xref: /kernel/linux/linux-5.10/fs/ocfs2/journal.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * journal.c
6 *
7 * Defines functions of journalling api
8 *
9 * Copyright (C) 2003, 2004 Oracle.  All rights reserved.
10 */
11
12#include <linux/fs.h>
13#include <linux/types.h>
14#include <linux/slab.h>
15#include <linux/highmem.h>
16#include <linux/kthread.h>
17#include <linux/time.h>
18#include <linux/random.h>
19#include <linux/delay.h>
20
21#include <cluster/masklog.h>
22
23#include "ocfs2.h"
24
25#include "alloc.h"
26#include "blockcheck.h"
27#include "dir.h"
28#include "dlmglue.h"
29#include "extent_map.h"
30#include "heartbeat.h"
31#include "inode.h"
32#include "journal.h"
33#include "localalloc.h"
34#include "slot_map.h"
35#include "super.h"
36#include "sysfile.h"
37#include "uptodate.h"
38#include "quota.h"
39#include "file.h"
40#include "namei.h"
41
42#include "buffer_head_io.h"
43#include "ocfs2_trace.h"
44
45DEFINE_SPINLOCK(trans_inc_lock);
46
47#define ORPHAN_SCAN_SCHEDULE_TIMEOUT 300000
48
49static int ocfs2_force_read_journal(struct inode *inode);
50static int ocfs2_recover_node(struct ocfs2_super *osb,
51			      int node_num, int slot_num);
52static int __ocfs2_recovery_thread(void *arg);
53static int ocfs2_commit_cache(struct ocfs2_super *osb);
54static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota);
55static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
56				      int dirty, int replayed);
57static int ocfs2_trylock_journal(struct ocfs2_super *osb,
58				 int slot_num);
59static int ocfs2_recover_orphans(struct ocfs2_super *osb,
60				 int slot,
61				 enum ocfs2_orphan_reco_type orphan_reco_type);
62static int ocfs2_commit_thread(void *arg);
63static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
64					    int slot_num,
65					    struct ocfs2_dinode *la_dinode,
66					    struct ocfs2_dinode *tl_dinode,
67					    struct ocfs2_quota_recovery *qrec,
68					    enum ocfs2_orphan_reco_type orphan_reco_type);
69
70static inline int ocfs2_wait_on_mount(struct ocfs2_super *osb)
71{
72	return __ocfs2_wait_on_mount(osb, 0);
73}
74
75static inline int ocfs2_wait_on_quotas(struct ocfs2_super *osb)
76{
77	return __ocfs2_wait_on_mount(osb, 1);
78}
79
80/*
81 * This replay_map is to track online/offline slots, so we could recover
82 * offline slots during recovery and mount
83 */
84
85enum ocfs2_replay_state {
86	REPLAY_UNNEEDED = 0,	/* Replay is not needed, so ignore this map */
87	REPLAY_NEEDED, 		/* Replay slots marked in rm_replay_slots */
88	REPLAY_DONE 		/* Replay was already queued */
89};
90
91struct ocfs2_replay_map {
92	unsigned int rm_slots;
93	enum ocfs2_replay_state rm_state;
94	unsigned char rm_replay_slots[];
95};
96
97static void ocfs2_replay_map_set_state(struct ocfs2_super *osb, int state)
98{
99	if (!osb->replay_map)
100		return;
101
102	/* If we've already queued the replay, we don't have any more to do */
103	if (osb->replay_map->rm_state == REPLAY_DONE)
104		return;
105
106	osb->replay_map->rm_state = state;
107}
108
109int ocfs2_compute_replay_slots(struct ocfs2_super *osb)
110{
111	struct ocfs2_replay_map *replay_map;
112	int i, node_num;
113
114	/* If replay map is already set, we don't do it again */
115	if (osb->replay_map)
116		return 0;
117
118	replay_map = kzalloc(sizeof(struct ocfs2_replay_map) +
119			     (osb->max_slots * sizeof(char)), GFP_KERNEL);
120
121	if (!replay_map) {
122		mlog_errno(-ENOMEM);
123		return -ENOMEM;
124	}
125
126	spin_lock(&osb->osb_lock);
127
128	replay_map->rm_slots = osb->max_slots;
129	replay_map->rm_state = REPLAY_UNNEEDED;
130
131	/* set rm_replay_slots for offline slot(s) */
132	for (i = 0; i < replay_map->rm_slots; i++) {
133		if (ocfs2_slot_to_node_num_locked(osb, i, &node_num) == -ENOENT)
134			replay_map->rm_replay_slots[i] = 1;
135	}
136
137	osb->replay_map = replay_map;
138	spin_unlock(&osb->osb_lock);
139	return 0;
140}
141
142static void ocfs2_queue_replay_slots(struct ocfs2_super *osb,
143		enum ocfs2_orphan_reco_type orphan_reco_type)
144{
145	struct ocfs2_replay_map *replay_map = osb->replay_map;
146	int i;
147
148	if (!replay_map)
149		return;
150
151	if (replay_map->rm_state != REPLAY_NEEDED)
152		return;
153
154	for (i = 0; i < replay_map->rm_slots; i++)
155		if (replay_map->rm_replay_slots[i])
156			ocfs2_queue_recovery_completion(osb->journal, i, NULL,
157							NULL, NULL,
158							orphan_reco_type);
159	replay_map->rm_state = REPLAY_DONE;
160}
161
162void ocfs2_free_replay_slots(struct ocfs2_super *osb)
163{
164	struct ocfs2_replay_map *replay_map = osb->replay_map;
165
166	if (!osb->replay_map)
167		return;
168
169	kfree(replay_map);
170	osb->replay_map = NULL;
171}
172
173int ocfs2_recovery_init(struct ocfs2_super *osb)
174{
175	struct ocfs2_recovery_map *rm;
176
177	mutex_init(&osb->recovery_lock);
178	osb->disable_recovery = 0;
179	osb->recovery_thread_task = NULL;
180	init_waitqueue_head(&osb->recovery_event);
181
182	rm = kzalloc(sizeof(struct ocfs2_recovery_map) +
183		     osb->max_slots * sizeof(unsigned int),
184		     GFP_KERNEL);
185	if (!rm) {
186		mlog_errno(-ENOMEM);
187		return -ENOMEM;
188	}
189
190	rm->rm_entries = (unsigned int *)((char *)rm +
191					  sizeof(struct ocfs2_recovery_map));
192	osb->recovery_map = rm;
193
194	return 0;
195}
196
197/* we can't grab the goofy sem lock from inside wait_event, so we use
198 * memory barriers to make sure that we'll see the null task before
199 * being woken up */
200static int ocfs2_recovery_thread_running(struct ocfs2_super *osb)
201{
202	mb();
203	return osb->recovery_thread_task != NULL;
204}
205
206void ocfs2_recovery_exit(struct ocfs2_super *osb)
207{
208	struct ocfs2_recovery_map *rm;
209
210	/* disable any new recovery threads and wait for any currently
211	 * running ones to exit. Do this before setting the vol_state. */
212	mutex_lock(&osb->recovery_lock);
213	osb->disable_recovery = 1;
214	mutex_unlock(&osb->recovery_lock);
215	wait_event(osb->recovery_event, !ocfs2_recovery_thread_running(osb));
216
217	/* At this point, we know that no more recovery threads can be
218	 * launched, so wait for any recovery completion work to
219	 * complete. */
220	if (osb->ocfs2_wq)
221		flush_workqueue(osb->ocfs2_wq);
222
223	/*
224	 * Now that recovery is shut down, and the osb is about to be
225	 * freed,  the osb_lock is not taken here.
226	 */
227	rm = osb->recovery_map;
228	/* XXX: Should we bug if there are dirty entries? */
229
230	kfree(rm);
231}
232
233static int __ocfs2_recovery_map_test(struct ocfs2_super *osb,
234				     unsigned int node_num)
235{
236	int i;
237	struct ocfs2_recovery_map *rm = osb->recovery_map;
238
239	assert_spin_locked(&osb->osb_lock);
240
241	for (i = 0; i < rm->rm_used; i++) {
242		if (rm->rm_entries[i] == node_num)
243			return 1;
244	}
245
246	return 0;
247}
248
249/* Behaves like test-and-set.  Returns the previous value */
250static int ocfs2_recovery_map_set(struct ocfs2_super *osb,
251				  unsigned int node_num)
252{
253	struct ocfs2_recovery_map *rm = osb->recovery_map;
254
255	spin_lock(&osb->osb_lock);
256	if (__ocfs2_recovery_map_test(osb, node_num)) {
257		spin_unlock(&osb->osb_lock);
258		return 1;
259	}
260
261	/* XXX: Can this be exploited? Not from o2dlm... */
262	BUG_ON(rm->rm_used >= osb->max_slots);
263
264	rm->rm_entries[rm->rm_used] = node_num;
265	rm->rm_used++;
266	spin_unlock(&osb->osb_lock);
267
268	return 0;
269}
270
271static void ocfs2_recovery_map_clear(struct ocfs2_super *osb,
272				     unsigned int node_num)
273{
274	int i;
275	struct ocfs2_recovery_map *rm = osb->recovery_map;
276
277	spin_lock(&osb->osb_lock);
278
279	for (i = 0; i < rm->rm_used; i++) {
280		if (rm->rm_entries[i] == node_num)
281			break;
282	}
283
284	if (i < rm->rm_used) {
285		/* XXX: be careful with the pointer math */
286		memmove(&(rm->rm_entries[i]), &(rm->rm_entries[i + 1]),
287			(rm->rm_used - i - 1) * sizeof(unsigned int));
288		rm->rm_used--;
289	}
290
291	spin_unlock(&osb->osb_lock);
292}
293
294static int ocfs2_commit_cache(struct ocfs2_super *osb)
295{
296	int status = 0;
297	unsigned int flushed;
298	struct ocfs2_journal *journal = NULL;
299
300	journal = osb->journal;
301
302	/* Flush all pending commits and checkpoint the journal. */
303	down_write(&journal->j_trans_barrier);
304
305	flushed = atomic_read(&journal->j_num_trans);
306	trace_ocfs2_commit_cache_begin(flushed);
307	if (flushed == 0) {
308		up_write(&journal->j_trans_barrier);
309		goto finally;
310	}
311
312	jbd2_journal_lock_updates(journal->j_journal);
313	status = jbd2_journal_flush(journal->j_journal);
314	jbd2_journal_unlock_updates(journal->j_journal);
315	if (status < 0) {
316		up_write(&journal->j_trans_barrier);
317		mlog_errno(status);
318		goto finally;
319	}
320
321	ocfs2_inc_trans_id(journal);
322
323	flushed = atomic_read(&journal->j_num_trans);
324	atomic_set(&journal->j_num_trans, 0);
325	up_write(&journal->j_trans_barrier);
326
327	trace_ocfs2_commit_cache_end(journal->j_trans_id, flushed);
328
329	ocfs2_wake_downconvert_thread(osb);
330	wake_up(&journal->j_checkpointed);
331finally:
332	return status;
333}
334
335handle_t *ocfs2_start_trans(struct ocfs2_super *osb, int max_buffs)
336{
337	journal_t *journal = osb->journal->j_journal;
338	handle_t *handle;
339
340	BUG_ON(!osb || !osb->journal->j_journal);
341
342	if (ocfs2_is_hard_readonly(osb))
343		return ERR_PTR(-EROFS);
344
345	BUG_ON(osb->journal->j_state == OCFS2_JOURNAL_FREE);
346	BUG_ON(max_buffs <= 0);
347
348	/* Nested transaction? Just return the handle... */
349	if (journal_current_handle())
350		return jbd2_journal_start(journal, max_buffs);
351
352	sb_start_intwrite(osb->sb);
353
354	down_read(&osb->journal->j_trans_barrier);
355
356	handle = jbd2_journal_start(journal, max_buffs);
357	if (IS_ERR(handle)) {
358		up_read(&osb->journal->j_trans_barrier);
359		sb_end_intwrite(osb->sb);
360
361		mlog_errno(PTR_ERR(handle));
362
363		if (is_journal_aborted(journal)) {
364			ocfs2_abort(osb->sb, "Detected aborted journal\n");
365			handle = ERR_PTR(-EROFS);
366		}
367	} else {
368		if (!ocfs2_mount_local(osb))
369			atomic_inc(&(osb->journal->j_num_trans));
370	}
371
372	return handle;
373}
374
375int ocfs2_commit_trans(struct ocfs2_super *osb,
376		       handle_t *handle)
377{
378	int ret, nested;
379	struct ocfs2_journal *journal = osb->journal;
380
381	BUG_ON(!handle);
382
383	nested = handle->h_ref > 1;
384	ret = jbd2_journal_stop(handle);
385	if (ret < 0)
386		mlog_errno(ret);
387
388	if (!nested) {
389		up_read(&journal->j_trans_barrier);
390		sb_end_intwrite(osb->sb);
391	}
392
393	return ret;
394}
395
396/*
397 * 'nblocks' is what you want to add to the current transaction.
