xref: /kernel/linux/linux-5.10/fs/nilfs2/super.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * super.c - NILFS module and super block management.
4 *
5 * Copyright (C) 2005-2008 Nippon Telegraph and Telephone Corporation.
6 *
7 * Written by Ryusuke Konishi.
8 */
9/*
10 *  linux/fs/ext2/super.c
11 *
12 * Copyright (C) 1992, 1993, 1994, 1995
13 * Remy Card (card@masi.ibp.fr)
14 * Laboratoire MASI - Institut Blaise Pascal
15 * Universite Pierre et Marie Curie (Paris VI)
16 *
17 *  from
18 *
19 *  linux/fs/minix/inode.c
20 *
21 *  Copyright (C) 1991, 1992  Linus Torvalds
22 *
23 *  Big-endian to little-endian byte-swapping/bitmaps by
24 *        David S. Miller (davem@caip.rutgers.edu), 1995
25 */
26
27#include <linux/module.h>
28#include <linux/string.h>
29#include <linux/slab.h>
30#include <linux/init.h>
31#include <linux/blkdev.h>
32#include <linux/parser.h>
33#include <linux/crc32.h>
34#include <linux/vfs.h>
35#include <linux/writeback.h>
36#include <linux/seq_file.h>
37#include <linux/mount.h>
38#include "nilfs.h"
39#include "export.h"
40#include "mdt.h"
41#include "alloc.h"
42#include "btree.h"
43#include "btnode.h"
44#include "page.h"
45#include "cpfile.h"
46#include "sufile.h" /* nilfs_sufile_resize(), nilfs_sufile_set_alloc_range() */
47#include "ifile.h"
48#include "dat.h"
49#include "segment.h"
50#include "segbuf.h"
51
52MODULE_AUTHOR("NTT Corp.");
53MODULE_DESCRIPTION("A New Implementation of the Log-structured Filesystem "
54		   "(NILFS)");
55MODULE_LICENSE("GPL");
56
57static struct kmem_cache *nilfs_inode_cachep;
58struct kmem_cache *nilfs_transaction_cachep;
59struct kmem_cache *nilfs_segbuf_cachep;
60struct kmem_cache *nilfs_btree_path_cache;
61
62static int nilfs_setup_super(struct super_block *sb, int is_mount);
63static int nilfs_remount(struct super_block *sb, int *flags, char *data);
64
65void __nilfs_msg(struct super_block *sb, const char *fmt, ...)
66{
67	struct va_format vaf;
68	va_list args;
69	int level;
70
71	va_start(args, fmt);
72
73	level = printk_get_level(fmt);
74	vaf.fmt = printk_skip_level(fmt);
75	vaf.va = &args;
76
77	if (sb)
78		printk("%c%cNILFS (%s): %pV\n",
79		       KERN_SOH_ASCII, level, sb->s_id, &vaf);
80	else
81		printk("%c%cNILFS: %pV\n",
82		       KERN_SOH_ASCII, level, &vaf);
83
84	va_end(args);
85}
86
87static void nilfs_set_error(struct super_block *sb)
88{
89	struct the_nilfs *nilfs = sb->s_fs_info;
90	struct nilfs_super_block **sbp;
91
92	down_write(&nilfs->ns_sem);
93	if (!(nilfs->ns_mount_state & NILFS_ERROR_FS)) {
94		nilfs->ns_mount_state |= NILFS_ERROR_FS;
95		sbp = nilfs_prepare_super(sb, 0);
96		if (likely(sbp)) {
97			sbp[0]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
98			if (sbp[1])
99				sbp[1]->s_state |= cpu_to_le16(NILFS_ERROR_FS);
100			nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
101		}
102	}
103	up_write(&nilfs->ns_sem);
104}
105
106/**
107 * __nilfs_error() - report failure condition on a filesystem
108 *
109 * __nilfs_error() sets an ERROR_FS flag on the superblock as well as
110 * reporting an error message.  This function should be called when
111 * NILFS detects incoherences or defects of meta data on disk.
112 *
113 * This implements the body of nilfs_error() macro.  Normally,
114 * nilfs_error() should be used.  As for sustainable errors such as a
115 * single-shot I/O error, nilfs_err() should be used instead.
116 *
117 * Callers should not add a trailing newline since this will do it.
118 */
119void __nilfs_error(struct super_block *sb, const char *function,
120		   const char *fmt, ...)
121{
122	struct the_nilfs *nilfs = sb->s_fs_info;
123	struct va_format vaf;
124	va_list args;
125
126	va_start(args, fmt);
127
128	vaf.fmt = fmt;
129	vaf.va = &args;
130
131	printk(KERN_CRIT "NILFS error (device %s): %s: %pV\n",
132	       sb->s_id, function, &vaf);
133
134	va_end(args);
135
136	if (!sb_rdonly(sb)) {
137		nilfs_set_error(sb);
138
139		if (nilfs_test_opt(nilfs, ERRORS_RO)) {
140			printk(KERN_CRIT "Remounting filesystem read-only\n");
141			sb->s_flags |= SB_RDONLY;
142		}
143	}
144
145	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
146		panic("NILFS (device %s): panic forced after error\n",
147		      sb->s_id);
148}
149
150struct inode *nilfs_alloc_inode(struct super_block *sb)
151{
152	struct nilfs_inode_info *ii;
153
154	ii = kmem_cache_alloc(nilfs_inode_cachep, GFP_NOFS);
155	if (!ii)
156		return NULL;
157	ii->i_bh = NULL;
158	ii->i_state = 0;
159	ii->i_cno = 0;
160	ii->i_assoc_inode = NULL;
161	ii->i_bmap = &ii->i_bmap_data;
162	return &ii->vfs_inode;
163}
164
165static void nilfs_free_inode(struct inode *inode)
166{
167	if (nilfs_is_metadata_file_inode(inode))
168		nilfs_mdt_destroy(inode);
169
170	kmem_cache_free(nilfs_inode_cachep, NILFS_I(inode));
171}
172
173static int nilfs_sync_super(struct super_block *sb, int flag)
174{
175	struct the_nilfs *nilfs = sb->s_fs_info;
176	int err;
177
178 retry:
179	set_buffer_dirty(nilfs->ns_sbh[0]);
180	if (nilfs_test_opt(nilfs, BARRIER)) {
181		err = __sync_dirty_buffer(nilfs->ns_sbh[0],
182					  REQ_SYNC | REQ_PREFLUSH | REQ_FUA);
183	} else {
184		err = sync_dirty_buffer(nilfs->ns_sbh[0]);
185	}
186
187	if (unlikely(err)) {
188		nilfs_err(sb, "unable to write superblock: err=%d", err);
189		if (err == -EIO && nilfs->ns_sbh[1]) {
190			/*
191			 * sbp[0] points to newer log than sbp[1],
192			 * so copy sbp[0] to sbp[1] to take over sbp[0].
