xref: /kernel/linux/linux-5.10/fs/nfs/nfs42xattr.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0
2
3/*
4 * Copyright 2019, 2020 Amazon.com, Inc. or its affiliates. All rights reserved.
5 *
6 * User extended attribute client side cache functions.
7 *
8 * Author: Frank van der Linden <fllinden@amazon.com>
9 */
10#include <linux/errno.h>
11#include <linux/nfs_fs.h>
12#include <linux/hashtable.h>
13#include <linux/refcount.h>
14#include <uapi/linux/xattr.h>
15
16#include "nfs4_fs.h"
17#include "internal.h"
18
19/*
20 * User extended attributes client side caching is implemented by having
21 * a cache structure attached to NFS inodes. This structure is allocated
22 * when needed, and freed when the cache is zapped.
23 *
24 * The cache structure contains as hash table of entries, and a pointer
25 * to a special-cased entry for the listxattr cache.
26 *
27 * Accessing and allocating / freeing the caches is done via reference
28 * counting. The cache entries use a similar refcounting scheme.
29 *
30 * This makes freeing a cache, both from the shrinker and from the
31 * zap cache path, easy. It also means that, in current use cases,
32 * the large majority of inodes will not waste any memory, as they
33 * will never have any user extended attributes assigned to them.
34 *
35 * Attribute entries are hashed in to a simple hash table. They are
36 * also part of an LRU.
37 *
38 * There are three shrinkers.
39 *
40 * Two shrinkers deal with the cache entries themselves: one for
41 * large entries (> PAGE_SIZE), and one for smaller entries. The
42 * shrinker for the larger entries works more aggressively than
43 * those for the smaller entries.
44 *
45 * The other shrinker frees the cache structures themselves.
46 */
47
48/*
49 * 64 buckets is a good default. There is likely no reasonable
50 * workload that uses more than even 64 user extended attributes.
51 * You can certainly add a lot more - but you get what you ask for
52 * in those circumstances.
53 */
54#define NFS4_XATTR_HASH_SIZE	64
55
56#define NFSDBG_FACILITY	NFSDBG_XATTRCACHE
57
58struct nfs4_xattr_cache;
59struct nfs4_xattr_entry;
60
61struct nfs4_xattr_bucket {
62	spinlock_t lock;
63	struct hlist_head hlist;
64	struct nfs4_xattr_cache *cache;
65	bool draining;
66};
67
68struct nfs4_xattr_cache {
69	struct kref ref;
70	struct nfs4_xattr_bucket buckets[NFS4_XATTR_HASH_SIZE];
71	struct list_head lru;
72	struct list_head dispose;
73	atomic_long_t nent;
74	spinlock_t listxattr_lock;
75	struct inode *inode;
76	struct nfs4_xattr_entry *listxattr;
77};
78
79struct nfs4_xattr_entry {
80	struct kref ref;
81	struct hlist_node hnode;
82	struct list_head lru;
83	struct list_head dispose;
84	char *xattr_name;
85	void *xattr_value;
86	size_t xattr_size;
87	struct nfs4_xattr_bucket *bucket;
88	uint32_t flags;
89};
90
91#define	NFS4_XATTR_ENTRY_EXTVAL	0x0001
92
93/*
94 * LRU list of NFS inodes that have xattr caches.
95 */
96static struct list_lru nfs4_xattr_cache_lru;
97static struct list_lru nfs4_xattr_entry_lru;
98static struct list_lru nfs4_xattr_large_entry_lru;
99
100static struct kmem_cache *nfs4_xattr_cache_cachep;
101
102/*
103 * Hashing helper functions.
104 */
105static void
106nfs4_xattr_hash_init(struct nfs4_xattr_cache *cache)
107{
108	unsigned int i;
109
110	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
111		INIT_HLIST_HEAD(&cache->buckets[i].hlist);
112		spin_lock_init(&cache->buckets[i].lock);
113		cache->buckets[i].cache = cache;
114		cache->buckets[i].draining = false;
115	}
116}
117
118/*
119 * Locking order:
120 * 1. inode i_lock or bucket lock
121 * 2. list_lru lock (taken by list_lru_* functions)
122 */
123
124/*
125 * Wrapper functions to add a cache entry to the right LRU.
