xref: /kernel/linux/linux-5.10/fs/ocfs2/blockcheck.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/* -*- mode: c; c-basic-offset: 8; -*-
3 * vim: noexpandtab sw=8 ts=8 sts=0:
4 *
5 * blockcheck.c
6 *
7 * Checksum and ECC codes for the OCFS2 userspace library.
8 *
9 * Copyright (C) 2006, 2008 Oracle.  All rights reserved.
10 */
11
12#include <linux/kernel.h>
13#include <linux/types.h>
14#include <linux/crc32.h>
15#include <linux/buffer_head.h>
16#include <linux/bitops.h>
17#include <linux/debugfs.h>
18#include <linux/module.h>
19#include <linux/fs.h>
20#include <asm/byteorder.h>
21
22#include <cluster/masklog.h>
23
24#include "ocfs2.h"
25
26#include "blockcheck.h"
27
28
29/*
30 * We use the following conventions:
31 *
32 * d = # data bits
33 * p = # parity bits
34 * c = # total code bits (d + p)
35 */
36
37
38/*
39 * Calculate the bit offset in the hamming code buffer based on the bit's
40 * offset in the data buffer.  Since the hamming code reserves all
41 * power-of-two bits for parity, the data bit number and the code bit
42 * number are offset by all the parity bits beforehand.
43 *
44 * Recall that bit numbers in hamming code are 1-based.  This function
45 * takes the 0-based data bit from the caller.
46 *
47 * An example.  Take bit 1 of the data buffer.  1 is a power of two (2^0),
48 * so it's a parity bit.  2 is a power of two (2^1), so it's a parity bit.
49 * 3 is not a power of two.  So bit 1 of the data buffer ends up as bit 3
50 * in the code buffer.
51 *
52 * The caller can pass in *p if it wants to keep track of the most recent
53 * number of parity bits added.  This allows the function to start the
54 * calculation at the last place.
55 */
56static unsigned int calc_code_bit(unsigned int i, unsigned int *p_cache)
57{
58	unsigned int b, p = 0;
59
60	/*
61	 * Data bits are 0-based, but we're talking code bits, which
62	 * are 1-based.
63	 */
64	b = i + 1;
65
66	/* Use the cache if it is there */
67	if (p_cache)
68		p = *p_cache;
69        b += p;
70
71	/*
72	 * For every power of two below our bit number, bump our bit.
73	 *
74	 * We compare with (b + 1) because we have to compare with what b
75	 * would be _if_ it were bumped up by the parity bit.  Capice?
76	 *
77	 * p is set above.
78	 */
79	for (; (1 << p) < (b + 1); p++)
80		b++;
81
82	if (p_cache)
83		*p_cache = p;
84
85	return b;
86}
87
88/*
89 * This is the low level encoder function.  It can be called across
90 * multiple hunks just like the crc32 code.  'd' is the number of bits
91 * _in_this_hunk_.  nr is the bit offset of this hunk.  So, if you had
92 * two 512B buffers, you would do it like so:
93 *
94 * parity = ocfs2_hamming_encode(0, buf1, 512 * 8, 0);
95 * parity = ocfs2_hamming_encode(parity, buf2, 512 * 8, 512 * 8);
96 *
97 * If you just have one buffer, use ocfs2_hamming_encode_block().
98 */
99u32 ocfs2_hamming_encode(u32 parity, void *data, unsigned int d, unsigned int nr)
100{
101	unsigned int i, b, p = 0;
102
103	BUG_ON(!d);
104
105	/*
106	 * b is the hamming code bit number.  Hamming code specifies a
107	 * 1-based array, but C uses 0-based.  So 'i' is for C, and 'b' is
108	 * for the algorithm.
109	 *
110	 * The i++ in the for loop is so that the start offset passed
111	 * to ocfs2_find_next_bit_set() is one greater than the previously
112	 * found bit.
113	 */
114	for (i = 0; (i = ocfs2_find_next_bit(data, d, i)) < d; i++)
115	{
116		/*
117		 * i is the offset in this hunk, nr + i is the total bit
118		 * offset.
119		 */
120		b = calc_code_bit(nr + i, &p);
121
122		/*
123		 * Data bits in the resultant code are checked by
124		 * parity bits that are part of the bit number
125		 * representation.  Huh?
