_map_operations = { 3291 .open = proc_projid_map_open, 3292 .write = proc_projid_map_write, 3293 .read = seq_read, 3294 .llseek = seq_lseek, 3295 .release = proc_id_map_release, 3296}; 3297 3298static int proc_setgroups_open(struct inode *inode, struct file *file) 3299{ 3300 struct user_namespace *ns = NULL; 3301 struct task_struct *task; 3302 int ret; 3303 3304 ret = -ESRCH; 3305 task = get_proc_task(inode); 3306 if (task) { 3307 rcu_read_lock(); 3308 ns = get_user_ns(task_cred_xxx(task, user_ns)); 3309 rcu_read_unlock(); 3310 put_task_struct(task); 3311 } 3312 if (!ns) 3313 goto err; 3314 3315 if (file->f_mode & FMODE_WRITE) { 3316 ret = -EACCES; 3317 if (!ns_capable(ns, CAP_SYS_ADMIN)) 3318 goto err_put_ns; 3319 } 3320 3321 ret = single_open(file, &proc_setgroups_show, ns); 3322 if (ret) 3323 goto err_put_ns; 3324 3325 return 0; 3326err_put_ns: 3327 put_user_ns(ns); 3328err: 3329 return ret; 3330} 3331 3332static int proc_setgroups_release(struct inode *inode, struct file *file) 3333{ 3334 struct seq_file *seq = file->private_data; 3335 struct user_namespace *ns = seq->private; 3336 int ret = single_release(inode, file); 3337 put_user_ns(ns); 3338 return ret; 3339} 3340 3341static const struct file_operations proc_setgroups_operations = { 3342 .open = proc_setgroups_open, 3343 .write = proc_setgroups_write, 3344 .read = seq_read, 3345 .llseek = seq_lseek, 3346 .release = proc_setgroups_release, 3347}; 3348#endif /* CONFIG_USER_NS */ 3349 3350static int proc_pid_personality(struct seq_file *m, struct pid_namespace *ns, 3351 struct pid *pid, struct task_struct *task) 3352{ 3353 int err = lock_trace(task); 3354 if (!err) { 3355 seq_printf(m, "%08x\n", task->personality); 3356 unlock_trace(task); 3357 } 3358 return err; 3359} 3360 3361#ifdef CONFIG_LIVEPATCH 3362static int proc_pid_patch_state(struct seq_file *m, struct pid_namespace *ns, 3363 struct pid *pid, struct task_struct *task) 3364{ 3365 seq_printf(m, "%d\n", task->patch_state); 3366 return 0; 3367} 3368#endif /* CONFIG_LIVEPATCH */ 3369 3370#ifdef CONFIG_STACKLEAK_METRICS 3371static int proc_stack_depth(struct seq_file *m, struct pid_namespace *ns, 3372 struct pid *pid, struct task_struct *task) 3373{ 3374 unsigned long prev_depth = THREAD_SIZE - 3375 (task->prev_lowest_stack & (THREAD_SIZE - 1)); 3376 unsigned long depth = THREAD_SIZE - 3377 (task->lowest_stack & (THREAD_SIZE - 1)); 3378 3379 seq_printf(m, "previous stack depth: %lu\nstack depth: %lu\n", 3380 prev_depth, depth); 3381 return 0; 3382} 3383#endif /* CONFIG_STACKLEAK_METRICS */ 3384 3385#ifdef CONFIG_ACCESS_TOKENID 3386static int proc_token_operations(struct seq_file *m, struct pid_namespace *ns, 3387 struct pid *pid, struct task_struct *task) 3388{ 3389 seq_printf(m, "%#llx %#llx\n", task->token, task->ftoken); 3390 return 0; 3391} 3392#endif /* CONFIG_ACCESS_TOKENID */ 3393 3394/* 3395 * Thread groups 3396 */ 3397static const struct file_operations proc_task_operations; 3398static const struct inode_operations proc_task_inode_operations; 3399 3400static const struct pid_entry tgid_base_stuff[] = { 3401 DIR("task", S_IRUGO|S_IXUGO, proc_task_inode_operations, proc_task_operations), 3402 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3403 DIR("map_files", S_IRUSR|S_IXUSR, proc_map_files_inode_operations, proc_map_files_operations), 