398 *
399 * This might call jbd2_journal_restart() which will commit dirty buffers
400 * and then restart the transaction. Before calling
401 * ocfs2_extend_trans(), any changed blocks should have been
402 * dirtied. After calling it, all blocks which need to be changed must
403 * go through another set of journal_access/journal_dirty calls.
404 *
405 * WARNING: This will not release any semaphores or disk locks taken
406 * during the transaction, so make sure they were taken *before*
407 * start_trans or we'll have ordering deadlocks.
408 *
409 * WARNING2: Note that we do *not* drop j_trans_barrier here. This is
410 * good because transaction ids haven't yet been recorded on the
411 * cluster locks associated with this handle.
412 */
413int ocfs2_extend_trans(handle_t *handle, int nblocks)
414{
415	int status, old_nblocks;
416
417	BUG_ON(!handle);
418	BUG_ON(nblocks < 0);
419
420	if (!nblocks)
421		return 0;
422
423	old_nblocks = jbd2_handle_buffer_credits(handle);
424
425	trace_ocfs2_extend_trans(old_nblocks, nblocks);
426
427#ifdef CONFIG_OCFS2_DEBUG_FS
428	status = 1;
429#else
430	status = jbd2_journal_extend(handle, nblocks, 0);
431	if (status < 0) {
432		mlog_errno(status);
433		goto bail;
434	}
435#endif
436
437	if (status > 0) {
438		trace_ocfs2_extend_trans_restart(old_nblocks + nblocks);
439		status = jbd2_journal_restart(handle,
440					      old_nblocks + nblocks);
441		if (status < 0) {
442			mlog_errno(status);
443			goto bail;
444		}
445	}
446
447	status = 0;
448bail:
449	return status;
450}
451
452/*
453 * If we have fewer than thresh credits, extend by OCFS2_MAX_TRANS_DATA.
454 * If that fails, restart the transaction & regain write access for the
455 * buffer head which is used for metadata modifications.
456 * Taken from Ext4: extend_or_restart_transaction()
457 */
458int ocfs2_allocate_extend_trans(handle_t *handle, int thresh)
459{
460	int status, old_nblks;
461
462	BUG_ON(!handle);
463
464	old_nblks = jbd2_handle_buffer_credits(handle);
465	trace_ocfs2_allocate_extend_trans(old_nblks, thresh);
466
467	if (old_nblks < thresh)
468		return 0;
469
470	status = jbd2_journal_extend(handle, OCFS2_MAX_TRANS_DATA, 0);
471	if (status < 0) {
472		mlog_errno(status);
473		goto bail;
474	}
475
476	if (status > 0) {
477		status = jbd2_journal_restart(handle, OCFS2_MAX_TRANS_DATA);
478		if (status < 0)
479			mlog_errno(status);
480	}
481
482bail:
483	return status;
484}
485
486
487struct ocfs2_triggers {
488	struct jbd2_buffer_trigger_type	ot_triggers;
489	int				ot_offset;
490};
491
492static inline struct ocfs2_triggers *to_ocfs2_trigger(struct jbd2_buffer_trigger_type *triggers)
493{
494	return container_of(triggers, struct ocfs2_triggers, ot_triggers);
495}
496
497static void ocfs2_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
498				 struct buffer_head *bh,
499				 void *data, size_t size)
500{
501	struct ocfs2_triggers *ot = to_ocfs2_trigger(triggers);
502
503	/*
504	 * We aren't guaranteed to have the superblock here, so we
505	 * must unconditionally compute the ecc data.
506	 * __ocfs2_journal_access() will only set the triggers if
507	 * metaecc is enabled.
508	 */
509	ocfs2_block_check_compute(data, size, data + ot->ot_offset);
510}
511
512/*
513 * Quota blocks have their own trigger because the struct ocfs2_block_check
514 * offset depends on the blocksize.
515 */
516static void ocfs2_dq_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
517				 struct buffer_head *bh,
518				 void *data, size_t size)
519{
520	struct ocfs2_disk_dqtrailer *dqt =
521		ocfs2_block_dqtrailer(size, data);
522
523	/*
524	 * We aren't guaranteed to have the superblock here, so we
525	 * must unconditionally compute the ecc data.
526	 * __ocfs2_journal_access() will only set the triggers if
527	 * metaecc is enabled.
528	 */
529	ocfs2_block_check_compute(data, size, &dqt->dq_check);
530}
531
532/*
533 * Directory blocks also have their own trigger because the
534 * struct ocfs2_block_check offset depends on the blocksize.
535 */
536static void ocfs2_db_frozen_trigger(struct jbd2_buffer_trigger_type *triggers,
537				 struct buffer_head *bh,
538				 void *data, size_t size)
539{
540	struct ocfs2_dir_block_trailer *trailer =
541		ocfs2_dir_trailer_from_size(size, data);
542
543	/*
544	 * We aren't guaranteed to have the superblock here, so we
545	 * must unconditionally compute the ecc data.
546	 * __ocfs2_journal_access() will only set the triggers if
547	 * metaecc is enabled.
548	 */
549	ocfs2_block_check_compute(data, size, &trailer->db_check);
550}
551
552static void ocfs2_abort_trigger(struct jbd2_buffer_trigger_type *triggers,
553				struct buffer_head *bh)
554{
555	mlog(ML_ERROR,
556	     "ocfs2_abort_trigger called by JBD2.  bh = 0x%lx, "
557	     "bh->b_blocknr = %llu\n",
558	     (unsigned long)bh,
559	     (unsigned long long)bh->b_blocknr);
560
561	ocfs2_error(bh->b_bdev->bd_super,
562		    "JBD2 has aborted our journal, ocfs2 cannot continue\n");
563}
564
565static struct ocfs2_triggers di_triggers = {
566	.ot_triggers = {
567		.t_frozen = ocfs2_frozen_trigger,
568		.t_abort = ocfs2_abort_trigger,
569	},
570	.ot_offset	= offsetof(struct ocfs2_dinode, i_check),
571};
572
573static struct ocfs2_triggers eb_triggers = {
574	.ot_triggers = {
575		.t_frozen = ocfs2_frozen_trigger,
576		.t_abort = ocfs2_abort_trigger,
577	},
578	.ot_offset	= offsetof(struct ocfs2_extent_block, h_check),
579};
580
581static struct ocfs2_triggers rb_triggers = {
582	.ot_triggers = {
583		.t_frozen = ocfs2_frozen_trigger,
584		.t_abort = ocfs2_abort_trigger,
585	},
586	.ot_offset	= offsetof(struct ocfs2_refcount_block, rf_check),
587};
588
589static struct ocfs2_triggers gd_triggers = {
590	.ot_triggers = {
591		.t_frozen = ocfs2_frozen_trigger,
592		.t_abort = ocfs2_abort_trigger,
593	},
594	.ot_offset	= offsetof(struct ocfs2_group_desc, bg_check),
595};
596
597static struct ocfs2_triggers db_triggers = {
598	.ot_triggers = {
599		.t_frozen = ocfs2_db_frozen_trigger,
600		.t_abort = ocfs2_abort_trigger,
601	},
602};
603
604static struct ocfs2_triggers xb_triggers = {
605	.ot_triggers = {
606		.t_frozen = ocfs2_frozen_trigger,
607		.t_abort = ocfs2_abort_trigger,
608	},
609	.ot_offset	= offsetof(struct ocfs2_xattr_block, xb_check),
610};
611
612static struct ocfs2_triggers dq_triggers = {
613	.ot_triggers = {
614		.t_frozen = ocfs2_dq_frozen_trigger,
615		.t_abort = ocfs2_abort_trigger,
616	},
617};
618
619static struct ocfs2_triggers dr_triggers = {
620	.ot_triggers = {
621		.t_frozen = ocfs2_frozen_trigger,
622		.t_abort = ocfs2_abort_trigger,
623	},
624	.ot_offset	= offsetof(struct ocfs2_dx_root_block, dr_check),
625};
626
627static struct ocfs2_triggers dl_triggers = {
628	.ot_triggers = {
629		.t_frozen = ocfs2_frozen_trigger,
630		.t_abort = ocfs2_abort_trigger,
631	},
632	.ot_offset	= offsetof(struct ocfs2_dx_leaf, dl_check),
633};
634
635static int __ocfs2_journal_access(handle_t *handle,
636				  struct ocfs2_caching_info *ci,
637				  struct buffer_head *bh,
638				  struct ocfs2_triggers *triggers,
639				  int type)
640{
641	int status;
642	struct ocfs2_super *osb =
643		OCFS2_SB(ocfs2_metadata_cache_get_super(ci));
644
645	BUG_ON(!ci || !ci->ci_ops);
646	BUG_ON(!handle);
647	BUG_ON(!bh);
648
649	trace_ocfs2_journal_access(
650		(unsigned long long)ocfs2_metadata_cache_owner(ci),
651		(unsigned long long)bh->b_blocknr, type, bh->b_size);
652
653	/* we can safely remove this assertion after testing. */
654	if (!buffer_uptodate(bh)) {
655		mlog(ML_ERROR, "giving me a buffer that's not uptodate!\n");
656		mlog(ML_ERROR, "b_blocknr=%llu, b_state=0x%lx\n",
657		     (unsigned long long)bh->b_blocknr, bh->b_state);
658
659		lock_buffer(bh);
660		/*
661		 * A previous transaction with a couple of buffer heads fail
662		 * to checkpoint, so all the bhs are marked as BH_Write_EIO.
