1// SPDX-License-Identifier: GPL-2.0-or-later 2/* -*- mode: c; c-basic-offset: 8; -*- 3 * vim: noexpandtab sw=8 ts=8 sts=0: 4 * 5 * file.c 6 * 7 * File open, close, extend, truncate 8 * 9 * Copyright (C) 2002, 2004 Oracle. All rights reserved. 10 */ 11 12#include <linux/capability.h> 13#include <linux/fs.h> 14#include <linux/types.h> 15#include <linux/slab.h> 16#include <linux/highmem.h> 17#include <linux/pagemap.h> 18#include <linux/uio.h> 19#include <linux/sched.h> 20#include <linux/splice.h> 21#include <linux/mount.h> 22#include <linux/writeback.h> 23#include <linux/falloc.h> 24#include <linux/quotaops.h> 25#include <linux/blkdev.h> 26#include <linux/backing-dev.h> 27 28#include <cluster/masklog.h> 29 30#include "ocfs2.h" 31 32#include "alloc.h" 33#include "aops.h" 34#include "dir.h" 35#include "dlmglue.h" 36#include "extent_map.h" 37#include "file.h" 38#include "sysfile.h" 39#include "inode.h" 40#include "ioctl.h" 41#include "journal.h" 42#include "locks.h" 43#include "mmap.h" 44#include "suballoc.h" 45#include "super.h" 46#include "xattr.h" 47#include "acl.h" 48#include "quota.h" 49#include "refcounttree.h" 50#include "ocfs2_trace.h" 51 52#include "buffer_head_io.h" 53 54static int ocfs2_init_file_private(struct inode *inode, struct file *file) 55{ 56 struct ocfs2_file_private *fp; 57 58 fp = kzalloc(sizeof(struct ocfs2_file_private), GFP_KERNEL); 59 if (!fp) 60 return -ENOMEM; 61 62 fp->fp_file = file; 63 mutex_init(&fp->fp_mutex); 64 ocfs2_file_lock_res_init(&fp->fp_flock, fp); 65 file->private_data = fp; 66 67 return 0; 68} 69 70static void ocfs2_free_file_private(struct inode *inode, struct file *file) 71{ 72 struct ocfs2_file_private *fp = file->private_data; 73 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 74 75 if (fp) { 76 ocfs2_simple_drop_lockres(osb, &fp->fp_flock); 77 ocfs2_lock_res_free(&fp->fp_flock); 78 kfree(fp); 79 file->private_data = NULL; 80 } 81} 82 83static int ocfs2_file_open(struct inode *inode, struct file *file) 84{ 85 int status; 86 int mode = file->f_flags; 87 struct ocfs2_inode_info *oi = OCFS2_I(inode); 88 89 trace_ocfs2_file_open(inode, file, file->f_path.dentry, 90 (unsigned long long)oi->ip_blkno, 91 file->f_path.dentry->d_name.len, 92 file->f_path.dentry->d_name.name, mode); 93 94 if (file->f_mode & FMODE_WRITE) { 95 status = dquot_initialize(inode); 96 if (status) 97 goto leave; 98 } 99 100 spin_lock(&oi->ip_lock); 101 102 /* Check that the inode hasn't been wiped from disk by another 103 * node. If it hasn't then we're safe as long as we hold the 104 * spin lock until our increment of open count. */ 105 if (oi->ip_flags & OCFS2_INODE_DELETED) { 106 spin_unlock(&oi->ip_lock); 107 108 status = -ENOENT; 109 goto leave; 110 } 111 112 if (mode & O_DIRECT) 113 oi->ip_flags |= OCFS2_INODE_OPEN_DIRECT; 114 115 oi->ip_open_count++; 116 spin_unlock(&oi->ip_lock); 117 118 status = ocfs2_init_file_private(inode, file); 119 if (status) { 120 /* 121 * We want to set open count back if we're failing the 122 * open. 123 */ 124 spin_lock(&oi->ip_lock); 125 oi->ip_open_count--; 126 spin_unlock(&oi->ip_lock); 127 } 128 129 file->f_mode |= FMODE_NOWAIT; 130 131leave: 132 return status; 133} 134 135static int ocfs2_file_release(struct inode *inode, struct file *file) 136{ 137 struct ocfs2_inode_info *oi = OCFS2_I(inode); 138 139 spin_lock(&oi->ip_lock); 140 if (!--oi->ip_open_count) 141 oi->ip_flags &= ~OCFS2_INODE_OPEN_DIRECT; 142 143 trace_ocfs2_file_release(inode, file, file->f_path.dentry, 144 oi->ip_blkno, 145 file->f_path.dentry->d_name.len, 146 file->f_path.dentry->d_name.name, 147 oi->ip_open_count); 148 spin_unlock(&oi->ip_lock); 149 150 ocfs2_free_file_private(inode, file); 151 152 return 0; 153} 154 155static int ocfs2_dir_open(struct inode *inode, struct file *file) 156{ 157 return ocfs2_init_file_private(inode, file); 158} 159 160static int ocfs2_dir_release(struct inode *inode, struct file *file) 161{ 162 ocfs2_free_file_private(inode, file); 163 return 0; 164} 165 166static int ocfs2_sync_file(struct file *file, loff_t start, loff_t end, 167 int datasync) 168{ 169 int err = 0; 170 struct inode *inode = file->f_mapping->host; 171 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 172 struct ocfs2_inode_info *oi = OCFS2_I(inode); 173 journal_t *journal = osb->journal->j_journal; 174 int ret; 175 tid_t commit_tid; 176 bool needs_barrier = false; 177 178 trace_ocfs2_sync_file(inode, file, file->f_path.dentry, 179 oi->ip_blkno, 180 file->f_path.dentry->d_name.len, 181 file->f_path.dentry->d_name.name, 182 (unsigned long long)datasync); 183 184 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 185 return -EROFS; 186 187 err = file_write_and_wait_range(file, start, end); 188 if (err) 189 return err; 190 191 commit_tid = datasync ? oi->i_datasync_tid : oi->i_sync_tid; 192 if (journal->j_flags & JBD2_BARRIER && 193 !jbd2_trans_will_send_data_barrier(journal, commit_tid)) 194 needs_barrier = true; 195 err = jbd2_complete_transaction(journal, commit_tid); 196 if (needs_barrier) { 197 ret = blkdev_issue_flush(inode->i_sb->s_bdev, GFP_KERNEL); 198 if (!err) 199 err = ret; 200 } 201 202 if (err) 203 mlog_errno(err); 204 205 return (err < 0) ? -EIO : 0; 206} 207 208int ocfs2_should_update_atime(struct inode *inode, 209 struct vfsmount *vfsmnt) 210{ 211 struct timespec64 now; 212 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 213 214 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 215 return 0; 216 217 if ((inode->i_flags & S_NOATIME) || 218 ((inode->i_sb->s_flags & SB_NODIRATIME) && S_ISDIR(inode->i_mode))) 219 return 0; 220 221 /* 222 * We can be called with no vfsmnt structure - NFSD will 223 * sometimes do this. 224 * 225 * Note that our action here is different than touch_atime() - 226 * if we can't tell whether this is a noatime mount, then we 227 * don't know whether to trust the value of s_atime_quantum. 228 */ 229 if (vfsmnt == NULL) 230 return 0; 231 232 if ((vfsmnt->mnt_flags & MNT_NOATIME) || 233 ((vfsmnt->mnt_flags & MNT_NODIRATIME) && S_ISDIR(inode->i_mode))) 234 return 0; 235 236 if (vfsmnt->mnt_flags & MNT_RELATIME) { 237 if ((timespec64_compare(&inode->i_atime, &inode->i_mtime) <= 0) || 238 (timespec64_compare(&inode->i_atime, &inode->i_ctime) <= 0)) 239 return 1; 240 241 return 0; 242 } 243 244 now = current_time(inode); 245 if ((now.tv_sec - inode->i_atime.tv_sec <= osb->s_atime_quantum)) 246 return 0; 247 else 248 return 1; 249} 250 251int ocfs2_update_inode_atime(struct inode *inode, 252 struct buffer_head *bh) 253{ 254 int ret; 255 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 256 handle_t *handle; 257 struct ocfs2_dinode *di = (struct ocfs2_dinode *) bh->b_data; 258 259 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 260 if (IS_ERR(handle)) { 261 ret = PTR_ERR(handle); 262 mlog_errno(ret); 263 goto out; 264 } 265 266 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 267 OCFS2_JOURNAL_ACCESS_WRITE); 268 if (ret) { 269 mlog_errno(ret); 270 goto out_commit; 271 } 272 273 /* 274 * Don't use ocfs2_mark_inode_dirty() here as we don't always 275 * have i_mutex to guard against concurrent changes to other 276 * inode fields. 277 */ 278 inode->i_atime = current_time(inode); 279 di->i_atime = cpu_to_le64(inode->i_atime.tv_sec); 280 di->i_atime_nsec = cpu_to_le32(inode->i_atime.tv_nsec); 281 ocfs2_update_inode_fsync_trans(handle, inode, 0); 282 ocfs2_journal_dirty(handle, bh); 283 284out_commit: 285 ocfs2_commit_trans(osb, handle); 286out: 287 return ret; 288} 289 290int ocfs2_set_inode_size(handle_t *handle, 291 struct inode *inode, 292 struct buffer_head *fe_bh, 293 u64 new_i_size) 294{ 295 int status; 296 297 i_size_write(inode, new_i_size); 298 inode->i_blocks = ocfs2_inode_sector_count(inode); 299 inode->i_ctime = inode->i_mtime = current_time(inode); 300 301 status = ocfs2_mark_inode_dirty(handle, inode, fe_bh); 302 if (status < 0) { 303 mlog_errno(status); 304 goto bail; 305 } 306 307bail: 308 return status; 309} 310 311int ocfs2_simple_size_update(struct inode *inode, 312 struct buffer_head *di_bh, 313 u64 new_i_size) 314{ 315 int ret; 316 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 317 handle_t *handle = NULL; 318 319 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 320 if (IS_ERR(handle)) { 321 ret = PTR_ERR(handle); 322 mlog_errno(ret); 323 goto out; 324 } 325 326 ret = ocfs2_set_inode_size(handle, inode, di_bh, 327 new_i_size); 328 if (ret < 0) 329 mlog_errno(ret); 330 331 ocfs2_update_inode_fsync_trans(handle, inode, 0); 332 ocfs2_commit_trans(osb, handle); 333out: 334 return ret; 335} 336 337static int ocfs2_cow_file_pos(struct inode *inode, 338 struct buffer_head *fe_bh, 339 u64 offset) 340{ 341 int status; 342 u32 phys, cpos = offset >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 343 unsigned int num_clusters = 0; 344 unsigned int ext_flags = 0; 345 346 /* 347 * If the new offset is aligned to the range of the cluster, there is 348 * no space for ocfs2_zero_range_for_truncate to fill, so no need to 349 * CoW either. 350 */ 351 if ((offset & (OCFS2_SB(inode->i_sb)->s_clustersize - 1)) == 0) 352 return 0; 353 354 status = ocfs2_get_clusters(inode, cpos, &phys, 355 &num_clusters, &ext_flags); 356 if (status) { 357 mlog_errno(status); 358 goto out; 359 } 360 361 if (!(ext_flags & OCFS2_EXT_REFCOUNTED)) 362 goto out; 363 364 return ocfs2_refcount_cow(inode, fe_bh, cpos, 1, cpos+1); 365 366out: 367 return status; 368} 369 370static int ocfs2_orphan_for_truncate(struct ocfs2_super *osb, 371 struct inode *inode, 372 struct buffer_head *fe_bh, 373 u64 new_i_size) 374{ 375 int status; 376 handle_t *handle; 377 struct ocfs2_dinode *di; 378 u64 cluster_bytes; 379 380 /* 381 * We need to CoW the cluster contains the offset if it is reflinked 382 * since we will call ocfs2_zero_range_for_truncate later which will 383 * write "0" from offset to the end of the cluster. 