xref: /kernel/linux/linux-5.10/fs/ntfs/aops.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-or-later
2/**
3 * aops.c - NTFS kernel address space operations and page cache handling.
4 *
5 * Copyright (c) 2001-2014 Anton Altaparmakov and Tuxera Inc.
6 * Copyright (c) 2002 Richard Russon
7 */
8
9#include <linux/errno.h>
10#include <linux/fs.h>
11#include <linux/gfp.h>
12#include <linux/mm.h>
13#include <linux/pagemap.h>
14#include <linux/swap.h>
15#include <linux/buffer_head.h>
16#include <linux/writeback.h>
17#include <linux/bit_spinlock.h>
18#include <linux/bio.h>
19
20#include "aops.h"
21#include "attrib.h"
22#include "debug.h"
23#include "inode.h"
24#include "mft.h"
25#include "runlist.h"
26#include "types.h"
27#include "ntfs.h"
28
29/**
30 * ntfs_end_buffer_async_read - async io completion for reading attributes
31 * @bh:		buffer head on which io is completed
32 * @uptodate:	whether @bh is now uptodate or not
33 *
34 * Asynchronous I/O completion handler for reading pages belonging to the
35 * attribute address space of an inode.  The inodes can either be files or
36 * directories or they can be fake inodes describing some attribute.
37 *
38 * If NInoMstProtected(), perform the post read mst fixups when all IO on the
39 * page has been completed and mark the page uptodate or set the error bit on
40 * the page.  To determine the size of the records that need fixing up, we
41 * cheat a little bit by setting the index_block_size in ntfs_inode to the ntfs
42 * record size, and index_block_size_bits, to the log(base 2) of the ntfs
43 * record size.
44 */
45static void ntfs_end_buffer_async_read(struct buffer_head *bh, int uptodate)
46{
47	unsigned long flags;
48	struct buffer_head *first, *tmp;
49	struct page *page;
50	struct inode *vi;
51	ntfs_inode *ni;
52	int page_uptodate = 1;
53
54	page = bh->b_page;
55	vi = page->mapping->host;
56	ni = NTFS_I(vi);
57
58	if (likely(uptodate)) {
59		loff_t i_size;
60		s64 file_ofs, init_size;
61
62		set_buffer_uptodate(bh);
63
64		file_ofs = ((s64)page->index << PAGE_SHIFT) +
65				bh_offset(bh);
66		read_lock_irqsave(&ni->size_lock, flags);
67		init_size = ni->initialized_size;
68		i_size = i_size_read(vi);
69		read_unlock_irqrestore(&ni->size_lock, flags);
70		if (unlikely(init_size > i_size)) {
71			/* Race with shrinking truncate. */
72			init_size = i_size;
73		}
74		/* Check for the current buffer head overflowing. */
75		if (unlikely(file_ofs + bh->b_size > init_size)) {
76			int ofs;
77			void *kaddr;
78
79			ofs = 0;
80			if (file_ofs < init_size)
81				ofs = init_size - file_ofs;
82			kaddr = kmap_atomic(page);
83			memset(kaddr + bh_offset(bh) + ofs, 0,
84					bh->b_size - ofs);
85			flush_dcache_page(page);
86			kunmap_atomic(kaddr);
87		}
88	} else {
89		clear_buffer_uptodate(bh);
90		SetPageError(page);
91		ntfs_error(ni->vol->sb, "Buffer I/O error, logical block "
92				"0x%llx.", (unsigned long long)bh->b_blocknr);
93	}
94	first = page_buffers(page);
95	spin_lock_irqsave(&first->b_uptodate_lock, flags);
96	clear_buffer_async_read(bh);
97	unlock_buffer(bh);
98	tmp = bh;
99	do {
100		if (!buffer_uptodate(tmp))
101			page_uptodate = 0;
102		if (buffer_async_read(tmp)) {
103			if (likely(buffer_locked(tmp)))
104				goto still_busy;
105			/* Async buffers must be locked. */
106			BUG();
107		}
108		tmp = tmp->b_this_page;
109	} while (tmp != bh);
110	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
111	/*
112	 * If none of the buffers had errors then we can set the page uptodate,
113	 * but we first have to perform the post read mst fixups, if the
114	 * attribute is mst protected, i.e. if NInoMstProteced(ni) is true.
115	 * Note we ignore fixup errors as those are detected when
116	 * map_mft_record() is called which gives us per record granularity
117	 * rather than per page granularity.
118	 */
119	if (!NInoMstProtected(ni)) {
120		if (likely(page_uptodate && !PageError(page)))
121			SetPageUptodate(page);
122	} else {
123		u8 *kaddr;
124		unsigned int i, recs;
125		u32 rec_size;
126
127		rec_size = ni->itype.index.block_size;
128		recs = PAGE_SIZE / rec_size;
129		/* Should have been verified before we got here... */
130		BUG_ON(!recs);
131		kaddr = kmap_atomic(page);
132		for (i = 0; i < recs; i++)
133			post_read_mst_fixup((NTFS_RECORD*)(kaddr +
134					i * rec_size), rec_size);
135		kunmap_atomic(kaddr);
136		flush_dcache_page(page);
137		if (likely(page_uptodate && !PageError(page)))
138			SetPageUptodate(page);
139	}
140	unlock_page(page);
141	return;
142still_busy:
143	spin_unlock_irqrestore(&first->b_uptodate_lock, flags);
144	return;
145}
146
147/**
148 * ntfs_read_block - fill a @page of an address space with data
149 * @page:	page cache page to fill with data
150 *
151 * Fill the page @page of the address space belonging to the @page->host inode.
152 * We read each buffer asynchronously and when all buffers are read in, our io
153 * completion handler ntfs_end_buffer_read_async(), if required, automatically
154 * applies the mst fixups to the page before finally marking it uptodate and
155 * unlocking it.
156 *
157 * We only enforce allocated_size limit because i_size is checked for in
158 * generic_file_read().
159 *
160 * Return 0 on success and -errno on error.
161 *
162 * Contains an adapted version of fs/buffer.c::block_read_full_page().
163 */
164static int ntfs_read_block(struct page *page)
165{
166	loff_t i_size;
167	VCN vcn;
168	LCN lcn;
169	s64 init_size;
170	struct inode *vi;
171	ntfs_inode *ni;
172	ntfs_volume *vol;
173	runlist_element *rl;
174	struct buffer_head *bh, *head, *arr[MAX_BUF_PER_PAGE];
175	sector_t iblock, lblock, zblock;
176	unsigned long flags;
177	unsigned int blocksize, vcn_ofs;
178	int i, nr;
179	unsigned char blocksize_bits;
180
181	vi = page->mapping->host;
182	ni = NTFS_I(vi);
183	vol = ni->vol;
184
185	/* $MFT/$DATA must have its complete runlist in memory at all times. */
186	BUG_ON(!ni->runlist.rl && !ni->mft_no && !NInoAttr(ni));
187
188	blocksize = vol->sb->s_blocksize;
189	blocksize_bits = vol->sb->s_blocksize_bits;
190
191	if (!page_has_buffers(page)) {
192		create_empty_buffers(page, blocksize, 0);
193		if (unlikely(!page_has_buffers(page))) {
194			unlock_page(page);
195			return -ENOMEM;
196		}
197	}
198	bh = head = page_buffers(page);
199	BUG_ON(!bh);
200
201	/*
202	 * We may be racing with truncate.  To avoid some of the problems we
203	 * now take a snapshot of the various sizes and use those for the whole
204	 * of the function.  In case of an extending truncate it just means we
205	 * may leave some buffers unmapped which are now allocated.  This is
206	 * not a problem since these buffers will just get mapped when a write
207	 * occurs.  In case of a shrinking truncate, we will detect this later
208	 * on due to the runlist being incomplete and if the page is being
209	 * fully truncated, truncate will throw it away as soon as we unlock
210	 * it so no need to worry what we do with it.