663		 * For current transaction, the bh is just among those error
664		 * bhs which previous transaction handle. We can't just clear
665		 * its BH_Write_EIO and reuse directly, since other bhs are
666		 * not written to disk yet and that will cause metadata
667		 * inconsistency. So we should set fs read-only to avoid
668		 * further damage.
669		 */
670		if (buffer_write_io_error(bh) && !buffer_uptodate(bh)) {
671			unlock_buffer(bh);
672			return ocfs2_error(osb->sb, "A previous attempt to "
673					"write this buffer head failed\n");
674		}
675		unlock_buffer(bh);
676	}
677
678	/* Set the current transaction information on the ci so
679	 * that the locking code knows whether it can drop it's locks
680	 * on this ci or not. We're protected from the commit
681	 * thread updating the current transaction id until
682	 * ocfs2_commit_trans() because ocfs2_start_trans() took
683	 * j_trans_barrier for us. */
684	ocfs2_set_ci_lock_trans(osb->journal, ci);
685
686	ocfs2_metadata_cache_io_lock(ci);
687	switch (type) {
688	case OCFS2_JOURNAL_ACCESS_CREATE:
689	case OCFS2_JOURNAL_ACCESS_WRITE:
690		status = jbd2_journal_get_write_access(handle, bh);
691		break;
692
693	case OCFS2_JOURNAL_ACCESS_UNDO:
694		status = jbd2_journal_get_undo_access(handle, bh);
695		break;
696
697	default:
698		status = -EINVAL;
699		mlog(ML_ERROR, "Unknown access type!\n");
700	}
701	if (!status && ocfs2_meta_ecc(osb) && triggers)
702		jbd2_journal_set_triggers(bh, &triggers->ot_triggers);
703	ocfs2_metadata_cache_io_unlock(ci);
704
705	if (status < 0)
706		mlog(ML_ERROR, "Error %d getting %d access to buffer!\n",
707		     status, type);
708
709	return status;
710}
711
712int ocfs2_journal_access_di(handle_t *handle, struct ocfs2_caching_info *ci,
713			    struct buffer_head *bh, int type)
714{
715	return __ocfs2_journal_access(handle, ci, bh, &di_triggers, type);
716}
717
718int ocfs2_journal_access_eb(handle_t *handle, struct ocfs2_caching_info *ci,
719			    struct buffer_head *bh, int type)
720{
721	return __ocfs2_journal_access(handle, ci, bh, &eb_triggers, type);
722}
723
724int ocfs2_journal_access_rb(handle_t *handle, struct ocfs2_caching_info *ci,
725			    struct buffer_head *bh, int type)
726{
727	return __ocfs2_journal_access(handle, ci, bh, &rb_triggers,
728				      type);
729}
730
731int ocfs2_journal_access_gd(handle_t *handle, struct ocfs2_caching_info *ci,
732			    struct buffer_head *bh, int type)
733{
734	return __ocfs2_journal_access(handle, ci, bh, &gd_triggers, type);
735}
736
737int ocfs2_journal_access_db(handle_t *handle, struct ocfs2_caching_info *ci,
738			    struct buffer_head *bh, int type)
739{
740	return __ocfs2_journal_access(handle, ci, bh, &db_triggers, type);
741}
742
743int ocfs2_journal_access_xb(handle_t *handle, struct ocfs2_caching_info *ci,
744			    struct buffer_head *bh, int type)
745{
746	return __ocfs2_journal_access(handle, ci, bh, &xb_triggers, type);
747}
748
749int ocfs2_journal_access_dq(handle_t *handle, struct ocfs2_caching_info *ci,
750			    struct buffer_head *bh, int type)
751{
752	return __ocfs2_journal_access(handle, ci, bh, &dq_triggers, type);
753}
754
755int ocfs2_journal_access_dr(handle_t *handle, struct ocfs2_caching_info *ci,
756			    struct buffer_head *bh, int type)
757{
758	return __ocfs2_journal_access(handle, ci, bh, &dr_triggers, type);
759}
760
761int ocfs2_journal_access_dl(handle_t *handle, struct ocfs2_caching_info *ci,
762			    struct buffer_head *bh, int type)
763{
764	return __ocfs2_journal_access(handle, ci, bh, &dl_triggers, type);
765}
766
767int ocfs2_journal_access(handle_t *handle, struct ocfs2_caching_info *ci,
768			 struct buffer_head *bh, int type)
769{
770	return __ocfs2_journal_access(handle, ci, bh, NULL, type);
771}
772
773void ocfs2_journal_dirty(handle_t *handle, struct buffer_head *bh)
774{
775	int status;
776
777	trace_ocfs2_journal_dirty((unsigned long long)bh->b_blocknr);
778
779	status = jbd2_journal_dirty_metadata(handle, bh);
780	if (status) {
781		mlog_errno(status);
782		if (!is_handle_aborted(handle)) {
783			journal_t *journal = handle->h_transaction->t_journal;
784			struct super_block *sb = bh->b_bdev->bd_super;
785
786			mlog(ML_ERROR, "jbd2_journal_dirty_metadata failed. "
787					"Aborting transaction and journal.\n");
788			handle->h_err = status;
789			jbd2_journal_abort_handle(handle);
790			jbd2_journal_abort(journal, status);
791			ocfs2_abort(sb, "Journal already aborted.\n");
792		}
793	}
794}
795
796#define OCFS2_DEFAULT_COMMIT_INTERVAL	(HZ * JBD2_DEFAULT_MAX_COMMIT_AGE)
797
798void ocfs2_set_journal_params(struct ocfs2_super *osb)
799{
800	journal_t *journal = osb->journal->j_journal;
801	unsigned long commit_interval = OCFS2_DEFAULT_COMMIT_INTERVAL;
802
803	if (osb->osb_commit_interval)
804		commit_interval = osb->osb_commit_interval;
805
806	write_lock(&journal->j_state_lock);
807	journal->j_commit_interval = commit_interval;
808	if (osb->s_mount_opt & OCFS2_MOUNT_BARRIER)
809		journal->j_flags |= JBD2_BARRIER;
810	else
811		journal->j_flags &= ~JBD2_BARRIER;
812	write_unlock(&journal->j_state_lock);
813}
814
815int ocfs2_journal_init(struct ocfs2_journal *journal, int *dirty)
816{
817	int status = -1;
818	struct inode *inode = NULL; /* the journal inode */
819	journal_t *j_journal = NULL;
820	struct ocfs2_dinode *di = NULL;
821	struct buffer_head *bh = NULL;
822	struct ocfs2_super *osb;
823	int inode_lock = 0;
824
825	BUG_ON(!journal);
826
827	osb = journal->j_osb;
828
829	/* already have the inode for our journal */
830	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
831					    osb->slot_num);
832	if (inode == NULL) {
833		status = -EACCES;
834		mlog_errno(status);
835		goto done;
836	}
837	if (is_bad_inode(inode)) {
838		mlog(ML_ERROR, "access error (bad inode)\n");
839		iput(inode);
840		inode = NULL;
841		status = -EACCES;
842		goto done;
843	}
844
845	SET_INODE_JOURNAL(inode);
846	OCFS2_I(inode)->ip_open_count++;
847
848	/* Skip recovery waits here - journal inode metadata never
849	 * changes in a live cluster so it can be considered an
850	 * exception to the rule. */
851	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
852	if (status < 0) {
853		if (status != -ERESTARTSYS)
854			mlog(ML_ERROR, "Could not get lock on journal!\n");
855		goto done;
856	}
857
858	inode_lock = 1;
859	di = (struct ocfs2_dinode *)bh->b_data;
860
861	if (i_size_read(inode) <  OCFS2_MIN_JOURNAL_SIZE) {
862		mlog(ML_ERROR, "Journal file size (%lld) is too small!\n",
863		     i_size_read(inode));
864		status = -EINVAL;
865		goto done;
866	}
867
868	trace_ocfs2_journal_init(i_size_read(inode),
869				 (unsigned long long)inode->i_blocks,
870				 OCFS2_I(inode)->ip_clusters);
871
872	/* call the kernels journal init function now */
873	j_journal = jbd2_journal_init_inode(inode);
874	if (j_journal == NULL) {
875		mlog(ML_ERROR, "Linux journal layer error\n");
876		status = -EINVAL;
877		goto done;
878	}
879
880	trace_ocfs2_journal_init_maxlen(j_journal->j_total_len);
881
882	*dirty = (le32_to_cpu(di->id1.journal1.ij_flags) &
883		  OCFS2_JOURNAL_DIRTY_FL);
884
885	journal->j_journal = j_journal;
886	journal->j_journal->j_submit_inode_data_buffers =
887		jbd2_journal_submit_inode_data_buffers;
888	journal->j_journal->j_finish_inode_data_buffers =
889		jbd2_journal_finish_inode_data_buffers;
890	journal->j_inode = inode;
891	journal->j_bh = bh;
892
893	ocfs2_set_journal_params(osb);
894
895	journal->j_state = OCFS2_JOURNAL_LOADED;
896
897	status = 0;
898done:
899	if (status < 0) {
900		if (inode_lock)
901			ocfs2_inode_unlock(inode, 1);
902		brelse(bh);
903		if (inode) {
904			OCFS2_I(inode)->ip_open_count--;
905			iput(inode);
906		}
907	}
908
909	return status;
910}
911
912static void ocfs2_bump_recovery_generation(struct ocfs2_dinode *di)
913{
914	le32_add_cpu(&(di->id1.journal1.ij_recovery_generation), 1);
915}
916
917static u32 ocfs2_get_recovery_generation(struct ocfs2_dinode *di)
918{
919	return le32_to_cpu(di->id1.journal1.ij_recovery_generation);
920}
921
922static int ocfs2_journal_toggle_dirty(struct ocfs2_super *osb,
923				      int dirty, int replayed)
924{
925	int status;
926	unsigned int flags;
927	struct ocfs2_journal *journal = osb->journal;
928	struct buffer_head *bh = journal->j_bh;
929	struct ocfs2_dinode *fe;
930
931	fe = (struct ocfs2_dinode *)bh->b_data;
932
933	/* The journal bh on the osb always comes from ocfs2_journal_init()
934	 * and was validated there inside ocfs2_inode_lock_full().  It's a
935	 * code bug if we mess it up. */
936	BUG_ON(!OCFS2_IS_VALID_DINODE(fe));
937
938	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
939	if (dirty)
940		flags |= OCFS2_JOURNAL_DIRTY_FL;
941	else
942		flags &= ~OCFS2_JOURNAL_DIRTY_FL;
943	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
944
945	if (replayed)
946		ocfs2_bump_recovery_generation(fe);
947
948	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
949	status = ocfs2_write_block(osb, bh, INODE_CACHE(journal->j_inode));
950	if (status < 0)
951		mlog_errno(status);
952
953	return status;
954}
955
956/*
957 * If the journal has been kmalloc'd it needs to be freed after this
958 * call.
