xref: /kernel/linux/linux-5.10/fs/nfs/file.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/fs/nfs/file.c
4 *
5 *  Copyright (C) 1992  Rick Sladkey
6 *
7 *  Changes Copyright (C) 1994 by Florian La Roche
8 *   - Do not copy data too often around in the kernel.
9 *   - In nfs_file_read the return value of kmalloc wasn't checked.
10 *   - Put in a better version of read look-ahead buffering. Original idea
11 *     and implementation by Wai S Kok elekokws@ee.nus.sg.
12 *
13 *  Expire cache on write to a file by Wai S Kok (Oct 1994).
14 *
15 *  Total rewrite of read side for new NFS buffer cache.. Linus.
16 *
17 *  nfs regular file handling functions
18 */
19
20#include <linux/module.h>
21#include <linux/time.h>
22#include <linux/kernel.h>
23#include <linux/errno.h>
24#include <linux/fcntl.h>
25#include <linux/stat.h>
26#include <linux/nfs_fs.h>
27#include <linux/nfs_mount.h>
28#include <linux/mm.h>
29#include <linux/pagemap.h>
30#include <linux/gfp.h>
31#include <linux/swap.h>
32
33#include <linux/uaccess.h>
34
35#include "delegation.h"
36#include "internal.h"
37#include "iostat.h"
38#include "fscache.h"
39#include "pnfs.h"
40
41#include "nfstrace.h"
42
43#define NFSDBG_FACILITY		NFSDBG_FILE
44
45static const struct vm_operations_struct nfs_file_vm_ops;
46
47/* Hack for future NFS swap support */
48#ifndef IS_SWAPFILE
49# define IS_SWAPFILE(inode)	(0)
50#endif
51
52int nfs_check_flags(int flags)
53{
54	if ((flags & (O_APPEND | O_DIRECT)) == (O_APPEND | O_DIRECT))
55		return -EINVAL;
56
57	return 0;
58}
59EXPORT_SYMBOL_GPL(nfs_check_flags);
60
61/*
62 * Open file
63 */
64static int
65nfs_file_open(struct inode *inode, struct file *filp)
66{
67	int res;
68
69	dprintk("NFS: open file(%pD2)\n", filp);
70
71	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
72	res = nfs_check_flags(filp->f_flags);
73	if (res)
74		return res;
75
76	res = nfs_open(inode, filp);
77	return res;
78}
79
80int
81nfs_file_release(struct inode *inode, struct file *filp)
82{
83	dprintk("NFS: release(%pD2)\n", filp);
84
85	nfs_inc_stats(inode, NFSIOS_VFSRELEASE);
86	nfs_file_clear_open_context(filp);
87	return 0;
88}
89EXPORT_SYMBOL_GPL(nfs_file_release);
90
91/**
92 * nfs_revalidate_size - Revalidate the file size
93 * @inode: pointer to inode struct
94 * @filp: pointer to struct file
95 *
96 * Revalidates the file length. This is basically a wrapper around
97 * nfs_revalidate_inode() that takes into account the fact that we may
98 * have cached writes (in which case we don't care about the server's
99 * idea of what the file length is), or O_DIRECT (in which case we
100 * shouldn't trust the cache).
101 */
102static int nfs_revalidate_file_size(struct inode *inode, struct file *filp)
103{
104	struct nfs_server *server = NFS_SERVER(inode);
105
106	if (filp->f_flags & O_DIRECT)
107		goto force_reval;
108	if (nfs_check_cache_invalid(inode, NFS_INO_REVAL_PAGECACHE))
109		goto force_reval;
110	return 0;
111force_reval:
112	return __nfs_revalidate_inode(server, inode);
113}
114
115loff_t nfs_file_llseek(struct file *filp, loff_t offset, int whence)
116{
117	dprintk("NFS: llseek file(%pD2, %lld, %d)\n",
118			filp, offset, whence);
119
120	/*
121	 * whence == SEEK_END || SEEK_DATA || SEEK_HOLE => we must revalidate
122	 * the cached file length
123	 */
124	if (whence != SEEK_SET && whence != SEEK_CUR) {
125		struct inode *inode = filp->f_mapping->host;
126
127		int retval = nfs_revalidate_file_size(inode, filp);
128		if (retval < 0)
129			return (loff_t)retval;
130	}
131
132	return generic_file_llseek(filp, offset, whence);
133}
134EXPORT_SYMBOL_GPL(nfs_file_llseek);
135
136/*
137 * Flush all dirty pages, and check for write errors.