211	 */
212	iblock = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
213	read_lock_irqsave(&ni->size_lock, flags);
214	lblock = (ni->allocated_size + blocksize - 1) >> blocksize_bits;
215	init_size = ni->initialized_size;
216	i_size = i_size_read(vi);
217	read_unlock_irqrestore(&ni->size_lock, flags);
218	if (unlikely(init_size > i_size)) {
219		/* Race with shrinking truncate. */
220		init_size = i_size;
221	}
222	zblock = (init_size + blocksize - 1) >> blocksize_bits;
223
224	/* Loop through all the buffers in the page. */
225	rl = NULL;
226	nr = i = 0;
227	do {
228		int err = 0;
229
230		if (unlikely(buffer_uptodate(bh)))
231			continue;
232		if (unlikely(buffer_mapped(bh))) {
233			arr[nr++] = bh;
234			continue;
235		}
236		bh->b_bdev = vol->sb->s_bdev;
237		/* Is the block within the allowed limits? */
238		if (iblock < lblock) {
239			bool is_retry = false;
240
241			/* Convert iblock into corresponding vcn and offset. */
242			vcn = (VCN)iblock << blocksize_bits >>
243					vol->cluster_size_bits;
244			vcn_ofs = ((VCN)iblock << blocksize_bits) &
245					vol->cluster_size_mask;
246			if (!rl) {
247lock_retry_remap:
248				down_read(&ni->runlist.lock);
249				rl = ni->runlist.rl;
250			}
251			if (likely(rl != NULL)) {
252				/* Seek to element containing target vcn. */
253				while (rl->length && rl[1].vcn <= vcn)
254					rl++;
255				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
256			} else
257				lcn = LCN_RL_NOT_MAPPED;
258			/* Successful remap. */
259			if (lcn >= 0) {
260				/* Setup buffer head to correct block. */
261				bh->b_blocknr = ((lcn << vol->cluster_size_bits)
262						+ vcn_ofs) >> blocksize_bits;
263				set_buffer_mapped(bh);
264				/* Only read initialized data blocks. */
265				if (iblock < zblock) {
266					arr[nr++] = bh;
267					continue;
268				}
269				/* Fully non-initialized data block, zero it. */
270				goto handle_zblock;
271			}
272			/* It is a hole, need to zero it. */
273			if (lcn == LCN_HOLE)
274				goto handle_hole;
275			/* If first try and runlist unmapped, map and retry. */
276			if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
277				is_retry = true;
278				/*
279				 * Attempt to map runlist, dropping lock for
280				 * the duration.
281				 */
282				up_read(&ni->runlist.lock);
283				err = ntfs_map_runlist(ni, vcn);
284				if (likely(!err))
285					goto lock_retry_remap;
286				rl = NULL;
287			} else if (!rl)
288				up_read(&ni->runlist.lock);
289			/*
290			 * If buffer is outside the runlist, treat it as a
291			 * hole.  This can happen due to concurrent truncate
292			 * for example.
293			 */
294			if (err == -ENOENT || lcn == LCN_ENOENT) {
295				err = 0;
296				goto handle_hole;
297			}
298			/* Hard error, zero out region. */
299			if (!err)
300				err = -EIO;
301			bh->b_blocknr = -1;
302			SetPageError(page);
303			ntfs_error(vol->sb, "Failed to read from inode 0x%lx, "
304					"attribute type 0x%x, vcn 0x%llx, "
305					"offset 0x%x because its location on "
306					"disk could not be determined%s "
307					"(error code %i).", ni->mft_no,
308					ni->type, (unsigned long long)vcn,
309					vcn_ofs, is_retry ? " even after "
310					"retrying" : "", err);
311		}
312		/*
313		 * Either iblock was outside lblock limits or
314		 * ntfs_rl_vcn_to_lcn() returned error.  Just zero that portion
315		 * of the page and set the buffer uptodate.
316		 */
317handle_hole:
318		bh->b_blocknr = -1UL;
319		clear_buffer_mapped(bh);
320handle_zblock:
321		zero_user(page, i * blocksize, blocksize);
322		if (likely(!err))
323			set_buffer_uptodate(bh);
324	} while (i++, iblock++, (bh = bh->b_this_page) != head);
325
326	/* Release the lock if we took it. */
327	if (rl)
328		up_read(&ni->runlist.lock);
329
330	/* Check we have at least one buffer ready for i/o. */
331	if (nr) {
332		struct buffer_head *tbh;
333
334		/* Lock the buffers. */
335		for (i = 0; i < nr; i++) {
336			tbh = arr[i];
337			lock_buffer(tbh);
338			tbh->b_end_io = ntfs_end_buffer_async_read;
339			set_buffer_async_read(tbh);
340		}
341		/* Finally, start i/o on the buffers. */
342		for (i = 0; i < nr; i++) {
343			tbh = arr[i];
344			if (likely(!buffer_uptodate(tbh)))
345				submit_bh(REQ_OP_READ, 0, tbh);
346			else
347				ntfs_end_buffer_async_read(tbh, 1);
348		}
349		return 0;
350	}
351	/* No i/o was scheduled on any of the buffers. */
352	if (likely(!PageError(page)))
353		SetPageUptodate(page);
354	else /* Signal synchronous i/o error. */
355		nr = -EIO;
356	unlock_page(page);
357	return nr;
358}
359
360/**
361 * ntfs_readpage - fill a @page of a @file with data from the device
362 * @file:	open file to which the page @page belongs or NULL
363 * @page:	page cache page to fill with data
364 *
365 * For non-resident attributes, ntfs_readpage() fills the @page of the open
366 * file @file by calling the ntfs version of the generic block_read_full_page()
367 * function, ntfs_read_block(), which in turn creates and reads in the buffers
368 * associated with the page asynchronously.
369 *
370 * For resident attributes, OTOH, ntfs_readpage() fills @page by copying the
371 * data from the mft record (which at this stage is most likely in memory) and
372 * fills the remainder with zeroes. Thus, in this case, I/O is synchronous, as
373 * even if the mft record is not cached at this point in time, we need to wait
374 * for it to be read in before we can do the copy.
375 *
376 * Return 0 on success and -errno on error.
377 */
378static int ntfs_readpage(struct file *file, struct page *page)
379{
380	loff_t i_size;
381	struct inode *vi;
382	ntfs_inode *ni, *base_ni;
383	u8 *addr;
384	ntfs_attr_search_ctx *ctx;
385	MFT_RECORD *mrec;
386	unsigned long flags;
387	u32 attr_len;
388	int err = 0;
389
390retry_readpage:
391	BUG_ON(!PageLocked(page));
392	vi = page->mapping->host;
393	i_size = i_size_read(vi);
394	/* Is the page fully outside i_size? (truncate in progress) */
395	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
396			PAGE_SHIFT)) {
397		zero_user(page, 0, PAGE_SIZE);
398		ntfs_debug("Read outside i_size - truncated?");
399		goto done;
400	}
401	/*
402	 * This can potentially happen because we clear PageUptodate() during
403	 * ntfs_writepage() of MstProtected() attributes.
404	 */
405	if (PageUptodate(page)) {
406		unlock_page(page);
407		return 0;
408	}
409	ni = NTFS_I(vi);
410	/*
411	 * Only $DATA attributes can be encrypted and only unnamed $DATA
412	 * attributes can be compressed.  Index root can have the flags set but
413	 * this means to create compressed/encrypted files, not that the
414	 * attribute is compressed/encrypted.  Note we need to check for
415	 * AT_INDEX_ALLOCATION since this is the type of both directory and
416	 * index inodes.
417	 */
418	if (ni->type != AT_INDEX_ALLOCATION) {
419		/* If attribute is encrypted, deny access, just like NT4. */
420		if (NInoEncrypted(ni)) {
421			BUG_ON(ni->type != AT_DATA);
422			err = -EACCES;
423			goto err_out;
424		}
425		/* Compressed data streams are handled in compress.c. */
426		if (NInoNonResident(ni) && NInoCompressed(ni)) {
427			BUG_ON(ni->type != AT_DATA);
428			BUG_ON(ni->name_len);
429			return ntfs_read_compressed_block(page);
430		}
431	}
432	/* NInoNonResident() == NInoIndexAllocPresent() */
433	if (NInoNonResident(ni)) {
434		/* Normal, non-resident data stream. */
435		return ntfs_read_block(page);
436	}
437	/*
438	 * Attribute is resident, implying it is not compressed or encrypted.
439	 * This also means the attribute is smaller than an mft record and
440	 * hence smaller than a page, so can simply zero out any pages with
441	 * index above 0.  Note the attribute can actually be marked compressed
442	 * but if it is resident the actual data is not compressed so we are
443	 * ok to ignore the compressed flag here.
444	 */
445	if (unlikely(page->index > 0)) {
446		zero_user(page, 0, PAGE_SIZE);
447		goto done;
448	}
449	if (!NInoAttr(ni))
450		base_ni = ni;
451	else
452		base_ni = ni->ext.base_ntfs_ino;
453	/* Map, pin, and lock the mft record. */
454	mrec = map_mft_record(base_ni);
455	if (IS_ERR(mrec)) {
456		err = PTR_ERR(mrec);
457		goto err_out;
458	}
459	/*
460	 * If a parallel write made the attribute non-resident, drop the mft
461	 * record and retry the readpage.