384 */ 385 status = ocfs2_cow_file_pos(inode, fe_bh, new_i_size); 386 if (status) { 387 mlog_errno(status); 388 return status; 389 } 390 391 /* TODO: This needs to actually orphan the inode in this 392 * transaction. */ 393 394 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 395 if (IS_ERR(handle)) { 396 status = PTR_ERR(handle); 397 mlog_errno(status); 398 goto out; 399 } 400 401 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), fe_bh, 402 OCFS2_JOURNAL_ACCESS_WRITE); 403 if (status < 0) { 404 mlog_errno(status); 405 goto out_commit; 406 } 407 408 /* 409 * Do this before setting i_size. 410 */ 411 cluster_bytes = ocfs2_align_bytes_to_clusters(inode->i_sb, new_i_size); 412 status = ocfs2_zero_range_for_truncate(inode, handle, new_i_size, 413 cluster_bytes); 414 if (status) { 415 mlog_errno(status); 416 goto out_commit; 417 } 418 419 i_size_write(inode, new_i_size); 420 inode->i_ctime = inode->i_mtime = current_time(inode); 421 422 di = (struct ocfs2_dinode *) fe_bh->b_data; 423 di->i_size = cpu_to_le64(new_i_size); 424 di->i_ctime = di->i_mtime = cpu_to_le64(inode->i_ctime.tv_sec); 425 di->i_ctime_nsec = di->i_mtime_nsec = cpu_to_le32(inode->i_ctime.tv_nsec); 426 ocfs2_update_inode_fsync_trans(handle, inode, 0); 427 428 ocfs2_journal_dirty(handle, fe_bh); 429 430out_commit: 431 ocfs2_commit_trans(osb, handle); 432out: 433 return status; 434} 435 436int ocfs2_truncate_file(struct inode *inode, 437 struct buffer_head *di_bh, 438 u64 new_i_size) 439{ 440 int status = 0; 441 struct ocfs2_dinode *fe = NULL; 442 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 443 444 /* We trust di_bh because it comes from ocfs2_inode_lock(), which 445 * already validated it */ 446 fe = (struct ocfs2_dinode *) di_bh->b_data; 447 448 trace_ocfs2_truncate_file((unsigned long long)OCFS2_I(inode)->ip_blkno, 449 (unsigned long long)le64_to_cpu(fe->i_size), 450 (unsigned long long)new_i_size); 451 452 mlog_bug_on_msg(le64_to_cpu(fe->i_size) != i_size_read(inode), 453 "Inode %llu, inode i_size = %lld != di " 454 "i_size = %llu, i_flags = 0x%x\n", 455 (unsigned long long)OCFS2_I(inode)->ip_blkno, 456 i_size_read(inode), 457 (unsigned long long)le64_to_cpu(fe->i_size), 458 le32_to_cpu(fe->i_flags)); 459 460 if (new_i_size > le64_to_cpu(fe->i_size)) { 461 trace_ocfs2_truncate_file_error( 462 (unsigned long long)le64_to_cpu(fe->i_size), 463 (unsigned long long)new_i_size); 464 status = -EINVAL; 465 mlog_errno(status); 466 goto bail; 467 } 468 469 down_write(&OCFS2_I(inode)->ip_alloc_sem); 470 471 ocfs2_resv_discard(&osb->osb_la_resmap, 472 &OCFS2_I(inode)->ip_la_data_resv); 473 474 /* 475 * The inode lock forced other nodes to sync and drop their 476 * pages, which (correctly) happens even if we have a truncate 477 * without allocation change - ocfs2 cluster sizes can be much 478 * greater than page size, so we have to truncate them 479 * anyway. 480 */ 481 482 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 483 unmap_mapping_range(inode->i_mapping, 484 new_i_size + PAGE_SIZE - 1, 0, 1); 485 truncate_inode_pages(inode->i_mapping, new_i_size); 486 status = ocfs2_truncate_inline(inode, di_bh, new_i_size, 487 i_size_read(inode), 1); 488 if (status) 489 mlog_errno(status); 490 491 goto bail_unlock_sem; 492 } 493 494 /* alright, we're going to need to do a full blown alloc size 495 * change. Orphan the inode so that recovery can complete the 496 * truncate if necessary. This does the task of marking 497 * i_size. */ 498 status = ocfs2_orphan_for_truncate(osb, inode, di_bh, new_i_size); 499 if (status < 0) { 500 mlog_errno(status); 501 goto bail_unlock_sem; 502 } 503 504 unmap_mapping_range(inode->i_mapping, new_i_size + PAGE_SIZE - 1, 0, 1); 505 truncate_inode_pages(inode->i_mapping, new_i_size); 506 507 status = ocfs2_commit_truncate(osb, inode, di_bh); 508 if (status < 0) { 509 mlog_errno(status); 510 goto bail_unlock_sem; 511 } 512 513 /* TODO: orphan dir cleanup here. */ 514bail_unlock_sem: 515 up_write(&OCFS2_I(inode)->ip_alloc_sem); 516 517bail: 518 if (!status && OCFS2_I(inode)->ip_clusters == 0) 519 status = ocfs2_try_remove_refcount_tree(inode, di_bh); 520 521 return status; 522} 523 524/* 525 * extend file allocation only here. 526 * we'll update all the disk stuff, and oip->alloc_size 527 * 528 * expect stuff to be locked, a transaction started and enough data / 529 * metadata reservations in the contexts. 530 * 531 * Will return -EAGAIN, and a reason if a restart is needed. 532 * If passed in, *reason will always be set, even in error. 533 */ 534int ocfs2_add_inode_data(struct ocfs2_super *osb, 535 struct inode *inode, 536 u32 *logical_offset, 537 u32 clusters_to_add, 538 int mark_unwritten, 539 struct buffer_head *fe_bh, 540 handle_t *handle, 541 struct ocfs2_alloc_context *data_ac, 542 struct ocfs2_alloc_context *meta_ac, 543 enum ocfs2_alloc_restarted *reason_ret) 544{ 545 int ret; 546 struct ocfs2_extent_tree et; 547 548 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), fe_bh); 549 ret = ocfs2_add_clusters_in_btree(handle, &et, logical_offset, 550 clusters_to_add, mark_unwritten, 551 data_ac, meta_ac, reason_ret); 552 553 return ret; 554} 555 556static int ocfs2_extend_allocation(struct inode *inode, u32 logical_start, 557 u32 clusters_to_add, int mark_unwritten) 558{ 559 int status = 0; 560 int restart_func = 0; 561 int credits; 562 u32 prev_clusters; 563 struct buffer_head *bh = NULL; 564 struct ocfs2_dinode *fe = NULL; 565 handle_t *handle = NULL; 566 struct ocfs2_alloc_context *data_ac = NULL; 567 struct ocfs2_alloc_context *meta_ac = NULL; 568 enum ocfs2_alloc_restarted why = RESTART_NONE; 569 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 570 struct ocfs2_extent_tree et; 571 int did_quota = 0; 572 573 /* 574 * Unwritten extent only exists for file systems which 575 * support holes. 576 */ 577 BUG_ON(mark_unwritten && !ocfs2_sparse_alloc(osb)); 578 579 status = ocfs2_read_inode_block(inode, &bh); 580 if (status < 0) { 581 mlog_errno(status); 582 goto leave; 583 } 584 fe = (struct ocfs2_dinode *) bh->b_data; 585 586restart_all: 587 BUG_ON(le32_to_cpu(fe->i_clusters) != OCFS2_I(inode)->ip_clusters); 588 589 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), bh); 590 status = ocfs2_lock_allocators(inode, &et, clusters_to_add, 0, 591 &data_ac, &meta_ac); 592 if (status) { 593 mlog_errno(status); 594 goto leave; 595 } 596 597 credits = ocfs2_calc_extend_credits(osb->sb, &fe->id2.i_list); 598 handle = ocfs2_start_trans(osb, credits); 599 if (IS_ERR(handle)) { 600 status = PTR_ERR(handle); 601 handle = NULL; 602 mlog_errno(status); 603 goto leave; 604 } 605 606restarted_transaction: 607 trace_ocfs2_extend_allocation( 608 (unsigned long long)OCFS2_I(inode)->ip_blkno, 609 (unsigned long long)i_size_read(inode), 610 le32_to_cpu(fe->i_clusters), clusters_to_add, 611 why, restart_func); 612 613 status = dquot_alloc_space_nodirty(inode, 614 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 615 if (status) 616 goto leave; 617 did_quota = 1; 618 619 /* reserve a write to the file entry early on - that we if we 620 * run out of credits in the allocation path, we can still 621 * update i_size. */ 622 status = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 623 OCFS2_JOURNAL_ACCESS_WRITE); 624 if (status < 0) { 625 mlog_errno(status); 626 goto leave; 627 } 628 629 prev_clusters = OCFS2_I(inode)->ip_clusters; 630 631 status = ocfs2_add_inode_data(osb, 632 inode, 633 &logical_start, 634 clusters_to_add, 635 mark_unwritten, 636 bh, 637 handle, 638 data_ac, 639 meta_ac, 640 &why); 641 if ((status < 0) && (status != -EAGAIN)) { 642 if (status != -ENOSPC) 643 mlog_errno(status); 644 goto leave; 645 } 646 ocfs2_update_inode_fsync_trans(handle, inode, 1); 647 ocfs2_journal_dirty(handle, bh); 648 649 spin_lock(&OCFS2_I(inode)->ip_lock); 650 clusters_to_add -= (OCFS2_I(inode)->ip_clusters - prev_clusters); 651 spin_unlock(&OCFS2_I(inode)->ip_lock); 652 /* Release unused quota reservation */ 653 dquot_free_space(inode, 654 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 655 did_quota = 0; 656 657 if (why != RESTART_NONE && clusters_to_add) { 658 if (why == RESTART_META) { 659 restart_func = 1; 660 status = 0; 661 } else { 662 BUG_ON(why != RESTART_TRANS); 663 664 status = ocfs2_allocate_extend_trans(handle, 1); 665 if (status < 0) { 666 /* handle still has to be committed at 667 * this point. */ 668 status = -ENOMEM; 669 mlog_errno(status); 670 goto leave; 671 } 672 goto restarted_transaction; 673 } 674 } 675 676 trace_ocfs2_extend_allocation_end(OCFS2_I(inode)->ip_blkno, 677 le32_to_cpu(fe->i_clusters), 678 (unsigned long long)le64_to_cpu(fe->i_size), 679 OCFS2_I(inode)->ip_clusters, 680 (unsigned long long)i_size_read(inode)); 681 682leave: 683 if (status < 0 && did_quota) 684 dquot_free_space(inode, 685 ocfs2_clusters_to_bytes(osb->sb, clusters_to_add)); 686 if (handle) { 687 ocfs2_commit_trans(osb, handle); 688 handle = NULL; 689 } 690 if (data_ac) { 691 ocfs2_free_alloc_context(data_ac); 692 data_ac = NULL; 693 } 694 if (meta_ac) { 695 ocfs2_free_alloc_context(meta_ac); 696 meta_ac = NULL; 697 } 698 if ((!status) && restart_func) { 699 restart_func = 0; 700 goto restart_all; 701 } 702 brelse(bh); 703 bh = NULL; 704 705 return status; 706} 707 708/* 709 * While a write will already be ordering the data, a truncate will not. 710 * Thus, we need to explicitly order the zeroed pages. 