193			 */
194			memcpy(nilfs->ns_sbp[1], nilfs->ns_sbp[0],
195			       nilfs->ns_sbsize);
196			nilfs_fall_back_super_block(nilfs);
197			goto retry;
198		}
199	} else {
200		struct nilfs_super_block *sbp = nilfs->ns_sbp[0];
201
202		nilfs->ns_sbwcount++;
203
204		/*
205		 * The latest segment becomes trailable from the position
206		 * written in superblock.
207		 */
208		clear_nilfs_discontinued(nilfs);
209
210		/* update GC protection for recent segments */
211		if (nilfs->ns_sbh[1]) {
212			if (flag == NILFS_SB_COMMIT_ALL) {
213				set_buffer_dirty(nilfs->ns_sbh[1]);
214				if (sync_dirty_buffer(nilfs->ns_sbh[1]) < 0)
215					goto out;
216			}
217			if (le64_to_cpu(nilfs->ns_sbp[1]->s_last_cno) <
218			    le64_to_cpu(nilfs->ns_sbp[0]->s_last_cno))
219				sbp = nilfs->ns_sbp[1];
220		}
221
222		spin_lock(&nilfs->ns_last_segment_lock);
223		nilfs->ns_prot_seq = le64_to_cpu(sbp->s_last_seq);
224		spin_unlock(&nilfs->ns_last_segment_lock);
225	}
226 out:
227	return err;
228}
229
230void nilfs_set_log_cursor(struct nilfs_super_block *sbp,
231			  struct the_nilfs *nilfs)
232{
233	sector_t nfreeblocks;
234
235	/* nilfs->ns_sem must be locked by the caller. */
236	nilfs_count_free_blocks(nilfs, &nfreeblocks);
237	sbp->s_free_blocks_count = cpu_to_le64(nfreeblocks);
238
239	spin_lock(&nilfs->ns_last_segment_lock);
240	sbp->s_last_seq = cpu_to_le64(nilfs->ns_last_seq);
241	sbp->s_last_pseg = cpu_to_le64(nilfs->ns_last_pseg);
242	sbp->s_last_cno = cpu_to_le64(nilfs->ns_last_cno);
243	spin_unlock(&nilfs->ns_last_segment_lock);
244}
245
246struct nilfs_super_block **nilfs_prepare_super(struct super_block *sb,
247					       int flip)
248{
249	struct the_nilfs *nilfs = sb->s_fs_info;
250	struct nilfs_super_block **sbp = nilfs->ns_sbp;
251
252	/* nilfs->ns_sem must be locked by the caller. */
253	if (sbp[0]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
254		if (sbp[1] &&
255		    sbp[1]->s_magic == cpu_to_le16(NILFS_SUPER_MAGIC)) {
256			memcpy(sbp[0], sbp[1], nilfs->ns_sbsize);
257		} else {
258			nilfs_crit(sb, "superblock broke");
259			return NULL;
260		}
261	} else if (sbp[1] &&
262		   sbp[1]->s_magic != cpu_to_le16(NILFS_SUPER_MAGIC)) {
263		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
264	}
265
266	if (flip && sbp[1])
267		nilfs_swap_super_block(nilfs);
268
269	return sbp;
270}
271
272int nilfs_commit_super(struct super_block *sb, int flag)
273{
274	struct the_nilfs *nilfs = sb->s_fs_info;
275	struct nilfs_super_block **sbp = nilfs->ns_sbp;
276	time64_t t;
277
278	/* nilfs->ns_sem must be locked by the caller. */
279	t = ktime_get_real_seconds();
280	nilfs->ns_sbwtime = t;
281	sbp[0]->s_wtime = cpu_to_le64(t);
282	sbp[0]->s_sum = 0;
283	sbp[0]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
284					     (unsigned char *)sbp[0],
285					     nilfs->ns_sbsize));
286	if (flag == NILFS_SB_COMMIT_ALL && sbp[1]) {
287		sbp[1]->s_wtime = sbp[0]->s_wtime;
288		sbp[1]->s_sum = 0;
289		sbp[1]->s_sum = cpu_to_le32(crc32_le(nilfs->ns_crc_seed,
290					    (unsigned char *)sbp[1],
291					    nilfs->ns_sbsize));
292	}
293	clear_nilfs_sb_dirty(nilfs);
294	nilfs->ns_flushed_device = 1;
295	/* make sure store to ns_flushed_device cannot be reordered */
296	smp_wmb();
297	return nilfs_sync_super(sb, flag);
298}
299
300/**
301 * nilfs_cleanup_super() - write filesystem state for cleanup
302 * @sb: super block instance to be unmounted or degraded to read-only
303 *
304 * This function restores state flags in the on-disk super block.
305 * This will set "clean" flag (i.e. NILFS_VALID_FS) unless the
306 * filesystem was not clean previously.
307 */
308int nilfs_cleanup_super(struct super_block *sb)
309{
310	struct the_nilfs *nilfs = sb->s_fs_info;
311	struct nilfs_super_block **sbp;
312	int flag = NILFS_SB_COMMIT;
313	int ret = -EIO;
314
315	sbp = nilfs_prepare_super(sb, 0);
316	if (sbp) {
317		sbp[0]->s_state = cpu_to_le16(nilfs->ns_mount_state);
318		nilfs_set_log_cursor(sbp[0], nilfs);
319		if (sbp[1] && sbp[0]->s_last_cno == sbp[1]->s_last_cno) {
320			/*
321			 * make the "clean" flag also to the opposite
322			 * super block if both super blocks point to
323			 * the same checkpoint.
324			 */
325			sbp[1]->s_state = sbp[0]->s_state;
326			flag = NILFS_SB_COMMIT_ALL;
327		}
328		ret = nilfs_commit_super(sb, flag);
329	}
330	return ret;
331}
332
333/**
334 * nilfs_move_2nd_super - relocate secondary super block
335 * @sb: super block instance
336 * @sb2off: new offset of the secondary super block (in bytes)
337 */
338static int nilfs_move_2nd_super(struct super_block *sb, loff_t sb2off)
339{
340	struct the_nilfs *nilfs = sb->s_fs_info;
341	struct buffer_head *nsbh;
342	struct nilfs_super_block *nsbp;
343	sector_t blocknr, newblocknr;
344	unsigned long offset;
345	int sb2i;  /* array index of the secondary superblock */
346	int ret = 0;
347
348	/* nilfs->ns_sem must be locked by the caller. */
349	if (nilfs->ns_sbh[1] &&
350	    nilfs->ns_sbh[1]->b_blocknr > nilfs->ns_first_data_block) {
351		sb2i = 1;
352		blocknr = nilfs->ns_sbh[1]->b_blocknr;
353	} else if (nilfs->ns_sbh[0]->b_blocknr > nilfs->ns_first_data_block) {
354		sb2i = 0;
355		blocknr = nilfs->ns_sbh[0]->b_blocknr;
356	} else {
357		sb2i = -1;
358		blocknr = 0;
359	}
360	if (sb2i >= 0 && (u64)blocknr << nilfs->ns_blocksize_bits == sb2off)
361		goto out;  /* super block location is unchanged */
362
363	/* Get new super block buffer */
364	newblocknr = sb2off >> nilfs->ns_blocksize_bits;
365	offset = sb2off & (nilfs->ns_blocksize - 1);
366	nsbh = sb_getblk(sb, newblocknr);
367	if (!nsbh) {
368		nilfs_warn(sb,
369			   "unable to move secondary superblock to block %llu",
370			   (unsigned long long)newblocknr);
371		ret = -EIO;
372		goto out;
373	}
374	nsbp = (void *)nsbh->b_data + offset;
375
376	lock_buffer(nsbh);
377	if (sb2i >= 0) {
378		/*
379		 * The position of the second superblock only changes by 4KiB,
380		 * which is larger than the maximum superblock data size
381		 * (= 1KiB), so there is no need to use memmove() to allow
382		 * overlap between source and destination.