462	 */
463	if (unlikely(NInoNonResident(ni))) {
464		unmap_mft_record(base_ni);
465		goto retry_readpage;
466	}
467	ctx = ntfs_attr_get_search_ctx(base_ni, mrec);
468	if (unlikely(!ctx)) {
469		err = -ENOMEM;
470		goto unm_err_out;
471	}
472	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
473			CASE_SENSITIVE, 0, NULL, 0, ctx);
474	if (unlikely(err))
475		goto put_unm_err_out;
476	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
477	read_lock_irqsave(&ni->size_lock, flags);
478	if (unlikely(attr_len > ni->initialized_size))
479		attr_len = ni->initialized_size;
480	i_size = i_size_read(vi);
481	read_unlock_irqrestore(&ni->size_lock, flags);
482	if (unlikely(attr_len > i_size)) {
483		/* Race with shrinking truncate. */
484		attr_len = i_size;
485	}
486	addr = kmap_atomic(page);
487	/* Copy the data to the page. */
488	memcpy(addr, (u8*)ctx->attr +
489			le16_to_cpu(ctx->attr->data.resident.value_offset),
490			attr_len);
491	/* Zero the remainder of the page. */
492	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
493	flush_dcache_page(page);
494	kunmap_atomic(addr);
495put_unm_err_out:
496	ntfs_attr_put_search_ctx(ctx);
497unm_err_out:
498	unmap_mft_record(base_ni);
499done:
500	SetPageUptodate(page);
501err_out:
502	unlock_page(page);
503	return err;
504}
505
506#ifdef NTFS_RW
507
508/**
509 * ntfs_write_block - write a @page to the backing store
510 * @page:	page cache page to write out
511 * @wbc:	writeback control structure
512 *
513 * This function is for writing pages belonging to non-resident, non-mst
514 * protected attributes to their backing store.
515 *
516 * For a page with buffers, map and write the dirty buffers asynchronously
517 * under page writeback. For a page without buffers, create buffers for the
518 * page, then proceed as above.
519 *
520 * If a page doesn't have buffers the page dirty state is definitive. If a page
521 * does have buffers, the page dirty state is just a hint, and the buffer dirty
522 * state is definitive. (A hint which has rules: dirty buffers against a clean
523 * page is illegal. Other combinations are legal and need to be handled. In
524 * particular a dirty page containing clean buffers for example.)
525 *
526 * Return 0 on success and -errno on error.
527 *
528 * Based on ntfs_read_block() and __block_write_full_page().
529 */
530static int ntfs_write_block(struct page *page, struct writeback_control *wbc)
531{
532	VCN vcn;
533	LCN lcn;
534	s64 initialized_size;
535	loff_t i_size;
536	sector_t block, dblock, iblock;
537	struct inode *vi;
538	ntfs_inode *ni;
539	ntfs_volume *vol;
540	runlist_element *rl;
541	struct buffer_head *bh, *head;
542	unsigned long flags;
543	unsigned int blocksize, vcn_ofs;
544	int err;
545	bool need_end_writeback;
546	unsigned char blocksize_bits;
547
548	vi = page->mapping->host;
549	ni = NTFS_I(vi);
550	vol = ni->vol;
551
552	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
553			"0x%lx.", ni->mft_no, ni->type, page->index);
554
555	BUG_ON(!NInoNonResident(ni));
556	BUG_ON(NInoMstProtected(ni));
557	blocksize = vol->sb->s_blocksize;
558	blocksize_bits = vol->sb->s_blocksize_bits;
559	if (!page_has_buffers(page)) {
560		BUG_ON(!PageUptodate(page));
561		create_empty_buffers(page, blocksize,
562				(1 << BH_Uptodate) | (1 << BH_Dirty));
563		if (unlikely(!page_has_buffers(page))) {
564			ntfs_warning(vol->sb, "Error allocating page "
565					"buffers.  Redirtying page so we try "
566					"again later.");
567			/*
568			 * Put the page back on mapping->dirty_pages, but leave
569			 * its buffers' dirty state as-is.
570			 */
571			redirty_page_for_writepage(wbc, page);
572			unlock_page(page);
573			return 0;
574		}
575	}
576	bh = head = page_buffers(page);
577	BUG_ON(!bh);
578
579	/* NOTE: Different naming scheme to ntfs_read_block()! */
580
581	/* The first block in the page. */
582	block = (s64)page->index << (PAGE_SHIFT - blocksize_bits);
583
584	read_lock_irqsave(&ni->size_lock, flags);
585	i_size = i_size_read(vi);
586	initialized_size = ni->initialized_size;
587	read_unlock_irqrestore(&ni->size_lock, flags);
588
589	/* The first out of bounds block for the data size. */
590	dblock = (i_size + blocksize - 1) >> blocksize_bits;
591
592	/* The last (fully or partially) initialized block. */
593	iblock = initialized_size >> blocksize_bits;
594
595	/*
596	 * Be very careful.  We have no exclusion from __set_page_dirty_buffers
597	 * here, and the (potentially unmapped) buffers may become dirty at
598	 * any time.  If a buffer becomes dirty here after we've inspected it
599	 * then we just miss that fact, and the page stays dirty.
600	 *
601	 * Buffers outside i_size may be dirtied by __set_page_dirty_buffers;
602	 * handle that here by just cleaning them.
603	 */
604
605	/*
606	 * Loop through all the buffers in the page, mapping all the dirty
607	 * buffers to disk addresses and handling any aliases from the
608	 * underlying block device's mapping.
609	 */
610	rl = NULL;
611	err = 0;
612	do {
613		bool is_retry = false;
614
615		if (unlikely(block >= dblock)) {
616			/*
617			 * Mapped buffers outside i_size will occur, because
618			 * this page can be outside i_size when there is a
619			 * truncate in progress. The contents of such buffers
620			 * were zeroed by ntfs_writepage().
621			 *
622			 * FIXME: What about the small race window where
623			 * ntfs_writepage() has not done any clearing because
624			 * the page was within i_size but before we get here,
625			 * vmtruncate() modifies i_size?
626			 */
627			clear_buffer_dirty(bh);
628			set_buffer_uptodate(bh);
629			continue;
630		}
631
632		/* Clean buffers are not written out, so no need to map them. */
633		if (!buffer_dirty(bh))
634			continue;
635
636		/* Make sure we have enough initialized size. */
637		if (unlikely((block >= iblock) &&
638				(initialized_size < i_size))) {
639			/*
640			 * If this page is fully outside initialized size, zero
641			 * out all pages between the current initialized size
642			 * and the current page. Just use ntfs_readpage() to do
643			 * the zeroing transparently.
644			 */
645			if (block > iblock) {
646				// TODO:
647				// For each page do:
648				// - read_cache_page()
649				// Again for each page do:
650				// - wait_on_page_locked()
651				// - Check (PageUptodate(page) &&
652				//			!PageError(page))
653				// Update initialized size in the attribute and
654				// in the inode.
655				// Again, for each page do:
656				//	__set_page_dirty_buffers();
657				// put_page()
658				// We don't need to wait on the writes.
659				// Update iblock.
660			}
661			/*
662			 * The current page straddles initialized size. Zero
663			 * all non-uptodate buffers and set them uptodate (and
664			 * dirty?). Note, there aren't any non-uptodate buffers
665			 * if the page is uptodate.
666			 * FIXME: For an uptodate page, the buffers may need to
667			 * be written out because they were not initialized on
668			 * disk before.
669			 */
670			if (!PageUptodate(page)) {
671				// TODO:
672				// Zero any non-uptodate buffers up to i_size.
673				// Set them uptodate and dirty.
674			}
675			// TODO:
676			// Update initialized size in the attribute and in the
677			// inode (up to i_size).
678			// Update iblock.
679			// FIXME: This is inefficient. Try to batch the two
680			// size changes to happen in one go.
681			ntfs_error(vol->sb, "Writing beyond initialized size "
682					"is not supported yet. Sorry.");
683			err = -EOPNOTSUPP;
684			break;
685			// Do NOT set_buffer_new() BUT DO clear buffer range
686			// outside write request range.
687			// set_buffer_uptodate() on complete buffers as well as
688			// set_buffer_dirty().
