xref: /kernel/linux/linux-5.10/fs/nfsd/nfscache.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2/*
3 * Request reply cache. This is currently a global cache, but this may
4 * change in the future and be a per-client cache.
5 *
6 * This code is heavily inspired by the 44BSD implementation, although
7 * it does things a bit differently.
8 *
9 * Copyright (C) 1995, 1996 Olaf Kirch <okir@monad.swb.de>
10 */
11
12#include <linux/sunrpc/svc_xprt.h>
13#include <linux/slab.h>
14#include <linux/vmalloc.h>
15#include <linux/sunrpc/addr.h>
16#include <linux/highmem.h>
17#include <linux/log2.h>
18#include <linux/hash.h>
19#include <net/checksum.h>
20
21#include "nfsd.h"
22#include "cache.h"
23#include "trace.h"
24
25/*
26 * We use this value to determine the number of hash buckets from the max
27 * cache size, the idea being that when the cache is at its maximum number
28 * of entries, then this should be the average number of entries per bucket.
29 */
30#define TARGET_BUCKET_SIZE	64
31
32struct nfsd_drc_bucket {
33	struct rb_root rb_head;
34	struct list_head lru_head;
35	spinlock_t cache_lock;
36};
37
38static struct kmem_cache	*drc_slab;
39
40static int	nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *vec);
41static unsigned long nfsd_reply_cache_count(struct shrinker *shrink,
42					    struct shrink_control *sc);
43static unsigned long nfsd_reply_cache_scan(struct shrinker *shrink,
44					   struct shrink_control *sc);
45
46/*
47 * Put a cap on the size of the DRC based on the amount of available
48 * low memory in the machine.
49 *
50 *  64MB:    8192
51 * 128MB:   11585
52 * 256MB:   16384
53 * 512MB:   23170
54 *   1GB:   32768
55 *   2GB:   46340
56 *   4GB:   65536
57 *   8GB:   92681
58 *  16GB:  131072
59 *
60 * ...with a hard cap of 256k entries. In the worst case, each entry will be
61 * ~1k, so the above numbers should give a rough max of the amount of memory
62 * used in k.
63 *
64 * XXX: these limits are per-container, so memory used will increase
65 * linearly with number of containers.  Maybe that's OK.
66 */
67static unsigned int
68nfsd_cache_size_limit(void)
69{
70	unsigned int limit;
71	unsigned long low_pages = totalram_pages() - totalhigh_pages();
72
73	limit = (16 * int_sqrt(low_pages)) << (PAGE_SHIFT-10);
74	return min_t(unsigned int, limit, 256*1024);
75}
76
77/*
78 * Compute the number of hash buckets we need. Divide the max cachesize by
79 * the "target" max bucket size, and round up to next power of two.
80 */
81static unsigned int
82nfsd_hashsize(unsigned int limit)
83{
84	return roundup_pow_of_two(limit / TARGET_BUCKET_SIZE);
85}
86
87static u32
88nfsd_cache_hash(__be32 xid, struct nfsd_net *nn)
89{
90	return hash_32(be32_to_cpu(xid), nn->maskbits);
91}
92
93static struct svc_cacherep *
94nfsd_reply_cache_alloc(struct svc_rqst *rqstp, __wsum csum,
95			struct nfsd_net *nn)
96{
97	struct svc_cacherep	*rp;
98
99	rp = kmem_cache_alloc(drc_slab, GFP_KERNEL);
100	if (rp) {
101		rp->c_state = RC_UNUSED;
102		rp->c_type = RC_NOCACHE;
103		RB_CLEAR_NODE(&rp->c_node);
104		INIT_LIST_HEAD(&rp->c_lru);
105
106		memset(&rp->c_key, 0, sizeof(rp->c_key));
107		rp->c_key.k_xid = rqstp->rq_xid;
108		rp->c_key.k_proc = rqstp->rq_proc;
109		rpc_copy_addr((struct sockaddr *)&rp->c_key.k_addr, svc_addr(rqstp));
110		rpc_set_port((struct sockaddr *)&rp->c_key.k_addr, rpc_get_port(svc_addr(rqstp)));
111		rp->c_key.k_prot = rqstp->rq_prot;
112		rp->c_key.k_vers = rqstp->rq_vers;
113		rp->c_key.k_len = rqstp->rq_arg.len;
114		rp->c_key.k_csum = csum;
115	}
116	return rp;
117}
118
119static void
120nfsd_reply_cache_free_locked(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