3404 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3405 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3406#ifdef CONFIG_NET 3407 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3408#endif 3409 REG("environ", S_IRUSR, proc_environ_operations), 3410 REG("auxv", S_IRUSR, proc_auxv_operations), 3411 ONE("status", S_IRUGO, proc_pid_status), 3412 ONE("personality", S_IRUSR, proc_pid_personality), 3413 ONE("limits", S_IRUGO, proc_pid_limits), 3414#ifdef CONFIG_SCHED_WALT 3415 REG("sched_init_task_load", 00644, proc_pid_sched_init_task_load_operations), 3416#endif 3417#ifdef CONFIG_SCHED_DEBUG 3418 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3419#endif 3420#ifdef CONFIG_SCHED_AUTOGROUP 3421 REG("autogroup", S_IRUGO|S_IWUSR, proc_pid_sched_autogroup_operations), 3422#endif 3423#ifdef CONFIG_TIME_NS 3424 REG("timens_offsets", S_IRUGO|S_IWUSR, proc_timens_offsets_operations), 3425#endif 3426#ifdef CONFIG_RSS_THRESHOLD 3427 ONE("rss", S_IRUGO, proc_pid_rss), 3428 REG("rss_threshold", S_IRUGO|S_IWUSR, proc_pid_rss_threshold_operations), 3429#endif 3430 REG("comm", S_IRUGO|S_IWUSR, proc_pid_set_comm_operations), 3431#ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3432 ONE("syscall", S_IRUSR, proc_pid_syscall), 3433#endif 3434 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3435 ONE("stat", S_IRUGO, proc_tgid_stat), 3436 ONE("statm", S_IRUGO, proc_pid_statm), 3437 REG("maps", S_IRUGO, proc_pid_maps_operations), 3438#ifdef CONFIG_NUMA 3439 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3440#endif 3441 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3442 LNK("cwd", proc_cwd_link), 3443 LNK("root", proc_root_link), 3444 LNK("exe", proc_exe_link), 3445 REG("mounts", S_IRUGO, proc_mounts_operations), 3446 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3447 REG("mountstats", S_IRUSR, proc_mountstats_operations), 3448#ifdef CONFIG_PROC_PAGE_MONITOR 3449 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3450 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3451 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3452 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3453#endif 3454#ifdef CONFIG_SECURITY 3455 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3456#endif 3457#ifdef CONFIG_KALLSYMS 3458 ONE("wchan", S_IRUGO, proc_pid_wchan), 3459#endif 3460#ifdef CONFIG_STACKTRACE 3461 ONE("stack", S_IRUSR, proc_pid_stack), 3462#endif 3463#ifdef CONFIG_SCHED_INFO 3464 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3465#endif 3466#ifdef CONFIG_LATENCYTOP 3467 REG("latency", S_IRUGO, proc_lstats_operations), 3468#endif 3469#ifdef CONFIG_PROC_PID_CPUSET 3470 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3471#endif 3472#ifdef CONFIG_CGROUPS 3473 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3474#endif 3475#ifdef CONFIG_PROC_CPU_RESCTRL 3476 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3477#endif 3478 ONE("oom_score", S_IRUGO, proc_oom_score), 3479 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3480 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3481#ifdef CONFIG_AUDIT 3482 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3483 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3484#endif 3485#ifdef CONFIG_FAULT_INJECTION 