959 */
960void ocfs2_journal_shutdown(struct ocfs2_super *osb)
961{
962	struct ocfs2_journal *journal = NULL;
963	int status = 0;
964	struct inode *inode = NULL;
965	int num_running_trans = 0;
966
967	BUG_ON(!osb);
968
969	journal = osb->journal;
970	if (!journal)
971		goto done;
972
973	inode = journal->j_inode;
974
975	if (journal->j_state != OCFS2_JOURNAL_LOADED)
976		goto done;
977
978	/* need to inc inode use count - jbd2_journal_destroy will iput. */
979	if (!igrab(inode))
980		BUG();
981
982	num_running_trans = atomic_read(&(osb->journal->j_num_trans));
983	trace_ocfs2_journal_shutdown(num_running_trans);
984
985	/* Do a commit_cache here. It will flush our journal, *and*
986	 * release any locks that are still held.
987	 * set the SHUTDOWN flag and release the trans lock.
988	 * the commit thread will take the trans lock for us below. */
989	journal->j_state = OCFS2_JOURNAL_IN_SHUTDOWN;
990
991	/* The OCFS2_JOURNAL_IN_SHUTDOWN will signal to commit_cache to not
992	 * drop the trans_lock (which we want to hold until we
993	 * completely destroy the journal. */
994	if (osb->commit_task) {
995		/* Wait for the commit thread */
996		trace_ocfs2_journal_shutdown_wait(osb->commit_task);
997		kthread_stop(osb->commit_task);
998		osb->commit_task = NULL;
999	}
1000
1001	BUG_ON(atomic_read(&(osb->journal->j_num_trans)) != 0);
1002
1003	if (ocfs2_mount_local(osb)) {
1004		jbd2_journal_lock_updates(journal->j_journal);
1005		status = jbd2_journal_flush(journal->j_journal);
1006		jbd2_journal_unlock_updates(journal->j_journal);
1007		if (status < 0)
1008			mlog_errno(status);
1009	}
1010
1011	/* Shutdown the kernel journal system */
1012	if (!jbd2_journal_destroy(journal->j_journal) && !status) {
1013		/*
1014		 * Do not toggle if flush was unsuccessful otherwise
1015		 * will leave dirty metadata in a "clean" journal
1016		 */
1017		status = ocfs2_journal_toggle_dirty(osb, 0, 0);
1018		if (status < 0)
1019			mlog_errno(status);
1020	}
1021	journal->j_journal = NULL;
1022
1023	OCFS2_I(inode)->ip_open_count--;
1024
1025	/* unlock our journal */
1026	ocfs2_inode_unlock(inode, 1);
1027
1028	brelse(journal->j_bh);
1029	journal->j_bh = NULL;
1030
1031	journal->j_state = OCFS2_JOURNAL_FREE;
1032
1033//	up_write(&journal->j_trans_barrier);
1034done:
1035	iput(inode);
1036}
1037
1038static void ocfs2_clear_journal_error(struct super_block *sb,
1039				      journal_t *journal,
1040				      int slot)
1041{
1042	int olderr;
1043
1044	olderr = jbd2_journal_errno(journal);
1045	if (olderr) {
1046		mlog(ML_ERROR, "File system error %d recorded in "
1047		     "journal %u.\n", olderr, slot);
1048		mlog(ML_ERROR, "File system on device %s needs checking.\n",
1049		     sb->s_id);
1050
1051		jbd2_journal_ack_err(journal);
1052		jbd2_journal_clear_err(journal);
1053	}
1054}
1055
1056int ocfs2_journal_load(struct ocfs2_journal *journal, int local, int replayed)
1057{
1058	int status = 0;
1059	struct ocfs2_super *osb;
1060
1061	BUG_ON(!journal);
1062
1063	osb = journal->j_osb;
1064
1065	status = jbd2_journal_load(journal->j_journal);
1066	if (status < 0) {
1067		mlog(ML_ERROR, "Failed to load journal!\n");
1068		goto done;
1069	}
1070
1071	ocfs2_clear_journal_error(osb->sb, journal->j_journal, osb->slot_num);
1072
1073	if (replayed) {
1074		jbd2_journal_lock_updates(journal->j_journal);
1075		status = jbd2_journal_flush(journal->j_journal);
1076		jbd2_journal_unlock_updates(journal->j_journal);
1077		if (status < 0)
1078			mlog_errno(status);
1079	}
1080
1081	status = ocfs2_journal_toggle_dirty(osb, 1, replayed);
1082	if (status < 0) {
1083		mlog_errno(status);
1084		goto done;
1085	}
1086
1087	/* Launch the commit thread */
1088	if (!local) {
1089		osb->commit_task = kthread_run(ocfs2_commit_thread, osb,
1090				"ocfs2cmt-%s", osb->uuid_str);
1091		if (IS_ERR(osb->commit_task)) {
1092			status = PTR_ERR(osb->commit_task);
1093			osb->commit_task = NULL;
1094			mlog(ML_ERROR, "unable to launch ocfs2commit thread, "
1095			     "error=%d", status);
1096			goto done;
1097		}
1098	} else
1099		osb->commit_task = NULL;
1100
1101done:
1102	return status;
1103}
1104
1105
1106/* 'full' flag tells us whether we clear out all blocks or if we just
1107 * mark the journal clean */
1108int ocfs2_journal_wipe(struct ocfs2_journal *journal, int full)
1109{
1110	int status;
1111
1112	BUG_ON(!journal);
1113
1114	status = jbd2_journal_wipe(journal->j_journal, full);
1115	if (status < 0) {
1116		mlog_errno(status);
1117		goto bail;
1118	}
1119
1120	status = ocfs2_journal_toggle_dirty(journal->j_osb, 0, 0);
1121	if (status < 0)
1122		mlog_errno(status);
1123
1124bail:
1125	return status;
1126}
1127
1128static int ocfs2_recovery_completed(struct ocfs2_super *osb)
1129{
1130	int empty;
1131	struct ocfs2_recovery_map *rm = osb->recovery_map;
1132
1133	spin_lock(&osb->osb_lock);
1134	empty = (rm->rm_used == 0);
1135	spin_unlock(&osb->osb_lock);
1136
1137	return empty;
1138}
1139
1140void ocfs2_wait_for_recovery(struct ocfs2_super *osb)
1141{
1142	wait_event(osb->recovery_event, ocfs2_recovery_completed(osb));
1143}
1144
1145/*
1146 * JBD Might read a cached version of another nodes journal file. We
1147 * don't want this as this file changes often and we get no
1148 * notification on those changes. The only way to be sure that we've
1149 * got the most up to date version of those blocks then is to force
1150 * read them off disk. Just searching through the buffer cache won't
1151 * work as there may be pages backing this file which are still marked
1152 * up to date. We know things can't change on this file underneath us
1153 * as we have the lock by now :)
1154 */
1155static int ocfs2_force_read_journal(struct inode *inode)
1156{
1157	int status = 0;
1158	int i;
1159	u64 v_blkno, p_blkno, p_blocks, num_blocks;
1160	struct buffer_head *bh = NULL;
1161	struct ocfs2_super *osb = OCFS2_SB(inode->i_sb);
1162
1163	num_blocks = ocfs2_blocks_for_bytes(inode->i_sb, i_size_read(inode));
1164	v_blkno = 0;
1165	while (v_blkno < num_blocks) {
1166		status = ocfs2_extent_map_get_blocks(inode, v_blkno,
1167						     &p_blkno, &p_blocks, NULL);
1168		if (status < 0) {
1169			mlog_errno(status);
1170			goto bail;
1171		}
1172
1173		for (i = 0; i < p_blocks; i++, p_blkno++) {
1174			bh = __find_get_block(osb->sb->s_bdev, p_blkno,
1175					osb->sb->s_blocksize);
1176			/* block not cached. */
1177			if (!bh)
1178				continue;
1179
1180			brelse(bh);
1181			bh = NULL;
1182			/* We are reading journal data which should not
1183			 * be put in the uptodate cache.
1184			 */
1185			status = ocfs2_read_blocks_sync(osb, p_blkno, 1, &bh);
1186			if (status < 0) {
1187				mlog_errno(status);
1188				goto bail;
1189			}
1190
1191			brelse(bh);
1192			bh = NULL;
1193		}
1194
1195		v_blkno += p_blocks;
1196	}
1197
1198bail:
1199	return status;
1200}
1201
1202struct ocfs2_la_recovery_item {
1203	struct list_head	lri_list;
1204	int			lri_slot;
1205	struct ocfs2_dinode	*lri_la_dinode;
1206	struct ocfs2_dinode	*lri_tl_dinode;
1207	struct ocfs2_quota_recovery *lri_qrec;
1208	enum ocfs2_orphan_reco_type  lri_orphan_reco_type;
1209};
1210
1211/* Does the second half of the recovery process. By this point, the
1212 * node is marked clean and can actually be considered recovered,
1213 * hence it's no longer in the recovery map, but there's still some
1214 * cleanup we can do which shouldn't happen within the recovery thread
1215 * as locking in that context becomes very difficult if we are to take
1216 * recovering nodes into account.
1217 *
1218 * NOTE: This function can and will sleep on recovery of other nodes
1219 * during cluster locking, just like any other ocfs2 process.