711 */ 712static handle_t *ocfs2_zero_start_ordered_transaction(struct inode *inode, 713 struct buffer_head *di_bh, 714 loff_t start_byte, 715 loff_t length) 716{ 717 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 718 handle_t *handle = NULL; 719 int ret = 0; 720 721 if (!ocfs2_should_order_data(inode)) 722 goto out; 723 724 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 725 if (IS_ERR(handle)) { 726 ret = -ENOMEM; 727 mlog_errno(ret); 728 goto out; 729 } 730 731 ret = ocfs2_jbd2_inode_add_write(handle, inode, start_byte, length); 732 if (ret < 0) { 733 mlog_errno(ret); 734 goto out; 735 } 736 737 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), di_bh, 738 OCFS2_JOURNAL_ACCESS_WRITE); 739 if (ret) 740 mlog_errno(ret); 741 ocfs2_update_inode_fsync_trans(handle, inode, 1); 742 743out: 744 if (ret) { 745 if (!IS_ERR(handle)) 746 ocfs2_commit_trans(osb, handle); 747 handle = ERR_PTR(ret); 748 } 749 return handle; 750} 751 752/* Some parts of this taken from generic_cont_expand, which turned out 753 * to be too fragile to do exactly what we need without us having to 754 * worry about recursive locking in ->write_begin() and ->write_end(). */ 755static int ocfs2_write_zero_page(struct inode *inode, u64 abs_from, 756 u64 abs_to, struct buffer_head *di_bh) 757{ 758 struct address_space *mapping = inode->i_mapping; 759 struct page *page; 760 unsigned long index = abs_from >> PAGE_SHIFT; 761 handle_t *handle; 762 int ret = 0; 763 unsigned zero_from, zero_to, block_start, block_end; 764 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 765 766 BUG_ON(abs_from >= abs_to); 767 BUG_ON(abs_to > (((u64)index + 1) << PAGE_SHIFT)); 768 BUG_ON(abs_from & (inode->i_blkbits - 1)); 769 770 handle = ocfs2_zero_start_ordered_transaction(inode, di_bh, 771 abs_from, 772 abs_to - abs_from); 773 if (IS_ERR(handle)) { 774 ret = PTR_ERR(handle); 775 goto out; 776 } 777 778 page = find_or_create_page(mapping, index, GFP_NOFS); 779 if (!page) { 780 ret = -ENOMEM; 781 mlog_errno(ret); 782 goto out_commit_trans; 783 } 784 785 /* Get the offsets within the page that we want to zero */ 786 zero_from = abs_from & (PAGE_SIZE - 1); 787 zero_to = abs_to & (PAGE_SIZE - 1); 788 if (!zero_to) 789 zero_to = PAGE_SIZE; 790 791 trace_ocfs2_write_zero_page( 792 (unsigned long long)OCFS2_I(inode)->ip_blkno, 793 (unsigned long long)abs_from, 794 (unsigned long long)abs_to, 795 index, zero_from, zero_to); 796 797 /* We know that zero_from is block aligned */ 798 for (block_start = zero_from; block_start < zero_to; 799 block_start = block_end) { 800 block_end = block_start + i_blocksize(inode); 801 802 /* 803 * block_start is block-aligned. Bump it by one to force 804 * __block_write_begin and block_commit_write to zero the 805 * whole block. 806 */ 807 ret = __block_write_begin(page, block_start + 1, 0, 808 ocfs2_get_block); 809 if (ret < 0) { 810 mlog_errno(ret); 811 goto out_unlock; 812 } 813 814 815 /* must not update i_size! */ 816 ret = block_commit_write(page, block_start + 1, 817 block_start + 1); 818 if (ret < 0) 819 mlog_errno(ret); 820 else 821 ret = 0; 822 } 823 824 /* 825 * fs-writeback will release the dirty pages without page lock 826 * whose offset are over inode size, the release happens at 827 * block_write_full_page(). 828 */ 829 i_size_write(inode, abs_to); 830 inode->i_blocks = ocfs2_inode_sector_count(inode); 831 di->i_size = cpu_to_le64((u64)i_size_read(inode)); 832 inode->i_mtime = inode->i_ctime = current_time(inode); 833 di->i_mtime = di->i_ctime = cpu_to_le64(inode->i_mtime.tv_sec); 834 di->i_ctime_nsec = cpu_to_le32(inode->i_mtime.tv_nsec); 835 di->i_mtime_nsec = di->i_ctime_nsec; 836 if (handle) { 837 ocfs2_journal_dirty(handle, di_bh); 838 ocfs2_update_inode_fsync_trans(handle, inode, 1); 839 } 840 841out_unlock: 842 unlock_page(page); 843 put_page(page); 844out_commit_trans: 845 if (handle) 846 ocfs2_commit_trans(OCFS2_SB(inode->i_sb), handle); 847out: 848 return ret; 849} 850 851/* 852 * Find the next range to zero. We do this in terms of bytes because 853 * that's what ocfs2_zero_extend() wants, and it is dealing with the 854 * pagecache. We may return multiple extents. 855 * 856 * zero_start and zero_end are ocfs2_zero_extend()s current idea of what 857 * needs to be zeroed. range_start and range_end return the next zeroing 858 * range. A subsequent call should pass the previous range_end as its 859 * zero_start. If range_end is 0, there's nothing to do. 860 * 861 * Unwritten extents are skipped over. Refcounted extents are CoWd. 862 */ 863static int ocfs2_zero_extend_get_range(struct inode *inode, 864 struct buffer_head *di_bh, 865 u64 zero_start, u64 zero_end, 866 u64 *range_start, u64 *range_end) 867{ 868 int rc = 0, needs_cow = 0; 869 u32 p_cpos, zero_clusters = 0; 870 u32 zero_cpos = 871 zero_start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 872 u32 last_cpos = ocfs2_clusters_for_bytes(inode->i_sb, zero_end); 873 unsigned int num_clusters = 0; 874 unsigned int ext_flags = 0; 875 876 while (zero_cpos < last_cpos) { 877 rc = ocfs2_get_clusters(inode, zero_cpos, &p_cpos, 878 &num_clusters, &ext_flags); 879 if (rc) { 880 mlog_errno(rc); 881 goto out; 882 } 883 884 if (p_cpos && !(ext_flags & OCFS2_EXT_UNWRITTEN)) { 885 zero_clusters = num_clusters; 886 if (ext_flags & OCFS2_EXT_REFCOUNTED) 887 needs_cow = 1; 888 break; 889 } 890 891 zero_cpos += num_clusters; 892 } 893 if (!zero_clusters) { 894 *range_end = 0; 895 goto out; 896 } 897 898 while ((zero_cpos + zero_clusters) < last_cpos) { 899 rc = ocfs2_get_clusters(inode, zero_cpos + zero_clusters, 900 &p_cpos, &num_clusters, 901 &ext_flags); 902 if (rc) { 903 mlog_errno(rc); 904 goto out; 905 } 906 907 if (!p_cpos || (ext_flags & OCFS2_EXT_UNWRITTEN)) 908 break; 909 if (ext_flags & OCFS2_EXT_REFCOUNTED) 910 needs_cow = 1; 911 zero_clusters += num_clusters; 912 } 913 if ((zero_cpos + zero_clusters) > last_cpos) 914 zero_clusters = last_cpos - zero_cpos; 915 916 if (needs_cow) { 917 rc = ocfs2_refcount_cow(inode, di_bh, zero_cpos, 918 zero_clusters, UINT_MAX); 919 if (rc) { 920 mlog_errno(rc); 921 goto out; 922 } 923 } 924 925 *range_start = ocfs2_clusters_to_bytes(inode->i_sb, zero_cpos); 926 *range_end = ocfs2_clusters_to_bytes(inode->i_sb, 927 zero_cpos + zero_clusters); 928 929out: 930 return rc; 931} 932 933/* 934 * Zero one range returned from ocfs2_zero_extend_get_range(). The caller 935 * has made sure that the entire range needs zeroing. 936 */ 937static int ocfs2_zero_extend_range(struct inode *inode, u64 range_start, 938 u64 range_end, struct buffer_head *di_bh) 939{ 940 int rc = 0; 941 u64 next_pos; 942 u64 zero_pos = range_start; 943 944 trace_ocfs2_zero_extend_range( 945 (unsigned long long)OCFS2_I(inode)->ip_blkno, 946 (unsigned long long)range_start, 947 (unsigned long long)range_end); 948 BUG_ON(range_start >= range_end); 949 950 while (zero_pos < range_end) { 951 next_pos = (zero_pos & PAGE_MASK) + PAGE_SIZE; 952 if (next_pos > range_end) 953 next_pos = range_end; 954 rc = ocfs2_write_zero_page(inode, zero_pos, next_pos, di_bh); 955 if (rc < 0) { 956 mlog_errno(rc); 957 break; 958 } 959 zero_pos = next_pos; 960 961 /* 962 * Very large extends have the potential to lock up 963 * the cpu for extended periods of time. 964 */ 965 cond_resched(); 966 } 967 968 return rc; 969} 970 971int ocfs2_zero_extend(struct inode *inode, struct buffer_head *di_bh, 972 loff_t zero_to_size) 973{ 974 int ret = 0; 975 u64 zero_start, range_start = 0, range_end = 0; 976 struct super_block *sb = inode->i_sb; 977 978 zero_start = ocfs2_align_bytes_to_blocks(sb, i_size_read(inode)); 979 trace_ocfs2_zero_extend((unsigned long long)OCFS2_I(inode)->ip_blkno, 980 (unsigned long long)zero_start, 981 (unsigned long long)i_size_read(inode)); 982 while (zero_start < zero_to_size) { 983 ret = ocfs2_zero_extend_get_range(inode, di_bh, zero_start, 984 zero_to_size, 985 &range_start, 986 &range_end); 987 if (ret) { 988 mlog_errno(ret); 989 break; 990 } 991 if (!range_end) 992 break; 993 /* Trim the ends */ 994 if (range_start < zero_start) 995 range_start = zero_start; 996 if (range_end > zero_to_size) 997 range_end = zero_to_size; 998 999 ret = ocfs2_zero_extend_range(inode, range_start, 1000 range_end, di_bh); 1001 if (ret) { 1002 mlog_errno(ret); 1003 break; 1004 } 1005 zero_start = range_end; 1006 } 1007 1008 return ret; 1009} 1010 1011int ocfs2_extend_no_holes(struct inode *inode, struct buffer_head *di_bh, 1012 u64 new_i_size, u64 zero_to) 1013{ 1014 int ret; 1015 u32 clusters_to_add; 1016 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1017 1018 /* 1019 * Only quota files call this without a bh, and they can't be 1020 * refcounted. 1021 */ 1022 BUG_ON(!di_bh && ocfs2_is_refcount_inode(inode)); 1023 BUG_ON(!di_bh && !(oi->ip_flags & OCFS2_INODE_SYSTEM_FILE)); 1024 1025 clusters_to_add = ocfs2_clusters_for_bytes(inode->i_sb, new_i_size); 1026 if (clusters_to_add < oi->ip_clusters) 1027 clusters_to_add = 0; 1028 else 1029 clusters_to_add -= oi->ip_clusters; 1030 1031 if (clusters_to_add) { 1032 ret = ocfs2_extend_allocation(inode, oi->ip_clusters, 1033 clusters_to_add, 0); 1034 if (ret) { 1035 mlog_errno(ret); 1036 goto out; 1037 } 1038 } 1039 1040 /* 1041 * Call this even if we don't add any clusters to the tree. We 1042 * still need to zero the area between the old i_size and the 1043 * new i_size. 1044 */ 1045 ret = ocfs2_zero_extend(inode, di_bh, zero_to); 1046 if (ret < 0) 1047 mlog_errno(ret); 1048 1049out: 1050 return ret; 1051} 1052 1053static int ocfs2_extend_file(struct inode *inode, 1054 struct buffer_head *di_bh, 1055 u64 new_i_size) 1056{ 1057 int ret = 0; 1058 struct ocfs2_inode_info *oi = OCFS2_I(inode); 1059 1060 BUG_ON(!di_bh); 1061 1062 /* setattr sometimes calls us like this. */ 1063 if (new_i_size == 0) 1064 goto out; 1065 1066 if (i_size_read(inode) == new_i_size) 1067 goto out; 1068 BUG_ON(new_i_size < i_size_read(inode)); 1069 1070 /* 1071 * The alloc sem blocks people in read/write from reading our 1072 * allocation until we're done changing it. We depend on 1073 * i_mutex to block other extend/truncate calls while we're 1074 * here. We even have to hold it for sparse files because there 1075 * might be some tail zeroing. 