3486 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3487 REG("fail-nth", 0644, proc_fail_nth_operations), 3488#endif 3489#ifdef CONFIG_ELF_CORE 3490 REG("coredump_filter", S_IRUGO|S_IWUSR, proc_coredump_filter_operations), 3491#endif 3492#ifdef CONFIG_TASK_IO_ACCOUNTING 3493 ONE("io", S_IRUSR, proc_tgid_io_accounting), 3494#endif 3495#ifdef CONFIG_USER_NS 3496 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3497 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3498 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3499 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3500#endif 3501#if defined(CONFIG_CHECKPOINT_RESTORE) && defined(CONFIG_POSIX_TIMERS) 3502 REG("timers", S_IRUGO, proc_timers_operations), 3503#endif 3504 REG("timerslack_ns", S_IRUGO|S_IWUGO, proc_pid_set_timerslack_ns_operations), 3505#ifdef CONFIG_LIVEPATCH 3506 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3507#endif 3508#ifdef CONFIG_STACKLEAK_METRICS 3509 ONE("stack_depth", S_IRUGO, proc_stack_depth), 3510#endif 3511#ifdef CONFIG_PROC_PID_ARCH_STATUS 3512 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3513#endif 3514#ifdef CONFIG_ACCESS_TOKENID 3515 ONE("tokenid", S_IRUSR, proc_token_operations), 3516#endif 3517#ifdef CONFIG_SCHED_RTG 3518 REG("sched_rtg_ctrl", S_IRUGO|S_IWUGO, proc_rtg_operations), 3519#endif 3520#ifdef CONFIG_SCHED_RTG_DEBUG 3521 REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations), 3522#endif 3523#ifdef CONFIG_SECURITY_XPM 3524 REG("xpm_region", S_IRUGO, proc_xpm_region_operations), 3525#endif 3526}; 3527 3528static int proc_tgid_base_readdir(struct file *file, struct dir_context *ctx) 3529{ 3530 return proc_pident_readdir(file, ctx, 3531 tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 3532} 3533 3534static const struct file_operations proc_tgid_base_operations = { 3535 .read = generic_read_dir, 3536 .iterate_shared = proc_tgid_base_readdir, 3537 .llseek = generic_file_llseek, 3538}; 3539 3540struct pid *tgid_pidfd_to_pid(const struct file *file) 3541{ 3542 if (file->f_op != &proc_tgid_base_operations) 3543 return ERR_PTR(-EBADF); 3544 3545 return proc_pid(file_inode(file)); 3546} 3547 3548static struct dentry *proc_tgid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3549{ 3550 return proc_pident_lookup(dir, dentry, 3551 tgid_base_stuff, 3552 tgid_base_stuff + ARRAY_SIZE(tgid_base_stuff)); 3553} 3554 3555static const struct inode_operations proc_tgid_base_inode_operations = { 3556 .lookup = proc_tgid_base_lookup, 3557 .getattr = pid_getattr, 3558 .setattr = proc_setattr, 3559 .permission = proc_pid_permission, 3560}; 3561 3562/** 3563 * proc_flush_pid - Remove dcache entries for @pid from the /proc dcache. 3564 * @pid: pid that should be flushed. 3565 * 3566 * This function walks a list of inodes (that belong to any proc 3567 * filesystem) that are attached to the pid and flushes them from 3568 * the dentry cache. 3569 * 3570 * It is safe and reasonable to cache /proc entries for a task until 3571 * that task exits. After that they just clog up the dcache with 3572 * useless entries, possibly causing useful dcache entries to be 3573 * flushed instead. This routine is provided to flush those useless 3574 * dcache entries when a process is reaped. 