1220 */
1221void ocfs2_complete_recovery(struct work_struct *work)
1222{
1223	int ret = 0;
1224	struct ocfs2_journal *journal =
1225		container_of(work, struct ocfs2_journal, j_recovery_work);
1226	struct ocfs2_super *osb = journal->j_osb;
1227	struct ocfs2_dinode *la_dinode, *tl_dinode;
1228	struct ocfs2_la_recovery_item *item, *n;
1229	struct ocfs2_quota_recovery *qrec;
1230	enum ocfs2_orphan_reco_type orphan_reco_type;
1231	LIST_HEAD(tmp_la_list);
1232
1233	trace_ocfs2_complete_recovery(
1234		(unsigned long long)OCFS2_I(journal->j_inode)->ip_blkno);
1235
1236	spin_lock(&journal->j_lock);
1237	list_splice_init(&journal->j_la_cleanups, &tmp_la_list);
1238	spin_unlock(&journal->j_lock);
1239
1240	list_for_each_entry_safe(item, n, &tmp_la_list, lri_list) {
1241		list_del_init(&item->lri_list);
1242
1243		ocfs2_wait_on_quotas(osb);
1244
1245		la_dinode = item->lri_la_dinode;
1246		tl_dinode = item->lri_tl_dinode;
1247		qrec = item->lri_qrec;
1248		orphan_reco_type = item->lri_orphan_reco_type;
1249
1250		trace_ocfs2_complete_recovery_slot(item->lri_slot,
1251			la_dinode ? le64_to_cpu(la_dinode->i_blkno) : 0,
1252			tl_dinode ? le64_to_cpu(tl_dinode->i_blkno) : 0,
1253			qrec);
1254
1255		if (la_dinode) {
1256			ret = ocfs2_complete_local_alloc_recovery(osb,
1257								  la_dinode);
1258			if (ret < 0)
1259				mlog_errno(ret);
1260
1261			kfree(la_dinode);
1262		}
1263
1264		if (tl_dinode) {
1265			ret = ocfs2_complete_truncate_log_recovery(osb,
1266								   tl_dinode);
1267			if (ret < 0)
1268				mlog_errno(ret);
1269
1270			kfree(tl_dinode);
1271		}
1272
1273		ret = ocfs2_recover_orphans(osb, item->lri_slot,
1274				orphan_reco_type);
1275		if (ret < 0)
1276			mlog_errno(ret);
1277
1278		if (qrec) {
1279			ret = ocfs2_finish_quota_recovery(osb, qrec,
1280							  item->lri_slot);
1281			if (ret < 0)
1282				mlog_errno(ret);
1283			/* Recovery info is already freed now */
1284		}
1285
1286		kfree(item);
1287	}
1288
1289	trace_ocfs2_complete_recovery_end(ret);
1290}
1291
1292/* NOTE: This function always eats your references to la_dinode and
1293 * tl_dinode, either manually on error, or by passing them to
1294 * ocfs2_complete_recovery */
1295static void ocfs2_queue_recovery_completion(struct ocfs2_journal *journal,
1296					    int slot_num,
1297					    struct ocfs2_dinode *la_dinode,
1298					    struct ocfs2_dinode *tl_dinode,
1299					    struct ocfs2_quota_recovery *qrec,
1300					    enum ocfs2_orphan_reco_type orphan_reco_type)
1301{
1302	struct ocfs2_la_recovery_item *item;
1303
1304	item = kmalloc(sizeof(struct ocfs2_la_recovery_item), GFP_NOFS);
1305	if (!item) {
1306		/* Though we wish to avoid it, we are in fact safe in
1307		 * skipping local alloc cleanup as fsck.ocfs2 is more
1308		 * than capable of reclaiming unused space. */
1309		kfree(la_dinode);
1310		kfree(tl_dinode);
1311
1312		if (qrec)
1313			ocfs2_free_quota_recovery(qrec);
1314
1315		mlog_errno(-ENOMEM);
1316		return;
1317	}
1318
1319	INIT_LIST_HEAD(&item->lri_list);
1320	item->lri_la_dinode = la_dinode;
1321	item->lri_slot = slot_num;
1322	item->lri_tl_dinode = tl_dinode;
1323	item->lri_qrec = qrec;
1324	item->lri_orphan_reco_type = orphan_reco_type;
1325
1326	spin_lock(&journal->j_lock);
1327	list_add_tail(&item->lri_list, &journal->j_la_cleanups);
1328	queue_work(journal->j_osb->ocfs2_wq, &journal->j_recovery_work);
1329	spin_unlock(&journal->j_lock);
1330}
1331
1332/* Called by the mount code to queue recovery the last part of
1333 * recovery for it's own and offline slot(s). */
1334void ocfs2_complete_mount_recovery(struct ocfs2_super *osb)
1335{
1336	struct ocfs2_journal *journal = osb->journal;
1337
1338	if (ocfs2_is_hard_readonly(osb))
1339		return;
1340
1341	/* No need to queue up our truncate_log as regular cleanup will catch
1342	 * that */
1343	ocfs2_queue_recovery_completion(journal, osb->slot_num,
1344					osb->local_alloc_copy, NULL, NULL,
1345					ORPHAN_NEED_TRUNCATE);
1346	ocfs2_schedule_truncate_log_flush(osb, 0);
1347
1348	osb->local_alloc_copy = NULL;
1349
1350	/* queue to recover orphan slots for all offline slots */
1351	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1352	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1353	ocfs2_free_replay_slots(osb);
1354}
1355
1356void ocfs2_complete_quota_recovery(struct ocfs2_super *osb)
1357{
1358	if (osb->quota_rec) {
1359		ocfs2_queue_recovery_completion(osb->journal,
1360						osb->slot_num,
1361						NULL,
1362						NULL,
1363						osb->quota_rec,
1364						ORPHAN_NEED_TRUNCATE);
1365		osb->quota_rec = NULL;
1366	}
1367}
1368
1369static int __ocfs2_recovery_thread(void *arg)
1370{
1371	int status, node_num, slot_num;
1372	struct ocfs2_super *osb = arg;
1373	struct ocfs2_recovery_map *rm = osb->recovery_map;
1374	int *rm_quota = NULL;
1375	int rm_quota_used = 0, i;
1376	struct ocfs2_quota_recovery *qrec;
1377
1378	/* Whether the quota supported. */
1379	int quota_enabled = OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1380			OCFS2_FEATURE_RO_COMPAT_USRQUOTA)
1381		|| OCFS2_HAS_RO_COMPAT_FEATURE(osb->sb,
1382			OCFS2_FEATURE_RO_COMPAT_GRPQUOTA);
1383
1384	status = ocfs2_wait_on_mount(osb);
1385	if (status < 0) {
1386		goto bail;
1387	}
1388
1389	if (quota_enabled) {
1390		rm_quota = kcalloc(osb->max_slots, sizeof(int), GFP_NOFS);
1391		if (!rm_quota) {
1392			status = -ENOMEM;
1393			goto bail;
1394		}
1395	}
1396restart:
1397	status = ocfs2_super_lock(osb, 1);
1398	if (status < 0) {
1399		mlog_errno(status);
1400		goto bail;
1401	}
1402
1403	status = ocfs2_compute_replay_slots(osb);
1404	if (status < 0)
1405		mlog_errno(status);
1406
1407	/* queue recovery for our own slot */
1408	ocfs2_queue_recovery_completion(osb->journal, osb->slot_num, NULL,
1409					NULL, NULL, ORPHAN_NO_NEED_TRUNCATE);
1410
1411	spin_lock(&osb->osb_lock);
1412	while (rm->rm_used) {
1413		/* It's always safe to remove entry zero, as we won't
1414		 * clear it until ocfs2_recover_node() has succeeded. */
1415		node_num = rm->rm_entries[0];
1416		spin_unlock(&osb->osb_lock);
1417		slot_num = ocfs2_node_num_to_slot(osb, node_num);
1418		trace_ocfs2_recovery_thread_node(node_num, slot_num);
1419		if (slot_num == -ENOENT) {
1420			status = 0;
1421			goto skip_recovery;
1422		}
1423
1424		/* It is a bit subtle with quota recovery. We cannot do it
1425		 * immediately because we have to obtain cluster locks from
1426		 * quota files and we also don't want to just skip it because
1427		 * then quota usage would be out of sync until some node takes
1428		 * the slot. So we remember which nodes need quota recovery
1429		 * and when everything else is done, we recover quotas. */
1430		if (quota_enabled) {
1431			for (i = 0; i < rm_quota_used
1432					&& rm_quota[i] != slot_num; i++)
1433				;
1434
1435			if (i == rm_quota_used)
1436				rm_quota[rm_quota_used++] = slot_num;
1437		}
1438
1439		status = ocfs2_recover_node(osb, node_num, slot_num);
1440skip_recovery:
1441		if (!status) {
1442			ocfs2_recovery_map_clear(osb, node_num);
1443		} else {
1444			mlog(ML_ERROR,
1445			     "Error %d recovering node %d on device (%u,%u)!\n",
1446			     status, node_num,
1447			     MAJOR(osb->sb->s_dev), MINOR(osb->sb->s_dev));
1448			mlog(ML_ERROR, "Volume requires unmount.\n");
1449		}
1450
1451		spin_lock(&osb->osb_lock);
1452	}
1453	spin_unlock(&osb->osb_lock);
1454	trace_ocfs2_recovery_thread_end(status);
1455
1456	/* Refresh all journal recovery generations from disk */
1457	status = ocfs2_check_journals_nolocks(osb);
1458	status = (status == -EROFS) ? 0 : status;
1459	if (status < 0)
1460		mlog_errno(status);
1461
1462	/* Now it is right time to recover quotas... We have to do this under
1463	 * superblock lock so that no one can start using the slot (and crash)
1464	 * before we recover it */
1465	if (quota_enabled) {
1466		for (i = 0; i < rm_quota_used; i++) {
1467			qrec = ocfs2_begin_quota_recovery(osb, rm_quota[i]);
1468			if (IS_ERR(qrec)) {
1469				status = PTR_ERR(qrec);
1470				mlog_errno(status);
1471				continue;
1472			}
1473			ocfs2_queue_recovery_completion(osb->journal,
1474					rm_quota[i],
1475					NULL, NULL, qrec,
1476					ORPHAN_NEED_TRUNCATE);
1477		}
1478	}
1479
1480	ocfs2_super_unlock(osb, 1);
1481
1482	/* queue recovery for offline slots */
1483	ocfs2_queue_replay_slots(osb, ORPHAN_NEED_TRUNCATE);
1484
1485bail:
1486	mutex_lock(&osb->recovery_lock);
1487	if (!status && !ocfs2_recovery_completed(osb)) {
1488		mutex_unlock(&osb->recovery_lock);
1489		goto restart;
1490	}
1491
1492	ocfs2_free_replay_slots(osb);
1493	osb->recovery_thread_task = NULL;
1494	mb(); /* sync with ocfs2_recovery_thread_running */
1495	wake_up(&osb->recovery_event);
1496
1497	mutex_unlock(&osb->recovery_lock);
1498
1499	if (quota_enabled)
1500		kfree(rm_quota);
1501
1502	/* no one is callint kthread_stop() for us so the kthread() api
1503	 * requires that we call do_exit().  And it isn't exported, but
1504	 * complete_and_exit() seems to be a minimal wrapper around it. */
1505	complete_and_exit(NULL, status);
1506}
1507
1508void ocfs2_recovery_thread(struct ocfs2_super *osb, int node_num)
1509{
1510	mutex_lock(&osb->recovery_lock);
1511
1512	trace_ocfs2_recovery_thread(node_num, osb->node_num,
1513		osb->disable_recovery, osb->recovery_thread_task,
1514		osb->disable_recovery ?