126 */
127static bool
128nfs4_xattr_entry_lru_add(struct nfs4_xattr_entry *entry)
129{
130	struct list_lru *lru;
131
132	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
133	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
134
135	return list_lru_add(lru, &entry->lru);
136}
137
138static bool
139nfs4_xattr_entry_lru_del(struct nfs4_xattr_entry *entry)
140{
141	struct list_lru *lru;
142
143	lru = (entry->flags & NFS4_XATTR_ENTRY_EXTVAL) ?
144	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
145
146	return list_lru_del(lru, &entry->lru);
147}
148
149/*
150 * This function allocates cache entries. They are the normal
151 * extended attribute name/value pairs, but may also be a listxattr
152 * cache. Those allocations use the same entry so that they can be
153 * treated as one by the memory shrinker.
154 *
155 * xattr cache entries are allocated together with names. If the
156 * value fits in to one page with the entry structure and the name,
157 * it will also be part of the same allocation (kmalloc). This is
158 * expected to be the vast majority of cases. Larger allocations
159 * have a value pointer that is allocated separately by kvmalloc.
160 *
161 * Parameters:
162 *
163 * @name:  Name of the extended attribute. NULL for listxattr cache
164 *         entry.
165 * @value: Value of attribute, or listxattr cache. NULL if the
166 *         value is to be copied from pages instead.
167 * @pages: Pages to copy the value from, if not NULL. Passed in to
168 *	   make it easier to copy the value after an RPC, even if
169 *	   the value will not be passed up to application (e.g.
170 *	   for a 'query' getxattr with NULL buffer).
171 * @len:   Length of the value. Can be 0 for zero-length attribues.
172 *         @value and @pages will be NULL if @len is 0.
173 */
174static struct nfs4_xattr_entry *
175nfs4_xattr_alloc_entry(const char *name, const void *value,
176		       struct page **pages, size_t len)
177{
178	struct nfs4_xattr_entry *entry;
179	void *valp;
180	char *namep;
181	size_t alloclen, slen;
182	char *buf;
183	uint32_t flags;
184
185	BUILD_BUG_ON(sizeof(struct nfs4_xattr_entry) +
186	    XATTR_NAME_MAX + 1 > PAGE_SIZE);
187
188	alloclen = sizeof(struct nfs4_xattr_entry);
189	if (name != NULL) {
190		slen = strlen(name) + 1;
191		alloclen += slen;
192	} else
193		slen = 0;
194
195	if (alloclen + len <= PAGE_SIZE) {
196		alloclen += len;
197		flags = 0;
198	} else {
199		flags = NFS4_XATTR_ENTRY_EXTVAL;
200	}
201
202	buf = kmalloc(alloclen, GFP_KERNEL_ACCOUNT | GFP_NOFS);
203	if (buf == NULL)
204		return NULL;
205	entry = (struct nfs4_xattr_entry *)buf;
206
207	if (name != NULL) {
208		namep = buf + sizeof(struct nfs4_xattr_entry);
209		memcpy(namep, name, slen);
210	} else {
211		namep = NULL;
212	}
213
214
215	if (flags & NFS4_XATTR_ENTRY_EXTVAL) {
216		valp = kvmalloc(len, GFP_KERNEL_ACCOUNT | GFP_NOFS);
217		if (valp == NULL) {
218			kfree(buf);
219			return NULL;
220		}
221	} else if (len != 0) {
222		valp = buf + sizeof(struct nfs4_xattr_entry) + slen;
223	} else
224		valp = NULL;
225
226	if (valp != NULL) {
227		if (value != NULL)
228			memcpy(valp, value, len);
229		else
230			_copy_from_pages(valp, pages, 0, len);
231	}
232
233	entry->flags = flags;
234	entry->xattr_value = valp;
235	kref_init(&entry->ref);
236	entry->xattr_name = namep;
237	entry->xattr_size = len;
238	entry->bucket = NULL;
239	INIT_LIST_HEAD(&entry->lru);
240	INIT_LIST_HEAD(&entry->dispose);
241	INIT_HLIST_NODE(&entry->hnode);
242
243	return entry;
244}
245
246static void
247nfs4_xattr_free_entry(struct nfs4_xattr_entry *entry)
248{
249	if (entry->flags & NFS4_XATTR_ENTRY_EXTVAL)
250		kvfree(entry->xattr_value);
251	kfree(entry);
252}
253
254static void
255nfs4_xattr_free_entry_cb(struct kref *kref)
256{
257	struct nfs4_xattr_entry *entry;
258
259	entry = container_of(kref, struct nfs4_xattr_entry, ref);
260
261	if (WARN_ON(!list_empty(&entry->lru)))
262		return;
263
264	nfs4_xattr_free_entry(entry);
265}
266
267static void
268nfs4_xattr_free_cache_cb(struct kref *kref)
269{
270	struct nfs4_xattr_cache *cache;
271	int i;
272
273	cache = container_of(kref, struct nfs4_xattr_cache, ref);
274
275	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
276		if (WARN_ON(!hlist_empty(&cache->buckets[i].hlist)))
277			return;
278		cache->buckets[i].draining = false;
279	}
280
281	cache->listxattr = NULL;
282
283	kmem_cache_free(nfs4_xattr_cache_cachep, cache);
284
285}
286
287static struct nfs4_xattr_cache *
288nfs4_xattr_alloc_cache(void)
289{
290	struct nfs4_xattr_cache *cache;
291
292	cache = kmem_cache_alloc(nfs4_xattr_cache_cachep,
293	    GFP_KERNEL_ACCOUNT | GFP_NOFS);
294	if (cache == NULL)
295		return NULL;
296
297	kref_init(&cache->ref);
298	atomic_long_set(&cache->nent, 0);
299
300	return cache;
301}
302
303/*
304 * Set the listxattr cache, which is a special-cased cache entry.