383		 */
384		memcpy(nsbp, nilfs->ns_sbp[sb2i], nilfs->ns_sbsize);
385
386		/*
387		 * Zero fill after copy to avoid overwriting in case of move
388		 * within the same block.
389		 */
390		memset(nsbh->b_data, 0, offset);
391		memset((void *)nsbp + nilfs->ns_sbsize, 0,
392		       nsbh->b_size - offset - nilfs->ns_sbsize);
393	} else {
394		memset(nsbh->b_data, 0, nsbh->b_size);
395	}
396	set_buffer_uptodate(nsbh);
397	unlock_buffer(nsbh);
398
399	if (sb2i >= 0) {
400		brelse(nilfs->ns_sbh[sb2i]);
401		nilfs->ns_sbh[sb2i] = nsbh;
402		nilfs->ns_sbp[sb2i] = nsbp;
403	} else if (nilfs->ns_sbh[0]->b_blocknr < nilfs->ns_first_data_block) {
404		/* secondary super block will be restored to index 1 */
405		nilfs->ns_sbh[1] = nsbh;
406		nilfs->ns_sbp[1] = nsbp;
407	} else {
408		brelse(nsbh);
409	}
410out:
411	return ret;
412}
413
414/**
415 * nilfs_resize_fs - resize the filesystem
416 * @sb: super block instance
417 * @newsize: new size of the filesystem (in bytes)
418 */
419int nilfs_resize_fs(struct super_block *sb, __u64 newsize)
420{
421	struct the_nilfs *nilfs = sb->s_fs_info;
422	struct nilfs_super_block **sbp;
423	__u64 devsize, newnsegs;
424	loff_t sb2off;
425	int ret;
426
427	ret = -ERANGE;
428	devsize = i_size_read(sb->s_bdev->bd_inode);
429	if (newsize > devsize)
430		goto out;
431
432	/*
433	 * Prevent underflow in second superblock position calculation.
434	 * The exact minimum size check is done in nilfs_sufile_resize().
435	 */
436	if (newsize < 4096) {
437		ret = -ENOSPC;
438		goto out;
439	}
440
441	/*
442	 * Write lock is required to protect some functions depending
443	 * on the number of segments, the number of reserved segments,
444	 * and so forth.
445	 */
446	down_write(&nilfs->ns_segctor_sem);
447
448	sb2off = NILFS_SB2_OFFSET_BYTES(newsize);
449	newnsegs = sb2off >> nilfs->ns_blocksize_bits;
450	do_div(newnsegs, nilfs->ns_blocks_per_segment);
451
452	ret = nilfs_sufile_resize(nilfs->ns_sufile, newnsegs);
453	up_write(&nilfs->ns_segctor_sem);
454	if (ret < 0)
455		goto out;
456
457	ret = nilfs_construct_segment(sb);
458	if (ret < 0)
459		goto out;
460
461	down_write(&nilfs->ns_sem);
462	nilfs_move_2nd_super(sb, sb2off);
463	ret = -EIO;
464	sbp = nilfs_prepare_super(sb, 0);
465	if (likely(sbp)) {
466		nilfs_set_log_cursor(sbp[0], nilfs);
467		/*
468		 * Drop NILFS_RESIZE_FS flag for compatibility with
469		 * mount-time resize which may be implemented in a
470		 * future release.
471		 */
472		sbp[0]->s_state = cpu_to_le16(le16_to_cpu(sbp[0]->s_state) &
473					      ~NILFS_RESIZE_FS);
474		sbp[0]->s_dev_size = cpu_to_le64(newsize);
475		sbp[0]->s_nsegments = cpu_to_le64(nilfs->ns_nsegments);
476		if (sbp[1])
477			memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
478		ret = nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
479	}
480	up_write(&nilfs->ns_sem);
481
482	/*
483	 * Reset the range of allocatable segments last.  This order
484	 * is important in the case of expansion because the secondary
485	 * superblock must be protected from log write until migration
486	 * completes.