1076 */ 1077 down_write(&oi->ip_alloc_sem); 1078 1079 if (oi->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1080 /* 1081 * We can optimize small extends by keeping the inodes 1082 * inline data. 1083 */ 1084 if (ocfs2_size_fits_inline_data(di_bh, new_i_size)) { 1085 up_write(&oi->ip_alloc_sem); 1086 goto out_update_size; 1087 } 1088 1089 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1090 if (ret) { 1091 up_write(&oi->ip_alloc_sem); 1092 mlog_errno(ret); 1093 goto out; 1094 } 1095 } 1096 1097 if (ocfs2_sparse_alloc(OCFS2_SB(inode->i_sb))) 1098 ret = ocfs2_zero_extend(inode, di_bh, new_i_size); 1099 else 1100 ret = ocfs2_extend_no_holes(inode, di_bh, new_i_size, 1101 new_i_size); 1102 1103 up_write(&oi->ip_alloc_sem); 1104 1105 if (ret < 0) { 1106 mlog_errno(ret); 1107 goto out; 1108 } 1109 1110out_update_size: 1111 ret = ocfs2_simple_size_update(inode, di_bh, new_i_size); 1112 if (ret < 0) 1113 mlog_errno(ret); 1114 1115out: 1116 return ret; 1117} 1118 1119int ocfs2_setattr(struct dentry *dentry, struct iattr *attr) 1120{ 1121 int status = 0, size_change; 1122 int inode_locked = 0; 1123 struct inode *inode = d_inode(dentry); 1124 struct super_block *sb = inode->i_sb; 1125 struct ocfs2_super *osb = OCFS2_SB(sb); 1126 struct buffer_head *bh = NULL; 1127 handle_t *handle = NULL; 1128 struct dquot *transfer_to[MAXQUOTAS] = { }; 1129 int qtype; 1130 int had_lock; 1131 struct ocfs2_lock_holder oh; 1132 1133 trace_ocfs2_setattr(inode, dentry, 1134 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1135 dentry->d_name.len, dentry->d_name.name, 1136 attr->ia_valid, attr->ia_mode, 1137 from_kuid(&init_user_ns, attr->ia_uid), 1138 from_kgid(&init_user_ns, attr->ia_gid)); 1139 1140 /* ensuring we don't even attempt to truncate a symlink */ 1141 if (S_ISLNK(inode->i_mode)) 1142 attr->ia_valid &= ~ATTR_SIZE; 1143 1144#define OCFS2_VALID_ATTRS (ATTR_ATIME | ATTR_MTIME | ATTR_CTIME | ATTR_SIZE \ 1145 | ATTR_GID | ATTR_UID | ATTR_MODE) 1146 if (!(attr->ia_valid & OCFS2_VALID_ATTRS)) 1147 return 0; 1148 1149 status = setattr_prepare(dentry, attr); 1150 if (status) 1151 return status; 1152 1153 if (is_quota_modification(inode, attr)) { 1154 status = dquot_initialize(inode); 1155 if (status) 1156 return status; 1157 } 1158 size_change = S_ISREG(inode->i_mode) && attr->ia_valid & ATTR_SIZE; 1159 if (size_change) { 1160 /* 1161 * Here we should wait dio to finish before inode lock 1162 * to avoid a deadlock between ocfs2_setattr() and 1163 * ocfs2_dio_end_io_write() 1164 */ 1165 inode_dio_wait(inode); 1166 1167 status = ocfs2_rw_lock(inode, 1); 1168 if (status < 0) { 1169 mlog_errno(status); 1170 goto bail; 1171 } 1172 } 1173 1174 had_lock = ocfs2_inode_lock_tracker(inode, &bh, 1, &oh); 1175 if (had_lock < 0) { 1176 status = had_lock; 1177 goto bail_unlock_rw; 1178 } else if (had_lock) { 1179 /* 1180 * As far as we know, ocfs2_setattr() could only be the first 1181 * VFS entry point in the call chain of recursive cluster 1182 * locking issue. 1183 * 1184 * For instance: 1185 * chmod_common() 1186 * notify_change() 1187 * ocfs2_setattr() 1188 * posix_acl_chmod() 1189 * ocfs2_iop_get_acl() 1190 * 1191 * But, we're not 100% sure if it's always true, because the 1192 * ordering of the VFS entry points in the call chain is out 1193 * of our control. So, we'd better dump the stack here to 1194 * catch the other cases of recursive locking. 1195 */ 1196 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1197 dump_stack(); 1198 } 1199 inode_locked = 1; 1200 1201 if (size_change) { 1202 status = inode_newsize_ok(inode, attr->ia_size); 1203 if (status) 1204 goto bail_unlock; 1205 1206 if (i_size_read(inode) >= attr->ia_size) { 1207 if (ocfs2_should_order_data(inode)) { 1208 status = ocfs2_begin_ordered_truncate(inode, 1209 attr->ia_size); 1210 if (status) 1211 goto bail_unlock; 1212 } 1213 status = ocfs2_truncate_file(inode, bh, attr->ia_size); 1214 } else 1215 status = ocfs2_extend_file(inode, bh, attr->ia_size); 1216 if (status < 0) { 1217 if (status != -ENOSPC) 1218 mlog_errno(status); 1219 status = -ENOSPC; 1220 goto bail_unlock; 1221 } 1222 } 1223 1224 if ((attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid)) || 1225 (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid))) { 1226 /* 1227 * Gather pointers to quota structures so that allocation / 1228 * freeing of quota structures happens here and not inside 1229 * dquot_transfer() where we have problems with lock ordering 1230 */ 1231 if (attr->ia_valid & ATTR_UID && !uid_eq(attr->ia_uid, inode->i_uid) 1232 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1233 OCFS2_FEATURE_RO_COMPAT_USRQUOTA)) { 1234 transfer_to[USRQUOTA] = dqget(sb, make_kqid_uid(attr->ia_uid)); 1235 if (IS_ERR(transfer_to[USRQUOTA])) { 1236 status = PTR_ERR(transfer_to[USRQUOTA]); 1237 transfer_to[USRQUOTA] = NULL; 1238 goto bail_unlock; 1239 } 1240 } 1241 if (attr->ia_valid & ATTR_GID && !gid_eq(attr->ia_gid, inode->i_gid) 1242 && OCFS2_HAS_RO_COMPAT_FEATURE(sb, 1243 OCFS2_FEATURE_RO_COMPAT_GRPQUOTA)) { 1244 transfer_to[GRPQUOTA] = dqget(sb, make_kqid_gid(attr->ia_gid)); 1245 if (IS_ERR(transfer_to[GRPQUOTA])) { 1246 status = PTR_ERR(transfer_to[GRPQUOTA]); 1247 transfer_to[GRPQUOTA] = NULL; 1248 goto bail_unlock; 1249 } 1250 } 1251 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1252 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS + 1253 2 * ocfs2_quota_trans_credits(sb)); 1254 if (IS_ERR(handle)) { 1255 status = PTR_ERR(handle); 1256 mlog_errno(status); 1257 goto bail_unlock_alloc; 1258 } 1259 status = __dquot_transfer(inode, transfer_to); 1260 if (status < 0) 1261 goto bail_commit; 1262 } else { 1263 down_write(&OCFS2_I(inode)->ip_alloc_sem); 1264 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1265 if (IS_ERR(handle)) { 1266 status = PTR_ERR(handle); 1267 mlog_errno(status); 1268 goto bail_unlock_alloc; 1269 } 1270 } 1271 1272 setattr_copy(inode, attr); 1273 mark_inode_dirty(inode); 1274 1275 status = ocfs2_mark_inode_dirty(handle, inode, bh); 1276 if (status < 0) 1277 mlog_errno(status); 1278 1279bail_commit: 1280 ocfs2_commit_trans(osb, handle); 1281bail_unlock_alloc: 1282 up_write(&OCFS2_I(inode)->ip_alloc_sem); 1283bail_unlock: 1284 if (status && inode_locked) { 1285 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1286 inode_locked = 0; 1287 } 1288bail_unlock_rw: 1289 if (size_change) 1290 ocfs2_rw_unlock(inode, 1); 1291bail: 1292 1293 /* Release quota pointers in case we acquired them */ 1294 for (qtype = 0; qtype < OCFS2_MAXQUOTAS; qtype++) 1295 dqput(transfer_to[qtype]); 1296 1297 if (!status && attr->ia_valid & ATTR_MODE) { 1298 status = ocfs2_acl_chmod(inode, bh); 1299 if (status < 0) 1300 mlog_errno(status); 1301 } 1302 if (inode_locked) 1303 ocfs2_inode_unlock_tracker(inode, 1, &oh, had_lock); 1304 1305 brelse(bh); 1306 return status; 1307} 1308 1309int ocfs2_getattr(const struct path *path, struct kstat *stat, 1310 u32 request_mask, unsigned int flags) 1311{ 1312 struct inode *inode = d_inode(path->dentry); 1313 struct super_block *sb = path->dentry->d_sb; 1314 struct ocfs2_super *osb = sb->s_fs_info; 1315 int err; 1316 1317 err = ocfs2_inode_revalidate(path->dentry); 1318 if (err) { 1319 if (err != -ENOENT) 1320 mlog_errno(err); 1321 goto bail; 1322 } 1323 1324 generic_fillattr(inode, stat); 1325 /* 1326 * If there is inline data in the inode, the inode will normally not 1327 * have data blocks allocated (it may have an external xattr block). 1328 * Report at least one sector for such files, so tools like tar, rsync, 1329 * others don't incorrectly think the file is completely sparse. 1330 */ 1331 if (unlikely(OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL)) 1332 stat->blocks += (stat->size + 511)>>9; 1333 1334 /* We set the blksize from the cluster size for performance */ 1335 stat->blksize = osb->s_clustersize; 1336 1337bail: 1338 return err; 1339} 1340 1341int ocfs2_permission(struct inode *inode, int mask) 1342{ 1343 int ret, had_lock; 1344 struct ocfs2_lock_holder oh; 1345 1346 if (mask & MAY_NOT_BLOCK) 1347 return -ECHILD; 1348 1349 had_lock = ocfs2_inode_lock_tracker(inode, NULL, 0, &oh); 1350 if (had_lock < 0) { 1351 ret = had_lock; 1352 goto out; 1353 } else if (had_lock) { 1354 /* See comments in ocfs2_setattr() for details. 1355 * The call chain of this case could be: 1356 * do_sys_open() 1357 * may_open() 1358 * inode_permission() 1359 * ocfs2_permission() 1360 * ocfs2_iop_get_acl() 1361 */ 1362 mlog(ML_ERROR, "Another case of recursive locking:\n"); 1363 dump_stack(); 1364 } 1365 1366 ret = generic_permission(inode, mask); 1367 1368 ocfs2_inode_unlock_tracker(inode, 0, &oh, had_lock); 1369out: 1370 return ret; 1371} 1372 1373static int __ocfs2_write_remove_suid(struct inode *inode, 1374 struct buffer_head *bh) 1375{ 1376 int ret; 1377 handle_t *handle; 1378 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1379 struct ocfs2_dinode *di; 1380 1381 trace_ocfs2_write_remove_suid( 1382 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1383 inode->i_mode); 1384 1385 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1386 if (IS_ERR(handle)) { 1387 ret = PTR_ERR(handle); 1388 mlog_errno(ret); 1389 goto out; 1390 } 1391 1392 ret = ocfs2_journal_access_di(handle, INODE_CACHE(inode), bh, 1393 OCFS2_JOURNAL_ACCESS_WRITE); 1394 if (ret < 0) { 1395 mlog_errno(ret); 1396 goto out_trans; 1397 } 1398 1399 inode->i_mode &= ~S_ISUID; 1400 if ((inode->i_mode & S_ISGID) && (inode->i_mode & S_IXGRP)) 1401 inode->i_mode &= ~S_ISGID; 1402 1403 di = (struct ocfs2_dinode *) bh->b_data; 1404 di->i_mode = cpu_to_le16(inode->i_mode); 1405 ocfs2_update_inode_fsync_trans(handle, inode, 0); 1406 1407 ocfs2_journal_dirty(handle, bh); 1408 1409out_trans: 1410 ocfs2_commit_trans(osb, handle); 1411out: 1412 return ret; 1413} 1414 1415static int ocfs2_write_remove_suid(struct inode *inode) 1416{ 1417 int ret; 1418 struct buffer_head *bh = NULL; 1419 1420 ret = ocfs2_read_inode_block(inode, &bh); 1421 if (ret < 0) { 1422 mlog_errno(ret); 1423 goto out; 1424 } 1425 1426 ret = __ocfs2_write_remove_suid(inode, bh); 1427out: 1428 brelse(bh); 1429 return ret; 1430} 1431 1432/* 1433 * Allocate enough extents to cover the region starting at byte offset 1434 * start for len bytes. Existing extents are skipped, any extents 1435 * added are marked as "unwritten". 