305 * The special value ERR_PTR(-ESTALE) is used to indicate that
306 * the cache is being drained - this prevents a new listxattr
307 * cache from being added to what is now a stale cache.
308 */
309static int
310nfs4_xattr_set_listcache(struct nfs4_xattr_cache *cache,
311			 struct nfs4_xattr_entry *new)
312{
313	struct nfs4_xattr_entry *old;
314	int ret = 1;
315
316	spin_lock(&cache->listxattr_lock);
317
318	old = cache->listxattr;
319
320	if (old == ERR_PTR(-ESTALE)) {
321		ret = 0;
322		goto out;
323	}
324
325	cache->listxattr = new;
326	if (new != NULL && new != ERR_PTR(-ESTALE))
327		nfs4_xattr_entry_lru_add(new);
328
329	if (old != NULL) {
330		nfs4_xattr_entry_lru_del(old);
331		kref_put(&old->ref, nfs4_xattr_free_entry_cb);
332	}
333out:
334	spin_unlock(&cache->listxattr_lock);
335
336	return ret;
337}
338
339/*
340 * Unlink a cache from its parent inode, clearing out an invalid
341 * cache. Must be called with i_lock held.
342 */
343static struct nfs4_xattr_cache *
344nfs4_xattr_cache_unlink(struct inode *inode)
345{
346	struct nfs_inode *nfsi;
347	struct nfs4_xattr_cache *oldcache;
348
349	nfsi = NFS_I(inode);
350
351	oldcache = nfsi->xattr_cache;
352	if (oldcache != NULL) {
353		list_lru_del(&nfs4_xattr_cache_lru, &oldcache->lru);
354		oldcache->inode = NULL;
355	}
356	nfsi->xattr_cache = NULL;
357	nfsi->cache_validity &= ~NFS_INO_INVALID_XATTR;
358
359	return oldcache;
360
361}
362
363/*
364 * Discard a cache. Called by get_cache() if there was an old,
365 * invalid cache. Can also be called from a shrinker callback.
366 *
367 * The cache is dead, it has already been unlinked from its inode,
368 * and no longer appears on the cache LRU list.
369 *
370 * Mark all buckets as draining, so that no new entries are added. This
371 * could still happen in the unlikely, but possible case that another
372 * thread had grabbed a reference before it was unlinked from the inode,
373 * and is still holding it for an add operation.
374 *
375 * Remove all entries from the LRU lists, so that there is no longer
376 * any way to 'find' this cache. Then, remove the entries from the hash
377 * table.
378 *
379 * At that point, the cache will remain empty and can be freed when the final
380 * reference drops, which is very likely the kref_put at the end of
381 * this function, or the one called immediately afterwards in the
382 * shrinker callback.