1515		-1 : ocfs2_recovery_map_set(osb, node_num));
1516
1517	if (osb->disable_recovery)
1518		goto out;
1519
1520	if (osb->recovery_thread_task)
1521		goto out;
1522
1523	osb->recovery_thread_task =  kthread_run(__ocfs2_recovery_thread, osb,
1524			"ocfs2rec-%s", osb->uuid_str);
1525	if (IS_ERR(osb->recovery_thread_task)) {
1526		mlog_errno((int)PTR_ERR(osb->recovery_thread_task));
1527		osb->recovery_thread_task = NULL;
1528	}
1529
1530out:
1531	mutex_unlock(&osb->recovery_lock);
1532	wake_up(&osb->recovery_event);
1533}
1534
1535static int ocfs2_read_journal_inode(struct ocfs2_super *osb,
1536				    int slot_num,
1537				    struct buffer_head **bh,
1538				    struct inode **ret_inode)
1539{
1540	int status = -EACCES;
1541	struct inode *inode = NULL;
1542
1543	BUG_ON(slot_num >= osb->max_slots);
1544
1545	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1546					    slot_num);
1547	if (!inode || is_bad_inode(inode)) {
1548		mlog_errno(status);
1549		goto bail;
1550	}
1551	SET_INODE_JOURNAL(inode);
1552
1553	status = ocfs2_read_inode_block_full(inode, bh, OCFS2_BH_IGNORE_CACHE);
1554	if (status < 0) {
1555		mlog_errno(status);
1556		goto bail;
1557	}
1558
1559	status = 0;
1560
1561bail:
1562	if (inode) {
1563		if (status || !ret_inode)
1564			iput(inode);
1565		else
1566			*ret_inode = inode;
1567	}
1568	return status;
1569}
1570
1571/* Does the actual journal replay and marks the journal inode as
1572 * clean. Will only replay if the journal inode is marked dirty. */
1573static int ocfs2_replay_journal(struct ocfs2_super *osb,
1574				int node_num,
1575				int slot_num)
1576{
1577	int status;
1578	int got_lock = 0;
1579	unsigned int flags;
1580	struct inode *inode = NULL;
1581	struct ocfs2_dinode *fe;
1582	journal_t *journal = NULL;
1583	struct buffer_head *bh = NULL;
1584	u32 slot_reco_gen;
1585
1586	status = ocfs2_read_journal_inode(osb, slot_num, &bh, &inode);
1587	if (status) {
1588		mlog_errno(status);
1589		goto done;
1590	}
1591
1592	fe = (struct ocfs2_dinode *)bh->b_data;
1593	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1594	brelse(bh);
1595	bh = NULL;
1596
1597	/*
1598	 * As the fs recovery is asynchronous, there is a small chance that
1599	 * another node mounted (and recovered) the slot before the recovery
1600	 * thread could get the lock. To handle that, we dirty read the journal
1601	 * inode for that slot to get the recovery generation. If it is
1602	 * different than what we expected, the slot has been recovered.
1603	 * If not, it needs recovery.
1604	 */
1605	if (osb->slot_recovery_generations[slot_num] != slot_reco_gen) {
1606		trace_ocfs2_replay_journal_recovered(slot_num,
1607		     osb->slot_recovery_generations[slot_num], slot_reco_gen);
1608		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1609		status = -EBUSY;
1610		goto done;
1611	}
1612
1613	/* Continue with recovery as the journal has not yet been recovered */
1614
1615	status = ocfs2_inode_lock_full(inode, &bh, 1, OCFS2_META_LOCK_RECOVERY);
1616	if (status < 0) {
1617		trace_ocfs2_replay_journal_lock_err(status);
1618		if (status != -ERESTARTSYS)
1619			mlog(ML_ERROR, "Could not lock journal!\n");
1620		goto done;
1621	}
1622	got_lock = 1;
1623
1624	fe = (struct ocfs2_dinode *) bh->b_data;
1625
1626	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1627	slot_reco_gen = ocfs2_get_recovery_generation(fe);
1628
1629	if (!(flags & OCFS2_JOURNAL_DIRTY_FL)) {
1630		trace_ocfs2_replay_journal_skip(node_num);
1631		/* Refresh recovery generation for the slot */
1632		osb->slot_recovery_generations[slot_num] = slot_reco_gen;
1633		goto done;
1634	}
1635
1636	/* we need to run complete recovery for offline orphan slots */
1637	ocfs2_replay_map_set_state(osb, REPLAY_NEEDED);
1638
1639	printk(KERN_NOTICE "ocfs2: Begin replay journal (node %d, slot %d) on "\
1640	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1641	       MINOR(osb->sb->s_dev));
1642
1643	OCFS2_I(inode)->ip_clusters = le32_to_cpu(fe->i_clusters);
1644
1645	status = ocfs2_force_read_journal(inode);
1646	if (status < 0) {
1647		mlog_errno(status);
1648		goto done;
1649	}
1650
1651	journal = jbd2_journal_init_inode(inode);
1652	if (journal == NULL) {
1653		mlog(ML_ERROR, "Linux journal layer error\n");
1654		status = -EIO;
1655		goto done;
1656	}
1657
1658	status = jbd2_journal_load(journal);
1659	if (status < 0) {
1660		mlog_errno(status);
1661		if (!igrab(inode))
1662			BUG();
1663		jbd2_journal_destroy(journal);
1664		goto done;
1665	}
1666
1667	ocfs2_clear_journal_error(osb->sb, journal, slot_num);
1668
1669	/* wipe the journal */
1670	jbd2_journal_lock_updates(journal);
1671	status = jbd2_journal_flush(journal);
1672	jbd2_journal_unlock_updates(journal);
1673	if (status < 0)
1674		mlog_errno(status);
1675
1676	/* This will mark the node clean */
1677	flags = le32_to_cpu(fe->id1.journal1.ij_flags);
1678	flags &= ~OCFS2_JOURNAL_DIRTY_FL;
1679	fe->id1.journal1.ij_flags = cpu_to_le32(flags);
1680
1681	/* Increment recovery generation to indicate successful recovery */
1682	ocfs2_bump_recovery_generation(fe);
1683	osb->slot_recovery_generations[slot_num] =
1684					ocfs2_get_recovery_generation(fe);
1685
1686	ocfs2_compute_meta_ecc(osb->sb, bh->b_data, &fe->i_check);
1687	status = ocfs2_write_block(osb, bh, INODE_CACHE(inode));
1688	if (status < 0)
1689		mlog_errno(status);
1690
1691	if (!igrab(inode))
1692		BUG();
1693
1694	jbd2_journal_destroy(journal);
1695
1696	printk(KERN_NOTICE "ocfs2: End replay journal (node %d, slot %d) on "\
1697	       "device (%u,%u)\n", node_num, slot_num, MAJOR(osb->sb->s_dev),
1698	       MINOR(osb->sb->s_dev));
1699done:
1700	/* drop the lock on this nodes journal */
1701	if (got_lock)
1702		ocfs2_inode_unlock(inode, 1);
1703
1704	iput(inode);
1705	brelse(bh);
1706
1707	return status;
1708}
1709
1710/*
1711 * Do the most important parts of node recovery:
1712 *  - Replay it's journal
1713 *  - Stamp a clean local allocator file
1714 *  - Stamp a clean truncate log
1715 *  - Mark the node clean
1716 *
1717 * If this function completes without error, a node in OCFS2 can be
1718 * said to have been safely recovered. As a result, failure during the
1719 * second part of a nodes recovery process (local alloc recovery) is
1720 * far less concerning.
1721 */
1722static int ocfs2_recover_node(struct ocfs2_super *osb,
1723			      int node_num, int slot_num)
1724{
1725	int status = 0;
1726	struct ocfs2_dinode *la_copy = NULL;
1727	struct ocfs2_dinode *tl_copy = NULL;
1728
1729	trace_ocfs2_recover_node(node_num, slot_num, osb->node_num);
1730
1731	/* Should not ever be called to recover ourselves -- in that
1732	 * case we should've called ocfs2_journal_load instead. */
1733	BUG_ON(osb->node_num == node_num);
1734
1735	status = ocfs2_replay_journal(osb, node_num, slot_num);
1736	if (status < 0) {
1737		if (status == -EBUSY) {
1738			trace_ocfs2_recover_node_skip(slot_num, node_num);
1739			status = 0;
1740			goto done;
1741		}
1742		mlog_errno(status);
1743		goto done;
1744	}
1745
1746	/* Stamp a clean local alloc file AFTER recovering the journal... */
1747	status = ocfs2_begin_local_alloc_recovery(osb, slot_num, &la_copy);
1748	if (status < 0) {
1749		mlog_errno(status);
1750		goto done;
1751	}
1752
1753	/* An error from begin_truncate_log_recovery is not
1754	 * serious enough to warrant halting the rest of
1755	 * recovery. */
1756	status = ocfs2_begin_truncate_log_recovery(osb, slot_num, &tl_copy);
1757	if (status < 0)
1758		mlog_errno(status);
1759
1760	/* Likewise, this would be a strange but ultimately not so
1761	 * harmful place to get an error... */
1762	status = ocfs2_clear_slot(osb, slot_num);
1763	if (status < 0)
1764		mlog_errno(status);
1765
1766	/* This will kfree the memory pointed to by la_copy and tl_copy */
1767	ocfs2_queue_recovery_completion(osb->journal, slot_num, la_copy,
1768					tl_copy, NULL, ORPHAN_NEED_TRUNCATE);
1769
1770	status = 0;
1771done:
1772
1773	return status;
1774}
1775
1776/* Test node liveness by trylocking his journal. If we get the lock,
1777 * we drop it here. Return 0 if we got the lock, -EAGAIN if node is
1778 * still alive (we couldn't get the lock) and < 0 on error. */
1779static int ocfs2_trylock_journal(struct ocfs2_super *osb,
1780				 int slot_num)
1781{
1782	int status, flags;
1783	struct inode *inode = NULL;
1784
1785	inode = ocfs2_get_system_file_inode(osb, JOURNAL_SYSTEM_INODE,
1786					    slot_num);
1787	if (inode == NULL) {
1788		mlog(ML_ERROR, "access error\n");
1789		status = -EACCES;
1790		goto bail;
1791	}
1792	if (is_bad_inode(inode)) {
1793		mlog(ML_ERROR, "access error (bad inode)\n");
1794		iput(inode);
1795		inode = NULL;
1796		status = -EACCES;
1797		goto bail;
1798	}
1799	SET_INODE_JOURNAL(inode);
1800
1801	flags = OCFS2_META_LOCK_RECOVERY | OCFS2_META_LOCK_NOQUEUE;
1802	status = ocfs2_inode_lock_full(inode, NULL, 1, flags);
1803	if (status < 0) {
1804		if (status != -EAGAIN)
1805			mlog_errno(status);
1806		goto bail;
1807	}
1808
1809	ocfs2_inode_unlock(inode, 1);
1810bail:
1811	iput(inode);
1812
1813	return status;
1814}
1815
1816/* Call this underneath ocfs2_super_lock. It also assumes that the
1817 * slot info struct has been updated from disk. */
1818int ocfs2_mark_dead_nodes(struct ocfs2_super *osb)
1819{
1820	unsigned int node_num;
1821	int status, i;
1822	u32 gen;
1823	struct buffer_head *bh = NULL;
1824	struct ocfs2_dinode *di;
1825
1826	/* This is called with the super block cluster lock, so we
1827	 * know that the slot map can't change underneath us. */
1828
1829	for (i = 0; i < osb->max_slots; i++) {
1830		/* Read journal inode to get the recovery generation */
1831		status = ocfs2_read_journal_inode(osb, i, &bh, NULL);
1832		if (status) {
1833			mlog_errno(status);
1834			goto bail;
1835		}
1836		di = (struct ocfs2_dinode *)bh->b_data;
1837		gen = ocfs2_get_recovery_generation(di);
1838		brelse(bh);
1839		bh = NULL;
1840
1841		spin_lock(&osb->osb_lock);
1842		osb->slot_recovery_generations[i] = gen;
1843
1844		trace_ocfs2_mark_dead_nodes(i,
1845					    osb->slot_recovery_generations[i]);
1846
1847		if (i == osb->slot_num) {
1848			spin_unlock(&osb->osb_lock);
1849			continue;
1850		}
1851
1852		status = ocfs2_slot_to_node_num_locked(osb, i, &node_num);
1853		if (status == -ENOENT) {
1854			spin_unlock(&osb->osb_lock);
1855			continue;
1856		}
1857
1858		if (__ocfs2_recovery_map_test(osb, node_num)) {
1859			spin_unlock(&osb->osb_lock);
1860			continue;
1861		}
1862		spin_unlock(&osb->osb_lock);
1863
1864		/* Ok, we have a slot occupied by another node which
1865		 * is not in the recovery map. We trylock his journal
1866		 * file here to test if he's alive. */
1867		status = ocfs2_trylock_journal(osb, i);
1868		if (!status) {
1869			/* Since we're called from mount, we know that
1870			 * the recovery thread can't race us on
1871			 * setting / checking the recovery bits. */
1872			ocfs2_recovery_thread(osb, node_num);
1873		} else if ((status < 0) && (status != -EAGAIN)) {
1874			mlog_errno(status);
1875			goto bail;
1876		}
1877	}
1878
1879	status = 0;
1880bail:
1881	return status;
1882}
1883
1884/*
1885 * Scan timer should get fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT. Add some
1886 * randomness to the timeout to minimize multple nodes firing the timer at the
1887 * same time.