3575 * 3576 * NOTE: This routine is just an optimization so it does not guarantee 3577 * that no dcache entries will exist after a process is reaped 3578 * it just makes it very unlikely that any will persist. 3579 */ 3580 3581void proc_flush_pid(struct pid *pid) 3582{ 3583 proc_invalidate_siblings_dcache(&pid->inodes, &pid->lock); 3584} 3585 3586static struct dentry *proc_pid_instantiate(struct dentry * dentry, 3587 struct task_struct *task, const void *ptr) 3588{ 3589 struct inode *inode; 3590 3591 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3592 S_IFDIR | S_IRUGO | S_IXUGO); 3593 if (!inode) 3594 return ERR_PTR(-ENOENT); 3595 3596 inode->i_op = &proc_tgid_base_inode_operations; 3597 inode->i_fop = &proc_tgid_base_operations; 3598 inode->i_flags|=S_IMMUTABLE; 3599 3600 set_nlink(inode, nlink_tgid); 3601 pid_update_inode(task, inode); 3602 3603 d_set_d_op(dentry, &pid_dentry_operations); 3604 return d_splice_alias(inode, dentry); 3605} 3606 3607struct dentry *proc_pid_lookup(struct dentry *dentry, unsigned int flags) 3608{ 3609 struct task_struct *task; 3610 unsigned tgid; 3611 struct proc_fs_info *fs_info; 3612 struct pid_namespace *ns; 3613 struct dentry *result = ERR_PTR(-ENOENT); 3614 3615 tgid = name_to_int(&dentry->d_name); 3616 if (tgid == ~0U) 3617 goto out; 3618 3619 fs_info = proc_sb_info(dentry->d_sb); 3620 ns = fs_info->pid_ns; 3621 rcu_read_lock(); 3622 task = find_task_by_pid_ns(tgid, ns); 3623 if (task) 3624 get_task_struct(task); 3625 rcu_read_unlock(); 3626 if (!task) 3627 goto out; 3628 3629 /* Limit procfs to only ptraceable tasks */ 3630 if (fs_info->hide_pid == HIDEPID_NOT_PTRACEABLE) { 3631 if (!has_pid_permissions(fs_info, task, HIDEPID_NO_ACCESS)) 3632 goto out_put_task; 3633 } 3634 3635 result = proc_pid_instantiate(dentry, task, NULL); 3636out_put_task: 3637 put_task_struct(task); 3638out: 3639 return result; 3640} 3641 3642/* 3643 * Find the first task with tgid >= tgid 3644 * 3645 */ 3646struct tgid_iter { 3647 unsigned int tgid; 3648 struct task_struct *task; 3649}; 3650static struct tgid_iter next_tgid(struct pid_namespace *ns, struct tgid_iter iter) 3651{ 3652 struct pid *pid; 3653 3654 if (iter.task) 3655 put_task_struct(iter.task); 3656 rcu_read_lock(); 3657retry: 3658 iter.task = NULL; 3659 pid = find_ge_pid(iter.tgid, ns); 3660 if (pid) { 3661 iter.tgid = pid_nr_ns(pid, ns); 3662 iter.task = pid_task(pid, PIDTYPE_TGID); 3663 if (!iter.task) { 3664 iter.tgid += 1; 3665 goto retry; 3666 } 3667 get_task_struct(iter.task); 3668 } 3669 rcu_read_unlock(); 3670 return iter; 3671} 3672 3673#define TGID_OFFSET (FIRST_PROCESS_ENTRY + 2) 3674 3675/* for the /proc/ directory itself, after non-process stuff has been done */ 3676int proc_pid_readdir(struct file *file, struct dir_context *ctx) 3677{ 3678 struct tgid_iter iter; 3679 struct proc_fs_info *fs_info = proc_sb_info(file_inode(file)->i_sb); 3680 struct pid_namespace *ns = proc_pid_ns(file_inode(file)->i_sb); 3681 loff_t pos = ctx->pos; 3682 3683 if (pos >= PID_MAX_LIMIT + TGID_OFFSET) 3684 return 0; 3685 3686 if (pos == TGID_OFFSET - 2) { 3687 struct inode *inode = d_inode(fs_info->proc_self); 3688 if (!dir_emit(ctx, "self", 4, inode->i_ino, DT_LNK)) 3689 return 0; 3690 ctx->pos = pos = pos + 1; 3691 } 3692 if (pos == TGID_OFFSET - 1) { 3693 struct inode *inode = d_inode(fs_info->proc_thread_self); 3694 if (!dir_emit(ctx, "thread-self", 11, inode->i_ino, DT_LNK)) 3695 return 0; 3696 ctx->pos = pos = pos + 1; 3697 } 3698 iter.tgid = pos - TGID_OFFSET; 3699 iter.task = NULL; 3700 for (iter = next_tgid(ns, iter); 3701 iter.task; 3702 iter.tgid += 1, iter = next_tgid(ns, iter)) { 3703 char name[10 + 1]; 3704 unsigned int len; 3705 3706 cond_resched(); 3707 if (!has_pid_permissions(fs_info, iter.task, HIDEPID_INVISIBLE)) 3708 continue; 3709 3710 len = snprintf(name, sizeof(name), "%u", iter.tgid); 3711 ctx->pos = iter.tgid + TGID_OFFSET; 3712 if (!proc_fill_cache(file, ctx, name, len, 3713 proc_pid_instantiate, iter.task, NULL)) { 3714 put_task_struct(iter.task); 3715 return 0; 3716 } 3717 } 3718 ctx->pos = PID_MAX_LIMIT + TGID_OFFSET; 3719 return 0; 3720} 3721 3722/* 3723 * proc_tid_comm_permission is a special permission function exclusively 3724 * used for the node /proc/<pid>/task/<tid>/comm. 3725 * It bypasses generic permission checks in the case where a task of the same 3726 * task group attempts to access the node. 3727 * The rationale behind this is that glibc and bionic access this node for 3728 * cross thread naming (pthread_set/getname_np(!self)). However, if 3729 * PR_SET_DUMPABLE gets set to 0 this node among others becomes uid=0 gid=0, 3730 * which locks out the cross thread naming implementation. 3731 * This function makes sure that the node is always accessible for members of 3732 * same thread group. 3733 */ 3734static int proc_tid_comm_permission(struct inode *inode, int mask) 3735{ 3736 bool is_same_tgroup; 3737 struct task_struct *task; 3738 3739 task = get_proc_task(inode); 3740 if (!task) 3741 return -ESRCH; 3742 is_same_tgroup = same_thread_group(current, task); 3743 put_task_struct(task); 3744 3745 if (likely(is_same_tgroup && !(mask & MAY_EXEC))) { 3746 /* This file (/proc/<pid>/task/<tid>/comm) can always be 3747 * read or written by the members of the corresponding 3748 * thread group. 3749 */ 3750 return 0; 3751 } 3752 3753 return generic_permission(inode, mask); 3754} 3755 3756static const struct inode_operations proc_tid_comm_inode_operations = { 3757 .setattr = proc_setattr, 3758 .permission = proc_tid_comm_permission, 3759}; 3760 3761/* 3762 * Tasks 3763 */ 3764static const struct pid_entry tid_base_stuff[] = { 3765 DIR("fd", S_IRUSR|S_IXUSR, proc_fd_inode_operations, proc_fd_operations), 3766 DIR("fdinfo", S_IRUSR|S_IXUSR, proc_fdinfo_inode_operations, proc_fdinfo_operations), 3767 DIR("ns", S_IRUSR|S_IXUGO, proc_ns_dir_inode_operations, proc_ns_dir_operations), 3768#ifdef CONFIG_NET 3769 DIR("net", S_IRUGO|S_IXUGO, proc_net_inode_operations, proc_net_operations), 3770#endif 3771 REG("environ", S_IRUSR, proc_environ_operations), 3772 REG("auxv", S_IRUSR, proc_auxv_operations), 3773 ONE("status", S_IRUGO, proc_pid_status), 3774 ONE("personality", S_IRUSR, proc_pid_personality), 3775 ONE("limits", S_IRUGO, proc_pid_limits), 3776#ifdef CONFIG_SCHED_DEBUG 3777 REG("sched", S_IRUGO|S_IWUSR, proc_pid_sched_operations), 3778#endif 3779 NOD("comm", S_IFREG|S_IRUGO|S_IWUSR, 3780 &proc_tid_comm_inode_operations, 3781 &proc_pid_set_comm_operations, {}), 3782#ifdef CONFIG_HAVE_ARCH_TRACEHOOK 3783 ONE("syscall", S_IRUSR, proc_pid_syscall), 3784#endif 3785 REG("cmdline", S_IRUGO, proc_pid_cmdline_ops), 