383 */
384static void
385nfs4_xattr_discard_cache(struct nfs4_xattr_cache *cache)
386{
387	unsigned int i;
388	struct nfs4_xattr_entry *entry;
389	struct nfs4_xattr_bucket *bucket;
390	struct hlist_node *n;
391
392	nfs4_xattr_set_listcache(cache, ERR_PTR(-ESTALE));
393
394	for (i = 0; i < NFS4_XATTR_HASH_SIZE; i++) {
395		bucket = &cache->buckets[i];
396
397		spin_lock(&bucket->lock);
398		bucket->draining = true;
399		hlist_for_each_entry_safe(entry, n, &bucket->hlist, hnode) {
400			nfs4_xattr_entry_lru_del(entry);
401			hlist_del_init(&entry->hnode);
402			kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
403		}
404		spin_unlock(&bucket->lock);
405	}
406
407	atomic_long_set(&cache->nent, 0);
408
409	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
410}
411
412/*
413 * Get a referenced copy of the cache structure. Avoid doing allocs
414 * while holding i_lock. Which means that we do some optimistic allocation,
415 * and might have to free the result in rare cases.
416 *
417 * This function only checks the NFS_INO_INVALID_XATTR cache validity bit
418 * and acts accordingly, replacing the cache when needed. For the read case
419 * (!add), this means that the caller must make sure that the cache
420 * is valid before caling this function. getxattr and listxattr call
421 * revalidate_inode to do this. The attribute cache timeout (for the
422 * non-delegated case) is expected to be dealt with in the revalidate
423 * call.
424 */
425
426static struct nfs4_xattr_cache *
427nfs4_xattr_get_cache(struct inode *inode, int add)
428{
429	struct nfs_inode *nfsi;
430	struct nfs4_xattr_cache *cache, *oldcache, *newcache;
431
432	nfsi = NFS_I(inode);
433
434	cache = oldcache = NULL;
435
436	spin_lock(&inode->i_lock);
437
438	if (nfsi->cache_validity & NFS_INO_INVALID_XATTR)
439		oldcache = nfs4_xattr_cache_unlink(inode);
440	else
441		cache = nfsi->xattr_cache;
442
443	if (cache != NULL)
444		kref_get(&cache->ref);
445
446	spin_unlock(&inode->i_lock);
447
448	if (add && cache == NULL) {
449		newcache = NULL;
450
451		cache = nfs4_xattr_alloc_cache();
452		if (cache == NULL)
453			goto out;
454
455		spin_lock(&inode->i_lock);
456		if (nfsi->cache_validity & NFS_INO_INVALID_XATTR) {
457			/*
458			 * The cache was invalidated again. Give up,
459			 * since what we want to enter is now likely
460			 * outdated anyway.
461			 */
462			spin_unlock(&inode->i_lock);
463			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
464			cache = NULL;
465			goto out;
466		}
467
468		/*
469		 * Check if someone beat us to it.
470		 */
471		if (nfsi->xattr_cache != NULL) {
472			newcache = nfsi->xattr_cache;
473			kref_get(&newcache->ref);
474		} else {
475			kref_get(&cache->ref);
476			nfsi->xattr_cache = cache;
477			cache->inode = inode;
478			list_lru_add(&nfs4_xattr_cache_lru, &cache->lru);
479		}
480
481		spin_unlock(&inode->i_lock);
482
483		/*
484		 * If there was a race, throw away the cache we just
485		 * allocated, and use the new one allocated by someone
486		 * else.
487		 */
488		if (newcache != NULL) {
489			kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
490			cache = newcache;
491		}
492	}
493
494out:
495	/*
496	 * Discard the now orphaned old cache.