126		 *
127		 * <wikipedia href="https://en.wikipedia.org/wiki/Hamming_code">
128		 * In other words, the parity bit at position 2^k
129		 * checks bits in positions having bit k set in
130		 * their binary representation.  Conversely, for
131		 * instance, bit 13, i.e. 1101(2), is checked by
132		 * bits 1000(2) = 8, 0100(2)=4 and 0001(2) = 1.
133		 * </wikipedia>
134		 *
135		 * Note that 'k' is the _code_ bit number.  'b' in
136		 * our loop.
137		 */
138		parity ^= b;
139	}
140
141	/* While the data buffer was treated as little endian, the
142	 * return value is in host endian. */
143	return parity;
144}
145
146u32 ocfs2_hamming_encode_block(void *data, unsigned int blocksize)
147{
148	return ocfs2_hamming_encode(0, data, blocksize * 8, 0);
149}
150
151/*
152 * Like ocfs2_hamming_encode(), this can handle hunks.  nr is the bit
153 * offset of the current hunk.  If bit to be fixed is not part of the
154 * current hunk, this does nothing.
155 *
156 * If you only have one hunk, use ocfs2_hamming_fix_block().
157 */
158void ocfs2_hamming_fix(void *data, unsigned int d, unsigned int nr,
159		       unsigned int fix)
160{
161	unsigned int i, b;
162
163	BUG_ON(!d);
164
165	/*
166	 * If the bit to fix has an hweight of 1, it's a parity bit.  One
167	 * busted parity bit is its own error.  Nothing to do here.
168	 */
169	if (hweight32(fix) == 1)
170		return;
171
172	/*
173	 * nr + d is the bit right past the data hunk we're looking at.
174	 * If fix after that, nothing to do
175	 */
176	if (fix >= calc_code_bit(nr + d, NULL))
177		return;
178
179	/*
180	 * nr is the offset in the data hunk we're starting at.  Let's
181	 * start b at the offset in the code buffer.  See hamming_encode()
182	 * for a more detailed description of 'b'.
183	 */
184	b = calc_code_bit(nr, NULL);
185	/* If the fix is before this hunk, nothing to do */
186	if (fix < b)
187		return;
188
189	for (i = 0; i < d; i++, b++)
190	{
191		/* Skip past parity bits */
192		while (hweight32(b) == 1)
193			b++;
194
195		/*
196		 * i is the offset in this data hunk.
197		 * nr + i is the offset in the total data buffer.
198		 * b is the offset in the total code buffer.
199		 *
200		 * Thus, when b == fix, bit i in the current hunk needs
201		 * fixing.
202		 */
203		if (b == fix)
204		{
205			if (ocfs2_test_bit(i, data))
206				ocfs2_clear_bit(i, data);
207			else
208				ocfs2_set_bit(i, data);
209			break;
210		}
211	}
212}
213
214void ocfs2_hamming_fix_block(void *data, unsigned int blocksize,
215			     unsigned int fix)
216{
217	ocfs2_hamming_fix(data, blocksize * 8, 0, fix);
218}
219
220
221/*
222 * Debugfs handling.