487	 */
488	if (!ret)
489		nilfs_sufile_set_alloc_range(nilfs->ns_sufile, 0, newnsegs - 1);
490out:
491	return ret;
492}
493
494static void nilfs_put_super(struct super_block *sb)
495{
496	struct the_nilfs *nilfs = sb->s_fs_info;
497
498	nilfs_detach_log_writer(sb);
499
500	if (!sb_rdonly(sb)) {
501		down_write(&nilfs->ns_sem);
502		nilfs_cleanup_super(sb);
503		up_write(&nilfs->ns_sem);
504	}
505
506	nilfs_sysfs_delete_device_group(nilfs);
507	iput(nilfs->ns_sufile);
508	iput(nilfs->ns_cpfile);
509	iput(nilfs->ns_dat);
510
511	destroy_nilfs(nilfs);
512	sb->s_fs_info = NULL;
513}
514
515static int nilfs_sync_fs(struct super_block *sb, int wait)
516{
517	struct the_nilfs *nilfs = sb->s_fs_info;
518	struct nilfs_super_block **sbp;
519	int err = 0;
520
521	/* This function is called when super block should be written back */
522	if (wait)
523		err = nilfs_construct_segment(sb);
524
525	down_write(&nilfs->ns_sem);
526	if (nilfs_sb_dirty(nilfs)) {
527		sbp = nilfs_prepare_super(sb, nilfs_sb_will_flip(nilfs));
528		if (likely(sbp)) {
529			nilfs_set_log_cursor(sbp[0], nilfs);
530			nilfs_commit_super(sb, NILFS_SB_COMMIT);
531		}
532	}
533	up_write(&nilfs->ns_sem);
534
535	if (!err)
536		err = nilfs_flush_device(nilfs);
537
538	return err;
539}
540
541int nilfs_attach_checkpoint(struct super_block *sb, __u64 cno, int curr_mnt,
542			    struct nilfs_root **rootp)
543{
544	struct the_nilfs *nilfs = sb->s_fs_info;
545	struct nilfs_root *root;
546	struct nilfs_checkpoint *raw_cp;
547	struct buffer_head *bh_cp;
548	int err = -ENOMEM;
549
550	root = nilfs_find_or_create_root(
551		nilfs, curr_mnt ? NILFS_CPTREE_CURRENT_CNO : cno);
552	if (!root)
553		return err;
554
555	if (root->ifile)
556		goto reuse; /* already attached checkpoint */
557
558	down_read(&nilfs->ns_segctor_sem);
559	err = nilfs_cpfile_get_checkpoint(nilfs->ns_cpfile, cno, 0, &raw_cp,
560					  &bh_cp);
561	up_read(&nilfs->ns_segctor_sem);
562	if (unlikely(err)) {
563		if (err == -ENOENT || err == -EINVAL) {
564			nilfs_err(sb,
565				  "Invalid checkpoint (checkpoint number=%llu)",
566				  (unsigned long long)cno);
567			err = -EINVAL;
568		}
569		goto failed;
570	}
571
572	err = nilfs_ifile_read(sb, root, nilfs->ns_inode_size,
573			       &raw_cp->cp_ifile_inode, &root->ifile);
574	if (err)
575		goto failed_bh;
576
577	atomic64_set(&root->inodes_count,
578			le64_to_cpu(raw_cp->cp_inodes_count));
579	atomic64_set(&root->blocks_count,
580			le64_to_cpu(raw_cp->cp_blocks_count));
581
582	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
583
584 reuse:
585	*rootp = root;
586	return 0;
587
588 failed_bh:
589	nilfs_cpfile_put_checkpoint(nilfs->ns_cpfile, cno, bh_cp);
590 failed:
591	nilfs_put_root(root);
592
593	return err;
594}
595
596static int nilfs_freeze(struct super_block *sb)
597{
598	struct the_nilfs *nilfs = sb->s_fs_info;
599	int err;
600
601	if (sb_rdonly(sb))
602		return 0;
603
604	/* Mark super block clean */
605	down_write(&nilfs->ns_sem);
606	err = nilfs_cleanup_super(sb);
607	up_write(&nilfs->ns_sem);
608	return err;
609}
610
611static int nilfs_unfreeze(struct super_block *sb)
612{
613	struct the_nilfs *nilfs = sb->s_fs_info;
614
615	if (sb_rdonly(sb))
616		return 0;
617
618	down_write(&nilfs->ns_sem);
619	nilfs_setup_super(sb, false);
620	up_write(&nilfs->ns_sem);
621	return 0;
622}
623
624static int nilfs_statfs(struct dentry *dentry, struct kstatfs *buf)
625{
626	struct super_block *sb = dentry->d_sb;
627	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
628	struct the_nilfs *nilfs = root->nilfs;
629	u64 id = huge_encode_dev(sb->s_bdev->bd_dev);
630	unsigned long long blocks;
631	unsigned long overhead;
632	unsigned long nrsvblocks;
633	sector_t nfreeblocks;
634	u64 nmaxinodes, nfreeinodes;
635	int err;
636
637	/*
638	 * Compute all of the segment blocks
639	 *
640	 * The blocks before first segment and after last segment
641	 * are excluded.
642	 */
643	blocks = nilfs->ns_blocks_per_segment * nilfs->ns_nsegments
644		- nilfs->ns_first_data_block;
645	nrsvblocks = nilfs->ns_nrsvsegs * nilfs->ns_blocks_per_segment;
646
647	/*
648	 * Compute the overhead
649	 *
650	 * When distributing meta data blocks outside segment structure,
651	 * We must count them as the overhead.
652	 */
653	overhead = 0;
654
655	err = nilfs_count_free_blocks(nilfs, &nfreeblocks);
656	if (unlikely(err))
657		return err;
658
659	err = nilfs_ifile_count_free_inodes(root->ifile,
660					    &nmaxinodes, &nfreeinodes);
661	if (unlikely(err)) {
662		nilfs_warn(sb, "failed to count free inodes: err=%d", err);
663		if (err == -ERANGE) {
664			/*
665			 * If nilfs_palloc_count_max_entries() returns
666			 * -ERANGE error code then we simply treat
667			 * curent inodes count as maximum possible and
668			 * zero as free inodes value.
669			 */
670			nmaxinodes = atomic64_read(&root->inodes_count);
671			nfreeinodes = 0;
672			err = 0;
673		} else
674			return err;
675	}
676
677	buf->f_type = NILFS_SUPER_MAGIC;
678	buf->f_bsize = sb->s_blocksize;
679	buf->f_blocks = blocks - overhead;
680	buf->f_bfree = nfreeblocks;
681	buf->f_bavail = (buf->f_bfree >= nrsvblocks) ?