497	 */
498	if (oldcache != NULL)
499		nfs4_xattr_discard_cache(oldcache);
500
501	return cache;
502}
503
504static inline struct nfs4_xattr_bucket *
505nfs4_xattr_hash_bucket(struct nfs4_xattr_cache *cache, const char *name)
506{
507	return &cache->buckets[jhash(name, strlen(name), 0) &
508	    (ARRAY_SIZE(cache->buckets) - 1)];
509}
510
511static struct nfs4_xattr_entry *
512nfs4_xattr_get_entry(struct nfs4_xattr_bucket *bucket, const char *name)
513{
514	struct nfs4_xattr_entry *entry;
515
516	entry = NULL;
517
518	hlist_for_each_entry(entry, &bucket->hlist, hnode) {
519		if (!strcmp(entry->xattr_name, name))
520			break;
521	}
522
523	return entry;
524}
525
526static int
527nfs4_xattr_hash_add(struct nfs4_xattr_cache *cache,
528		    struct nfs4_xattr_entry *entry)
529{
530	struct nfs4_xattr_bucket *bucket;
531	struct nfs4_xattr_entry *oldentry = NULL;
532	int ret = 1;
533
534	bucket = nfs4_xattr_hash_bucket(cache, entry->xattr_name);
535	entry->bucket = bucket;
536
537	spin_lock(&bucket->lock);
538
539	if (bucket->draining) {
540		ret = 0;
541		goto out;
542	}
543
544	oldentry = nfs4_xattr_get_entry(bucket, entry->xattr_name);
545	if (oldentry != NULL) {
546		hlist_del_init(&oldentry->hnode);
547		nfs4_xattr_entry_lru_del(oldentry);
548	} else {
549		atomic_long_inc(&cache->nent);
550	}
551
552	hlist_add_head(&entry->hnode, &bucket->hlist);
553	nfs4_xattr_entry_lru_add(entry);
554
555out:
556	spin_unlock(&bucket->lock);
557
558	if (oldentry != NULL)
559		kref_put(&oldentry->ref, nfs4_xattr_free_entry_cb);
560
561	return ret;
562}
563
564static void
565nfs4_xattr_hash_remove(struct nfs4_xattr_cache *cache, const char *name)
566{
567	struct nfs4_xattr_bucket *bucket;
568	struct nfs4_xattr_entry *entry;
569
570	bucket = nfs4_xattr_hash_bucket(cache, name);
571
572	spin_lock(&bucket->lock);
573
574	entry = nfs4_xattr_get_entry(bucket, name);
575	if (entry != NULL) {
576		hlist_del_init(&entry->hnode);
577		nfs4_xattr_entry_lru_del(entry);
578		atomic_long_dec(&cache->nent);
579	}
580
581	spin_unlock(&bucket->lock);
582
583	if (entry != NULL)
584		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
585}
586
587static struct nfs4_xattr_entry *
588nfs4_xattr_hash_find(struct nfs4_xattr_cache *cache, const char *name)
589{
590	struct nfs4_xattr_bucket *bucket;
591	struct nfs4_xattr_entry *entry;
592
593	bucket = nfs4_xattr_hash_bucket(cache, name);
594
595	spin_lock(&bucket->lock);
596
597	entry = nfs4_xattr_get_entry(bucket, name);
598	if (entry != NULL)
599		kref_get(&entry->ref);
600
601	spin_unlock(&bucket->lock);
602
603	return entry;
604}
605
606/*
607 * Entry point to retrieve an entry from the cache.
608 */
609ssize_t nfs4_xattr_cache_get(struct inode *inode, const char *name, char *buf,
610			 ssize_t buflen)
611{
612	struct nfs4_xattr_cache *cache;
613	struct nfs4_xattr_entry *entry;
614	ssize_t ret;
615
616	cache = nfs4_xattr_get_cache(inode, 0);
617	if (cache == NULL)
618		return -ENOENT;
619
620	ret = 0;
621	entry = nfs4_xattr_hash_find(cache, name);
622
623	if (entry != NULL) {
624		dprintk("%s: cache hit '%s', len %lu\n", __func__,
625		    entry->xattr_name, (unsigned long)entry->xattr_size);
626		if (buflen == 0) {
627			/* Length probe only */
628			ret = entry->xattr_size;
629		} else if (buflen < entry->xattr_size)
630			ret = -ERANGE;
631		else {
632			memcpy(buf, entry->xattr_value, entry->xattr_size);
633			ret = entry->xattr_size;
634		}
635		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
636	} else {
637		dprintk("%s: cache miss '%s'\n", __func__, name);
638		ret = -ENOENT;
639	}
640
641	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
642
643	return ret;
644}
645
646/*
647 * Retrieve a cached list of xattrs from the cache.
648 */
649ssize_t nfs4_xattr_cache_list(struct inode *inode, char *buf, ssize_t buflen)
650{
651	struct nfs4_xattr_cache *cache;
652	struct nfs4_xattr_entry *entry;
653	ssize_t ret;
654
655	cache = nfs4_xattr_get_cache(inode, 0);
656	if (cache == NULL)
657		return -ENOENT;
658
659	spin_lock(&cache->listxattr_lock);
660
661	entry = cache->listxattr;
662
663	if (entry != NULL && entry != ERR_PTR(-ESTALE)) {
664		if (buflen == 0) {
665			/* Length probe only */
666			ret = entry->xattr_size;
667		} else if (entry->xattr_size > buflen)
668			ret = -ERANGE;
669		else {
670			memcpy(buf, entry->xattr_value, entry->xattr_size);
671			ret = entry->xattr_size;
672		}
673	} else {
674		ret = -ENOENT;
675	}
676
677	spin_unlock(&cache->listxattr_lock);
678
679	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
680
681	return ret;
682}
683
684/*
685 * Add an xattr to the cache.