689		}
690
691		/* No need to map buffers that are already mapped. */
692		if (buffer_mapped(bh))
693			continue;
694
695		/* Unmapped, dirty buffer. Need to map it. */
696		bh->b_bdev = vol->sb->s_bdev;
697
698		/* Convert block into corresponding vcn and offset. */
699		vcn = (VCN)block << blocksize_bits;
700		vcn_ofs = vcn & vol->cluster_size_mask;
701		vcn >>= vol->cluster_size_bits;
702		if (!rl) {
703lock_retry_remap:
704			down_read(&ni->runlist.lock);
705			rl = ni->runlist.rl;
706		}
707		if (likely(rl != NULL)) {
708			/* Seek to element containing target vcn. */
709			while (rl->length && rl[1].vcn <= vcn)
710				rl++;
711			lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
712		} else
713			lcn = LCN_RL_NOT_MAPPED;
714		/* Successful remap. */
715		if (lcn >= 0) {
716			/* Setup buffer head to point to correct block. */
717			bh->b_blocknr = ((lcn << vol->cluster_size_bits) +
718					vcn_ofs) >> blocksize_bits;
719			set_buffer_mapped(bh);
720			continue;
721		}
722		/* It is a hole, need to instantiate it. */
723		if (lcn == LCN_HOLE) {
724			u8 *kaddr;
725			unsigned long *bpos, *bend;
726
727			/* Check if the buffer is zero. */
728			kaddr = kmap_atomic(page);
729			bpos = (unsigned long *)(kaddr + bh_offset(bh));
730			bend = (unsigned long *)((u8*)bpos + blocksize);
731			do {
732				if (unlikely(*bpos))
733					break;
734			} while (likely(++bpos < bend));
735			kunmap_atomic(kaddr);
736			if (bpos == bend) {
737				/*
738				 * Buffer is zero and sparse, no need to write
739				 * it.
740				 */
741				bh->b_blocknr = -1;
742				clear_buffer_dirty(bh);
743				continue;
744			}
745			// TODO: Instantiate the hole.
746			// clear_buffer_new(bh);
747			// clean_bdev_bh_alias(bh);
748			ntfs_error(vol->sb, "Writing into sparse regions is "
749					"not supported yet. Sorry.");
750			err = -EOPNOTSUPP;
751			break;
752		}
753		/* If first try and runlist unmapped, map and retry. */
754		if (!is_retry && lcn == LCN_RL_NOT_MAPPED) {
755			is_retry = true;
756			/*
757			 * Attempt to map runlist, dropping lock for
758			 * the duration.
759			 */
760			up_read(&ni->runlist.lock);
761			err = ntfs_map_runlist(ni, vcn);
762			if (likely(!err))
763				goto lock_retry_remap;
764			rl = NULL;
765		} else if (!rl)
766			up_read(&ni->runlist.lock);
767		/*
768		 * If buffer is outside the runlist, truncate has cut it out
769		 * of the runlist.  Just clean and clear the buffer and set it
770		 * uptodate so it can get discarded by the VM.
771		 */
772		if (err == -ENOENT || lcn == LCN_ENOENT) {
773			bh->b_blocknr = -1;
774			clear_buffer_dirty(bh);
775			zero_user(page, bh_offset(bh), blocksize);
776			set_buffer_uptodate(bh);
777			err = 0;
778			continue;
779		}
780		/* Failed to map the buffer, even after retrying. */
781		if (!err)
782			err = -EIO;
783		bh->b_blocknr = -1;
784		ntfs_error(vol->sb, "Failed to write to inode 0x%lx, "
785				"attribute type 0x%x, vcn 0x%llx, offset 0x%x "
786				"because its location on disk could not be "
787				"determined%s (error code %i).", ni->mft_no,
788				ni->type, (unsigned long long)vcn,
789				vcn_ofs, is_retry ? " even after "
790				"retrying" : "", err);
791		break;
792	} while (block++, (bh = bh->b_this_page) != head);
793
794	/* Release the lock if we took it. */
795	if (rl)
796		up_read(&ni->runlist.lock);
797
798	/* For the error case, need to reset bh to the beginning. */
799	bh = head;
800
801	/* Just an optimization, so ->readpage() is not called later. */
802	if (unlikely(!PageUptodate(page))) {
803		int uptodate = 1;
804		do {
805			if (!buffer_uptodate(bh)) {
806				uptodate = 0;
807				bh = head;
808				break;
809			}
810		} while ((bh = bh->b_this_page) != head);
811		if (uptodate)
812			SetPageUptodate(page);
813	}
814
815	/* Setup all mapped, dirty buffers for async write i/o. */
816	do {
817		if (buffer_mapped(bh) && buffer_dirty(bh)) {
818			lock_buffer(bh);
819			if (test_clear_buffer_dirty(bh)) {
820				BUG_ON(!buffer_uptodate(bh));
821				mark_buffer_async_write(bh);
822			} else
823				unlock_buffer(bh);
824		} else if (unlikely(err)) {
825			/*
826			 * For the error case. The buffer may have been set
827			 * dirty during attachment to a dirty page.
828			 */
829			if (err != -ENOMEM)
830				clear_buffer_dirty(bh);
831		}
832	} while ((bh = bh->b_this_page) != head);
833
834	if (unlikely(err)) {
835		// TODO: Remove the -EOPNOTSUPP check later on...
836		if (unlikely(err == -EOPNOTSUPP))
837			err = 0;
838		else if (err == -ENOMEM) {
839			ntfs_warning(vol->sb, "Error allocating memory. "
840					"Redirtying page so we try again "
841					"later.");
842			/*
843			 * Put the page back on mapping->dirty_pages, but
844			 * leave its buffer's dirty state as-is.
845			 */
846			redirty_page_for_writepage(wbc, page);
847			err = 0;
848		} else
849			SetPageError(page);
850	}
851
852	BUG_ON(PageWriteback(page));
853	set_page_writeback(page);	/* Keeps try_to_free_buffers() away. */
854
855	/* Submit the prepared buffers for i/o. */
856	need_end_writeback = true;
857	do {
858		struct buffer_head *next = bh->b_this_page;
859		if (buffer_async_write(bh)) {
860			submit_bh(REQ_OP_WRITE, 0, bh);
861			need_end_writeback = false;
862		}
863		bh = next;
864	} while (bh != head);
865	unlock_page(page);
866
867	/* If no i/o was started, need to end_page_writeback(). */
868	if (unlikely(need_end_writeback))
869		end_page_writeback(page);
870
871	ntfs_debug("Done.");
872	return err;
873}
874
875/**
876 * ntfs_write_mst_block - write a @page to the backing store
877 * @page:	page cache page to write out
878 * @wbc:	writeback control structure
879 *
880 * This function is for writing pages belonging to non-resident, mst protected
881 * attributes to their backing store.  The only supported attributes are index
882 * allocation and $MFT/$DATA.  Both directory inodes and index inodes are
883 * supported for the index allocation case.
884 *
885 * The page must remain locked for the duration of the write because we apply
886 * the mst fixups, write, and then undo the fixups, so if we were to unlock the
887 * page before undoing the fixups, any other user of the page will see the
888 * page contents as corrupt.
889 *
890 * We clear the page uptodate flag for the duration of the function to ensure
891 * exclusion for the $MFT/$DATA case against someone mapping an mft record we
892 * are about to apply the mst fixups to.
893 *
894 * Return 0 on success and -errno on error.
895 *
896 * Based on ntfs_write_block(), ntfs_mft_writepage(), and
897 * write_mft_record_nolock().
898 */
899static int ntfs_write_mst_block(struct page *page,
900		struct writeback_control *wbc)
901{
902	sector_t block, dblock, rec_block;
903	struct inode *vi = page->mapping->host;
904	ntfs_inode *ni = NTFS_I(vi);
905	ntfs_volume *vol = ni->vol;
906	u8 *kaddr;
907	unsigned int rec_size = ni->itype.index.block_size;
908	ntfs_inode *locked_nis[PAGE_SIZE / NTFS_BLOCK_SIZE];
909	struct buffer_head *bh, *head, *tbh, *rec_start_bh;
910	struct buffer_head *bhs[MAX_BUF_PER_PAGE];
911	runlist_element *rl;
912	int i, nr_locked_nis, nr_recs, nr_bhs, max_bhs, bhs_per_rec, err, err2;
913	unsigned bh_size, rec_size_bits;
914	bool sync, is_mft, page_is_dirty, rec_is_dirty;
915	unsigned char bh_size_bits;
916
917	if (WARN_ON(rec_size < NTFS_BLOCK_SIZE))
918		return -EINVAL;
919
920	ntfs_debug("Entering for inode 0x%lx, attribute type 0x%x, page index "
921			"0x%lx.", vi->i_ino, ni->type, page->index);
922	BUG_ON(!NInoNonResident(ni));
923	BUG_ON(!NInoMstProtected(ni));
924	is_mft = (S_ISREG(vi->i_mode) && !vi->i_ino);
925	/*
926	 * NOTE: ntfs_write_mst_block() would be called for $MFTMirr if a page
927	 * in its page cache were to be marked dirty.  However this should
928	 * never happen with the current driver and considering we do not
929	 * handle this case here we do want to BUG(), at least for now.