121				struct nfsd_net *nn)
122{
123	if (rp->c_type == RC_REPLBUFF && rp->c_replvec.iov_base) {
124		nn->drc_mem_usage -= rp->c_replvec.iov_len;
125		kfree(rp->c_replvec.iov_base);
126	}
127	if (rp->c_state != RC_UNUSED) {
128		rb_erase(&rp->c_node, &b->rb_head);
129		list_del(&rp->c_lru);
130		atomic_dec(&nn->num_drc_entries);
131		nn->drc_mem_usage -= sizeof(*rp);
132	}
133	kmem_cache_free(drc_slab, rp);
134}
135
136static void
137nfsd_reply_cache_free(struct nfsd_drc_bucket *b, struct svc_cacherep *rp,
138			struct nfsd_net *nn)
139{
140	spin_lock(&b->cache_lock);
141	nfsd_reply_cache_free_locked(b, rp, nn);
142	spin_unlock(&b->cache_lock);
143}
144
145int nfsd_drc_slab_create(void)
146{
147	drc_slab = kmem_cache_create("nfsd_drc",
148				sizeof(struct svc_cacherep), 0, 0, NULL);
149	return drc_slab ? 0: -ENOMEM;
150}
151
152void nfsd_drc_slab_free(void)
153{
154	kmem_cache_destroy(drc_slab);
155}
156
157int nfsd_reply_cache_init(struct nfsd_net *nn)
158{
159	unsigned int hashsize;
160	unsigned int i;
161	int status = 0;
162
163	nn->max_drc_entries = nfsd_cache_size_limit();
164	atomic_set(&nn->num_drc_entries, 0);
165	hashsize = nfsd_hashsize(nn->max_drc_entries);
166	nn->maskbits = ilog2(hashsize);
167
168	nn->nfsd_reply_cache_shrinker.scan_objects = nfsd_reply_cache_scan;
169	nn->nfsd_reply_cache_shrinker.count_objects = nfsd_reply_cache_count;
170	nn->nfsd_reply_cache_shrinker.seeks = 1;
171	status = register_shrinker(&nn->nfsd_reply_cache_shrinker);
172	if (status)
173		goto out_nomem;
174
175	nn->drc_hashtbl = kvzalloc(array_size(hashsize,
176				sizeof(*nn->drc_hashtbl)), GFP_KERNEL);
177	if (!nn->drc_hashtbl)
178		goto out_shrinker;
179
180	for (i = 0; i < hashsize; i++) {
181		INIT_LIST_HEAD(&nn->drc_hashtbl[i].lru_head);
182		spin_lock_init(&nn->drc_hashtbl[i].cache_lock);
183	}
184	nn->drc_hashsize = hashsize;
185
186	return 0;
187out_shrinker:
188	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
189out_nomem:
190	printk(KERN_ERR "nfsd: failed to allocate reply cache\n");
191	return -ENOMEM;
192}
193
194void nfsd_reply_cache_shutdown(struct nfsd_net *nn)
195{
196	struct svc_cacherep	*rp;
197	unsigned int i;
198
199	unregister_shrinker(&nn->nfsd_reply_cache_shrinker);
200
201	for (i = 0; i < nn->drc_hashsize; i++) {
202		struct list_head *head = &nn->drc_hashtbl[i].lru_head;
203		while (!list_empty(head)) {
204			rp = list_first_entry(head, struct svc_cacherep, c_lru);
205			nfsd_reply_cache_free_locked(&nn->drc_hashtbl[i],
206									rp, nn);
207		}
208	}
209
210	kvfree(nn->drc_hashtbl);
211	nn->drc_hashtbl = NULL;
212	nn->drc_hashsize = 0;
213
214}
215
216/*
217 * Move cache entry to end of LRU list, and queue the cleaner to run if it's
218 * not already scheduled.
219 */
220static void
221lru_put_end(struct nfsd_drc_bucket *b, struct svc_cacherep *rp)
222{
223	rp->c_timestamp = jiffies;
224	list_move_tail(&rp->c_lru, &b->lru_head);
225}
226
227static long
228prune_bucket(struct nfsd_drc_bucket *b, struct nfsd_net *nn)
229{
230	struct svc_cacherep *rp, *tmp;
231	long freed = 0;
232
233	list_for_each_entry_safe(rp, tmp, &b->lru_head, c_lru) {
234		/*
235		 * Don't free entries attached to calls that are still
236		 * in-progress, but do keep scanning the list.
237		 */
238		if (rp->c_state == RC_INPROG)
239			continue;
240		if (atomic_read(&nn->num_drc_entries) <= nn->max_drc_entries &&
241		    time_before(jiffies, rp->c_timestamp + RC_EXPIRE))
242			break;
243		nfsd_reply_cache_free_locked(b, rp, nn);
244		freed++;
245	}
246	return freed;
247}
248
249/*
250 * Walk the LRU list and prune off entries that are older than RC_EXPIRE.