682		(buf->f_bfree - nrsvblocks) : 0;
683	buf->f_files = nmaxinodes;
684	buf->f_ffree = nfreeinodes;
685	buf->f_namelen = NILFS_NAME_LEN;
686	buf->f_fsid = u64_to_fsid(id);
687
688	return 0;
689}
690
691static int nilfs_show_options(struct seq_file *seq, struct dentry *dentry)
692{
693	struct super_block *sb = dentry->d_sb;
694	struct the_nilfs *nilfs = sb->s_fs_info;
695	struct nilfs_root *root = NILFS_I(d_inode(dentry))->i_root;
696
697	if (!nilfs_test_opt(nilfs, BARRIER))
698		seq_puts(seq, ",nobarrier");
699	if (root->cno != NILFS_CPTREE_CURRENT_CNO)
700		seq_printf(seq, ",cp=%llu", (unsigned long long)root->cno);
701	if (nilfs_test_opt(nilfs, ERRORS_PANIC))
702		seq_puts(seq, ",errors=panic");
703	if (nilfs_test_opt(nilfs, ERRORS_CONT))
704		seq_puts(seq, ",errors=continue");
705	if (nilfs_test_opt(nilfs, STRICT_ORDER))
706		seq_puts(seq, ",order=strict");
707	if (nilfs_test_opt(nilfs, NORECOVERY))
708		seq_puts(seq, ",norecovery");
709	if (nilfs_test_opt(nilfs, DISCARD))
710		seq_puts(seq, ",discard");
711
712	return 0;
713}
714
715static const struct super_operations nilfs_sops = {
716	.alloc_inode    = nilfs_alloc_inode,
717	.free_inode     = nilfs_free_inode,
718	.dirty_inode    = nilfs_dirty_inode,
719	.evict_inode    = nilfs_evict_inode,
720	.put_super      = nilfs_put_super,
721	.sync_fs        = nilfs_sync_fs,
722	.freeze_fs	= nilfs_freeze,
723	.unfreeze_fs	= nilfs_unfreeze,
724	.statfs         = nilfs_statfs,
725	.remount_fs     = nilfs_remount,
726	.show_options = nilfs_show_options
727};
728
729enum {
730	Opt_err_cont, Opt_err_panic, Opt_err_ro,
731	Opt_barrier, Opt_nobarrier, Opt_snapshot, Opt_order, Opt_norecovery,
732	Opt_discard, Opt_nodiscard, Opt_err,
733};
734
735static match_table_t tokens = {
736	{Opt_err_cont, "errors=continue"},
737	{Opt_err_panic, "errors=panic"},
738	{Opt_err_ro, "errors=remount-ro"},
739	{Opt_barrier, "barrier"},
740	{Opt_nobarrier, "nobarrier"},
741	{Opt_snapshot, "cp=%u"},
742	{Opt_order, "order=%s"},
743	{Opt_norecovery, "norecovery"},
744	{Opt_discard, "discard"},
745	{Opt_nodiscard, "nodiscard"},
746	{Opt_err, NULL}
747};
748
749static int parse_options(char *options, struct super_block *sb, int is_remount)
750{
751	struct the_nilfs *nilfs = sb->s_fs_info;
752	char *p;
753	substring_t args[MAX_OPT_ARGS];
754
755	if (!options)
756		return 1;
757
758	while ((p = strsep(&options, ",")) != NULL) {
759		int token;
760
761		if (!*p)
762			continue;
763
764		token = match_token(p, tokens, args);
765		switch (token) {
766		case Opt_barrier:
767			nilfs_set_opt(nilfs, BARRIER);
768			break;
769		case Opt_nobarrier:
770			nilfs_clear_opt(nilfs, BARRIER);
771			break;
772		case Opt_order:
773			if (strcmp(args[0].from, "relaxed") == 0)
774				/* Ordered data semantics */
775				nilfs_clear_opt(nilfs, STRICT_ORDER);
776			else if (strcmp(args[0].from, "strict") == 0)
777				/* Strict in-order semantics */
778				nilfs_set_opt(nilfs, STRICT_ORDER);
779			else
780				return 0;
781			break;
782		case Opt_err_panic:
783			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_PANIC);
784			break;
785		case Opt_err_ro:
786			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_RO);
787			break;
788		case Opt_err_cont:
789			nilfs_write_opt(nilfs, ERROR_MODE, ERRORS_CONT);
790			break;
791		case Opt_snapshot:
792			if (is_remount) {
793				nilfs_err(sb,
794					  "\"%s\" option is invalid for remount",
795					  p);
796				return 0;
797			}
798			break;
799		case Opt_norecovery:
800			nilfs_set_opt(nilfs, NORECOVERY);
801			break;
802		case Opt_discard:
803			nilfs_set_opt(nilfs, DISCARD);
804			break;
805		case Opt_nodiscard:
806			nilfs_clear_opt(nilfs, DISCARD);
807			break;
808		default:
809			nilfs_err(sb, "unrecognized mount option \"%s\"", p);
810			return 0;
811		}
812	}
813	return 1;
814}
815
816static inline void
817nilfs_set_default_options(struct super_block *sb,
818			  struct nilfs_super_block *sbp)
819{
820	struct the_nilfs *nilfs = sb->s_fs_info;
821
822	nilfs->ns_mount_opt =
823		NILFS_MOUNT_ERRORS_RO | NILFS_MOUNT_BARRIER;
824}
825
826static int nilfs_setup_super(struct super_block *sb, int is_mount)
827{
828	struct the_nilfs *nilfs = sb->s_fs_info;
829	struct nilfs_super_block **sbp;
830	int max_mnt_count;
831	int mnt_count;
832
833	/* nilfs->ns_sem must be locked by the caller. */
834	sbp = nilfs_prepare_super(sb, 0);
835	if (!sbp)
836		return -EIO;
837
838	if (!is_mount)
839		goto skip_mount_setup;
840
841	max_mnt_count = le16_to_cpu(sbp[0]->s_max_mnt_count);
842	mnt_count = le16_to_cpu(sbp[0]->s_mnt_count);
843
844	if (nilfs->ns_mount_state & NILFS_ERROR_FS) {
845		nilfs_warn(sb, "mounting fs with errors");
846#if 0
847	} else if (max_mnt_count >= 0 && mnt_count >= max_mnt_count) {
848		nilfs_warn(sb, "maximal mount count reached");
849#endif
850	}
851	if (!max_mnt_count)
852		sbp[0]->s_max_mnt_count = cpu_to_le16(NILFS_DFL_MAX_MNT_COUNT);
853
854	sbp[0]->s_mnt_count = cpu_to_le16(mnt_count + 1);
855	sbp[0]->s_mtime = cpu_to_le64(ktime_get_real_seconds());
856
857skip_mount_setup:
858	sbp[0]->s_state =
859		cpu_to_le16(le16_to_cpu(sbp[0]->s_state) & ~NILFS_VALID_FS);
860	/* synchronize sbp[1] with sbp[0] */
861	if (sbp[1])
862		memcpy(sbp[1], sbp[0], nilfs->ns_sbsize);
863	return nilfs_commit_super(sb, NILFS_SB_COMMIT_ALL);
864}
865
866struct nilfs_super_block *nilfs_read_super_block(struct super_block *sb,