930	 */
931	BUG_ON(!(is_mft || S_ISDIR(vi->i_mode) ||
932			(NInoAttr(ni) && ni->type == AT_INDEX_ALLOCATION)));
933	bh_size = vol->sb->s_blocksize;
934	bh_size_bits = vol->sb->s_blocksize_bits;
935	max_bhs = PAGE_SIZE / bh_size;
936	BUG_ON(!max_bhs);
937	BUG_ON(max_bhs > MAX_BUF_PER_PAGE);
938
939	/* Were we called for sync purposes? */
940	sync = (wbc->sync_mode == WB_SYNC_ALL);
941
942	/* Make sure we have mapped buffers. */
943	bh = head = page_buffers(page);
944	BUG_ON(!bh);
945
946	rec_size_bits = ni->itype.index.block_size_bits;
947	BUG_ON(!(PAGE_SIZE >> rec_size_bits));
948	bhs_per_rec = rec_size >> bh_size_bits;
949	BUG_ON(!bhs_per_rec);
950
951	/* The first block in the page. */
952	rec_block = block = (sector_t)page->index <<
953			(PAGE_SHIFT - bh_size_bits);
954
955	/* The first out of bounds block for the data size. */
956	dblock = (i_size_read(vi) + bh_size - 1) >> bh_size_bits;
957
958	rl = NULL;
959	err = err2 = nr_bhs = nr_recs = nr_locked_nis = 0;
960	page_is_dirty = rec_is_dirty = false;
961	rec_start_bh = NULL;
962	do {
963		bool is_retry = false;
964
965		if (likely(block < rec_block)) {
966			if (unlikely(block >= dblock)) {
967				clear_buffer_dirty(bh);
968				set_buffer_uptodate(bh);
969				continue;
970			}
971			/*
972			 * This block is not the first one in the record.  We
973			 * ignore the buffer's dirty state because we could
974			 * have raced with a parallel mark_ntfs_record_dirty().
975			 */
976			if (!rec_is_dirty)
977				continue;
978			if (unlikely(err2)) {
979				if (err2 != -ENOMEM)
980					clear_buffer_dirty(bh);
981				continue;
982			}
983		} else /* if (block == rec_block) */ {
984			BUG_ON(block > rec_block);
985			/* This block is the first one in the record. */
986			rec_block += bhs_per_rec;
987			err2 = 0;
988			if (unlikely(block >= dblock)) {
989				clear_buffer_dirty(bh);
990				continue;
991			}
992			if (!buffer_dirty(bh)) {
993				/* Clean records are not written out. */
994				rec_is_dirty = false;
995				continue;
996			}
997			rec_is_dirty = true;
998			rec_start_bh = bh;
999		}
1000		/* Need to map the buffer if it is not mapped already. */
1001		if (unlikely(!buffer_mapped(bh))) {
1002			VCN vcn;
1003			LCN lcn;
1004			unsigned int vcn_ofs;
1005
1006			bh->b_bdev = vol->sb->s_bdev;
1007			/* Obtain the vcn and offset of the current block. */
1008			vcn = (VCN)block << bh_size_bits;
1009			vcn_ofs = vcn & vol->cluster_size_mask;
1010			vcn >>= vol->cluster_size_bits;
1011			if (!rl) {
1012lock_retry_remap:
1013				down_read(&ni->runlist.lock);
1014				rl = ni->runlist.rl;
1015			}
1016			if (likely(rl != NULL)) {
1017				/* Seek to element containing target vcn. */
1018				while (rl->length && rl[1].vcn <= vcn)
1019					rl++;
1020				lcn = ntfs_rl_vcn_to_lcn(rl, vcn);
1021			} else
1022				lcn = LCN_RL_NOT_MAPPED;
1023			/* Successful remap. */
1024			if (likely(lcn >= 0)) {
1025				/* Setup buffer head to correct block. */
1026				bh->b_blocknr = ((lcn <<
1027						vol->cluster_size_bits) +
1028						vcn_ofs) >> bh_size_bits;
1029				set_buffer_mapped(bh);
1030			} else {
1031				/*
1032				 * Remap failed.  Retry to map the runlist once
1033				 * unless we are working on $MFT which always
1034				 * has the whole of its runlist in memory.
1035				 */
1036				if (!is_mft && !is_retry &&
1037						lcn == LCN_RL_NOT_MAPPED) {
1038					is_retry = true;
1039					/*
1040					 * Attempt to map runlist, dropping
1041					 * lock for the duration.
1042					 */
1043					up_read(&ni->runlist.lock);
1044					err2 = ntfs_map_runlist(ni, vcn);
1045					if (likely(!err2))
1046						goto lock_retry_remap;
1047					if (err2 == -ENOMEM)
1048						page_is_dirty = true;
1049					lcn = err2;
1050				} else {
1051					err2 = -EIO;
1052					if (!rl)
1053						up_read(&ni->runlist.lock);
1054				}
1055				/* Hard error.  Abort writing this record. */
1056				if (!err || err == -ENOMEM)
1057					err = err2;
1058				bh->b_blocknr = -1;
1059				ntfs_error(vol->sb, "Cannot write ntfs record "
1060						"0x%llx (inode 0x%lx, "
1061						"attribute type 0x%x) because "
1062						"its location on disk could "
1063						"not be determined (error "
1064						"code %lli).",
1065						(long long)block <<
1066						bh_size_bits >>
1067						vol->mft_record_size_bits,
1068						ni->mft_no, ni->type,
1069						(long long)lcn);
1070				/*
1071				 * If this is not the first buffer, remove the
1072				 * buffers in this record from the list of
1073				 * buffers to write and clear their dirty bit
1074				 * if not error -ENOMEM.
1075				 */
1076				if (rec_start_bh != bh) {
1077					while (bhs[--nr_bhs] != rec_start_bh)
1078						;
1079					if (err2 != -ENOMEM) {
1080						do {
1081							clear_buffer_dirty(
1082								rec_start_bh);
1083						} while ((rec_start_bh =
1084								rec_start_bh->
1085								b_this_page) !=
1086								bh);
1087					}
1088				}
1089				continue;
1090			}
1091		}
1092		BUG_ON(!buffer_uptodate(bh));
1093		BUG_ON(nr_bhs >= max_bhs);
1094		bhs[nr_bhs++] = bh;
1095	} while (block++, (bh = bh->b_this_page) != head);
1096	if (unlikely(rl))
1097		up_read(&ni->runlist.lock);
1098	/* If there were no dirty buffers, we are done. */
1099	if (!nr_bhs)
1100		goto done;
1101	/* Map the page so we can access its contents. */
1102	kaddr = kmap(page);
1103	/* Clear the page uptodate flag whilst the mst fixups are applied. */
1104	BUG_ON(!PageUptodate(page));
1105	ClearPageUptodate(page);
1106	for (i = 0; i < nr_bhs; i++) {
1107		unsigned int ofs;
1108
1109		/* Skip buffers which are not at the beginning of records. */
1110		if (i % bhs_per_rec)
1111			continue;
1112		tbh = bhs[i];
1113		ofs = bh_offset(tbh);
1114		if (is_mft) {
1115			ntfs_inode *tni;
1116			unsigned long mft_no;
1117
1118			/* Get the mft record number. */
1119			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1120					>> rec_size_bits;
1121			/* Check whether to write this mft record. */
1122			tni = NULL;
1123			if (!ntfs_may_write_mft_record(vol, mft_no,
1124					(MFT_RECORD*)(kaddr + ofs), &tni)) {
1125				/*
1126				 * The record should not be written.  This
1127				 * means we need to redirty the page before
1128				 * returning.
1129				 */
1130				page_is_dirty = true;
1131				/*
1132				 * Remove the buffers in this mft record from
1133				 * the list of buffers to write.
1134				 */
1135				do {
1136					bhs[i] = NULL;
1137				} while (++i % bhs_per_rec);
1138				continue;
1139			}
1140			/*
1141			 * The record should be written.  If a locked ntfs
1142			 * inode was returned, add it to the array of locked
1143			 * ntfs inodes.
1144			 */
1145			if (tni)
1146				locked_nis[nr_locked_nis++] = tni;
1147		}
1148		/* Apply the mst protection fixups. */
1149		err2 = pre_write_mst_fixup((NTFS_RECORD*)(kaddr + ofs),
1150				rec_size);
1151		if (unlikely(err2)) {
1152			if (!err || err == -ENOMEM)
1153				err = -EIO;
1154			ntfs_error(vol->sb, "Failed to apply mst fixups "
1155					"(inode 0x%lx, attribute type 0x%x, "
1156					"page index 0x%lx, page offset 0x%x)!"