251 * Also prune the oldest ones when the total exceeds the max number of entries.
252 */
253static long
254prune_cache_entries(struct nfsd_net *nn)
255{
256	unsigned int i;
257	long freed = 0;
258
259	for (i = 0; i < nn->drc_hashsize; i++) {
260		struct nfsd_drc_bucket *b = &nn->drc_hashtbl[i];
261
262		if (list_empty(&b->lru_head))
263			continue;
264		spin_lock(&b->cache_lock);
265		freed += prune_bucket(b, nn);
266		spin_unlock(&b->cache_lock);
267	}
268	return freed;
269}
270
271static unsigned long
272nfsd_reply_cache_count(struct shrinker *shrink, struct shrink_control *sc)
273{
274	struct nfsd_net *nn = container_of(shrink,
275				struct nfsd_net, nfsd_reply_cache_shrinker);
276
277	return atomic_read(&nn->num_drc_entries);
278}
279
280static unsigned long
281nfsd_reply_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
282{
283	struct nfsd_net *nn = container_of(shrink,
284				struct nfsd_net, nfsd_reply_cache_shrinker);
285
286	return prune_cache_entries(nn);
287}
288/*
289 * Walk an xdr_buf and get a CRC for at most the first RC_CSUMLEN bytes
290 */
291static __wsum
292nfsd_cache_csum(struct svc_rqst *rqstp)
293{
294	int idx;
295	unsigned int base;
296	__wsum csum;
297	struct xdr_buf *buf = &rqstp->rq_arg;
298	const unsigned char *p = buf->head[0].iov_base;
299	size_t csum_len = min_t(size_t, buf->head[0].iov_len + buf->page_len,
300				RC_CSUMLEN);
301	size_t len = min(buf->head[0].iov_len, csum_len);
302
303	/* rq_arg.head first */
304	csum = csum_partial(p, len, 0);
305	csum_len -= len;
306
307	/* Continue into page array */
308	idx = buf->page_base / PAGE_SIZE;
309	base = buf->page_base & ~PAGE_MASK;
310	while (csum_len) {
311		p = page_address(buf->pages[idx]) + base;
312		len = min_t(size_t, PAGE_SIZE - base, csum_len);
313		csum = csum_partial(p, len, csum);
314		csum_len -= len;
315		base = 0;
316		++idx;
317	}
318	return csum;
319}
320
321static int
322nfsd_cache_key_cmp(const struct svc_cacherep *key,
323			const struct svc_cacherep *rp, struct nfsd_net *nn)
324{
325	if (key->c_key.k_xid == rp->c_key.k_xid &&
326	    key->c_key.k_csum != rp->c_key.k_csum) {
327		++nn->payload_misses;
328		trace_nfsd_drc_mismatch(nn, key, rp);
329	}
330
331	return memcmp(&key->c_key, &rp->c_key, sizeof(key->c_key));
332}
333
334/*
335 * Search the request hash for an entry that matches the given rqstp.
336 * Must be called with cache_lock held. Returns the found entry or
337 * inserts an empty key on failure.
338 */
339static struct svc_cacherep *
340nfsd_cache_insert(struct nfsd_drc_bucket *b, struct svc_cacherep *key,
341			struct nfsd_net *nn)
342{
343	struct svc_cacherep	*rp, *ret = key;
344	struct rb_node		**p = &b->rb_head.rb_node,
345				*parent = NULL;
346	unsigned int		entries = 0;
347	int cmp;
348
349	while (*p != NULL) {
350		++entries;
351		parent = *p;
352		rp = rb_entry(parent, struct svc_cacherep, c_node);
353
354		cmp = nfsd_cache_key_cmp(key, rp, nn);
355		if (cmp < 0)
356			p = &parent->rb_left;
357		else if (cmp > 0)
358			p = &parent->rb_right;
359		else {
360			ret = rp;
361			goto out;
362		}
363	}
364	rb_link_node(&key->c_node, parent, p);
365	rb_insert_color(&key->c_node, &b->rb_head);
366out:
367	/* tally hash chain length stats */
368	if (entries > nn->longest_chain) {
369		nn->longest_chain = entries;
370		nn->longest_chain_cachesize = atomic_read(&nn->num_drc_entries);
371	} else if (entries == nn->longest_chain) {
372		/* prefer to keep the smallest cachesize possible here */
373		nn->longest_chain_cachesize = min_t(unsigned int,
374				nn->longest_chain_cachesize,
375				atomic_read(&nn->num_drc_entries));
376	}
377
378	lru_put_end(b, ret);
379	return ret;
380}
381
382/**
383 * nfsd_cache_lookup - Find an entry in the duplicate reply cache
384 * @rqstp: Incoming Call to find
385 *
386 * Try to find an entry matching the current call in the cache. When none
387 * is found, we try to grab the oldest expired entry off the LRU list. If
388 * a suitable one isn't there, then drop the cache_lock and allocate a
389 * new one, then search again in case one got inserted while this thread
390 * didn't hold the lock.