1436 */ 1437static int ocfs2_allocate_unwritten_extents(struct inode *inode, 1438 u64 start, u64 len) 1439{ 1440 int ret; 1441 u32 cpos, phys_cpos, clusters, alloc_size; 1442 u64 end = start + len; 1443 struct buffer_head *di_bh = NULL; 1444 1445 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1446 ret = ocfs2_read_inode_block(inode, &di_bh); 1447 if (ret) { 1448 mlog_errno(ret); 1449 goto out; 1450 } 1451 1452 /* 1453 * Nothing to do if the requested reservation range 1454 * fits within the inode. 1455 */ 1456 if (ocfs2_size_fits_inline_data(di_bh, end)) 1457 goto out; 1458 1459 ret = ocfs2_convert_inline_data_to_extents(inode, di_bh); 1460 if (ret) { 1461 mlog_errno(ret); 1462 goto out; 1463 } 1464 } 1465 1466 /* 1467 * We consider both start and len to be inclusive. 1468 */ 1469 cpos = start >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 1470 clusters = ocfs2_clusters_for_bytes(inode->i_sb, start + len); 1471 clusters -= cpos; 1472 1473 while (clusters) { 1474 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, 1475 &alloc_size, NULL); 1476 if (ret) { 1477 mlog_errno(ret); 1478 goto out; 1479 } 1480 1481 /* 1482 * Hole or existing extent len can be arbitrary, so 1483 * cap it to our own allocation request. 1484 */ 1485 if (alloc_size > clusters) 1486 alloc_size = clusters; 1487 1488 if (phys_cpos) { 1489 /* 1490 * We already have an allocation at this 1491 * region so we can safely skip it. 1492 */ 1493 goto next; 1494 } 1495 1496 ret = ocfs2_extend_allocation(inode, cpos, alloc_size, 1); 1497 if (ret) { 1498 if (ret != -ENOSPC) 1499 mlog_errno(ret); 1500 goto out; 1501 } 1502 1503next: 1504 cpos += alloc_size; 1505 clusters -= alloc_size; 1506 } 1507 1508 ret = 0; 1509out: 1510 1511 brelse(di_bh); 1512 return ret; 1513} 1514 1515/* 1516 * Truncate a byte range, avoiding pages within partial clusters. This 1517 * preserves those pages for the zeroing code to write to. 1518 */ 1519static void ocfs2_truncate_cluster_pages(struct inode *inode, u64 byte_start, 1520 u64 byte_len) 1521{ 1522 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1523 loff_t start, end; 1524 struct address_space *mapping = inode->i_mapping; 1525 1526 start = (loff_t)ocfs2_align_bytes_to_clusters(inode->i_sb, byte_start); 1527 end = byte_start + byte_len; 1528 end = end & ~(osb->s_clustersize - 1); 1529 1530 if (start < end) { 1531 unmap_mapping_range(mapping, start, end - start, 0); 1532 truncate_inode_pages_range(mapping, start, end - 1); 1533 } 1534} 1535 1536/* 1537 * zero out partial blocks of one cluster. 1538 * 1539 * start: file offset where zero starts, will be made upper block aligned. 1540 * len: it will be trimmed to the end of current cluster if "start + len" 1541 * is bigger than it. 1542 */ 1543static int ocfs2_zeroout_partial_cluster(struct inode *inode, 1544 u64 start, u64 len) 1545{ 1546 int ret; 1547 u64 start_block, end_block, nr_blocks; 1548 u64 p_block, offset; 1549 u32 cluster, p_cluster, nr_clusters; 1550 struct super_block *sb = inode->i_sb; 1551 u64 end = ocfs2_align_bytes_to_clusters(sb, start); 1552 1553 if (start + len < end) 1554 end = start + len; 1555 1556 start_block = ocfs2_blocks_for_bytes(sb, start); 1557 end_block = ocfs2_blocks_for_bytes(sb, end); 1558 nr_blocks = end_block - start_block; 1559 if (!nr_blocks) 1560 return 0; 1561 1562 cluster = ocfs2_bytes_to_clusters(sb, start); 1563 ret = ocfs2_get_clusters(inode, cluster, &p_cluster, 1564 &nr_clusters, NULL); 1565 if (ret) 1566 return ret; 1567 if (!p_cluster) 1568 return 0; 1569 1570 offset = start_block - ocfs2_clusters_to_blocks(sb, cluster); 1571 p_block = ocfs2_clusters_to_blocks(sb, p_cluster) + offset; 1572 return sb_issue_zeroout(sb, p_block, nr_blocks, GFP_NOFS); 1573} 1574 1575static int ocfs2_zero_partial_clusters(struct inode *inode, 1576 u64 start, u64 len) 1577{ 1578 int ret = 0; 1579 u64 tmpend = 0; 1580 u64 end = start + len; 1581 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1582 unsigned int csize = osb->s_clustersize; 1583 handle_t *handle; 1584 loff_t isize = i_size_read(inode); 1585 1586 /* 1587 * The "start" and "end" values are NOT necessarily part of 1588 * the range whose allocation is being deleted. Rather, this 1589 * is what the user passed in with the request. We must zero 1590 * partial clusters here. There's no need to worry about 1591 * physical allocation - the zeroing code knows to skip holes. 1592 */ 1593 trace_ocfs2_zero_partial_clusters( 1594 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1595 (unsigned long long)start, (unsigned long long)end); 1596 1597 /* 1598 * If both edges are on a cluster boundary then there's no 1599 * zeroing required as the region is part of the allocation to 1600 * be truncated. 1601 */ 1602 if ((start & (csize - 1)) == 0 && (end & (csize - 1)) == 0) 1603 goto out; 1604 1605 /* No page cache for EOF blocks, issue zero out to disk. */ 1606 if (end > isize) { 1607 /* 1608 * zeroout eof blocks in last cluster starting from 1609 * "isize" even "start" > "isize" because it is 1610 * complicated to zeroout just at "start" as "start" 1611 * may be not aligned with block size, buffer write 1612 * would be required to do that, but out of eof buffer 1613 * write is not supported. 1614 */ 1615 ret = ocfs2_zeroout_partial_cluster(inode, isize, 1616 end - isize); 1617 if (ret) { 1618 mlog_errno(ret); 1619 goto out; 1620 } 1621 if (start >= isize) 1622 goto out; 1623 end = isize; 1624 } 1625 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 1626 if (IS_ERR(handle)) { 1627 ret = PTR_ERR(handle); 1628 mlog_errno(ret); 1629 goto out; 1630 } 1631 1632 /* 1633 * If start is on a cluster boundary and end is somewhere in another 1634 * cluster, we have not COWed the cluster starting at start, unless 1635 * end is also within the same cluster. So, in this case, we skip this 1636 * first call to ocfs2_zero_range_for_truncate() truncate and move on 1637 * to the next one. 1638 */ 1639 if ((start & (csize - 1)) != 0) { 1640 /* 1641 * We want to get the byte offset of the end of the 1st 1642 * cluster. 1643 */ 1644 tmpend = (u64)osb->s_clustersize + 1645 (start & ~(osb->s_clustersize - 1)); 1646 if (tmpend > end) 1647 tmpend = end; 1648 1649 trace_ocfs2_zero_partial_clusters_range1( 1650 (unsigned long long)start, 1651 (unsigned long long)tmpend); 1652 1653 ret = ocfs2_zero_range_for_truncate(inode, handle, start, 1654 tmpend); 1655 if (ret) 1656 mlog_errno(ret); 1657 } 1658 1659 if (tmpend < end) { 1660 /* 1661 * This may make start and end equal, but the zeroing 1662 * code will skip any work in that case so there's no 1663 * need to catch it up here. 1664 */ 1665 start = end & ~(osb->s_clustersize - 1); 1666 1667 trace_ocfs2_zero_partial_clusters_range2( 1668 (unsigned long long)start, (unsigned long long)end); 1669 1670 ret = ocfs2_zero_range_for_truncate(inode, handle, start, end); 1671 if (ret) 1672 mlog_errno(ret); 1673 } 1674 ocfs2_update_inode_fsync_trans(handle, inode, 1); 1675 1676 ocfs2_commit_trans(osb, handle); 1677out: 1678 return ret; 1679} 1680 1681static int ocfs2_find_rec(struct ocfs2_extent_list *el, u32 pos) 1682{ 1683 int i; 1684 struct ocfs2_extent_rec *rec = NULL; 1685 1686 for (i = le16_to_cpu(el->l_next_free_rec) - 1; i >= 0; i--) { 1687 1688 rec = &el->l_recs[i]; 1689 1690 if (le32_to_cpu(rec->e_cpos) < pos) 1691 break; 1692 } 1693 1694 return i; 1695} 1696 1697/* 1698 * Helper to calculate the punching pos and length in one run, we handle the 1699 * following three cases in order: 1700 * 1701 * - remove the entire record 1702 * - remove a partial record 1703 * - no record needs to be removed (hole-punching completed) 1704*/ 1705static void ocfs2_calc_trunc_pos(struct inode *inode, 1706 struct ocfs2_extent_list *el, 1707 struct ocfs2_extent_rec *rec, 1708 u32 trunc_start, u32 *trunc_cpos, 1709 u32 *trunc_len, u32 *trunc_end, 1710 u64 *blkno, int *done) 1711{ 1712 int ret = 0; 1713 u32 coff, range; 1714 1715 range = le32_to_cpu(rec->e_cpos) + ocfs2_rec_clusters(el, rec); 1716 1717 if (le32_to_cpu(rec->e_cpos) >= trunc_start) { 1718 /* 1719 * remove an entire extent record. 1720 */ 1721 *trunc_cpos = le32_to_cpu(rec->e_cpos); 1722 /* 1723 * Skip holes if any. 1724 */ 1725 if (range < *trunc_end) 1726 *trunc_end = range; 1727 *trunc_len = *trunc_end - le32_to_cpu(rec->e_cpos); 1728 *blkno = le64_to_cpu(rec->e_blkno); 1729 *trunc_end = le32_to_cpu(rec->e_cpos); 1730 } else if (range > trunc_start) { 1731 /* 1732 * remove a partial extent record, which means we're 1733 * removing the last extent record. 1734 */ 1735 *trunc_cpos = trunc_start; 1736 /* 1737 * skip hole if any. 1738 */ 1739 if (range < *trunc_end) 1740 *trunc_end = range; 1741 *trunc_len = *trunc_end - trunc_start; 1742 coff = trunc_start - le32_to_cpu(rec->e_cpos); 1743 *blkno = le64_to_cpu(rec->e_blkno) + 1744 ocfs2_clusters_to_blocks(inode->i_sb, coff); 1745 *trunc_end = trunc_start; 1746 } else { 1747 /* 1748 * It may have two following possibilities: 1749 * 1750 * - last record has been removed 1751 * - trunc_start was within a hole 1752 * 1753 * both two cases mean the completion of hole punching. 