686 *
687 * This also invalidates the xattr list cache.
688 */
689void nfs4_xattr_cache_add(struct inode *inode, const char *name,
690			  const char *buf, struct page **pages, ssize_t buflen)
691{
692	struct nfs4_xattr_cache *cache;
693	struct nfs4_xattr_entry *entry;
694
695	dprintk("%s: add '%s' len %lu\n", __func__,
696	    name, (unsigned long)buflen);
697
698	cache = nfs4_xattr_get_cache(inode, 1);
699	if (cache == NULL)
700		return;
701
702	entry = nfs4_xattr_alloc_entry(name, buf, pages, buflen);
703	if (entry == NULL)
704		goto out;
705
706	(void)nfs4_xattr_set_listcache(cache, NULL);
707
708	if (!nfs4_xattr_hash_add(cache, entry))
709		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
710
711out:
712	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
713}
714
715
716/*
717 * Remove an xattr from the cache.
718 *
719 * This also invalidates the xattr list cache.
720 */
721void nfs4_xattr_cache_remove(struct inode *inode, const char *name)
722{
723	struct nfs4_xattr_cache *cache;
724
725	dprintk("%s: remove '%s'\n", __func__, name);
726
727	cache = nfs4_xattr_get_cache(inode, 0);
728	if (cache == NULL)
729		return;
730
731	(void)nfs4_xattr_set_listcache(cache, NULL);
732	nfs4_xattr_hash_remove(cache, name);
733
734	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
735}
736
737/*
738 * Cache listxattr output, replacing any possible old one.
739 */
740void nfs4_xattr_cache_set_list(struct inode *inode, const char *buf,
741			       ssize_t buflen)
742{
743	struct nfs4_xattr_cache *cache;
744	struct nfs4_xattr_entry *entry;
745
746	cache = nfs4_xattr_get_cache(inode, 1);
747	if (cache == NULL)
748		return;
749
750	entry = nfs4_xattr_alloc_entry(NULL, buf, NULL, buflen);
751	if (entry == NULL)
752		goto out;
753
754	/*
755	 * This is just there to be able to get to bucket->cache,
756	 * which is obviously the same for all buckets, so just
757	 * use bucket 0.
758	 */
759	entry->bucket = &cache->buckets[0];
760
761	if (!nfs4_xattr_set_listcache(cache, entry))
762		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
763
764out:
765	kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
766}
767
768/*
769 * Zap the entire cache. Called when an inode is evicted.
770 */
771void nfs4_xattr_cache_zap(struct inode *inode)
772{
773	struct nfs4_xattr_cache *oldcache;
774
775	spin_lock(&inode->i_lock);
776	oldcache = nfs4_xattr_cache_unlink(inode);
777	spin_unlock(&inode->i_lock);
778
779	if (oldcache)
780		nfs4_xattr_discard_cache(oldcache);
781}
782
783/*
784 * The entry LRU is shrunk more aggressively than the cache LRU,
785 * by settings @seeks to 1.
786 *
787 * Cache structures are freed only when they've become empty, after
788 * pruning all but one entry.