867						 u64 pos, int blocksize,
868						 struct buffer_head **pbh)
869{
870	unsigned long long sb_index = pos;
871	unsigned long offset;
872
873	offset = do_div(sb_index, blocksize);
874	*pbh = sb_bread(sb, sb_index);
875	if (!*pbh)
876		return NULL;
877	return (struct nilfs_super_block *)((char *)(*pbh)->b_data + offset);
878}
879
880int nilfs_store_magic_and_option(struct super_block *sb,
881				 struct nilfs_super_block *sbp,
882				 char *data)
883{
884	struct the_nilfs *nilfs = sb->s_fs_info;
885
886	sb->s_magic = le16_to_cpu(sbp->s_magic);
887
888	/* FS independent flags */
889#ifdef NILFS_ATIME_DISABLE
890	sb->s_flags |= SB_NOATIME;
891#endif
892
893	nilfs_set_default_options(sb, sbp);
894
895	nilfs->ns_resuid = le16_to_cpu(sbp->s_def_resuid);
896	nilfs->ns_resgid = le16_to_cpu(sbp->s_def_resgid);
897	nilfs->ns_interval = le32_to_cpu(sbp->s_c_interval);
898	nilfs->ns_watermark = le32_to_cpu(sbp->s_c_block_max);
899
900	return !parse_options(data, sb, 0) ? -EINVAL : 0;
901}
902
903int nilfs_check_feature_compatibility(struct super_block *sb,
904				      struct nilfs_super_block *sbp)
905{
906	__u64 features;
907
908	features = le64_to_cpu(sbp->s_feature_incompat) &
909		~NILFS_FEATURE_INCOMPAT_SUPP;
910	if (features) {
911		nilfs_err(sb,
912			  "couldn't mount because of unsupported optional features (%llx)",
913			  (unsigned long long)features);
914		return -EINVAL;
915	}
916	features = le64_to_cpu(sbp->s_feature_compat_ro) &
917		~NILFS_FEATURE_COMPAT_RO_SUPP;
918	if (!sb_rdonly(sb) && features) {
919		nilfs_err(sb,
920			  "couldn't mount RDWR because of unsupported optional features (%llx)",
921			  (unsigned long long)features);
922		return -EINVAL;
923	}
924	return 0;
925}
926
927static int nilfs_get_root_dentry(struct super_block *sb,
928				 struct nilfs_root *root,
929				 struct dentry **root_dentry)
930{
931	struct inode *inode;
932	struct dentry *dentry;
933	int ret = 0;
934
935	inode = nilfs_iget(sb, root, NILFS_ROOT_INO);
936	if (IS_ERR(inode)) {
937		ret = PTR_ERR(inode);
938		nilfs_err(sb, "error %d getting root inode", ret);
939		goto out;
940	}
941	if (!S_ISDIR(inode->i_mode) || !inode->i_blocks || !inode->i_size) {
942		iput(inode);
943		nilfs_err(sb, "corrupt root inode");
944		ret = -EINVAL;
945		goto out;
946	}
947
948	if (root->cno == NILFS_CPTREE_CURRENT_CNO) {
949		dentry = d_find_alias(inode);
950		if (!dentry) {
951			dentry = d_make_root(inode);
952			if (!dentry) {
953				ret = -ENOMEM;
954				goto failed_dentry;
955			}
956		} else {
957			iput(inode);
958		}
959	} else {
960		dentry = d_obtain_root(inode);
961		if (IS_ERR(dentry)) {
962			ret = PTR_ERR(dentry);
963			goto failed_dentry;
964		}
965	}
966	*root_dentry = dentry;
967 out:
968	return ret;
969
970 failed_dentry:
971	nilfs_err(sb, "error %d getting root dentry", ret);
972	goto out;
973}
974
975static int nilfs_attach_snapshot(struct super_block *s, __u64 cno,
976				 struct dentry **root_dentry)
977{
978	struct the_nilfs *nilfs = s->s_fs_info;
979	struct nilfs_root *root;
980	int ret;
981
982	mutex_lock(&nilfs->ns_snapshot_mount_mutex);
983
984	down_read(&nilfs->ns_segctor_sem);
985	ret = nilfs_cpfile_is_snapshot(nilfs->ns_cpfile, cno);
986	up_read(&nilfs->ns_segctor_sem);
987	if (ret < 0) {
988		ret = (ret == -ENOENT) ? -EINVAL : ret;
989		goto out;
990	} else if (!ret) {
991		nilfs_err(s,
992			  "The specified checkpoint is not a snapshot (checkpoint number=%llu)",
993			  (unsigned long long)cno);
994		ret = -EINVAL;
995		goto out;
996	}
997
998	ret = nilfs_attach_checkpoint(s, cno, false, &root);
999	if (ret) {
1000		nilfs_err(s,
1001			  "error %d while loading snapshot (checkpoint number=%llu)",
1002			  ret, (unsigned long long)cno);
1003		goto out;
1004	}
1005	ret = nilfs_get_root_dentry(s, root, root_dentry);
1006	nilfs_put_root(root);
1007 out:
1008	mutex_unlock(&nilfs->ns_snapshot_mount_mutex);
1009	return ret;
1010}
1011
1012/**
1013 * nilfs_tree_is_busy() - try to shrink dentries of a checkpoint
1014 * @root_dentry: root dentry of the tree to be shrunk
1015 *
1016 * This function returns true if the tree was in-use.
1017 */
1018static bool nilfs_tree_is_busy(struct dentry *root_dentry)
1019{
1020	shrink_dcache_parent(root_dentry);
1021	return d_count(root_dentry) > 1;
1022}
1023
1024int nilfs_checkpoint_is_mounted(struct super_block *sb, __u64 cno)
1025{
1026	struct the_nilfs *nilfs = sb->s_fs_info;
1027	struct nilfs_root *root;
1028	struct inode *inode;
1029	struct dentry *dentry;
1030	int ret;
1031
1032	if (cno > nilfs->ns_cno)
1033		return false;
1034
1035	if (cno >= nilfs_last_cno(nilfs))
1036		return true;	/* protect recent checkpoints */
1037
1038	ret = false;
1039	root = nilfs_lookup_root(nilfs, cno);
1040	if (root) {
1041		inode = nilfs_ilookup(sb, root, NILFS_ROOT_INO);
1042		if (inode) {
1043			dentry = d_find_alias(inode);
1044			if (dentry) {
1045				ret = nilfs_tree_is_busy(dentry);
1046				dput(dentry);
1047			}
1048			iput(inode);
1049		}
1050		nilfs_put_root(root);
1051	}
1052	return ret;
1053}
1054
1055/**
1056 * nilfs_fill_super() - initialize a super block instance
1057 * @sb: super_block
1058 * @data: mount options
1059 * @silent: silent mode flag
1060 *
1061 * This function is called exclusively by nilfs->ns_mount_mutex.
1062 * So, the recovery process is protected from other simultaneous mounts.