1754 */ 1755 ret = 1; 1756 } 1757 1758 *done = ret; 1759} 1760 1761int ocfs2_remove_inode_range(struct inode *inode, 1762 struct buffer_head *di_bh, u64 byte_start, 1763 u64 byte_len) 1764{ 1765 int ret = 0, flags = 0, done = 0, i; 1766 u32 trunc_start, trunc_len, trunc_end, trunc_cpos, phys_cpos; 1767 u32 cluster_in_el; 1768 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1769 struct ocfs2_cached_dealloc_ctxt dealloc; 1770 struct address_space *mapping = inode->i_mapping; 1771 struct ocfs2_extent_tree et; 1772 struct ocfs2_path *path = NULL; 1773 struct ocfs2_extent_list *el = NULL; 1774 struct ocfs2_extent_rec *rec = NULL; 1775 struct ocfs2_dinode *di = (struct ocfs2_dinode *)di_bh->b_data; 1776 u64 blkno, refcount_loc = le64_to_cpu(di->i_refcount_loc); 1777 1778 ocfs2_init_dinode_extent_tree(&et, INODE_CACHE(inode), di_bh); 1779 ocfs2_init_dealloc_ctxt(&dealloc); 1780 1781 trace_ocfs2_remove_inode_range( 1782 (unsigned long long)OCFS2_I(inode)->ip_blkno, 1783 (unsigned long long)byte_start, 1784 (unsigned long long)byte_len); 1785 1786 if (byte_len == 0) 1787 return 0; 1788 1789 if (OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) { 1790 ret = ocfs2_truncate_inline(inode, di_bh, byte_start, 1791 byte_start + byte_len, 0); 1792 if (ret) { 1793 mlog_errno(ret); 1794 goto out; 1795 } 1796 /* 1797 * There's no need to get fancy with the page cache 1798 * truncate of an inline-data inode. We're talking 1799 * about less than a page here, which will be cached 1800 * in the dinode buffer anyway. 1801 */ 1802 unmap_mapping_range(mapping, 0, 0, 0); 1803 truncate_inode_pages(mapping, 0); 1804 goto out; 1805 } 1806 1807 /* 1808 * For reflinks, we may need to CoW 2 clusters which might be 1809 * partially zero'd later, if hole's start and end offset were 1810 * within one cluster(means is not exactly aligned to clustersize). 1811 */ 1812 1813 if (ocfs2_is_refcount_inode(inode)) { 1814 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start); 1815 if (ret) { 1816 mlog_errno(ret); 1817 goto out; 1818 } 1819 1820 ret = ocfs2_cow_file_pos(inode, di_bh, byte_start + byte_len); 1821 if (ret) { 1822 mlog_errno(ret); 1823 goto out; 1824 } 1825 } 1826 1827 trunc_start = ocfs2_clusters_for_bytes(osb->sb, byte_start); 1828 trunc_end = (byte_start + byte_len) >> osb->s_clustersize_bits; 1829 cluster_in_el = trunc_end; 1830 1831 ret = ocfs2_zero_partial_clusters(inode, byte_start, byte_len); 1832 if (ret) { 1833 mlog_errno(ret); 1834 goto out; 1835 } 1836 1837 path = ocfs2_new_path_from_et(&et); 1838 if (!path) { 1839 ret = -ENOMEM; 1840 mlog_errno(ret); 1841 goto out; 1842 } 1843 1844 while (trunc_end > trunc_start) { 1845 1846 ret = ocfs2_find_path(INODE_CACHE(inode), path, 1847 cluster_in_el); 1848 if (ret) { 1849 mlog_errno(ret); 1850 goto out; 1851 } 1852 1853 el = path_leaf_el(path); 1854 1855 i = ocfs2_find_rec(el, trunc_end); 1856 /* 1857 * Need to go to previous extent block. 1858 */ 1859 if (i < 0) { 1860 if (path->p_tree_depth == 0) 1861 break; 1862 1863 ret = ocfs2_find_cpos_for_left_leaf(inode->i_sb, 1864 path, 1865 &cluster_in_el); 1866 if (ret) { 1867 mlog_errno(ret); 1868 goto out; 1869 } 1870 1871 /* 1872 * We've reached the leftmost extent block, 1873 * it's safe to leave. 1874 */ 1875 if (cluster_in_el == 0) 1876 break; 1877 1878 /* 1879 * The 'pos' searched for previous extent block is 1880 * always one cluster less than actual trunc_end. 1881 */ 1882 trunc_end = cluster_in_el + 1; 1883 1884 ocfs2_reinit_path(path, 1); 1885 1886 continue; 1887 1888 } else 1889 rec = &el->l_recs[i]; 1890 1891 ocfs2_calc_trunc_pos(inode, el, rec, trunc_start, &trunc_cpos, 1892 &trunc_len, &trunc_end, &blkno, &done); 1893 if (done) 1894 break; 1895 1896 flags = rec->e_flags; 1897 phys_cpos = ocfs2_blocks_to_clusters(inode->i_sb, blkno); 1898 1899 ret = ocfs2_remove_btree_range(inode, &et, trunc_cpos, 1900 phys_cpos, trunc_len, flags, 1901 &dealloc, refcount_loc, false); 1902 if (ret < 0) { 1903 mlog_errno(ret); 1904 goto out; 1905 } 1906 1907 cluster_in_el = trunc_end; 1908 1909 ocfs2_reinit_path(path, 1); 1910 } 1911 1912 ocfs2_truncate_cluster_pages(inode, byte_start, byte_len); 1913 1914out: 1915 ocfs2_free_path(path); 1916 ocfs2_schedule_truncate_log_flush(osb, 1); 1917 ocfs2_run_deallocs(osb, &dealloc); 1918 1919 return ret; 1920} 1921 1922/* 1923 * Parts of this function taken from xfs_change_file_space() 1924 */ 1925static int __ocfs2_change_file_space(struct file *file, struct inode *inode, 1926 loff_t f_pos, unsigned int cmd, 1927 struct ocfs2_space_resv *sr, 1928 int change_size) 1929{ 1930 int ret; 1931 s64 llen; 1932 loff_t size, orig_isize; 1933 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 1934 struct buffer_head *di_bh = NULL; 1935 handle_t *handle; 1936 unsigned long long max_off = inode->i_sb->s_maxbytes; 1937 1938 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 1939 return -EROFS; 1940 1941 inode_lock(inode); 1942 1943 /* 1944 * This prevents concurrent writes on other nodes 1945 */ 1946 ret = ocfs2_rw_lock(inode, 1); 1947 if (ret) { 1948 mlog_errno(ret); 1949 goto out; 1950 } 1951 1952 ret = ocfs2_inode_lock(inode, &di_bh, 1); 1953 if (ret) { 1954 mlog_errno(ret); 1955 goto out_rw_unlock; 1956 } 1957 1958 if (inode->i_flags & (S_IMMUTABLE|S_APPEND)) { 1959 ret = -EPERM; 1960 goto out_inode_unlock; 1961 } 1962 1963 switch (sr->l_whence) { 1964 case 0: /*SEEK_SET*/ 1965 break; 1966 case 1: /*SEEK_CUR*/ 1967 sr->l_start += f_pos; 1968 break; 1969 case 2: /*SEEK_END*/ 1970 sr->l_start += i_size_read(inode); 1971 break; 1972 default: 1973 ret = -EINVAL; 1974 goto out_inode_unlock; 1975 } 1976 sr->l_whence = 0; 1977 1978 llen = sr->l_len > 0 ? sr->l_len - 1 : sr->l_len; 1979 1980 if (sr->l_start < 0 1981 || sr->l_start > max_off 1982 || (sr->l_start + llen) < 0 1983 || (sr->l_start + llen) > max_off) { 1984 ret = -EINVAL; 1985 goto out_inode_unlock; 1986 } 1987 size = sr->l_start + sr->l_len; 1988 1989 if (cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64 || 1990 cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) { 1991 if (sr->l_len <= 0) { 1992 ret = -EINVAL; 1993 goto out_inode_unlock; 1994 } 1995 } 1996 1997 if (file && setattr_should_drop_suidgid(file_inode(file))) { 1998 ret = __ocfs2_write_remove_suid(inode, di_bh); 1999 if (ret) { 2000 mlog_errno(ret); 2001 goto out_inode_unlock; 2002 } 2003 } 2004 2005 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2006 switch (cmd) { 2007 case OCFS2_IOC_RESVSP: 2008 case OCFS2_IOC_RESVSP64: 2009 /* 2010 * This takes unsigned offsets, but the signed ones we 2011 * pass have been checked against overflow above. 2012 */ 2013 ret = ocfs2_allocate_unwritten_extents(inode, sr->l_start, 2014 sr->l_len); 2015 break; 2016 case OCFS2_IOC_UNRESVSP: 2017 case OCFS2_IOC_UNRESVSP64: 2018 ret = ocfs2_remove_inode_range(inode, di_bh, sr->l_start, 2019 sr->l_len); 2020 break; 2021 default: 2022 ret = -EINVAL; 2023 } 2024 2025 orig_isize = i_size_read(inode); 2026 /* zeroout eof blocks in the cluster. */ 2027 if (!ret && change_size && orig_isize < size) { 2028 ret = ocfs2_zeroout_partial_cluster(inode, orig_isize, 2029 size - orig_isize); 2030 if (!ret) 2031 i_size_write(inode, size); 2032 } 2033 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2034 if (ret) { 2035 mlog_errno(ret); 2036 goto out_inode_unlock; 2037 } 2038 2039 /* 2040 * We update c/mtime for these changes 2041 */ 2042 handle = ocfs2_start_trans(osb, OCFS2_INODE_UPDATE_CREDITS); 2043 if (IS_ERR(handle)) { 2044 ret = PTR_ERR(handle); 2045 mlog_errno(ret); 2046 goto out_inode_unlock; 2047 } 2048 2049 inode->i_ctime = inode->i_mtime = current_time(inode); 2050 ret = ocfs2_mark_inode_dirty(handle, inode, di_bh); 2051 if (ret < 0) 2052 mlog_errno(ret); 2053 2054 if (file && (file->f_flags & O_SYNC)) 2055 handle->h_sync = 1; 2056 2057 ocfs2_commit_trans(osb, handle); 2058 2059out_inode_unlock: 2060 brelse(di_bh); 2061 ocfs2_inode_unlock(inode, 1); 2062out_rw_unlock: 2063 ocfs2_rw_unlock(inode, 1); 2064 2065out: 2066 inode_unlock(inode); 2067 return ret; 2068} 2069 2070int ocfs2_change_file_space(struct file *file, unsigned int cmd, 2071 struct ocfs2_space_resv *sr) 2072{ 2073 struct inode *inode = file_inode(file); 2074 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2075 int ret; 2076 2077 if ((cmd == OCFS2_IOC_RESVSP || cmd == OCFS2_IOC_RESVSP64) && 2078 !ocfs2_writes_unwritten_extents(osb)) 2079 return -ENOTTY; 2080 else if ((cmd == OCFS2_IOC_UNRESVSP || cmd == OCFS2_IOC_UNRESVSP64) && 2081 !ocfs2_sparse_alloc(osb)) 2082 return -ENOTTY; 2083 2084 if (!S_ISREG(inode->i_mode)) 2085 return -EINVAL; 2086 2087 if (!