1157					"  Unmount and run chkdsk.", vi->i_ino,
1158					ni->type, page->index, ofs);
1159			/*
1160			 * Mark all the buffers in this record clean as we do
1161			 * not want to write corrupt data to disk.
1162			 */
1163			do {
1164				clear_buffer_dirty(bhs[i]);
1165				bhs[i] = NULL;
1166			} while (++i % bhs_per_rec);
1167			continue;
1168		}
1169		nr_recs++;
1170	}
1171	/* If no records are to be written out, we are done. */
1172	if (!nr_recs)
1173		goto unm_done;
1174	flush_dcache_page(page);
1175	/* Lock buffers and start synchronous write i/o on them. */
1176	for (i = 0; i < nr_bhs; i++) {
1177		tbh = bhs[i];
1178		if (!tbh)
1179			continue;
1180		if (!trylock_buffer(tbh))
1181			BUG();
1182		/* The buffer dirty state is now irrelevant, just clean it. */
1183		clear_buffer_dirty(tbh);
1184		BUG_ON(!buffer_uptodate(tbh));
1185		BUG_ON(!buffer_mapped(tbh));
1186		get_bh(tbh);
1187		tbh->b_end_io = end_buffer_write_sync;
1188		submit_bh(REQ_OP_WRITE, 0, tbh);
1189	}
1190	/* Synchronize the mft mirror now if not @sync. */
1191	if (is_mft && !sync)
1192		goto do_mirror;
1193do_wait:
1194	/* Wait on i/o completion of buffers. */
1195	for (i = 0; i < nr_bhs; i++) {
1196		tbh = bhs[i];
1197		if (!tbh)
1198			continue;
1199		wait_on_buffer(tbh);
1200		if (unlikely(!buffer_uptodate(tbh))) {
1201			ntfs_error(vol->sb, "I/O error while writing ntfs "
1202					"record buffer (inode 0x%lx, "
1203					"attribute type 0x%x, page index "
1204					"0x%lx, page offset 0x%lx)!  Unmount "
1205					"and run chkdsk.", vi->i_ino, ni->type,
1206					page->index, bh_offset(tbh));
1207			if (!err || err == -ENOMEM)
1208				err = -EIO;
1209			/*
1210			 * Set the buffer uptodate so the page and buffer
1211			 * states do not become out of sync.
1212			 */
1213			set_buffer_uptodate(tbh);
1214		}
1215	}
1216	/* If @sync, now synchronize the mft mirror. */
1217	if (is_mft && sync) {
1218do_mirror:
1219		for (i = 0; i < nr_bhs; i++) {
1220			unsigned long mft_no;
1221			unsigned int ofs;
1222
1223			/*
1224			 * Skip buffers which are not at the beginning of
1225			 * records.
1226			 */
1227			if (i % bhs_per_rec)
1228				continue;
1229			tbh = bhs[i];
1230			/* Skip removed buffers (and hence records). */
1231			if (!tbh)
1232				continue;
1233			ofs = bh_offset(tbh);
1234			/* Get the mft record number. */
1235			mft_no = (((s64)page->index << PAGE_SHIFT) + ofs)
1236					>> rec_size_bits;
1237			if (mft_no < vol->mftmirr_size)
1238				ntfs_sync_mft_mirror(vol, mft_no,
1239						(MFT_RECORD*)(kaddr + ofs),
1240						sync);
1241		}
1242		if (!sync)
1243			goto do_wait;
1244	}
1245	/* Remove the mst protection fixups again. */
1246	for (i = 0; i < nr_bhs; i++) {
1247		if (!(i % bhs_per_rec)) {
1248			tbh = bhs[i];
1249			if (!tbh)
1250				continue;
1251			post_write_mst_fixup((NTFS_RECORD*)(kaddr +
1252					bh_offset(tbh)));
1253		}
1254	}
1255	flush_dcache_page(page);
1256unm_done:
1257	/* Unlock any locked inodes. */
1258	while (nr_locked_nis-- > 0) {
1259		ntfs_inode *tni, *base_tni;
1260
1261		tni = locked_nis[nr_locked_nis];
1262		/* Get the base inode. */
1263		mutex_lock(&tni->extent_lock);
1264		if (tni->nr_extents >= 0)
1265			base_tni = tni;
1266		else {
1267			base_tni = tni->ext.base_ntfs_ino;
1268			BUG_ON(!base_tni);
1269		}
1270		mutex_unlock(&tni->extent_lock);
1271		ntfs_debug("Unlocking %s inode 0x%lx.",
1272				tni == base_tni ? "base" : "extent",
1273				tni->mft_no);
1274		mutex_unlock(&tni->mrec_lock);
1275		atomic_dec(&tni->count);
1276		iput(VFS_I(base_tni));
1277	}
1278	SetPageUptodate(page);
1279	kunmap(page);
1280done:
1281	if (unlikely(err && err != -ENOMEM)) {
1282		/*
1283		 * Set page error if there is only one ntfs record in the page.
1284		 * Otherwise we would loose per-record granularity.
1285		 */
1286		if (ni->itype.index.block_size == PAGE_SIZE)
1287			SetPageError(page);
1288		NVolSetErrors(vol);
1289	}
1290	if (page_is_dirty) {
1291		ntfs_debug("Page still contains one or more dirty ntfs "
1292				"records.  Redirtying the page starting at "
1293				"record 0x%lx.", page->index <<
1294				(PAGE_SHIFT - rec_size_bits));
1295		redirty_page_for_writepage(wbc, page);
1296		unlock_page(page);
1297	} else {
1298		/*
1299		 * Keep the VM happy.  This must be done otherwise the
1300		 * radix-tree tag PAGECACHE_TAG_DIRTY remains set even though
1301		 * the page is clean.
1302		 */
1303		BUG_ON(PageWriteback(page));
1304		set_page_writeback(page);
1305		unlock_page(page);
1306		end_page_writeback(page);
1307	}
1308	if (likely(!err))
1309		ntfs_debug("Done.");
1310	return err;
1311}
1312
1313/**
1314 * ntfs_writepage - write a @page to the backing store
1315 * @page:	page cache page to write out
1316 * @wbc:	writeback control structure
1317 *
1318 * This is called from the VM when it wants to have a dirty ntfs page cache
1319 * page cleaned.  The VM has already locked the page and marked it clean.
1320 *
1321 * For non-resident attributes, ntfs_writepage() writes the @page by calling
1322 * the ntfs version of the generic block_write_full_page() function,
1323 * ntfs_write_block(), which in turn if necessary creates and writes the
1324 * buffers associated with the page asynchronously.
1325 *
1326 * For resident attributes, OTOH, ntfs_writepage() writes the @page by copying
1327 * the data to the mft record (which at this stage is most likely in memory).
1328 * The mft record is then marked dirty and written out asynchronously via the
1329 * vfs inode dirty code path for the inode the mft record belongs to or via the
1330 * vm page dirty code path for the page the mft record is in.
1331 *
1332 * Based on ntfs_readpage() and fs/buffer.c::block_write_full_page().
1333 *
1334 * Return 0 on success and -errno on error.
1335 */
1336static int ntfs_writepage(struct page *page, struct writeback_control *wbc)
1337{
1338	loff_t i_size;
1339	struct inode *vi = page->mapping->host;
1340	ntfs_inode *base_ni = NULL, *ni = NTFS_I(vi);
1341	char *addr;
1342	ntfs_attr_search_ctx *ctx = NULL;
1343	MFT_RECORD *m = NULL;
1344	u32 attr_len;
1345	int err;
1346
1347retry_writepage:
1348	BUG_ON(!PageLocked(page));
1349	i_size = i_size_read(vi);
1350	/* Is the page fully outside i_size? (truncate in progress) */
1351	if (unlikely(page->index >= (i_size + PAGE_SIZE - 1) >>
1352			PAGE_SHIFT)) {
1353		/*
1354		 * The page may have dirty, unmapped buffers.  Make them
1355		 * freeable here, so the page does not leak.
1356		 */
1357		block_invalidatepage(page, 0, PAGE_SIZE);
1358		unlock_page(page);
1359		ntfs_debug("Write outside i_size - truncated?");
1360		return 0;
1361	}
1362	/*
1363	 * Only $DATA attributes can be encrypted and only unnamed $DATA
1364	 * attributes can be compressed.  Index root can have the flags set but
1365	 * this means to create compressed/encrypted files, not that the
1366	 * attribute is compressed/encrypted.  Note we need to check for
1367	 * AT_INDEX_ALLOCATION since this is the type of both directory and
1368	 * index inodes.