1888 */
1889static inline unsigned long ocfs2_orphan_scan_timeout(void)
1890{
1891	unsigned long time;
1892
1893	get_random_bytes(&time, sizeof(time));
1894	time = ORPHAN_SCAN_SCHEDULE_TIMEOUT + (time % 5000);
1895	return msecs_to_jiffies(time);
1896}
1897
1898/*
1899 * ocfs2_queue_orphan_scan calls ocfs2_queue_recovery_completion for
1900 * every slot, queuing a recovery of the slot on the ocfs2_wq thread. This
1901 * is done to catch any orphans that are left over in orphan directories.
1902 *
1903 * It scans all slots, even ones that are in use. It does so to handle the
1904 * case described below:
1905 *
1906 *   Node 1 has an inode it was using. The dentry went away due to memory
1907 *   pressure.  Node 1 closes the inode, but it's on the free list. The node
1908 *   has the open lock.
1909 *   Node 2 unlinks the inode. It grabs the dentry lock to notify others,
1910 *   but node 1 has no dentry and doesn't get the message. It trylocks the
1911 *   open lock, sees that another node has a PR, and does nothing.
1912 *   Later node 2 runs its orphan dir. It igets the inode, trylocks the
1913 *   open lock, sees the PR still, and does nothing.
1914 *   Basically, we have to trigger an orphan iput on node 1. The only way
1915 *   for this to happen is if node 1 runs node 2's orphan dir.
1916 *
1917 * ocfs2_queue_orphan_scan gets called every ORPHAN_SCAN_SCHEDULE_TIMEOUT
1918 * seconds.  It gets an EX lock on os_lockres and checks sequence number
1919 * stored in LVB. If the sequence number has changed, it means some other
1920 * node has done the scan.  This node skips the scan and tracks the
1921 * sequence number.  If the sequence number didn't change, it means a scan
1922 * hasn't happened.  The node queues a scan and increments the
1923 * sequence number in the LVB.
1924 */
1925static void ocfs2_queue_orphan_scan(struct ocfs2_super *osb)
1926{
1927	struct ocfs2_orphan_scan *os;
1928	int status, i;
1929	u32 seqno = 0;
1930
1931	os = &osb->osb_orphan_scan;
1932
1933	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1934		goto out;
1935
1936	trace_ocfs2_queue_orphan_scan_begin(os->os_count, os->os_seqno,
1937					    atomic_read(&os->os_state));
1938
1939	status = ocfs2_orphan_scan_lock(osb, &seqno);
1940	if (status < 0) {
1941		if (status != -EAGAIN)
1942			mlog_errno(status);
1943		goto out;
1944	}
1945
1946	/* Do no queue the tasks if the volume is being umounted */
1947	if (atomic_read(&os->os_state) == ORPHAN_SCAN_INACTIVE)
1948		goto unlock;
1949
1950	if (os->os_seqno != seqno) {
1951		os->os_seqno = seqno;
1952		goto unlock;
1953	}
1954
1955	for (i = 0; i < osb->max_slots; i++)
1956		ocfs2_queue_recovery_completion(osb->journal, i, NULL, NULL,
1957						NULL, ORPHAN_NO_NEED_TRUNCATE);
1958	/*
1959	 * We queued a recovery on orphan slots, increment the sequence
1960	 * number and update LVB so other node will skip the scan for a while
1961	 */
1962	seqno++;
1963	os->os_count++;
1964	os->os_scantime = ktime_get_seconds();
1965unlock:
1966	ocfs2_orphan_scan_unlock(osb, seqno);
1967out:
1968	trace_ocfs2_queue_orphan_scan_end(os->os_count, os->os_seqno,
1969					  atomic_read(&os->os_state));
1970	return;
1971}
1972
1973/* Worker task that gets fired every ORPHAN_SCAN_SCHEDULE_TIMEOUT millsec */
1974static void ocfs2_orphan_scan_work(struct work_struct *work)
1975{
1976	struct ocfs2_orphan_scan *os;
1977	struct ocfs2_super *osb;
1978
1979	os = container_of(work, struct ocfs2_orphan_scan,
1980			  os_orphan_scan_work.work);
1981	osb = os->os_osb;
1982
1983	mutex_lock(&os->os_lock);
1984	ocfs2_queue_orphan_scan(osb);
1985	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE)
1986		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
1987				      ocfs2_orphan_scan_timeout());
1988	mutex_unlock(&os->os_lock);
1989}
1990
1991void ocfs2_orphan_scan_stop(struct ocfs2_super *osb)
1992{
1993	struct ocfs2_orphan_scan *os;
1994
1995	os = &osb->osb_orphan_scan;
1996	if (atomic_read(&os->os_state) == ORPHAN_SCAN_ACTIVE) {
1997		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
1998		mutex_lock(&os->os_lock);
1999		cancel_delayed_work(&os->os_orphan_scan_work);
2000		mutex_unlock(&os->os_lock);
2001	}
2002}
2003
2004void ocfs2_orphan_scan_init(struct ocfs2_super *osb)
2005{
2006	struct ocfs2_orphan_scan *os;
2007
2008	os = &osb->osb_orphan_scan;
2009	os->os_osb = osb;
2010	os->os_count = 0;
2011	os->os_seqno = 0;
2012	mutex_init(&os->os_lock);
2013	INIT_DELAYED_WORK(&os->os_orphan_scan_work, ocfs2_orphan_scan_work);
2014}
2015
2016void ocfs2_orphan_scan_start(struct ocfs2_super *osb)
2017{
2018	struct ocfs2_orphan_scan *os;
2019
2020	os = &osb->osb_orphan_scan;
2021	os->os_scantime = ktime_get_seconds();
2022	if (ocfs2_is_hard_readonly(osb) || ocfs2_mount_local(osb))
2023		atomic_set(&os->os_state, ORPHAN_SCAN_INACTIVE);
2024	else {
2025		atomic_set(&os->os_state, ORPHAN_SCAN_ACTIVE);
2026		queue_delayed_work(osb->ocfs2_wq, &os->os_orphan_scan_work,
2027				   ocfs2_orphan_scan_timeout());
2028	}
2029}
2030
2031struct ocfs2_orphan_filldir_priv {
2032	struct dir_context	ctx;
2033	struct inode		*head;
2034	struct ocfs2_super	*osb;
2035	enum ocfs2_orphan_reco_type orphan_reco_type;
2036};
2037
2038static int ocfs2_orphan_filldir(struct dir_context *ctx, const char *name,
2039				int name_len, loff_t pos, u64 ino,
2040				unsigned type)
2041{
2042	struct ocfs2_orphan_filldir_priv *p =
2043		container_of(ctx, struct ocfs2_orphan_filldir_priv, ctx);
2044	struct inode *iter;
2045
2046	if (name_len == 1 && !strncmp(".", name, 1))
2047		return 0;
2048	if (name_len == 2 && !strncmp("..", name, 2))
2049		return 0;
2050
2051	/* do not include dio entry in case of orphan scan */
2052	if ((p->orphan_reco_type == ORPHAN_NO_NEED_TRUNCATE) &&
2053			(!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2054			OCFS2_DIO_ORPHAN_PREFIX_LEN)))
2055		return 0;
2056
2057	/* Skip bad inodes so that recovery can continue */
2058	iter = ocfs2_iget(p->osb, ino,
2059			  OCFS2_FI_FLAG_ORPHAN_RECOVERY, 0);
2060	if (IS_ERR(iter))
2061		return 0;
2062
2063	if (!strncmp(name, OCFS2_DIO_ORPHAN_PREFIX,
2064			OCFS2_DIO_ORPHAN_PREFIX_LEN))
2065		OCFS2_I(iter)->ip_flags |= OCFS2_INODE_DIO_ORPHAN_ENTRY;
2066
2067	/* Skip inodes which are already added to recover list, since dio may
2068	 * happen concurrently with unlink/rename */
2069	if (OCFS2_I(iter)->ip_next_orphan) {
2070		iput(iter);
2071		return 0;
2072	}
2073
2074	trace_ocfs2_orphan_filldir((unsigned long long)OCFS2_I(iter)->ip_blkno);
2075	/* No locking is required for the next_orphan queue as there
2076	 * is only ever a single process doing orphan recovery. */
2077	OCFS2_I(iter)->ip_next_orphan = p->head;
2078	p->head = iter;
2079
2080	return 0;
2081}
2082
2083static int ocfs2_queue_orphans(struct ocfs2_super *osb,
2084			       int slot,
2085			       struct inode **head,
2086			       enum ocfs2_orphan_reco_type orphan_reco_type)
2087{
2088	int status;
2089	struct inode *orphan_dir_inode = NULL;
2090	struct ocfs2_orphan_filldir_priv priv = {
2091		.ctx.actor = ocfs2_orphan_filldir,
2092		.osb = osb,
2093		.head = *head,
2094		.orphan_reco_type = orphan_reco_type
2095	};
2096
2097	orphan_dir_inode = ocfs2_get_system_file_inode(osb,
2098						       ORPHAN_DIR_SYSTEM_INODE,
2099						       slot);
2100	if  (!orphan_dir_inode) {
2101		status = -ENOENT;
2102		mlog_errno(status);
2103		return status;
2104	}
2105
2106	inode_lock(orphan_dir_inode);
2107	status = ocfs2_inode_lock(orphan_dir_inode, NULL, 0);
2108	if (status < 0) {
2109		mlog_errno(status);
2110		goto out;
2111	}
2112
2113	status = ocfs2_dir_foreach(orphan_dir_inode, &priv.ctx);
2114	if (status) {
2115		mlog_errno(status);
2116		goto out_cluster;
2117	}
2118
2119	*head = priv.head;
2120
2121out_cluster:
2122	ocfs2_inode_unlock(orphan_dir_inode, 0);
2123out:
2124	inode_unlock(orphan_dir_inode);
2125	iput(orphan_dir_inode);
2126	return status;
2127}
2128
2129static int ocfs2_orphan_recovery_can_continue(struct ocfs2_super *osb,
2130					      int slot)
2131{
2132	int ret;
2133
2134	spin_lock(&osb->osb_lock);
2135	ret = !osb->osb_orphan_wipes[slot];
2136	spin_unlock(&osb->osb_lock);
2137	return ret;
2138}
2139
2140static void ocfs2_mark_recovering_orphan_dir(struct ocfs2_super *osb,
2141					     int slot)
2142{
2143	spin_lock(&osb->osb_lock);
2144	/* Mark ourselves such that new processes in delete_inode()
2145	 * know to quit early. */
2146	ocfs2_node_map_set_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2147	while (osb->osb_orphan_wipes[slot]) {
2148		/* If any processes are already in the middle of an
2149		 * orphan wipe on this dir, then we need to wait for
2150		 * them. */
2151		spin_unlock(&osb->osb_lock);
2152		wait_event_interruptible(osb->osb_wipe_event,
2153					 ocfs2_orphan_recovery_can_continue(osb, slot));
2154		spin_lock(&osb->osb_lock);
2155	}
2156	spin_unlock(&osb->osb_lock);
2157}
2158
2159static void ocfs2_clear_recovering_orphan_dir(struct ocfs2_super *osb,
2160					      int slot)
2161{
2162	ocfs2_node_map_clear_bit(osb, &osb->osb_recovering_orphan_dirs, slot);
2163}
2164
2165/*
2166 * Orphan recovery. Each mounted node has it's own orphan dir which we
2167 * must run during recovery. Our strategy here is to build a list of
2168 * the inodes in the orphan dir and iget/iput them. The VFS does
2169 * (most) of the rest of the work.