(file->f_mode & FMODE_WRITE)) 2088 return -EBADF; 2089 2090 ret = mnt_want_write_file(file); 2091 if (ret) 2092 return ret; 2093 ret = __ocfs2_change_file_space(file, inode, file->f_pos, cmd, sr, 0); 2094 mnt_drop_write_file(file); 2095 return ret; 2096} 2097 2098static long ocfs2_fallocate(struct file *file, int mode, loff_t offset, 2099 loff_t len) 2100{ 2101 struct inode *inode = file_inode(file); 2102 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2103 struct ocfs2_space_resv sr; 2104 int change_size = 1; 2105 int cmd = OCFS2_IOC_RESVSP64; 2106 int ret = 0; 2107 2108 if (mode & ~(FALLOC_FL_KEEP_SIZE | FALLOC_FL_PUNCH_HOLE)) 2109 return -EOPNOTSUPP; 2110 if (!ocfs2_writes_unwritten_extents(osb)) 2111 return -EOPNOTSUPP; 2112 2113 if (mode & FALLOC_FL_KEEP_SIZE) { 2114 change_size = 0; 2115 } else { 2116 ret = inode_newsize_ok(inode, offset + len); 2117 if (ret) 2118 return ret; 2119 } 2120 2121 if (mode & FALLOC_FL_PUNCH_HOLE) 2122 cmd = OCFS2_IOC_UNRESVSP64; 2123 2124 sr.l_whence = 0; 2125 sr.l_start = (s64)offset; 2126 sr.l_len = (s64)len; 2127 2128 return __ocfs2_change_file_space(NULL, inode, offset, cmd, &sr, 2129 change_size); 2130} 2131 2132int ocfs2_check_range_for_refcount(struct inode *inode, loff_t pos, 2133 size_t count) 2134{ 2135 int ret = 0; 2136 unsigned int extent_flags; 2137 u32 cpos, clusters, extent_len, phys_cpos; 2138 struct super_block *sb = inode->i_sb; 2139 2140 if (!ocfs2_refcount_tree(OCFS2_SB(inode->i_sb)) || 2141 !ocfs2_is_refcount_inode(inode) || 2142 OCFS2_I(inode)->ip_dyn_features & OCFS2_INLINE_DATA_FL) 2143 return 0; 2144 2145 cpos = pos >> OCFS2_SB(sb)->s_clustersize_bits; 2146 clusters = ocfs2_clusters_for_bytes(sb, pos + count) - cpos; 2147 2148 while (clusters) { 2149 ret = ocfs2_get_clusters(inode, cpos, &phys_cpos, &extent_len, 2150 &extent_flags); 2151 if (ret < 0) { 2152 mlog_errno(ret); 2153 goto out; 2154 } 2155 2156 if (phys_cpos && (extent_flags & OCFS2_EXT_REFCOUNTED)) { 2157 ret = 1; 2158 break; 2159 } 2160 2161 if (extent_len > clusters) 2162 extent_len = clusters; 2163 2164 clusters -= extent_len; 2165 cpos += extent_len; 2166 } 2167out: 2168 return ret; 2169} 2170 2171static int ocfs2_is_io_unaligned(struct inode *inode, size_t count, loff_t pos) 2172{ 2173 int blockmask = inode->i_sb->s_blocksize - 1; 2174 loff_t final_size = pos + count; 2175 2176 if ((pos & blockmask) || (final_size & blockmask)) 2177 return 1; 2178 return 0; 2179} 2180 2181static int ocfs2_inode_lock_for_extent_tree(struct inode *inode, 2182 struct buffer_head **di_bh, 2183 int meta_level, 2184 int write_sem, 2185 int wait) 2186{ 2187 int ret = 0; 2188 2189 if (wait) 2190 ret = ocfs2_inode_lock(inode, di_bh, meta_level); 2191 else 2192 ret = ocfs2_try_inode_lock(inode, di_bh, meta_level); 2193 if (ret < 0) 2194 goto out; 2195 2196 if (wait) { 2197 if (write_sem) 2198 down_write(&OCFS2_I(inode)->ip_alloc_sem); 2199 else 2200 down_read(&OCFS2_I(inode)->ip_alloc_sem); 2201 } else { 2202 if (write_sem) 2203 ret = down_write_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2204 else 2205 ret = down_read_trylock(&OCFS2_I(inode)->ip_alloc_sem); 2206 2207 if (!ret) { 2208 ret = -EAGAIN; 2209 goto out_unlock; 2210 } 2211 } 2212 2213 return ret; 2214 2215out_unlock: 2216 brelse(*di_bh); 2217 *di_bh = NULL; 2218 ocfs2_inode_unlock(inode, meta_level); 2219out: 2220 return ret; 2221} 2222 2223static void ocfs2_inode_unlock_for_extent_tree(struct inode *inode, 2224 struct buffer_head **di_bh, 2225 int meta_level, 2226 int write_sem) 2227{ 2228 if (write_sem) 2229 up_write(&OCFS2_I(inode)->ip_alloc_sem); 2230 else 2231 up_read(&OCFS2_I(inode)->ip_alloc_sem); 2232 2233 brelse(*di_bh); 2234 *di_bh = NULL; 2235 2236 if (meta_level >= 0) 2237 ocfs2_inode_unlock(inode, meta_level); 2238} 2239 2240static int ocfs2_prepare_inode_for_write(struct file *file, 2241 loff_t pos, size_t count, int wait) 2242{ 2243 int ret = 0, meta_level = 0, overwrite_io = 0; 2244 int write_sem = 0; 2245 struct dentry *dentry = file->f_path.dentry; 2246 struct inode *inode = d_inode(dentry); 2247 struct buffer_head *di_bh = NULL; 2248 u32 cpos; 2249 u32 clusters; 2250 2251 /* 2252 * We start with a read level meta lock and only jump to an ex 2253 * if we need to make modifications here. 2254 */ 2255 for(;;) { 2256 ret = ocfs2_inode_lock_for_extent_tree(inode, 2257 &di_bh, 2258 meta_level, 2259 write_sem, 2260 wait); 2261 if (ret < 0) { 2262 if (ret != -EAGAIN) 2263 mlog_errno(ret); 2264 goto out; 2265 } 2266 2267 /* 2268 * Check if IO will overwrite allocated blocks in case 2269 * IOCB_NOWAIT flag is set. 2270 */ 2271 if (!wait && !overwrite_io) { 2272 overwrite_io = 1; 2273 2274 ret = ocfs2_overwrite_io(inode, di_bh, pos, count); 2275 if (ret < 0) { 2276 if (ret != -EAGAIN) 2277 mlog_errno(ret); 2278 goto out_unlock; 2279 } 2280 } 2281 2282 /* Clear suid / sgid if necessary. We do this here 2283 * instead of later in the write path because 2284 * remove_suid() calls ->setattr without any hint that 2285 * we may have already done our cluster locking. Since 2286 * ocfs2_setattr() *must* take cluster locks to 2287 * proceed, this will lead us to recursively lock the 2288 * inode. There's also the dinode i_size state which 2289 * can be lost via setattr during extending writes (we 2290 * set inode->i_size at the end of a write. */ 2291 if (setattr_should_drop_suidgid(inode)) { 2292 if (meta_level == 0) { 2293 ocfs2_inode_unlock_for_extent_tree(inode, 2294 &di_bh, 2295 meta_level, 2296 write_sem); 2297 meta_level = 1; 2298 continue; 2299 } 2300 2301 ret = ocfs2_write_remove_suid(inode); 2302 if (ret < 0) { 2303 mlog_errno(ret); 2304 goto out_unlock; 2305 } 2306 } 2307 2308 ret = ocfs2_check_range_for_refcount(inode, pos, count); 2309 if (ret == 1) { 2310 ocfs2_inode_unlock_for_extent_tree(inode, 2311 &di_bh, 2312 meta_level, 2313 write_sem); 2314 meta_level = 1; 2315 write_sem = 1; 2316 ret = ocfs2_inode_lock_for_extent_tree(inode, 2317 &di_bh, 2318 meta_level, 2319 write_sem, 2320 wait); 2321 if (ret < 0) { 2322 if (ret != -EAGAIN) 2323 mlog_errno(ret); 2324 goto out; 2325 } 2326 2327 cpos = pos >> OCFS2_SB(inode->i_sb)->s_clustersize_bits; 2328 clusters = 2329 ocfs2_clusters_for_bytes(inode->i_sb, pos + count) - cpos; 2330 ret = ocfs2_refcount_cow(inode, di_bh, cpos, clusters, UINT_MAX); 2331 } 2332 2333 if (ret < 0) { 2334 if (ret != -EAGAIN) 2335 mlog_errno(ret); 2336 goto out_unlock; 2337 } 2338 2339 break; 2340 } 2341 2342out_unlock: 2343 trace_ocfs2_prepare_inode_for_write(OCFS2_I(inode)->ip_blkno, 2344 pos, count, wait); 2345 2346 ocfs2_inode_unlock_for_extent_tree(inode, 2347 &di_bh, 2348 meta_level, 2349 write_sem); 2350 2351out: 2352 return ret; 2353} 2354 2355static ssize_t ocfs2_file_write_iter(struct kiocb *iocb, 2356 struct iov_iter *from) 2357{ 2358 int rw_level; 2359 ssize_t written = 0; 2360 ssize_t ret; 2361 size_t count = iov_iter_count(from); 2362 struct file *file = iocb->ki_filp; 2363 struct inode *inode = file_inode(file); 2364 struct ocfs2_super *osb = OCFS2_SB(inode->i_sb); 2365 int full_coherency = !(osb->s_mount_opt & 2366 OCFS2_MOUNT_COHERENCY_BUFFERED); 2367 void *saved_ki_complete = NULL; 2368 int append_write = ((iocb->ki_pos + count) >= 2369 i_size_read(inode) ? 1 : 0); 2370 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2371 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2372 2373 trace_ocfs2_file_write_iter(inode, file, file->f_path.dentry, 2374 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2375 file->f_path.dentry->d_name.len, 2376 file->f_path.dentry->d_name.name, 2377 (unsigned int)from->nr_segs); /* GRRRRR */ 2378 2379 if (!direct_io && nowait) 2380 return -EOPNOTSUPP; 2381 2382 if (count == 0) 2383 return 0; 2384 2385 if (nowait) { 2386 if (!inode_trylock(inode)) 2387 return -EAGAIN; 2388 } else 2389 inode_lock(inode); 2390 2391 /* 2392 * Concurrent O_DIRECT writes are allowed with 2393 * mount_option "coherency=buffered". 2394 * For append write, we must take rw EX. 2395 */ 2396 rw_level = (!direct_io || full_coherency || append_write); 2397 2398 if (nowait) 2399 ret = ocfs2_try_rw_lock(inode, rw_level); 2400 else 2401 ret = ocfs2_rw_lock(inode, rw_level); 2402 if (ret < 0) { 2403 if (ret != -EAGAIN) 2404 mlog_errno(ret); 2405 goto out_mutex; 2406 } 2407 2408 /* 2409 * O_DIRECT writes with "coherency=full" need to take EX cluster 2410 * inode_lock to guarantee coherency. 2411 */ 2412 if (direct_io && full_coherency) { 2413 /* 2414 * We need to take and drop the inode lock to force 2415 * other nodes to drop their caches. Buffered I/O 2416 * already does this in write_begin(). 2417 */ 2418 if (nowait) 2419 ret = ocfs2_try_inode_lock(inode, NULL, 1); 2420 else 2421 ret = ocfs2_inode_lock(inode, NULL, 1); 2422 if (ret < 0) { 2423 if (ret != -EAGAIN) 2424 mlog_errno(ret); 2425 goto out; 2426 } 2427 2428 ocfs2_inode_unlock(inode, 1); 2429 } 2430 2431 ret = generic_write_checks(iocb, from); 2432 if (ret <= 0) { 2433 if (ret) 2434 mlog_errno(ret); 2435 goto out; 2436 } 2437 count = ret; 2438 2439 ret = ocfs2_prepare_inode_for_write(file, iocb->ki_pos, count, !nowait); 2440 if (ret < 0) { 2441 if (ret != -EAGAIN) 2442 mlog_errno(ret); 2443 goto out; 2444 } 2445 2446 if (direct_io && !is_sync_kiocb(iocb) && 2447 ocfs2_is_io_unaligned(inode, count, iocb->ki_pos)) { 2448 /* 2449 * Make it a sync io if it's an unaligned aio. 2450 */ 2451 saved_ki_complete = xchg(&iocb->ki_complete, NULL); 2452 } 2453 2454 /* communicate with ocfs2_dio_end_io */ 2455 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2456 2457 written = __generic_file_write_iter(iocb, from); 2458 /* buffered aio wouldn't have proper lock coverage today */ 2459 BUG_ON(written == -EIOCBQUEUED && !direct_io); 2460 2461 /* 2462 * deep in g_f_a_w_n()->ocfs2_direct_IO we pass in a ocfs2_dio_end_io 2463 * function pointer which is called when o_direct io completes so that 2464 * it can unlock our rw lock. 2465 * Unfortunately there are error cases which call end_io and others 2466 * that don't. so we don't have to unlock the rw_lock if either an 2467 * async dio is going to do it in the future or an end_io after an 2468 * error has already done it. 2469 */ 2470 if ((written == -EIOCBQUEUED) || (!ocfs2_iocb_is_rw_locked(iocb))) { 2471 rw_level = -1; 2472 } 2473 2474 if (unlikely(written <= 0)) 2475 goto out; 2476 2477 if (((file->f_flags & O_DSYNC) && !direct_io) || 2478 IS_SYNC(inode)) { 2479 ret = filemap_fdatawrite_range(file->f_mapping, 2480 iocb->ki_pos - written, 2481 iocb->ki_pos - 1); 2482 if (ret < 0) 2483 written = ret; 2484 2485 if (!ret) { 2486 ret = jbd2_journal_force_commit(osb->journal->j_journal); 2487 if (ret < 0) 2488 written = ret; 2489 } 2490 2491 if (!ret) 2492 ret = filemap_fdatawait_range(file->f_mapping, 2493 iocb->ki_pos - written, 2494 iocb->ki_pos - 1); 2495 } 2496 2497out: 2498 if (saved_ki_complete) 2499 xchg(&iocb->ki_complete, saved_ki_complete); 2500 2501 if (rw_level != -1) 2502 ocfs2_rw_unlock(inode, rw_level); 2503 2504out_mutex: 2505 inode_unlock(inode); 2506 2507 if (written) 2508 ret = written; 2509 return ret; 2510} 2511 2512static ssize_t ocfs2_file_read_iter(struct kiocb *iocb, 2513 struct iov_iter *to) 2514{ 2515 int ret = 0, rw_level = -1, lock_level = 0; 2516 struct file *filp = iocb->ki_filp; 2517 struct inode *inode = file_inode(filp); 2518 int direct_io = iocb->ki_flags & IOCB_DIRECT ? 