3786 ONE("stat", S_IRUGO, proc_tid_stat), 3787 ONE("statm", S_IRUGO, proc_pid_statm), 3788 REG("maps", S_IRUGO, proc_pid_maps_operations), 3789#ifdef CONFIG_PROC_CHILDREN 3790 REG("children", S_IRUGO, proc_tid_children_operations), 3791#endif 3792#ifdef CONFIG_NUMA 3793 REG("numa_maps", S_IRUGO, proc_pid_numa_maps_operations), 3794#endif 3795 REG("mem", S_IRUSR|S_IWUSR, proc_mem_operations), 3796 LNK("cwd", proc_cwd_link), 3797 LNK("root", proc_root_link), 3798 LNK("exe", proc_exe_link), 3799 REG("mounts", S_IRUGO, proc_mounts_operations), 3800 REG("mountinfo", S_IRUGO, proc_mountinfo_operations), 3801#ifdef CONFIG_PROC_PAGE_MONITOR 3802 REG("clear_refs", S_IWUSR, proc_clear_refs_operations), 3803 REG("smaps", S_IRUGO, proc_pid_smaps_operations), 3804 REG("smaps_rollup", S_IRUGO, proc_pid_smaps_rollup_operations), 3805 REG("pagemap", S_IRUSR, proc_pagemap_operations), 3806#endif 3807#ifdef CONFIG_SECURITY 3808 DIR("attr", S_IRUGO|S_IXUGO, proc_attr_dir_inode_operations, proc_attr_dir_operations), 3809#endif 3810#ifdef CONFIG_KALLSYMS 3811 ONE("wchan", S_IRUGO, proc_pid_wchan), 3812#endif 3813#ifdef CONFIG_STACKTRACE 3814 ONE("stack", S_IRUSR, proc_pid_stack), 3815#endif 3816#ifdef CONFIG_SCHED_INFO 3817 ONE("schedstat", S_IRUGO, proc_pid_schedstat), 3818#endif 3819#ifdef CONFIG_LATENCYTOP 3820 REG("latency", S_IRUGO, proc_lstats_operations), 3821#endif 3822#ifdef CONFIG_PROC_PID_CPUSET 3823 ONE("cpuset", S_IRUGO, proc_cpuset_show), 3824#endif 3825#ifdef CONFIG_CGROUPS 3826 ONE("cgroup", S_IRUGO, proc_cgroup_show), 3827#endif 3828#ifdef CONFIG_PROC_CPU_RESCTRL 3829 ONE("cpu_resctrl_groups", S_IRUGO, proc_resctrl_show), 3830#endif 3831 ONE("oom_score", S_IRUGO, proc_oom_score), 3832 REG("oom_adj", S_IRUGO|S_IWUSR, proc_oom_adj_operations), 3833 REG("oom_score_adj", S_IRUGO|S_IWUSR, proc_oom_score_adj_operations), 3834#ifdef CONFIG_AUDIT 3835 REG("loginuid", S_IWUSR|S_IRUGO, proc_loginuid_operations), 3836 REG("sessionid", S_IRUGO, proc_sessionid_operations), 3837#endif 3838#ifdef CONFIG_FAULT_INJECTION 3839 REG("make-it-fail", S_IRUGO|S_IWUSR, proc_fault_inject_operations), 3840 REG("fail-nth", 0644, proc_fail_nth_operations), 3841#endif 3842#ifdef CONFIG_TASK_IO_ACCOUNTING 3843 ONE("io", S_IRUSR, proc_tid_io_accounting), 3844#endif 3845#ifdef CONFIG_USER_NS 3846 REG("uid_map", S_IRUGO|S_IWUSR, proc_uid_map_operations), 3847 REG("gid_map", S_IRUGO|S_IWUSR, proc_gid_map_operations), 3848 REG("projid_map", S_IRUGO|S_IWUSR, proc_projid_map_operations), 3849 REG("setgroups", S_IRUGO|S_IWUSR, proc_setgroups_operations), 3850#endif 3851#ifdef CONFIG_LIVEPATCH 3852 ONE("patch_state", S_IRUSR, proc_pid_patch_state), 3853#endif 3854#ifdef CONFIG_PROC_PID_ARCH_STATUS 3855 ONE("arch_status", S_IRUGO, proc_pid_arch_status), 3856#endif 3857#ifdef CONFIG_ACCESS_TOKENID 3858 ONE("tokenid", S_IRUSR, proc_token_operations), 3859#endif 3860#ifdef CONFIG_QOS_CTRL 3861 REG("sched_qos_ctrl", S_IRUGO|S_IWUGO, proc_qos_ctrl_operations), 3862#endif 3863#ifdef CONFIG_SCHED_RTG_DEBUG 3864 REG("sched_group_id", S_IRUGO|S_IWUGO, proc_pid_sched_group_id_operations), 3865#endif 3866#ifdef CONFIG_SECURITY_XPM 3867 REG("xpm_region", S_IRUGO, proc_xpm_region_operations), 3868#endif 3869}; 3870 3871static int proc_tid_base_readdir(struct file *file, struct dir_context *ctx) 3872{ 3873 return proc_pident_readdir(file, ctx, 3874 tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 3875} 3876 3877static struct dentry *proc_tid_base_lookup(struct inode *dir, struct dentry *dentry, unsigned int flags) 3878{ 3879 return proc_pident_lookup(dir, dentry, 3880 tid_base_stuff, 3881 tid_base_stuff + ARRAY_SIZE(tid_base_stuff)); 3882} 3883 3884static const struct file_operations proc_tid_base_operations = { 3885 .read = generic_read_dir, 3886 .iterate_shared = proc_tid_base_readdir, 3887 .llseek = generic_file_llseek, 3888}; 3889 3890static const struct inode_operations proc_tid_base_inode_operations = { 3891 .lookup = proc_tid_base_lookup, 3892 .getattr = pid_getattr, 3893 .setattr = proc_setattr, 3894}; 3895 3896static struct dentry *proc_task_instantiate(struct dentry *dentry, 3897 struct task_struct *task, const void *ptr) 3898{ 3899 struct inode *inode; 3900 inode = proc_pid_make_base_inode(dentry->d_sb, task, 3901 S_IFDIR | S_IRUGO | S_IXUGO); 3902 if (!inode) 3903 return ERR_PTR(-ENOENT); 3904 3905 inode->i_op = &proc_tid_base_inode_operations; 3906 inode->i_fop = &proc_tid_base_operations; 3907 inode->i_flags |= S_IMMUTABLE; 3908 3909 set_nlink(inode, nlink_tid); 3910 pid_update_inode(task, inode); 3911 3912 d_set_d_op(dentry, &pid_dentry_operations); 3913 return d_splice_alias(inode, dentry); 3914} 3915 3916static struct dentry *proc_task_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 3917{ 3918 struct task_struct *task; 3919 struct task_struct *leader = get_proc_task(dir); 3920 unsigned tid; 3921 struct proc_fs_info *fs_info; 3922 struct pid_namespace *ns; 3923 struct dentry *result = ERR_PTR(-ENOENT); 3924 3925 if (!leader) 3926 goto out_no_task; 3927 3928 tid = name_to_int(&dentry->d_name); 3929 if (tid == ~0U) 3930 goto out; 3931 3932 fs_info = proc_sb_info(dentry->d_sb); 3933 ns = fs_info->pid_ns; 3934 rcu_read_lock(); 3935 task = find_task_by_pid_ns(tid, ns); 3936 if (task) 3937 get_task_struct(task); 3938 rcu_read_unlock(); 3939 if (!task) 3940 goto out; 3941 if (!same_thread_group(leader, task)) 3942 goto out_drop_task; 3943 3944 result = proc_task_instantiate(dentry, task, NULL); 3945out_drop_task: 3946 put_task_struct(task); 3947out: 3948 put_task_struct(leader); 3949out_no_task: 3950 return result; 3951} 3952 3953/* 3954 * Find the first tid of a thread group to return to user space. 3955 * 3956 * Usually this is just the thread group leader, but if the users 3957 * buffer was too small or there was a seek into the middle of the 3958 * directory we have more work todo. 3959 * 3960 * In the case of a short read we start with find_task_by_pid. 3961 * 3962 * In the case of a seek we start with the leader and walk nr 3963 * threads past it. 3964 */ 3965static struct task_struct *first_tid(struct pid *pid, int tid, loff_t f_pos, 3966 struct pid_namespace *ns) 3967{ 3968 struct task_struct *pos, *task; 3969 unsigned long nr = f_pos; 3970 3971 if (nr != f_pos) /* 32bit overflow? */ 3972 return NULL; 3973 3974 rcu_read_lock(); 3975 task = pid_task(pid, PIDTYPE_PID); 3976 if (!task) 3977 goto fail; 3978 3979 /* Attempt to start with the tid of a thread */ 3980 if (tid && nr) { 3981 pos = find_task_by_pid_ns(tid, ns); 3982 if (pos && same_thread_group(pos, task)) 3983 goto found; 3984 } 3985 3986 /* If nr exceeds the number of threads there is nothing todo */ 3987 if (nr >= get_nr_threads(task)) 3988 goto fail; 3989 3990 /* If we haven't found our starting place yet start 3991 * with the leader and walk nr threads forward. 