1369	 */
1370	if (ni->type != AT_INDEX_ALLOCATION) {
1371		/* If file is encrypted, deny access, just like NT4. */
1372		if (NInoEncrypted(ni)) {
1373			unlock_page(page);
1374			BUG_ON(ni->type != AT_DATA);
1375			ntfs_debug("Denying write access to encrypted file.");
1376			return -EACCES;
1377		}
1378		/* Compressed data streams are handled in compress.c. */
1379		if (NInoNonResident(ni) && NInoCompressed(ni)) {
1380			BUG_ON(ni->type != AT_DATA);
1381			BUG_ON(ni->name_len);
1382			// TODO: Implement and replace this with
1383			// return ntfs_write_compressed_block(page);
1384			unlock_page(page);
1385			ntfs_error(vi->i_sb, "Writing to compressed files is "
1386					"not supported yet.  Sorry.");
1387			return -EOPNOTSUPP;
1388		}
1389		// TODO: Implement and remove this check.
1390		if (NInoNonResident(ni) && NInoSparse(ni)) {
1391			unlock_page(page);
1392			ntfs_error(vi->i_sb, "Writing to sparse files is not "
1393					"supported yet.  Sorry.");
1394			return -EOPNOTSUPP;
1395		}
1396	}
1397	/* NInoNonResident() == NInoIndexAllocPresent() */
1398	if (NInoNonResident(ni)) {
1399		/* We have to zero every time due to mmap-at-end-of-file. */
1400		if (page->index >= (i_size >> PAGE_SHIFT)) {
1401			/* The page straddles i_size. */
1402			unsigned int ofs = i_size & ~PAGE_MASK;
1403			zero_user_segment(page, ofs, PAGE_SIZE);
1404		}
1405		/* Handle mst protected attributes. */
1406		if (NInoMstProtected(ni))
1407			return ntfs_write_mst_block(page, wbc);
1408		/* Normal, non-resident data stream. */
1409		return ntfs_write_block(page, wbc);
1410	}
1411	/*
1412	 * Attribute is resident, implying it is not compressed, encrypted, or
1413	 * mst protected.  This also means the attribute is smaller than an mft
1414	 * record and hence smaller than a page, so can simply return error on
1415	 * any pages with index above 0.  Note the attribute can actually be
1416	 * marked compressed but if it is resident the actual data is not
1417	 * compressed so we are ok to ignore the compressed flag here.
1418	 */
1419	BUG_ON(page_has_buffers(page));
1420	BUG_ON(!PageUptodate(page));
1421	if (unlikely(page->index > 0)) {
1422		ntfs_error(vi->i_sb, "BUG()! page->index (0x%lx) > 0.  "
1423				"Aborting write.", page->index);
1424		BUG_ON(PageWriteback(page));
1425		set_page_writeback(page);
1426		unlock_page(page);
1427		end_page_writeback(page);
1428		return -EIO;
1429	}
1430	if (!NInoAttr(ni))
1431		base_ni = ni;
1432	else
1433		base_ni = ni->ext.base_ntfs_ino;
1434	/* Map, pin, and lock the mft record. */
1435	m = map_mft_record(base_ni);
1436	if (IS_ERR(m)) {
1437		err = PTR_ERR(m);
1438		m = NULL;
1439		ctx = NULL;
1440		goto err_out;
1441	}
1442	/*
1443	 * If a parallel write made the attribute non-resident, drop the mft
1444	 * record and retry the writepage.
1445	 */
1446	if (unlikely(NInoNonResident(ni))) {
1447		unmap_mft_record(base_ni);
1448		goto retry_writepage;
1449	}
1450	ctx = ntfs_attr_get_search_ctx(base_ni, m);
1451	if (unlikely(!ctx)) {
1452		err = -ENOMEM;
1453		goto err_out;
1454	}
1455	err = ntfs_attr_lookup(ni->type, ni->name, ni->name_len,
1456			CASE_SENSITIVE, 0, NULL, 0, ctx);
1457	if (unlikely(err))
1458		goto err_out;
1459	/*
1460	 * Keep the VM happy.  This must be done otherwise the radix-tree tag
1461	 * PAGECACHE_TAG_DIRTY remains set even though the page is clean.
1462	 */
1463	BUG_ON(PageWriteback(page));
1464	set_page_writeback(page);
1465	unlock_page(page);
1466	attr_len = le32_to_cpu(ctx->attr->data.resident.value_length);
1467	i_size = i_size_read(vi);
1468	if (unlikely(attr_len > i_size)) {
1469		/* Race with shrinking truncate or a failed truncate. */
1470		attr_len = i_size;
1471		/*
1472		 * If the truncate failed, fix it up now.  If a concurrent
1473		 * truncate, we do its job, so it does not have to do anything.
1474		 */
1475		err = ntfs_resident_attr_value_resize(ctx->mrec, ctx->attr,
1476				attr_len);
1477		/* Shrinking cannot fail. */
1478		BUG_ON(err);
1479	}
1480	addr = kmap_atomic(page);
1481	/* Copy the data from the page to the mft record. */
1482	memcpy((u8*)ctx->attr +
1483			le16_to_cpu(ctx->attr->data.resident.value_offset),
1484			addr, attr_len);
1485	/* Zero out of bounds area in the page cache page. */
1486	memset(addr + attr_len, 0, PAGE_SIZE - attr_len);
1487	kunmap_atomic(addr);
1488	flush_dcache_page(page);
1489	flush_dcache_mft_record_page(ctx->ntfs_ino);
1490	/* We are done with the page. */
1491	end_page_writeback(page);
1492	/* Finally, mark the mft record dirty, so it gets written back. */
1493	mark_mft_record_dirty(ctx->ntfs_ino);
1494	ntfs_attr_put_search_ctx(ctx);
1495	unmap_mft_record(base_ni);
1496	return 0;
1497err_out:
1498	if (err == -ENOMEM) {
1499		ntfs_warning(vi->i_sb, "Error allocating memory. Redirtying "
1500				"page so we try again later.");
1501		/*
1502		 * Put the page back on mapping->dirty_pages, but leave its
1503		 * buffers' dirty state as-is.
1504		 */
1505		redirty_page_for_writepage(wbc, page);
1506		err = 0;
1507	} else {
1508		ntfs_error(vi->i_sb, "Resident attribute write failed with "
1509				"error %i.", err);
1510		SetPageError(page);
1511		NVolSetErrors(ni->vol);
1512	}
1513	unlock_page(page);
1514	if (ctx)
1515		ntfs_attr_put_search_ctx(ctx);
1516	if (m)
1517		unmap_mft_record(base_ni);
1518	return err;
1519}
1520
1521#endif	/* NTFS_RW */
1522
1523/**
1524 * ntfs_bmap - map logical file block to physical device block
1525 * @mapping:	address space mapping to which the block to be mapped belongs
1526 * @block:	logical block to map to its physical device block
1527 *
1528 * For regular, non-resident files (i.e. not compressed and not encrypted), map
1529 * the logical @block belonging to the file described by the address space
1530 * mapping @mapping to its physical device block.
1531 *
1532 * The size of the block is equal to the @s_blocksize field of the super block
1533 * of the mounted file system which is guaranteed to be smaller than or equal
1534 * to the cluster size thus the block is guaranteed to fit entirely inside the
1535 * cluster which means we do not need to care how many contiguous bytes are
1536 * available after the beginning of the block.
1537 *
1538 * Return the physical device block if the mapping succeeded or 0 if the block
1539 * is sparse or there was an error.
1540 *
1541 * Note: This is a problem if someone tries to run bmap() on $Boot system file
1542 * as that really is in block zero but there is nothing we can do.  bmap() is
1543 * just broken in that respect (just like it cannot distinguish sparse from
1544 * not available or error).