1063 */
1064static int
1065nilfs_fill_super(struct super_block *sb, void *data, int silent)
1066{
1067	struct the_nilfs *nilfs;
1068	struct nilfs_root *fsroot;
1069	__u64 cno;
1070	int err;
1071
1072	nilfs = alloc_nilfs(sb);
1073	if (!nilfs)
1074		return -ENOMEM;
1075
1076	sb->s_fs_info = nilfs;
1077
1078	err = init_nilfs(nilfs, sb, (char *)data);
1079	if (err)
1080		goto failed_nilfs;
1081
1082	sb->s_op = &nilfs_sops;
1083	sb->s_export_op = &nilfs_export_ops;
1084	sb->s_root = NULL;
1085	sb->s_time_gran = 1;
1086	sb->s_max_links = NILFS_LINK_MAX;
1087
1088	sb->s_bdi = bdi_get(sb->s_bdev->bd_bdi);
1089
1090	err = load_nilfs(nilfs, sb);
1091	if (err)
1092		goto failed_nilfs;
1093
1094	cno = nilfs_last_cno(nilfs);
1095	err = nilfs_attach_checkpoint(sb, cno, true, &fsroot);
1096	if (err) {
1097		nilfs_err(sb,
1098			  "error %d while loading last checkpoint (checkpoint number=%llu)",
1099			  err, (unsigned long long)cno);
1100		goto failed_unload;
1101	}
1102
1103	if (!sb_rdonly(sb)) {
1104		err = nilfs_attach_log_writer(sb, fsroot);
1105		if (err)
1106			goto failed_checkpoint;
1107	}
1108
1109	err = nilfs_get_root_dentry(sb, fsroot, &sb->s_root);
1110	if (err)
1111		goto failed_segctor;
1112
1113	nilfs_put_root(fsroot);
1114
1115	if (!sb_rdonly(sb)) {
1116		down_write(&nilfs->ns_sem);
1117		nilfs_setup_super(sb, true);
1118		up_write(&nilfs->ns_sem);
1119	}
1120
1121	return 0;
1122
1123 failed_segctor:
1124	nilfs_detach_log_writer(sb);
1125
1126 failed_checkpoint:
1127	nilfs_put_root(fsroot);
1128
1129 failed_unload:
1130	nilfs_sysfs_delete_device_group(nilfs);
1131	iput(nilfs->ns_sufile);
1132	iput(nilfs->ns_cpfile);
1133	iput(nilfs->ns_dat);
1134
1135 failed_nilfs:
1136	destroy_nilfs(nilfs);
1137	return err;
1138}
1139
1140static int nilfs_remount(struct super_block *sb, int *flags, char *data)
1141{
1142	struct the_nilfs *nilfs = sb->s_fs_info;
1143	unsigned long old_sb_flags;
1144	unsigned long old_mount_opt;
1145	int err;
1146
1147	sync_filesystem(sb);
1148	old_sb_flags = sb->s_flags;
1149	old_mount_opt = nilfs->ns_mount_opt;
1150
1151	if (!parse_options(data, sb, 1)) {
1152		err = -EINVAL;
1153		goto restore_opts;
1154	}
1155	sb->s_flags = (sb->s_flags & ~SB_POSIXACL);
1156
1157	err = -EINVAL;
1158
1159	if (!nilfs_valid_fs(nilfs)) {
1160		nilfs_warn(sb,
1161			   "couldn't remount because the filesystem is in an incomplete recovery state");
1162		goto restore_opts;
1163	}
1164
1165	if ((bool)(*flags & SB_RDONLY) == sb_rdonly(sb))
1166		goto out;
1167	if (*flags & SB_RDONLY) {
1168		sb->s_flags |= SB_RDONLY;
1169
1170		/*
1171		 * Remounting a valid RW partition RDONLY, so set
1172		 * the RDONLY flag and then mark the partition as valid again.
1173		 */
1174		down_write(&nilfs->ns_sem);
1175		nilfs_cleanup_super(sb);
1176		up_write(&nilfs->ns_sem);
1177	} else {
1178		__u64 features;
1179		struct nilfs_root *root;
1180
1181		/*
1182		 * Mounting a RDONLY partition read-write, so reread and
1183		 * store the current valid flag.  (It may have been changed
1184		 * by fsck since we originally mounted the partition.)
1185		 */
1186		down_read(&nilfs->ns_sem);
1187		features = le64_to_cpu(nilfs->ns_sbp[0]->s_feature_compat_ro) &
1188			~NILFS_FEATURE_COMPAT_RO_SUPP;
1189		up_read(&nilfs->ns_sem);
1190		if (features) {
1191			nilfs_warn(sb,
1192				   "couldn't remount RDWR because of unsupported optional features (%llx)",
1193				   (unsigned long long)features);
1194			err = -EROFS;
1195			goto restore_opts;
1196		}
1197
1198		sb->s_flags &= ~SB_RDONLY;
1199
1200		root = NILFS_I(d_inode(sb->s_root))->i_root;
1201		err = nilfs_attach_log_writer(sb, root);
1202		if (err)
1203			goto restore_opts;
1204
1205		down_write(&nilfs->ns_sem);
1206		nilfs_setup_super(sb, true);
1207		up_write(&nilfs->ns_sem);
1208	}
1209 out:
1210	return 0;
1211
1212 restore_opts:
1213	sb->s_flags = old_sb_flags;
1214	nilfs->ns_mount_opt = old_mount_opt;
1215	return err;
1216}
1217
1218struct nilfs_super_data {
1219	struct block_device *bdev;
1220	__u64 cno;
1221	int flags;
1222};
1223
1224static int nilfs_parse_snapshot_option(const char *option,
1225				       const substring_t *arg,
1226				       struct nilfs_super_data *sd)
1227{
1228	unsigned long long val;
1229	const char *msg = NULL;
1230	int err;
1231
1232	if (!(sd->flags & SB_RDONLY)) {
1233		msg = "read-only option is not specified";
1234		goto parse_error;
1235	}
1236
1237	err = kstrtoull(arg->from, 0, &val);
1238	if (err) {
1239		if (err == -ERANGE)
1240			msg = "too large checkpoint number";
1241		else
1242			msg = "malformed argument";
1243		goto parse_error;
1244	} else if (val == 0) {
1245		msg = "invalid checkpoint number 0";
1246		goto parse_error;
1247	}
1248	sd->cno = val;
1249	return 0;
1250
1251parse_error:
1252	nilfs_err(NULL, "invalid option \"%s\": %s", option, msg);
1253	return 1;
1254}
1255
1256/**
1257 * nilfs_identify - pre-read mount options needed to identify mount instance
1258 * @data: mount options
1259 * @sd: nilfs_super_data
1260 */
1261static int nilfs_identify(char *data, struct nilfs_super_data *sd)
1262{
1263	char *p, *options = data;
1264	substring_t args[MAX_OPT_ARGS];
1265	int token;
1266	int ret = 0;
1267
1268	do {
1269		p = strsep(&options, ",");
1270		if (p != NULL && *p) {
1271			token = match_token(p, tokens, args);
1272			if (token == Opt_snapshot)
1273				ret = nilfs_parse_snapshot_option(p, &args[0],
1274								  sd);
1275		}
1276		if (!options)
1277			break;
1278		BUG_ON(options == data);
1279		*(options - 1) = ',';
1280	} while (!ret);
1281	return ret;
1282}
1283
1284static int nilfs_set_bdev_super(struct super_block *s, void *data)