3992 */ 3993 pos = task = task->group_leader; 3994 do { 3995 if (!nr--) 3996 goto found; 3997 } while_each_thread(task, pos); 3998fail: 3999 pos = NULL; 4000 goto out; 4001found: 4002 get_task_struct(pos); 4003out: 4004 rcu_read_unlock(); 4005 return pos; 4006} 4007 4008/* 4009 * Find the next thread in the thread list. 4010 * Return NULL if there is an error or no next thread. 4011 * 4012 * The reference to the input task_struct is released. 4013 */ 4014static struct task_struct *next_tid(struct task_struct *start) 4015{ 4016 struct task_struct *pos = NULL; 4017 rcu_read_lock(); 4018 if (pid_alive(start)) { 4019 pos = next_thread(start); 4020 if (thread_group_leader(pos)) 4021 pos = NULL; 4022 else 4023 get_task_struct(pos); 4024 } 4025 rcu_read_unlock(); 4026 put_task_struct(start); 4027 return pos; 4028} 4029 4030/* for the /proc/TGID/task/ directories */ 4031static int proc_task_readdir(struct file *file, struct dir_context *ctx) 4032{ 4033 struct inode *inode = file_inode(file); 4034 struct task_struct *task; 4035 struct pid_namespace *ns; 4036 int tid; 4037 4038 if (proc_inode_is_dead(inode)) 4039 return -ENOENT; 4040 4041 if (!dir_emit_dots(file, ctx)) 4042 return 0; 4043 4044 /* f_version caches the tgid value that the last readdir call couldn't 4045 * return. lseek aka telldir automagically resets f_version to 0. 4046 */ 4047 ns = proc_pid_ns(inode->i_sb); 4048 tid = (int)file->f_version; 4049 file->f_version = 0; 4050 for (task = first_tid(proc_pid(inode), tid, ctx->pos - 2, ns); 4051 task; 4052 task = next_tid(task), ctx->pos++) { 4053 char name[10 + 1]; 4054 unsigned int len; 4055 tid = task_pid_nr_ns(task, ns); 4056 len = snprintf(name, sizeof(name), "%u", tid); 4057 if (!proc_fill_cache(file, ctx, name, len, 4058 proc_task_instantiate, task, NULL)) { 4059 /* returning this tgid failed, save it as the first 4060 * pid for the next readir call */ 4061 file->f_version = (u64)tid; 4062 put_task_struct(task); 4063 break; 4064 } 4065 } 4066 4067 return 0; 4068} 4069 4070static int proc_task_getattr(const struct path *path, struct kstat *stat, 4071 u32 request_mask, unsigned int query_flags) 4072{ 4073 struct inode *inode = d_inode(path->dentry); 4074 struct task_struct *p = get_proc_task(inode); 4075 generic_fillattr(inode, stat); 4076 4077 if (p) { 4078 stat->nlink += get_nr_threads(p); 4079 put_task_struct(p); 4080 } 4081 4082 return 0; 4083} 4084 4085static const struct inode_operations proc_task_inode_operations = { 4086 .lookup = proc_task_lookup, 4087 .getattr = proc_task_getattr, 4088 .setattr = proc_setattr, 4089 .permission = proc_pid_permission, 4090}; 4091 4092static const struct file_operations proc_task_operations = { 4093 .read = generic_read_dir, 4094 .iterate_shared = proc_task_readdir, 4095 .llseek = generic_file_llseek, 4096}; 4097 4098void __init set_proc_pid_nlink(void) 4099{ 4100 nlink_tid = pid_entry_nlink(tid_base_stuff, ARRAY_SIZE(tid_base_stuff)); 4101 nlink_tgid = pid_entry_nlink(tgid_base_stuff, ARRAY_SIZE(tgid_base_stuff)); 4102} 4103