223 */
224
225#ifdef CONFIG_DEBUG_FS
226
227static int blockcheck_u64_get(void *data, u64 *val)
228{
229	*val = *(u64 *)data;
230	return 0;
231}
232DEFINE_SIMPLE_ATTRIBUTE(blockcheck_fops, blockcheck_u64_get, NULL, "%llu\n");
233
234static void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
235{
236	if (stats) {
237		debugfs_remove_recursive(stats->b_debug_dir);
238		stats->b_debug_dir = NULL;
239	}
240}
241
242static void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
243					   struct dentry *parent)
244{
245	struct dentry *dir;
246
247	dir = debugfs_create_dir("blockcheck", parent);
248	stats->b_debug_dir = dir;
249
250	debugfs_create_file("blocks_checked", S_IFREG | S_IRUSR, dir,
251			    &stats->b_check_count, &blockcheck_fops);
252
253	debugfs_create_file("checksums_failed", S_IFREG | S_IRUSR, dir,
254			    &stats->b_failure_count, &blockcheck_fops);
255
256	debugfs_create_file("ecc_recoveries", S_IFREG | S_IRUSR, dir,
257			    &stats->b_recover_count, &blockcheck_fops);
258
259}
260#else
261static inline void ocfs2_blockcheck_debug_install(struct ocfs2_blockcheck_stats *stats,
262						  struct dentry *parent)
263{
264}
265
266static inline void ocfs2_blockcheck_debug_remove(struct ocfs2_blockcheck_stats *stats)
267{
268}
269#endif  /* CONFIG_DEBUG_FS */
270
271/* Always-called wrappers for starting and stopping the debugfs files */
272void ocfs2_blockcheck_stats_debugfs_install(struct ocfs2_blockcheck_stats *stats,
273					    struct dentry *parent)
274{
275	ocfs2_blockcheck_debug_install(stats, parent);
276}
277
278void ocfs2_blockcheck_stats_debugfs_remove(struct ocfs2_blockcheck_stats *stats)
279{
280	ocfs2_blockcheck_debug_remove(stats);
281}
282
283static void ocfs2_blockcheck_inc_check(struct ocfs2_blockcheck_stats *stats)
284{
285	u64 new_count;
286
287	if (!stats)
288		return;
289
290	spin_lock(&stats->b_lock);
291	stats->b_check_count++;
292	new_count = stats->b_check_count;
293	spin_unlock(&stats->b_lock);
294
295	if (!new_count)
296		mlog(ML_NOTICE, "Block check count has wrapped\n");
297}
298
299static void ocfs2_blockcheck_inc_failure(struct ocfs2_blockcheck_stats *stats)
300{
301	u64 new_count;
302
303	if (!stats)
304		return;
305
306	spin_lock(&stats->b_lock);
307	stats->b_failure_count++;
308	new_count = stats->b_failure_count;
309	spin_unlock(&stats->b_lock);
310
311	if (!new_count)
312		mlog(ML_NOTICE, "Checksum failure count has wrapped\n");
313}
314
315static void ocfs2_blockcheck_inc_recover(struct ocfs2_blockcheck_stats *stats)
316{
317	u64 new_count;
318
319	if (!stats)
320		return;
321
322	spin_lock(&stats->b_lock);
323	stats->b_recover_count++;
324	new_count = stats->b_recover_count;
325	spin_unlock(&stats->b_lock);
326
327	if (!new_count)
328		mlog(ML_NOTICE, "ECC recovery count has wrapped\n");
329}
330
331
332
333/*
334 * These are the low-level APIs for using the ocfs2_block_check structure.
335 */
336
337/*
338 * This function generates check information for a block.
339 * data is the block to be checked.  bc is a pointer to the
340 * ocfs2_block_check structure describing the crc32 and the ecc.
341 *
342 * bc should be a pointer inside data, as the function will
343 * take care of zeroing it before calculating the check information.  If
344 * bc does not point inside data, the caller must make sure any inline
345 * ocfs2_block_check structures are zeroed.
346 *
347 * The data buffer must be in on-disk endian (little endian for ocfs2).
348 * bc will be filled with little-endian values and will be ready to go to
349 * disk.
350 */
351void ocfs2_block_check_compute(void *data, size_t blocksize,
352			       struct ocfs2_block_check *bc)
353{
354	u32 crc;
355	u32 ecc;
356
357	memset(bc, 0, sizeof(struct ocfs2_block_check));
358
359	crc = crc32_le(~0, data, blocksize);
360	ecc = ocfs2_hamming_encode_block(data, blocksize);
361
362	/*
363	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
364	 * larger than 16 bits.
365	 */
366	BUG_ON(ecc > USHRT_MAX);
367
368	bc->bc_crc32e = cpu_to_le32(crc);
369	bc->bc_ecc = cpu_to_le16((u16)ecc);
370}
371
372/*
373 * This function validates existing check information.  Like _compute,
374 * the function will take care of zeroing bc before calculating check codes.
375 * If bc is not a pointer inside data, the caller must have zeroed any
376 * inline ocfs2_block_check structures.
377 *
378 * Again, the data passed in should be the on-disk endian.