1 : 0; 2519 int nowait = iocb->ki_flags & IOCB_NOWAIT ? 1 : 0; 2520 2521 trace_ocfs2_file_read_iter(inode, filp, filp->f_path.dentry, 2522 (unsigned long long)OCFS2_I(inode)->ip_blkno, 2523 filp->f_path.dentry->d_name.len, 2524 filp->f_path.dentry->d_name.name, 2525 to->nr_segs); /* GRRRRR */ 2526 2527 2528 if (!inode) { 2529 ret = -EINVAL; 2530 mlog_errno(ret); 2531 goto bail; 2532 } 2533 2534 if (!direct_io && nowait) 2535 return -EOPNOTSUPP; 2536 2537 /* 2538 * buffered reads protect themselves in ->readpage(). O_DIRECT reads 2539 * need locks to protect pending reads from racing with truncate. 2540 */ 2541 if (direct_io) { 2542 if (nowait) 2543 ret = ocfs2_try_rw_lock(inode, 0); 2544 else 2545 ret = ocfs2_rw_lock(inode, 0); 2546 2547 if (ret < 0) { 2548 if (ret != -EAGAIN) 2549 mlog_errno(ret); 2550 goto bail; 2551 } 2552 rw_level = 0; 2553 /* communicate with ocfs2_dio_end_io */ 2554 ocfs2_iocb_set_rw_locked(iocb, rw_level); 2555 } 2556 2557 /* 2558 * We're fine letting folks race truncates and extending 2559 * writes with read across the cluster, just like they can 2560 * locally. Hence no rw_lock during read. 2561 * 2562 * Take and drop the meta data lock to update inode fields 2563 * like i_size. This allows the checks down below 2564 * generic_file_read_iter() a chance of actually working. 2565 */ 2566 ret = ocfs2_inode_lock_atime(inode, filp->f_path.mnt, &lock_level, 2567 !nowait); 2568 if (ret < 0) { 2569 if (ret != -EAGAIN) 2570 mlog_errno(ret); 2571 goto bail; 2572 } 2573 ocfs2_inode_unlock(inode, lock_level); 2574 2575 ret = generic_file_read_iter(iocb, to); 2576 trace_generic_file_read_iter_ret(ret); 2577 2578 /* buffered aio wouldn't have proper lock coverage today */ 2579 BUG_ON(ret == -EIOCBQUEUED && !direct_io); 2580 2581 /* see ocfs2_file_write_iter */ 2582 if (ret == -EIOCBQUEUED || !ocfs2_iocb_is_rw_locked(iocb)) { 2583 rw_level = -1; 2584 } 2585 2586bail: 2587 if (rw_level != -1) 2588 ocfs2_rw_unlock(inode, rw_level); 2589 2590 return ret; 2591} 2592 2593/* Refer generic_file_llseek_unlocked() */ 2594static loff_t ocfs2_file_llseek(struct file *file, loff_t offset, int whence) 2595{ 2596 struct inode *inode = file->f_mapping->host; 2597 int ret = 0; 2598 2599 inode_lock(inode); 2600 2601 switch (whence) { 2602 case SEEK_SET: 2603 break; 2604 case SEEK_END: 2605 /* SEEK_END requires the OCFS2 inode lock for the file 2606 * because it references the file's size. 2607 */ 2608 ret = ocfs2_inode_lock(inode, NULL, 0); 2609 if (ret < 0) { 2610 mlog_errno(ret); 2611 goto out; 2612 } 2613 offset += i_size_read(inode); 2614 ocfs2_inode_unlock(inode, 0); 2615 break; 2616 case SEEK_CUR: 2617 if (offset == 0) { 2618 offset = file->f_pos; 2619 goto out; 2620 } 2621 offset += file->f_pos; 2622 break; 2623 case SEEK_DATA: 2624 case SEEK_HOLE: 2625 ret = ocfs2_seek_data_hole_offset(file, &offset, whence); 2626 if (ret) 2627 goto out; 2628 break; 2629 default: 2630 ret = -EINVAL; 2631 goto out; 2632 } 2633 2634 offset = vfs_setpos(file, offset, inode->i_sb->s_maxbytes); 2635 2636out: 2637 inode_unlock(inode); 2638 if (ret) 2639 return ret; 2640 return offset; 2641} 2642 2643static loff_t ocfs2_remap_file_range(struct file *file_in, loff_t pos_in, 2644 struct file *file_out, loff_t pos_out, 2645 loff_t len, unsigned int remap_flags) 2646{ 2647 struct inode *inode_in = file_inode(file_in); 2648 struct inode *inode_out = file_inode(file_out); 2649 struct ocfs2_super *osb = OCFS2_SB(inode_in->i_sb); 2650 struct buffer_head *in_bh = NULL, *out_bh = NULL; 2651 bool same_inode = (inode_in == inode_out); 2652 loff_t remapped = 0; 2653 ssize_t ret; 2654 2655 if (remap_flags & ~(REMAP_FILE_DEDUP | REMAP_FILE_ADVISORY)) 2656 return -EINVAL; 2657 if (!ocfs2_refcount_tree(osb)) 2658 return -EOPNOTSUPP; 2659 if (ocfs2_is_hard_readonly(osb) || ocfs2_is_soft_readonly(osb)) 2660 return -EROFS; 2661 2662 /* Lock both files against IO */ 2663 ret = ocfs2_reflink_inodes_lock(inode_in, &in_bh, inode_out, &out_bh); 2664 if (ret) 2665 return ret; 2666 2667 /* Check file eligibility and prepare for block sharing. */ 2668 ret = -EINVAL; 2669 if ((OCFS2_I(inode_in)->ip_flags & OCFS2_INODE_SYSTEM_FILE) || 2670 (OCFS2_I(inode_out)->ip_flags & OCFS2_INODE_SYSTEM_FILE)) 2671 goto out_unlock; 2672 2673 ret = generic_remap_file_range_prep(file_in, pos_in, file_out, pos_out, 2674 &len, remap_flags); 2675 if (ret < 0 || len == 0) 2676 goto out_unlock; 2677 2678 /* Lock out changes to the allocation maps and remap. */ 2679 down_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2680 if (!same_inode) 2681 down_write_nested(&OCFS2_I(inode_out)->ip_alloc_sem, 2682 SINGLE_DEPTH_NESTING); 2683 2684 /* Zap any page cache for the destination file's range. */ 2685 truncate_inode_pages_range(&inode_out->i_data, 2686 round_down(pos_out, PAGE_SIZE), 2687 round_up(pos_out + len, PAGE_SIZE) - 1); 2688 2689 remapped = ocfs2_reflink_remap_blocks(inode_in, in_bh, pos_in, 2690 inode_out, out_bh, pos_out, len); 2691 up_write(&OCFS2_I(inode_in)->ip_alloc_sem); 2692 if (!same_inode) 2693 up_write(&OCFS2_I(inode_out)->ip_alloc_sem); 2694 if (remapped < 0) { 2695 ret = remapped; 2696 mlog_errno(ret); 2697 goto out_unlock; 2698 } 2699 2700 /* 2701 * Empty the extent map so that we may get the right extent 2702 * record from the disk. 2703 */ 2704 ocfs2_extent_map_trunc(inode_in, 0); 2705 ocfs2_extent_map_trunc(inode_out, 0); 2706 2707 ret = ocfs2_reflink_update_dest(inode_out, out_bh, pos_out + len); 2708 if (ret) { 2709 mlog_errno(ret); 2710 goto out_unlock; 2711 } 2712 2713out_unlock: 2714 ocfs2_reflink_inodes_unlock(inode_in, in_bh, inode_out, out_bh); 2715 return remapped > 0 ? remapped : ret; 2716} 2717 2718const struct inode_operations ocfs2_file_iops = { 2719 .setattr = ocfs2_setattr, 2720 .getattr = ocfs2_getattr, 2721 .permission = ocfs2_permission, 2722 .listxattr = ocfs2_listxattr, 2723 .fiemap = ocfs2_fiemap, 2724 .get_acl = ocfs2_iop_get_acl, 2725 .set_acl = ocfs2_iop_set_acl, 2726}; 2727 2728const struct inode_operations ocfs2_special_file_iops = { 2729 .setattr = ocfs2_setattr, 2730 .getattr = ocfs2_getattr, 2731 .permission = ocfs2_permission, 2732 .get_acl = ocfs2_iop_get_acl, 2733 .set_acl = ocfs2_iop_set_acl, 2734}; 2735 2736/* 2737 * Other than ->lock, keep ocfs2_fops and ocfs2_dops in sync with 2738 * ocfs2_fops_no_plocks and ocfs2_dops_no_plocks! 2739 */ 2740const struct file_operations ocfs2_fops = { 2741 .llseek = ocfs2_file_llseek, 2742 .mmap = ocfs2_mmap, 2743 .fsync = ocfs2_sync_file, 2744 .release = ocfs2_file_release, 2745 .open = ocfs2_file_open, 2746 .read_iter = ocfs2_file_read_iter, 2747 .write_iter = ocfs2_file_write_iter, 2748 .unlocked_ioctl = ocfs2_ioctl, 2749#ifdef CONFIG_COMPAT 2750 .compat_ioctl = ocfs2_compat_ioctl, 2751#endif 2752 .lock = ocfs2_lock, 2753 .flock = ocfs2_flock, 2754 .splice_read = generic_file_splice_read, 2755 .splice_write = iter_file_splice_write, 2756 .fallocate = ocfs2_fallocate, 2757 .remap_file_range = ocfs2_remap_file_range, 2758}; 2759 2760const struct file_operations ocfs2_dops = { 2761 .llseek = generic_file_llseek, 2762 .read = generic_read_dir, 2763 .iterate = ocfs2_readdir, 2764 .fsync = ocfs2_sync_file, 2765 .release = ocfs2_dir_release, 2766 .open = ocfs2_dir_open, 2767 .unlocked_ioctl = ocfs2_ioctl, 2768#ifdef CONFIG_COMPAT 2769 .compat_ioctl = ocfs2_compat_ioctl, 2770#endif 2771 .lock = ocfs2_lock, 2772 .flock = ocfs2_flock, 2773}; 2774 2775/* 2776 * POSIX-lockless variants of our file_operations. 2777 * 2778 * These will be used if the underlying cluster stack does not support 2779 * posix file locking, if the user passes the "localflocks" mount 2780 * option, or if we have a local-only fs. 2781 * 2782 * ocfs2_flock is in here because all stacks handle UNIX file locks, 2783 * so we still want it in the case of no stack support for 2784 * plocks. Internally, it will do the right thing when asked to ignore 2785 * the cluster. 2786 */ 2787const struct file_operations ocfs2_fops_no_plocks = { 2788 .llseek = ocfs2_file_llseek, 2789 .mmap = ocfs2_mmap, 2790 .fsync = ocfs2_sync_file, 2791 .release = ocfs2_file_release, 2792 .open = ocfs2_file_open, 2793 .read_iter = ocfs2_file_read_iter, 2794 .write_iter = ocfs2_file_write_iter, 2795 .unlocked_ioctl = ocfs2_ioctl, 2796#ifdef CONFIG_COMPAT 2797 .compat_ioctl = ocfs2_compat_ioctl, 2798#endif 2799 .flock = ocfs2_flock, 2800 .splice_read = generic_file_splice_read, 2801 .splice_write = iter_file_splice_write, 2802 .fallocate = ocfs2_fallocate, 2803 .remap_file_range = ocfs2_remap_file_range, 2804}; 2805 2806const struct file_operations ocfs2_dops_no_plocks = { 2807 .llseek = generic_file_llseek, 2808 .read = generic_read_dir, 2809 .iterate = ocfs2_readdir, 2810 .fsync = ocfs2_sync_file, 2811 .release = ocfs2_dir_release, 2812 .open = ocfs2_dir_open, 2813 .unlocked_ioctl = ocfs2_ioctl, 2814#ifdef CONFIG_COMPAT 2815 .compat_ioctl = ocfs2_compat_ioctl, 2816#endif 2817 .flock = ocfs2_flock, 2818}; 2819