138 */
139static int
140nfs_file_flush(struct file *file, fl_owner_t id)
141{
142	struct inode	*inode = file_inode(file);
143	errseq_t since;
144
145	dprintk("NFS: flush(%pD2)\n", file);
146
147	nfs_inc_stats(inode, NFSIOS_VFSFLUSH);
148	if ((file->f_mode & FMODE_WRITE) == 0)
149		return 0;
150
151	/* Flush writes to the server and return any errors */
152	since = filemap_sample_wb_err(file->f_mapping);
153	nfs_wb_all(inode);
154	return filemap_check_wb_err(file->f_mapping, since);
155}
156
157ssize_t
158nfs_file_read(struct kiocb *iocb, struct iov_iter *to)
159{
160	struct inode *inode = file_inode(iocb->ki_filp);
161	ssize_t result;
162
163	if (iocb->ki_flags & IOCB_DIRECT)
164		return nfs_file_direct_read(iocb, to, false);
165
166	dprintk("NFS: read(%pD2, %zu@%lu)\n",
167		iocb->ki_filp,
168		iov_iter_count(to), (unsigned long) iocb->ki_pos);
169
170	nfs_start_io_read(inode);
171	result = nfs_revalidate_mapping(inode, iocb->ki_filp->f_mapping);
172	if (!result) {
173		result = generic_file_read_iter(iocb, to);
174		if (result > 0)
175			nfs_add_stats(inode, NFSIOS_NORMALREADBYTES, result);
176	}
177	nfs_end_io_read(inode);
178	return result;
179}
180EXPORT_SYMBOL_GPL(nfs_file_read);
181
182int
183nfs_file_mmap(struct file * file, struct vm_area_struct * vma)
184{
185	struct inode *inode = file_inode(file);
186	int	status;
187
188	dprintk("NFS: mmap(%pD2)\n", file);
189
190	/* Note: generic_file_mmap() returns ENOSYS on nommu systems
191	 *       so we call that before revalidating the mapping
192	 */
193	status = generic_file_mmap(file, vma);
194	if (!status) {
195		vma->vm_ops = &nfs_file_vm_ops;
196		status = nfs_revalidate_mapping(inode, file->f_mapping);
197	}
198	return status;
199}
200EXPORT_SYMBOL_GPL(nfs_file_mmap);
201
202/*
203 * Flush any dirty pages for this process, and check for write errors.
204 * The return status from this call provides a reliable indication of
205 * whether any write errors occurred for this process.
206 */
207static int
208nfs_file_fsync_commit(struct file *file, int datasync)
209{
210	struct inode *inode = file_inode(file);
211	int ret, ret2;
212
213	dprintk("NFS: fsync file(%pD2) datasync %d\n", file, datasync);
214
215	nfs_inc_stats(inode, NFSIOS_VFSFSYNC);
216	ret = nfs_commit_inode(inode, FLUSH_SYNC);
217	ret2 = file_check_and_advance_wb_err(file);
218	if (ret2 < 0)
219		return ret2;
220	return ret;
221}
222
223int
224nfs_file_fsync(struct file *file, loff_t start, loff_t end, int datasync)
225{
226	struct nfs_open_context *ctx = nfs_file_open_context(file);
227	struct inode *inode = file_inode(file);
228	int ret;
229
230	trace_nfs_fsync_enter(inode);
231
232	for (;;) {
233		ret = file_write_and_wait_range(file, start, end);
234		if (ret != 0)
235			break;
236		ret = nfs_file_fsync_commit(file, datasync);
237		if (ret != 0)
238			break;
239		ret = pnfs_sync_inode(inode, !!datasync);
240		if (ret != 0)
241			break;
242		if (!test_and_clear_bit(NFS_CONTEXT_RESEND_WRITES, &ctx->flags))
243			break;
244		/*
245		 * If nfs_file_fsync_commit detected a server reboot, then
246		 * resend all dirty pages that might have been covered by
247		 * the NFS_CONTEXT_RESEND_WRITES flag
248		 */
249		start = 0;
250		end = LLONG_MAX;
251	}
252
253	trace_nfs_fsync_exit(inode, ret);
254	return ret;
255}
256EXPORT_SYMBOL_GPL(nfs_file_fsync);
257
258/*
259 * Decide whether a read/modify/write cycle may be more efficient
260 * then a modify/write/read cycle when writing to a page in the
261 * page cache.
262 *
263 * Some pNFS layout drivers can only read/write at a certain block
264 * granularity like all block devices and therefore we must perform
265 * read/modify/write whenever a page hasn't read yet and the data
266 * to be written there is not aligned to a block boundary and/or
267 * smaller than the block size.
268 *
269 * The modify/write/read cycle may occur if a page is read before
270 * being completely filled by the writer.  In this situation, the
271 * page must be completely written to stable storage on the server
272 * before it can be refilled by reading in the page from the server.
273 * This can lead to expensive, small, FILE_SYNC mode writes being
274 * done.
275 *
276 * It may be more efficient to read the page first if the file is
277 * open for reading in addition to writing, the page is not marked
278 * as Uptodate, it is not dirty or waiting to be committed,
279 * indicating that it was previously allocated and then modified,
280 * that there were valid bytes of data in that range of the file,
281 * and that the new data won't completely replace the old data in
282 * that range of the file.