379 */
380int ocfs2_block_check_validate(void *data, size_t blocksize,
381			       struct ocfs2_block_check *bc,
382			       struct ocfs2_blockcheck_stats *stats)
383{
384	int rc = 0;
385	u32 bc_crc32e;
386	u16 bc_ecc;
387	u32 crc, ecc;
388
389	ocfs2_blockcheck_inc_check(stats);
390
391	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
392	bc_ecc = le16_to_cpu(bc->bc_ecc);
393
394	memset(bc, 0, sizeof(struct ocfs2_block_check));
395
396	/* Fast path - if the crc32 validates, we're good to go */
397	crc = crc32_le(~0, data, blocksize);
398	if (crc == bc_crc32e)
399		goto out;
400
401	ocfs2_blockcheck_inc_failure(stats);
402	mlog(ML_ERROR,
403	     "CRC32 failed: stored: 0x%x, computed 0x%x. Applying ECC.\n",
404	     (unsigned int)bc_crc32e, (unsigned int)crc);
405
406	/* Ok, try ECC fixups */
407	ecc = ocfs2_hamming_encode_block(data, blocksize);
408	ocfs2_hamming_fix_block(data, blocksize, ecc ^ bc_ecc);
409
410	/* And check the crc32 again */
411	crc = crc32_le(~0, data, blocksize);
412	if (crc == bc_crc32e) {
413		ocfs2_blockcheck_inc_recover(stats);
414		goto out;
415	}
416
417	mlog(ML_ERROR, "Fixed CRC32 failed: stored: 0x%x, computed 0x%x\n",
418	     (unsigned int)bc_crc32e, (unsigned int)crc);
419
420	rc = -EIO;
421
422out:
423	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
424	bc->bc_ecc = cpu_to_le16(bc_ecc);
425
426	return rc;
427}
428
429/*
430 * This function generates check information for a list of buffer_heads.
431 * bhs is the blocks to be checked.  bc is a pointer to the
432 * ocfs2_block_check structure describing the crc32 and the ecc.
433 *
434 * bc should be a pointer inside data, as the function will
435 * take care of zeroing it before calculating the check information.  If
436 * bc does not point inside data, the caller must make sure any inline
437 * ocfs2_block_check structures are zeroed.
438 *
439 * The data buffer must be in on-disk endian (little endian for ocfs2).
440 * bc will be filled with little-endian values and will be ready to go to
441 * disk.
442 */
443void ocfs2_block_check_compute_bhs(struct buffer_head **bhs, int nr,
444				   struct ocfs2_block_check *bc)
445{
446	int i;
447	u32 crc, ecc;
448
449	BUG_ON(nr < 0);
450
451	if (!nr)
452		return;
453
454	memset(bc, 0, sizeof(struct ocfs2_block_check));
455
456	for (i = 0, crc = ~0, ecc = 0; i < nr; i++) {
457		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
458		/*
459		 * The number of bits in a buffer is obviously b_size*8.
460		 * The offset of this buffer is b_size*i, so the bit offset
461		 * of this buffer is b_size*8*i.
462		 */
463		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
464						bhs[i]->b_size * 8,
465						bhs[i]->b_size * 8 * i);
466	}
467
468	/*
469	 * No ecc'd ocfs2 structure is larger than 4K, so ecc will be no
470	 * larger than 16 bits.
471	 */
472	BUG_ON(ecc > USHRT_MAX);
473
474	bc->bc_crc32e = cpu_to_le32(crc);
475	bc->bc_ecc = cpu_to_le16((u16)ecc);
476}
477
478/*
479 * This function validates existing check information on a list of
480 * buffer_heads.  Like _compute_bhs, the function will take care of
481 * zeroing bc before calculating check codes.  If bc is not a pointer
482 * inside data, the caller must have zeroed any inline
483 * ocfs2_block_check structures.
484 *
485 * Again, the data passed in should be the on-disk endian.