789 */
790
791static unsigned long nfs4_xattr_cache_count(struct shrinker *shrink,
792					    struct shrink_control *sc);
793static unsigned long nfs4_xattr_entry_count(struct shrinker *shrink,
794					    struct shrink_control *sc);
795static unsigned long nfs4_xattr_cache_scan(struct shrinker *shrink,
796					   struct shrink_control *sc);
797static unsigned long nfs4_xattr_entry_scan(struct shrinker *shrink,
798					   struct shrink_control *sc);
799
800static struct shrinker nfs4_xattr_cache_shrinker = {
801	.count_objects	= nfs4_xattr_cache_count,
802	.scan_objects	= nfs4_xattr_cache_scan,
803	.seeks		= DEFAULT_SEEKS,
804	.flags		= SHRINKER_MEMCG_AWARE,
805};
806
807static struct shrinker nfs4_xattr_entry_shrinker = {
808	.count_objects	= nfs4_xattr_entry_count,
809	.scan_objects	= nfs4_xattr_entry_scan,
810	.seeks		= DEFAULT_SEEKS,
811	.batch		= 512,
812	.flags		= SHRINKER_MEMCG_AWARE,
813};
814
815static struct shrinker nfs4_xattr_large_entry_shrinker = {
816	.count_objects	= nfs4_xattr_entry_count,
817	.scan_objects	= nfs4_xattr_entry_scan,
818	.seeks		= 1,
819	.batch		= 512,
820	.flags		= SHRINKER_MEMCG_AWARE,
821};
822
823static enum lru_status
824cache_lru_isolate(struct list_head *item,
825	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
826{
827	struct list_head *dispose = arg;
828	struct inode *inode;
829	struct nfs4_xattr_cache *cache = container_of(item,
830	    struct nfs4_xattr_cache, lru);
831
832	if (atomic_long_read(&cache->nent) > 1)
833		return LRU_SKIP;
834
835	/*
836	 * If a cache structure is on the LRU list, we know that
837	 * its inode is valid. Try to lock it to break the link.
838	 * Since we're inverting the lock order here, only try.
839	 */
840	inode = cache->inode;
841
842	if (!spin_trylock(&inode->i_lock))
843		return LRU_SKIP;
844
845	kref_get(&cache->ref);
846
847	cache->inode = NULL;
848	NFS_I(inode)->xattr_cache = NULL;
849	NFS_I(inode)->cache_validity &= ~NFS_INO_INVALID_XATTR;
850	list_lru_isolate(lru, &cache->lru);
851
852	spin_unlock(&inode->i_lock);
853
854	list_add_tail(&cache->dispose, dispose);
855	return LRU_REMOVED;
856}
857
858static unsigned long
859nfs4_xattr_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
860{
861	LIST_HEAD(dispose);
862	unsigned long freed;
863	struct nfs4_xattr_cache *cache;
864
865	freed = list_lru_shrink_walk(&nfs4_xattr_cache_lru, sc,
866	    cache_lru_isolate, &dispose);
867	while (!list_empty(&dispose)) {
868		cache = list_first_entry(&dispose, struct nfs4_xattr_cache,
869		    dispose);
870		list_del_init(&cache->dispose);
871		nfs4_xattr_discard_cache(cache);
872		kref_put(&cache->ref, nfs4_xattr_free_cache_cb);
873	}
874
875	return freed;
876}
877
878
879static unsigned long
880nfs4_xattr_cache_count(struct shrinker *shrink, struct shrink_control *sc)
881{
882	unsigned long count;
883
884	count = list_lru_shrink_count(&nfs4_xattr_cache_lru, sc);
885	return vfs_pressure_ratio(count);
886}
887
888static enum lru_status
889entry_lru_isolate(struct list_head *item,
890	struct list_lru_one *lru, spinlock_t *lru_lock, void *arg)
891{
892	struct list_head *dispose = arg;
893	struct nfs4_xattr_bucket *bucket;
894	struct nfs4_xattr_cache *cache;
895	struct nfs4_xattr_entry *entry = container_of(item,
896	    struct nfs4_xattr_entry, lru);
897
898	bucket = entry->bucket;
899	cache = bucket->cache;
900
901	/*
902	 * Unhook the entry from its parent (either a cache bucket
903	 * or a cache structure if it's a listxattr buf), so that
904	 * it's no longer found. Then add it to the isolate list,
905	 * to be freed later.
906	 *
907	 * In both cases, we're reverting lock order, so use
908	 * trylock and skip the entry if we can't get the lock.
909	 */
910	if (entry->xattr_name != NULL) {
911		/* Regular cache entry */
912		if (!spin_trylock(&bucket->lock))
913			return LRU_SKIP;
914
915		kref_get(&entry->ref);
916
917		hlist_del_init(&entry->hnode);
918		atomic_long_dec(&cache->nent);
919		list_lru_isolate(lru, &entry->lru);
920
921		spin_unlock(&bucket->lock);
922	} else {
923		/* Listxattr cache entry */
924		if (!spin_trylock(&cache->listxattr_lock))
925			return LRU_SKIP;
926
927		kref_get(&entry->ref);
928
929		cache->listxattr = NULL;
930		list_lru_isolate(lru, &entry->lru);
931
932		spin_unlock(&cache->listxattr_lock);
933	}
934
935	list_add_tail(&entry->dispose, dispose);
936	return LRU_REMOVED;
937}
938
939static unsigned long
940nfs4_xattr_entry_scan(struct shrinker *shrink, struct shrink_control *sc)
941{
942	LIST_HEAD(dispose);
943	unsigned long freed;
944	struct nfs4_xattr_entry *entry;
945	struct list_lru *lru;
946
947	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
948	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
949
950	freed = list_lru_shrink_walk(lru, sc, entry_lru_isolate, &dispose);
951
952	while (!list_empty(&dispose)) {
953		entry = list_first_entry(&dispose, struct nfs4_xattr_entry,
954		    dispose);
955		list_del_init(&entry->dispose);
956
957		/*
958		 * Drop two references: the one that we just grabbed
959		 * in entry_lru_isolate, and the one that was set
960		 * when the entry was first allocated.