1545 */
1546static sector_t ntfs_bmap(struct address_space *mapping, sector_t block)
1547{
1548	s64 ofs, size;
1549	loff_t i_size;
1550	LCN lcn;
1551	unsigned long blocksize, flags;
1552	ntfs_inode *ni = NTFS_I(mapping->host);
1553	ntfs_volume *vol = ni->vol;
1554	unsigned delta;
1555	unsigned char blocksize_bits, cluster_size_shift;
1556
1557	ntfs_debug("Entering for mft_no 0x%lx, logical block 0x%llx.",
1558			ni->mft_no, (unsigned long long)block);
1559	if (ni->type != AT_DATA || !NInoNonResident(ni) || NInoEncrypted(ni)) {
1560		ntfs_error(vol->sb, "BMAP does not make sense for %s "
1561				"attributes, returning 0.",
1562				(ni->type != AT_DATA) ? "non-data" :
1563				(!NInoNonResident(ni) ? "resident" :
1564				"encrypted"));
1565		return 0;
1566	}
1567	/* None of these can happen. */
1568	BUG_ON(NInoCompressed(ni));
1569	BUG_ON(NInoMstProtected(ni));
1570	blocksize = vol->sb->s_blocksize;
1571	blocksize_bits = vol->sb->s_blocksize_bits;
1572	ofs = (s64)block << blocksize_bits;
1573	read_lock_irqsave(&ni->size_lock, flags);
1574	size = ni->initialized_size;
1575	i_size = i_size_read(VFS_I(ni));
1576	read_unlock_irqrestore(&ni->size_lock, flags);
1577	/*
1578	 * If the offset is outside the initialized size or the block straddles
1579	 * the initialized size then pretend it is a hole unless the
1580	 * initialized size equals the file size.
1581	 */
1582	if (unlikely(ofs >= size || (ofs + blocksize > size && size < i_size)))
1583		goto hole;
1584	cluster_size_shift = vol->cluster_size_bits;
1585	down_read(&ni->runlist.lock);
1586	lcn = ntfs_attr_vcn_to_lcn_nolock(ni, ofs >> cluster_size_shift, false);
1587	up_read(&ni->runlist.lock);
1588	if (unlikely(lcn < LCN_HOLE)) {
1589		/*
1590		 * Step down to an integer to avoid gcc doing a long long
1591		 * comparision in the switch when we know @lcn is between
1592		 * LCN_HOLE and LCN_EIO (i.e. -1 to -5).
1593		 *
1594		 * Otherwise older gcc (at least on some architectures) will
1595		 * try to use __cmpdi2() which is of course not available in
1596		 * the kernel.
1597		 */
1598		switch ((int)lcn) {
1599		case LCN_ENOENT:
1600			/*
1601			 * If the offset is out of bounds then pretend it is a
1602			 * hole.
1603			 */
1604			goto hole;
1605		case LCN_ENOMEM:
1606			ntfs_error(vol->sb, "Not enough memory to complete "
1607					"mapping for inode 0x%lx.  "
1608					"Returning 0.", ni->mft_no);
1609			break;
1610		default:
1611			ntfs_error(vol->sb, "Failed to complete mapping for "
1612					"inode 0x%lx.  Run chkdsk.  "
1613					"Returning 0.", ni->mft_no);
1614			break;
1615		}
1616		return 0;
1617	}
1618	if (lcn < 0) {
1619		/* It is a hole. */
1620hole:
1621		ntfs_debug("Done (returning hole).");
1622		return 0;
1623	}
1624	/*
1625	 * The block is really allocated and fullfils all our criteria.
1626	 * Convert the cluster to units of block size and return the result.
1627	 */
1628	delta = ofs & vol->cluster_size_mask;
1629	if (unlikely(sizeof(block) < sizeof(lcn))) {
1630		block = lcn = ((lcn << cluster_size_shift) + delta) >>
1631				blocksize_bits;
1632		/* If the block number was truncated return 0. */
1633		if (unlikely(block != lcn)) {
1634			ntfs_error(vol->sb, "Physical block 0x%llx is too "
1635					"large to be returned, returning 0.",
1636					(long long)lcn);
1637			return 0;
1638		}
1639	} else
1640		block = ((lcn << cluster_size_shift) + delta) >>
1641				blocksize_bits;
1642	ntfs_debug("Done (returning block 0x%llx).", (unsigned long long)lcn);
1643	return block;
1644}
1645
1646/**
1647 * ntfs_normal_aops - address space operations for normal inodes and attributes
1648 *
1649 * Note these are not used for compressed or mst protected inodes and
1650 * attributes.
1651 */
1652const struct address_space_operations ntfs_normal_aops = {
1653	.readpage	= ntfs_readpage,
1654#ifdef NTFS_RW
1655	.writepage	= ntfs_writepage,
1656	.set_page_dirty	= __set_page_dirty_buffers,
1657#endif /* NTFS_RW */
1658	.bmap		= ntfs_bmap,
1659	.migratepage	= buffer_migrate_page,
1660	.is_partially_uptodate = block_is_partially_uptodate,
1661	.error_remove_page = generic_error_remove_page,
1662};
1663
1664/**
1665 * ntfs_compressed_aops - address space operations for compressed inodes
1666 */
1667const struct address_space_operations ntfs_compressed_aops = {
1668	.readpage	= ntfs_readpage,
1669#ifdef NTFS_RW
1670	.writepage	= ntfs_writepage,
1671	.set_page_dirty	= __set_page_dirty_buffers,
1672#endif /* NTFS_RW */
1673	.migratepage	= buffer_migrate_page,
1674	.is_partially_uptodate = block_is_partially_uptodate,
1675	.error_remove_page = generic_error_remove_page,
1676};
1677
1678/**
1679 * ntfs_mst_aops - general address space operations for mst protecteed inodes
1680 *		   and attributes
1681 */
1682const struct address_space_operations ntfs_mst_aops = {
1683	.readpage	= ntfs_readpage,	/* Fill page with data. */
1684#ifdef NTFS_RW
1685	.writepage	= ntfs_writepage,	/* Write dirty page to disk. */
1686	.set_page_dirty	= __set_page_dirty_nobuffers,	/* Set the page dirty
1687						   without touching the buffers
1688						   belonging to the page. */
1689#endif /* NTFS_RW */
1690	.migratepage	= buffer_migrate_page,
1691	.is_partially_uptodate	= block_is_partially_uptodate,
1692	.error_remove_page = generic_error_remove_page,
1693};
1694
1695#ifdef NTFS_RW
1696
1697/**
1698 * mark_ntfs_record_dirty - mark an ntfs record dirty
1699 * @page:	page containing the ntfs record to mark dirty
1700 * @ofs:	byte offset within @page at which the ntfs record begins
1701 *
1702 * Set the buffers and the page in which the ntfs record is located dirty.
1703 *
1704 * The latter also marks the vfs inode the ntfs record belongs to dirty
1705 * (I_DIRTY_PAGES only).
1706 *
1707 * If the page does not have buffers, we create them and set them uptodate.
1708 * The page may not be locked which is why we need to handle the buffers under
1709 * the mapping->private_lock.  Once the buffers are marked dirty we no longer
1710 * need the lock since try_to_free_buffers() does not free dirty buffers.
1711 */
1712void mark_ntfs_record_dirty(struct page *page, const unsigned int ofs) {
1713	struct address_space *mapping = page->mapping;
1714	ntfs_inode *ni = NTFS_I(mapping->host);
1715	struct buffer_head *bh, *head, *buffers_to_free = NULL;
1716	unsigned int end, bh_size, bh_ofs;
1717
1718	BUG_ON(!PageUptodate(page));
1719	end = ofs + ni->itype.index.block_size;
1720	bh_size = VFS_I(ni)->i_sb->s_blocksize;
1721	spin_lock(&mapping->private_lock);
1722	if (unlikely(!page_has_buffers(page))) {
1723		spin_unlock(&mapping->private_lock);
1724		bh = head = alloc_page_buffers(page, bh_size, true);
1725		spin_lock(&mapping->private_lock);
1726		if (likely(!page_has_buffers(page))) {
1727			struct buffer_head *tail;
1728
1729			do {
1730				set_buffer_uptodate(bh);
1731				tail = bh;
1732				bh = bh->b_this_page;
1733			} while (bh);
1734			tail->b_this_page = head;
1735			attach_page_private(page, head);
1736		} else
1737			buffers_to_free = bh;
1738	}
1739	bh = head = page_buffers(page);
1740	BUG_ON(!bh);
1741	do {
1742		bh_ofs = bh_offset(bh);
1743		if (bh_ofs + bh_size <= ofs)
1744			continue;
1745		if (unlikely(bh_ofs >= end))
1746			break;
1747		set_buffer_dirty(bh);
1748	} while ((bh = bh->b_this_page) != head);
1749	spin_unlock(&mapping->private_lock);
1750	__set_page_dirty_nobuffers(page);
1751	if (unlikely(buffers_to_free)) {
1752		do {
1753			bh = buffers_to_free->b_this_page;
1754			free_buffer_head(buffers_to_free);
1755			buffers_to_free = bh;
1756		} while (buffers_to_free);
1757	}
1758}
1759
1760#endif /* NTFS_RW */
1761