486 */
487int ocfs2_block_check_validate_bhs(struct buffer_head **bhs, int nr,
488				   struct ocfs2_block_check *bc,
489				   struct ocfs2_blockcheck_stats *stats)
490{
491	int i, rc = 0;
492	u32 bc_crc32e;
493	u16 bc_ecc;
494	u32 crc, ecc, fix;
495
496	BUG_ON(nr < 0);
497
498	if (!nr)
499		return 0;
500
501	ocfs2_blockcheck_inc_check(stats);
502
503	bc_crc32e = le32_to_cpu(bc->bc_crc32e);
504	bc_ecc = le16_to_cpu(bc->bc_ecc);
505
506	memset(bc, 0, sizeof(struct ocfs2_block_check));
507
508	/* Fast path - if the crc32 validates, we're good to go */
509	for (i = 0, crc = ~0; i < nr; i++)
510		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
511	if (crc == bc_crc32e)
512		goto out;
513
514	ocfs2_blockcheck_inc_failure(stats);
515	mlog(ML_ERROR,
516	     "CRC32 failed: stored: %u, computed %u.  Applying ECC.\n",
517	     (unsigned int)bc_crc32e, (unsigned int)crc);
518
519	/* Ok, try ECC fixups */
520	for (i = 0, ecc = 0; i < nr; i++) {
521		/*
522		 * The number of bits in a buffer is obviously b_size*8.
523		 * The offset of this buffer is b_size*i, so the bit offset
524		 * of this buffer is b_size*8*i.
525		 */
526		ecc = (u16)ocfs2_hamming_encode(ecc, bhs[i]->b_data,
527						bhs[i]->b_size * 8,
528						bhs[i]->b_size * 8 * i);
529	}
530	fix = ecc ^ bc_ecc;
531	for (i = 0; i < nr; i++) {
532		/*
533		 * Try the fix against each buffer.  It will only affect
534		 * one of them.
535		 */
536		ocfs2_hamming_fix(bhs[i]->b_data, bhs[i]->b_size * 8,
537				  bhs[i]->b_size * 8 * i, fix);
538	}
539
540	/* And check the crc32 again */
541	for (i = 0, crc = ~0; i < nr; i++)
542		crc = crc32_le(crc, bhs[i]->b_data, bhs[i]->b_size);
543	if (crc == bc_crc32e) {
544		ocfs2_blockcheck_inc_recover(stats);
545		goto out;
546	}
547
548	mlog(ML_ERROR, "Fixed CRC32 failed: stored: %u, computed %u\n",
549	     (unsigned int)bc_crc32e, (unsigned int)crc);
550
551	rc = -EIO;
552
553out:
554	bc->bc_crc32e = cpu_to_le32(bc_crc32e);
555	bc->bc_ecc = cpu_to_le16(bc_ecc);
556
557	return rc;
558}
559
560/*
561 * These are the main API.  They check the superblock flag before
562 * calling the underlying operations.
563 *
564 * They expect the buffer(s) to be in disk format.
565 */
566void ocfs2_compute_meta_ecc(struct super_block *sb, void *data,
567			    struct ocfs2_block_check *bc)
568{
569	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
570		ocfs2_block_check_compute(data, sb->s_blocksize, bc);
571}
572
573int ocfs2_validate_meta_ecc(struct super_block *sb, void *data,
574			    struct ocfs2_block_check *bc)
575{
576	int rc = 0;
577	struct ocfs2_super *osb = OCFS2_SB(sb);
578
579	if (ocfs2_meta_ecc(osb))
580		rc = ocfs2_block_check_validate(data, sb->s_blocksize, bc,
581						&osb->osb_ecc_stats);
582
583	return rc;
584}
585
586void ocfs2_compute_meta_ecc_bhs(struct super_block *sb,
587				struct buffer_head **bhs, int nr,
588				struct ocfs2_block_check *bc)
589{
590	if (ocfs2_meta_ecc(OCFS2_SB(sb)))
591		ocfs2_block_check_compute_bhs(bhs, nr, bc);
592}
593
594int ocfs2_validate_meta_ecc_bhs(struct super_block *sb,
595				struct buffer_head **bhs, int nr,
596				struct ocfs2_block_check *bc)
597{
598	int rc = 0;
599	struct ocfs2_super *osb = OCFS2_SB(sb);
600
601	if (ocfs2_meta_ecc(osb))
602		rc = ocfs2_block_check_validate_bhs(bhs, nr, bc,
603						    &osb->osb_ecc_stats);
604
605	return rc;
606}
607
608