2170 *
2171 * Orphan recovery can happen at any time, not just mount so we have a
2172 * couple of extra considerations.
2173 *
2174 * - We grab as many inodes as we can under the orphan dir lock -
2175 *   doing iget() outside the orphan dir risks getting a reference on
2176 *   an invalid inode.
2177 * - We must be sure not to deadlock with other processes on the
2178 *   system wanting to run delete_inode(). This can happen when they go
2179 *   to lock the orphan dir and the orphan recovery process attempts to
2180 *   iget() inside the orphan dir lock. This can be avoided by
2181 *   advertising our state to ocfs2_delete_inode().
2182 */
2183static int ocfs2_recover_orphans(struct ocfs2_super *osb,
2184				 int slot,
2185				 enum ocfs2_orphan_reco_type orphan_reco_type)
2186{
2187	int ret = 0;
2188	struct inode *inode = NULL;
2189	struct inode *iter;
2190	struct ocfs2_inode_info *oi;
2191	struct buffer_head *di_bh = NULL;
2192	struct ocfs2_dinode *di = NULL;
2193
2194	trace_ocfs2_recover_orphans(slot);
2195
2196	ocfs2_mark_recovering_orphan_dir(osb, slot);
2197	ret = ocfs2_queue_orphans(osb, slot, &inode, orphan_reco_type);
2198	ocfs2_clear_recovering_orphan_dir(osb, slot);
2199
2200	/* Error here should be noted, but we want to continue with as
2201	 * many queued inodes as we've got. */
2202	if (ret)
2203		mlog_errno(ret);
2204
2205	while (inode) {
2206		oi = OCFS2_I(inode);
2207		trace_ocfs2_recover_orphans_iput(
2208					(unsigned long long)oi->ip_blkno);
2209
2210		iter = oi->ip_next_orphan;
2211		oi->ip_next_orphan = NULL;
2212
2213		if (oi->ip_flags & OCFS2_INODE_DIO_ORPHAN_ENTRY) {
2214			inode_lock(inode);
2215			ret = ocfs2_rw_lock(inode, 1);
2216			if (ret < 0) {
2217				mlog_errno(ret);
2218				goto unlock_mutex;
2219			}
2220			/*
2221			 * We need to take and drop the inode lock to
2222			 * force read inode from disk.
2223			 */
2224			ret = ocfs2_inode_lock(inode, &di_bh, 1);
2225			if (ret) {
2226				mlog_errno(ret);
2227				goto unlock_rw;
2228			}
2229
2230			di = (struct ocfs2_dinode *)di_bh->b_data;
2231
2232			if (di->i_flags & cpu_to_le32(OCFS2_DIO_ORPHANED_FL)) {
2233				ret = ocfs2_truncate_file(inode, di_bh,
2234						i_size_read(inode));
2235				if (ret < 0) {
2236					if (ret != -ENOSPC)
2237						mlog_errno(ret);
2238					goto unlock_inode;
2239				}
2240
2241				ret = ocfs2_del_inode_from_orphan(osb, inode,
2242						di_bh, 0, 0);
2243				if (ret)
2244					mlog_errno(ret);
2245			}
2246unlock_inode:
2247			ocfs2_inode_unlock(inode, 1);
2248			brelse(di_bh);
2249			di_bh = NULL;
2250unlock_rw:
2251			ocfs2_rw_unlock(inode, 1);
2252unlock_mutex:
2253			inode_unlock(inode);
2254
2255			/* clear dio flag in ocfs2_inode_info */
2256			oi->ip_flags &= ~OCFS2_INODE_DIO_ORPHAN_ENTRY;
2257		} else {
2258			spin_lock(&oi->ip_lock);
2259			/* Set the proper information to get us going into
2260			 * ocfs2_delete_inode. */
2261			oi->ip_flags |= OCFS2_INODE_MAYBE_ORPHANED;
2262			spin_unlock(&oi->ip_lock);
2263		}
2264
2265		iput(inode);
2266		inode = iter;
2267	}
2268
2269	return ret;
2270}
2271
2272static int __ocfs2_wait_on_mount(struct ocfs2_super *osb, int quota)
2273{
2274	/* This check is good because ocfs2 will wait on our recovery
2275	 * thread before changing it to something other than MOUNTED
2276	 * or DISABLED. */
2277	wait_event(osb->osb_mount_event,
2278		  (!quota && atomic_read(&osb->vol_state) == VOLUME_MOUNTED) ||
2279		   atomic_read(&osb->vol_state) == VOLUME_MOUNTED_QUOTAS ||
2280		   atomic_read(&osb->vol_state) == VOLUME_DISABLED);
2281
2282	/* If there's an error on mount, then we may never get to the
2283	 * MOUNTED flag, but this is set right before
2284	 * dismount_volume() so we can trust it. */
2285	if (atomic_read(&osb->vol_state) == VOLUME_DISABLED) {
2286		trace_ocfs2_wait_on_mount(VOLUME_DISABLED);
2287		mlog(0, "mount error, exiting!\n");
2288		return -EBUSY;
2289	}
2290
2291	return 0;
2292}
2293
2294static int ocfs2_commit_thread(void *arg)
2295{
2296	int status;
2297	struct ocfs2_super *osb = arg;
2298	struct ocfs2_journal *journal = osb->journal;
2299
2300	/* we can trust j_num_trans here because _should_stop() is only set in
2301	 * shutdown and nobody other than ourselves should be able to start
2302	 * transactions.  committing on shutdown might take a few iterations
2303	 * as final transactions put deleted inodes on the list */
2304	while (!(kthread_should_stop() &&
2305		 atomic_read(&journal->j_num_trans) == 0)) {
2306
2307		wait_event_interruptible(osb->checkpoint_event,
2308					 atomic_read(&journal->j_num_trans)
2309					 || kthread_should_stop());
2310
2311		status = ocfs2_commit_cache(osb);
2312		if (status < 0) {
2313			static unsigned long abort_warn_time;
2314
2315			/* Warn about this once per minute */
2316			if (printk_timed_ratelimit(&abort_warn_time, 60*HZ))
2317				mlog(ML_ERROR, "status = %d, journal is "
2318						"already aborted.\n", status);
2319			/*
2320			 * After ocfs2_commit_cache() fails, j_num_trans has a
2321			 * non-zero value.  Sleep here to avoid a busy-wait
2322			 * loop.
2323			 */
2324			msleep_interruptible(1000);
2325		}
2326
2327		if (kthread_should_stop() && atomic_read(&journal->j_num_trans)){
2328			mlog(ML_KTHREAD,
2329			     "commit_thread: %u transactions pending on "
2330			     "shutdown\n",
2331			     atomic_read(&journal->j_num_trans));
2332		}
2333	}
2334
2335	return 0;
2336}
2337
2338/* Reads all the journal inodes without taking any cluster locks. Used
2339 * for hard readonly access to determine whether any journal requires
2340 * recovery. Also used to refresh the recovery generation numbers after
2341 * a journal has been recovered by another node.
2342 */
2343int ocfs2_check_journals_nolocks(struct ocfs2_super *osb)
2344{
2345	int ret = 0;
2346	unsigned int slot;
2347	struct buffer_head *di_bh = NULL;
2348	struct ocfs2_dinode *di;
2349	int journal_dirty = 0;
2350
2351	for(slot = 0; slot < osb->max_slots; slot++) {
2352		ret = ocfs2_read_journal_inode(osb, slot, &di_bh, NULL);
2353		if (ret) {
2354			mlog_errno(ret);
2355			goto out;
2356		}
2357
2358		di = (struct ocfs2_dinode *) di_bh->b_data;
2359
2360		osb->slot_recovery_generations[slot] =
2361					ocfs2_get_recovery_generation(di);
2362
2363		if (le32_to_cpu(di->id1.journal1.ij_flags) &
2364		    OCFS2_JOURNAL_DIRTY_FL)
2365			journal_dirty = 1;
2366
2367		brelse(di_bh);
2368		di_bh = NULL;
2369	}
2370
2371out:
2372	if (journal_dirty)
2373		ret = -EROFS;
2374	return ret;
2375}
2376