391 *
392 * Return values:
393 *   %RC_DOIT: Process the request normally
394 *   %RC_REPLY: Reply from cache
395 *   %RC_DROPIT: Do not process the request further
396 */
397int nfsd_cache_lookup(struct svc_rqst *rqstp)
398{
399	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
400	struct svc_cacherep	*rp, *found;
401	__be32			xid = rqstp->rq_xid;
402	__wsum			csum;
403	u32 hash = nfsd_cache_hash(xid, nn);
404	struct nfsd_drc_bucket *b = &nn->drc_hashtbl[hash];
405	int type = rqstp->rq_cachetype;
406	int rtn = RC_DOIT;
407
408	rqstp->rq_cacherep = NULL;
409	if (type == RC_NOCACHE) {
410		nfsdstats.rcnocache++;
411		goto out;
412	}
413
414	csum = nfsd_cache_csum(rqstp);
415
416	/*
417	 * Since the common case is a cache miss followed by an insert,
418	 * preallocate an entry.
419	 */
420	rp = nfsd_reply_cache_alloc(rqstp, csum, nn);
421	if (!rp)
422		goto out;
423
424	spin_lock(&b->cache_lock);
425	found = nfsd_cache_insert(b, rp, nn);
426	if (found != rp) {
427		nfsd_reply_cache_free_locked(NULL, rp, nn);
428		rp = found;
429		goto found_entry;
430	}
431
432	nfsdstats.rcmisses++;
433	rqstp->rq_cacherep = rp;
434	rp->c_state = RC_INPROG;
435
436	atomic_inc(&nn->num_drc_entries);
437	nn->drc_mem_usage += sizeof(*rp);
438
439	/* go ahead and prune the cache */
440	prune_bucket(b, nn);
441
442out_unlock:
443	spin_unlock(&b->cache_lock);
444out:
445	return rtn;
446
447found_entry:
448	/* We found a matching entry which is either in progress or done. */
449	nfsdstats.rchits++;
450	rtn = RC_DROPIT;
451
452	/* Request being processed */
453	if (rp->c_state == RC_INPROG)
454		goto out_trace;
455
456	/* From the hall of fame of impractical attacks:
457	 * Is this a user who tries to snoop on the cache? */
458	rtn = RC_DOIT;
459	if (!test_bit(RQ_SECURE, &rqstp->rq_flags) && rp->c_secure)
460		goto out_trace;
461
462	/* Compose RPC reply header */
463	switch (rp->c_type) {
464	case RC_NOCACHE:
465		break;
466	case RC_REPLSTAT:
467		svc_putu32(&rqstp->rq_res.head[0], rp->c_replstat);
468		rtn = RC_REPLY;
469		break;
470	case RC_REPLBUFF:
471		if (!nfsd_cache_append(rqstp, &rp->c_replvec))
472			goto out_unlock; /* should not happen */
473		rtn = RC_REPLY;
474		break;
475	default:
476		WARN_ONCE(1, "nfsd: bad repcache type %d\n", rp->c_type);
477	}
478
479out_trace:
480	trace_nfsd_drc_found(nn, rqstp, rtn);
481	goto out_unlock;
482}
483
484/**
485 * nfsd_cache_update - Update an entry in the duplicate reply cache.
486 * @rqstp: svc_rqst with a finished Reply
487 * @cachetype: which cache to update
488 * @statp: Reply's status code
489 *
490 * This is called from nfsd_dispatch when the procedure has been
491 * executed and the complete reply is in rqstp->rq_res.
492 *
493 * We're copying around data here rather than swapping buffers because
494 * the toplevel loop requires max-sized buffers, which would be a waste
495 * of memory for a cache with a max reply size of 100 bytes (diropokres).
496 *
497 * If we should start to use different types of cache entries tailored
498 * specifically for attrstat and fh's, we may save even more space.
499 *
500 * Also note that a cachetype of RC_NOCACHE can legally be passed when
501 * nfsd failed to encode a reply that otherwise would have been cached.