1285{
1286	s->s_bdev = data;
1287	s->s_dev = s->s_bdev->bd_dev;
1288	return 0;
1289}
1290
1291static int nilfs_test_bdev_super(struct super_block *s, void *data)
1292{
1293	return (void *)s->s_bdev == data;
1294}
1295
1296static struct dentry *
1297nilfs_mount(struct file_system_type *fs_type, int flags,
1298	     const char *dev_name, void *data)
1299{
1300	struct nilfs_super_data sd;
1301	struct super_block *s;
1302	fmode_t mode = FMODE_READ | FMODE_EXCL;
1303	struct dentry *root_dentry;
1304	int err, s_new = false;
1305
1306	if (!(flags & SB_RDONLY))
1307		mode |= FMODE_WRITE;
1308
1309	sd.bdev = blkdev_get_by_path(dev_name, mode, fs_type);
1310	if (IS_ERR(sd.bdev))
1311		return ERR_CAST(sd.bdev);
1312
1313	sd.cno = 0;
1314	sd.flags = flags;
1315	if (nilfs_identify((char *)data, &sd)) {
1316		err = -EINVAL;
1317		goto failed;
1318	}
1319
1320	/*
1321	 * once the super is inserted into the list by sget, s_umount
1322	 * will protect the lockfs code from trying to start a snapshot
1323	 * while we are mounting
1324	 */
1325	mutex_lock(&sd.bdev->bd_fsfreeze_mutex);
1326	if (sd.bdev->bd_fsfreeze_count > 0) {
1327		mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1328		err = -EBUSY;
1329		goto failed;
1330	}
1331	s = sget(fs_type, nilfs_test_bdev_super, nilfs_set_bdev_super, flags,
1332		 sd.bdev);
1333	mutex_unlock(&sd.bdev->bd_fsfreeze_mutex);
1334	if (IS_ERR(s)) {
1335		err = PTR_ERR(s);
1336		goto failed;
1337	}
1338
1339	if (!s->s_root) {
1340		s_new = true;
1341
1342		/* New superblock instance created */
1343		s->s_mode = mode;
1344		snprintf(s->s_id, sizeof(s->s_id), "%pg", sd.bdev);
1345		sb_set_blocksize(s, block_size(sd.bdev));
1346
1347		err = nilfs_fill_super(s, data, flags & SB_SILENT ? 1 : 0);
1348		if (err)
1349			goto failed_super;
1350
1351		s->s_flags |= SB_ACTIVE;
1352	} else if (!sd.cno) {
1353		if (nilfs_tree_is_busy(s->s_root)) {
1354			if ((flags ^ s->s_flags) & SB_RDONLY) {
1355				nilfs_err(s,
1356					  "the device already has a %s mount.",
1357					  sb_rdonly(s) ? "read-only" : "read/write");
1358				err = -EBUSY;
1359				goto failed_super;
1360			}
1361		} else {
1362			/*
1363			 * Try remount to setup mount states if the current
1364			 * tree is not mounted and only snapshots use this sb.
1365			 */
1366			err = nilfs_remount(s, &flags, data);
1367			if (err)
1368				goto failed_super;
1369		}
1370	}
1371
1372	if (sd.cno) {
1373		err = nilfs_attach_snapshot(s, sd.cno, &root_dentry);
1374		if (err)
1375			goto failed_super;
1376	} else {
1377		root_dentry = dget(s->s_root);
1378	}
1379
1380	if (!s_new)
1381		blkdev_put(sd.bdev, mode);
1382
1383	return root_dentry;
1384
1385 failed_super:
1386	deactivate_locked_super(s);
1387
1388 failed:
1389	if (!s_new)
1390		blkdev_put(sd.bdev, mode);
1391	return ERR_PTR(err);
1392}
1393
1394struct file_system_type nilfs_fs_type = {
1395	.owner    = THIS_MODULE,
1396	.name     = "nilfs2",
1397	.mount    = nilfs_mount,
1398	.kill_sb  = kill_block_super,
1399	.fs_flags = FS_REQUIRES_DEV,
1400};
1401MODULE_ALIAS_FS("nilfs2");
1402
1403static void nilfs_inode_init_once(void *obj)
1404{
1405	struct nilfs_inode_info *ii = obj;
1406
1407	INIT_LIST_HEAD(&ii->i_dirty);
1408#ifdef CONFIG_NILFS_XATTR
1409	init_rwsem(&ii->xattr_sem);
1410#endif
1411	inode_init_once(&ii->vfs_inode);
1412}
1413
1414static void nilfs_segbuf_init_once(void *obj)
1415{
1416	memset(obj, 0, sizeof(struct nilfs_segment_buffer));
1417}
1418
1419static void nilfs_destroy_cachep(void)
1420{
1421	/*
1422	 * Make sure all delayed rcu free inodes are flushed before we
1423	 * destroy cache.
1424	 */
1425	rcu_barrier();
1426
1427	kmem_cache_destroy(nilfs_inode_cachep);
1428	kmem_cache_destroy(nilfs_transaction_cachep);
1429	kmem_cache_destroy(nilfs_segbuf_cachep);
1430	kmem_cache_destroy(nilfs_btree_path_cache);
1431}
1432
1433static int __init nilfs_init_cachep(void)
1434{
1435	nilfs_inode_cachep = kmem_cache_create("nilfs2_inode_cache",
1436			sizeof(struct nilfs_inode_info), 0,
1437			SLAB_RECLAIM_ACCOUNT|SLAB_ACCOUNT,
1438			nilfs_inode_init_once);
1439	if (!nilfs_inode_cachep)
1440		goto fail;
1441
1442	nilfs_transaction_cachep = kmem_cache_create("nilfs2_transaction_cache",
1443			sizeof(struct nilfs_transaction_info), 0,
1444			SLAB_RECLAIM_ACCOUNT, NULL);
1445	if (!nilfs_transaction_cachep)
1446		goto fail;
1447
1448	nilfs_segbuf_cachep = kmem_cache_create("nilfs2_segbuf_cache",
1449			sizeof(struct nilfs_segment_buffer), 0,
1450			SLAB_RECLAIM_ACCOUNT, nilfs_segbuf_init_once);
1451	if (!nilfs_segbuf_cachep)
1452		goto fail;
1453
1454	nilfs_btree_path_cache = kmem_cache_create("nilfs2_btree_path_cache",
1455			sizeof(struct nilfs_btree_path) * NILFS_BTREE_LEVEL_MAX,
1456			0, 0, NULL);
1457	if (!nilfs_btree_path_cache)
1458		goto fail;
1459
1460	return 0;
1461
1462fail:
1463	nilfs_destroy_cachep();
1464	return -ENOMEM;
1465}
1466
1467static int __init init_nilfs_fs(void)
1468{
1469	int err;
1470
1471	err = nilfs_init_cachep();
1472	if (err)
1473		goto fail;
1474
1475	err = nilfs_sysfs_init();
1476	if (err)
1477		goto free_cachep;
1478
1479	err = register_filesystem(&nilfs_fs_type);
1480	if (err)
1481		goto deinit_sysfs_entry;
1482
1483	printk(KERN_INFO "NILFS version 2 loaded\n");
1484	return 0;
1485
1486deinit_sysfs_entry:
1487	nilfs_sysfs_exit();
1488free_cachep:
1489	nilfs_destroy_cachep();
1490fail:
1491	return err;
1492}
1493
1494static void __exit exit_nilfs_fs(void)
1495{
1496	nilfs_destroy_cachep();
1497	nilfs_sysfs_exit();
1498	unregister_filesystem(&nilfs_fs_type);
1499}
1500
1501module_init(init_nilfs_fs)
1502module_exit(exit_nilfs_fs)
1503