961		 */
962		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
963		kref_put(&entry->ref, nfs4_xattr_free_entry_cb);
964	}
965
966	return freed;
967}
968
969static unsigned long
970nfs4_xattr_entry_count(struct shrinker *shrink, struct shrink_control *sc)
971{
972	unsigned long count;
973	struct list_lru *lru;
974
975	lru = (shrink == &nfs4_xattr_large_entry_shrinker) ?
976	    &nfs4_xattr_large_entry_lru : &nfs4_xattr_entry_lru;
977
978	count = list_lru_shrink_count(lru, sc);
979	return vfs_pressure_ratio(count);
980}
981
982
983static void nfs4_xattr_cache_init_once(void *p)
984{
985	struct nfs4_xattr_cache *cache = (struct nfs4_xattr_cache *)p;
986
987	spin_lock_init(&cache->listxattr_lock);
988	atomic_long_set(&cache->nent, 0);
989	nfs4_xattr_hash_init(cache);
990	cache->listxattr = NULL;
991	INIT_LIST_HEAD(&cache->lru);
992	INIT_LIST_HEAD(&cache->dispose);
993}
994
995int __init nfs4_xattr_cache_init(void)
996{
997	int ret = 0;
998
999	nfs4_xattr_cache_cachep = kmem_cache_create("nfs4_xattr_cache_cache",
1000	    sizeof(struct nfs4_xattr_cache), 0,
1001	    (SLAB_RECLAIM_ACCOUNT|SLAB_MEM_SPREAD|SLAB_ACCOUNT),
1002	    nfs4_xattr_cache_init_once);
1003	if (nfs4_xattr_cache_cachep == NULL)
1004		return -ENOMEM;
1005
1006	ret = list_lru_init_memcg(&nfs4_xattr_large_entry_lru,
1007	    &nfs4_xattr_large_entry_shrinker);
1008	if (ret)
1009		goto out4;
1010
1011	ret = list_lru_init_memcg(&nfs4_xattr_entry_lru,
1012	    &nfs4_xattr_entry_shrinker);
1013	if (ret)
1014		goto out3;
1015
1016	ret = list_lru_init_memcg(&nfs4_xattr_cache_lru,
1017	    &nfs4_xattr_cache_shrinker);
1018	if (ret)
1019		goto out2;
1020
1021	ret = register_shrinker(&nfs4_xattr_cache_shrinker);
1022	if (ret)
1023		goto out1;
1024
1025	ret = register_shrinker(&nfs4_xattr_entry_shrinker);
1026	if (ret)
1027		goto out;
1028
1029	ret = register_shrinker(&nfs4_xattr_large_entry_shrinker);
1030	if (!ret)
1031		return 0;
1032
1033	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1034out:
1035	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1036out1:
1037	list_lru_destroy(&nfs4_xattr_cache_lru);
1038out2:
1039	list_lru_destroy(&nfs4_xattr_entry_lru);
1040out3:
1041	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1042out4:
1043	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1044
1045	return ret;
1046}
1047
1048void nfs4_xattr_cache_exit(void)
1049{
1050	unregister_shrinker(&nfs4_xattr_large_entry_shrinker);
1051	unregister_shrinker(&nfs4_xattr_entry_shrinker);
1052	unregister_shrinker(&nfs4_xattr_cache_shrinker);
1053	list_lru_destroy(&nfs4_xattr_large_entry_lru);
1054	list_lru_destroy(&nfs4_xattr_entry_lru);
1055	list_lru_destroy(&nfs4_xattr_cache_lru);
1056	kmem_cache_destroy(nfs4_xattr_cache_cachep);
1057}
1058