502 * In this case, nfsd_cache_update is called with statp == NULL.
503 */
504void nfsd_cache_update(struct svc_rqst *rqstp, int cachetype, __be32 *statp)
505{
506	struct nfsd_net *nn = net_generic(SVC_NET(rqstp), nfsd_net_id);
507	struct svc_cacherep *rp = rqstp->rq_cacherep;
508	struct kvec	*resv = &rqstp->rq_res.head[0], *cachv;
509	u32		hash;
510	struct nfsd_drc_bucket *b;
511	int		len;
512	size_t		bufsize = 0;
513
514	if (!rp)
515		return;
516
517	hash = nfsd_cache_hash(rp->c_key.k_xid, nn);
518	b = &nn->drc_hashtbl[hash];
519
520	len = resv->iov_len - ((char*)statp - (char*)resv->iov_base);
521	len >>= 2;
522
523	/* Don't cache excessive amounts of data and XDR failures */
524	if (!statp || len > (256 >> 2)) {
525		nfsd_reply_cache_free(b, rp, nn);
526		return;
527	}
528
529	switch (cachetype) {
530	case RC_REPLSTAT:
531		if (len != 1)
532			printk("nfsd: RC_REPLSTAT/reply len %d!\n",len);
533		rp->c_replstat = *statp;
534		break;
535	case RC_REPLBUFF:
536		cachv = &rp->c_replvec;
537		bufsize = len << 2;
538		cachv->iov_base = kmalloc(bufsize, GFP_KERNEL);
539		if (!cachv->iov_base) {
540			nfsd_reply_cache_free(b, rp, nn);
541			return;
542		}
543		cachv->iov_len = bufsize;
544		memcpy(cachv->iov_base, statp, bufsize);
545		break;
546	case RC_NOCACHE:
547		nfsd_reply_cache_free(b, rp, nn);
548		return;
549	}
550	spin_lock(&b->cache_lock);
551	nn->drc_mem_usage += bufsize;
552	lru_put_end(b, rp);
553	rp->c_secure = test_bit(RQ_SECURE, &rqstp->rq_flags);
554	rp->c_type = cachetype;
555	rp->c_state = RC_DONE;
556	spin_unlock(&b->cache_lock);
557	return;
558}
559
560/*
561 * Copy cached reply to current reply buffer. Should always fit.
562 * FIXME as reply is in a page, we should just attach the page, and
563 * keep a refcount....
564 */
565static int
566nfsd_cache_append(struct svc_rqst *rqstp, struct kvec *data)
567{
568	struct kvec	*vec = &rqstp->rq_res.head[0];
569
570	if (vec->iov_len + data->iov_len > PAGE_SIZE) {
571		printk(KERN_WARNING "nfsd: cached reply too large (%zd).\n",
572				data->iov_len);
573		return 0;
574	}
575	memcpy((char*)vec->iov_base + vec->iov_len, data->iov_base, data->iov_len);
576	vec->iov_len += data->iov_len;
577	return 1;
578}
579
580/*
581 * Note that fields may be added, removed or reordered in the future. Programs
582 * scraping this file for info should test the labels to ensure they're
583 * getting the correct field.
584 */
585static int nfsd_reply_cache_stats_show(struct seq_file *m, void *v)
586{
587	struct nfsd_net *nn = m->private;
588
589	seq_printf(m, "max entries:           %u\n", nn->max_drc_entries);
590	seq_printf(m, "num entries:           %u\n",
591			atomic_read(&nn->num_drc_entries));
592	seq_printf(m, "hash buckets:          %u\n", 1 << nn->maskbits);
593	seq_printf(m, "mem usage:             %u\n", nn->drc_mem_usage);
594	seq_printf(m, "cache hits:            %u\n", nfsdstats.rchits);
595	seq_printf(m, "cache misses:          %u\n", nfsdstats.rcmisses);
596	seq_printf(m, "not cached:            %u\n", nfsdstats.rcnocache);
597	seq_printf(m, "payload misses:        %u\n", nn->payload_misses);
598	seq_printf(m, "longest chain len:     %u\n", nn->longest_chain);
599	seq_printf(m, "cachesize at longest:  %u\n", nn->longest_chain_cachesize);
600	return 0;
601}
602
603int nfsd_reply_cache_stats_open(struct inode *inode, struct file *file)
604{
605	struct nfsd_net *nn = net_generic(file_inode(file)->i_sb->s_fs_info,
606								nfsd_net_id);
607
608	return single_open(file, nfsd_reply_cache_stats_show, nn);
609}
610