283 */
284static bool nfs_full_page_write(struct page *page, loff_t pos, unsigned int len)
285{
286	unsigned int pglen = nfs_page_length(page);
287	unsigned int offset = pos & (PAGE_SIZE - 1);
288	unsigned int end = offset + len;
289
290	return !pglen || (end >= pglen && !offset);
291}
292
293static bool nfs_want_read_modify_write(struct file *file, struct page *page,
294			loff_t pos, unsigned int len)
295{
296	/*
297	 * Up-to-date pages, those with ongoing or full-page write
298	 * don't need read/modify/write
299	 */
300	if (PageUptodate(page) || PagePrivate(page) ||
301	    nfs_full_page_write(page, pos, len))
302		return false;
303
304	if (pnfs_ld_read_whole_page(file->f_mapping->host))
305		return true;
306	/* Open for reading too? */
307	if (file->f_mode & FMODE_READ)
308		return true;
309	return false;
310}
311
312/*
313 * This does the "real" work of the write. We must allocate and lock the
314 * page to be sent back to the generic routine, which then copies the
315 * data from user space.
316 *
317 * If the writer ends up delaying the write, the writer needs to
318 * increment the page use counts until he is done with the page.
319 */
320static int nfs_write_begin(struct file *file, struct address_space *mapping,
321			loff_t pos, unsigned len, unsigned flags,
322			struct page **pagep, void **fsdata)
323{
324	int ret;
325	pgoff_t index = pos >> PAGE_SHIFT;
326	struct page *page;
327	int once_thru = 0;
328
329	dfprintk(PAGECACHE, "NFS: write_begin(%pD2(%lu), %u@%lld)\n",
330		file, mapping->host->i_ino, len, (long long) pos);
331
332start:
333	page = grab_cache_page_write_begin(mapping, index, flags);
334	if (!page)
335		return -ENOMEM;
336	*pagep = page;
337
338	ret = nfs_flush_incompatible(file, page);
339	if (ret) {
340		unlock_page(page);
341		put_page(page);
342	} else if (!once_thru &&
343		   nfs_want_read_modify_write(file, page, pos, len)) {
344		once_thru = 1;
345		ret = nfs_readpage(file, page);
346		put_page(page);
347		if (!ret)
348			goto start;
349	}
350	return ret;
351}
352
353static int nfs_write_end(struct file *file, struct address_space *mapping,
354			loff_t pos, unsigned len, unsigned copied,
355			struct page *page, void *fsdata)
356{
357	unsigned offset = pos & (PAGE_SIZE - 1);
358	struct nfs_open_context *ctx = nfs_file_open_context(file);
359	int status;
360
361	dfprintk(PAGECACHE, "NFS: write_end(%pD2(%lu), %u@%lld)\n",
362		file, mapping->host->i_ino, len, (long long) pos);
363
364	/*
365	 * Zero any uninitialised parts of the page, and then mark the page
366	 * as up to date if it turns out that we're extending the file.
367	 */
368	if (!PageUptodate(page)) {
369		unsigned pglen = nfs_page_length(page);
370		unsigned end = offset + copied;
371
372		if (pglen == 0) {
373			zero_user_segments(page, 0, offset,
374					end, PAGE_SIZE);
375			SetPageUptodate(page);
376		} else if (end >= pglen) {
377			zero_user_segment(page, end, PAGE_SIZE);
378			if (offset == 0)
379				SetPageUptodate(page);
380		} else
381			zero_user_segment(page, pglen, PAGE_SIZE);
382	}
383
384	status = nfs_updatepage(file, page, offset, copied);
385
386	unlock_page(page);
387	put_page(page);
388
389	if (status < 0)
390		return status;
391	NFS_I(mapping->host)->write_io += copied;
392
393	if (nfs_ctx_key_to_expire(ctx, mapping->host))
394		nfs_wb_all(mapping->host);
395
396	return copied;
397}
398
399/*
400 * Partially or wholly invalidate a page
401 * - Release the private state associated with a page if undergoing complete
402 *   page invalidation
403 * - Called if either PG_private or PG_fscache is set on the page
404 * - Caller holds page lock
405 */
406static void nfs_invalidate_page(struct page *page, unsigned int offset,
407				unsigned int length)
408{
409	dfprintk(PAGECACHE, "NFS: invalidate_page(%p, %u, %u)\n",
410		 page, offset, length);
411
412	if (offset != 0 || length < PAGE_SIZE)
413		return;
414	/* Cancel any unstarted writes on this page */
415	nfs_wb_page_cancel(page_file_mapping(page)->host, page);
416
417	nfs_fscache_invalidate_page(page, page->mapping->host);
418}
419
420/*
421 * Attempt to release the private state associated with a page
422 * - Called if either PG_private or PG_fscache is set on the page
423 * - Caller holds page lock
424 * - Return true (may release page) or false (may not)
425 */
426static int nfs_release_page(struct page *page, gfp_t gfp)
427{
428	dfprintk(PAGECACHE, "NFS: release_page(%p)\n", page);
429
430	/* If PagePrivate() is set, then the page is not freeable */
431	if (PagePrivate(page))
432		return 0;
433	return nfs_fscache_release_page(page, gfp);
434}
435
436static void nfs_check_dirty_writeback(struct page *page,
437				bool *dirty, bool *writeback)
438{
439	struct nfs_inode *nfsi;
440	struct address_space *mapping = page_file_mapping(page);
441
442	if (!mapping || PageSwapCache(page))
443		return;
444
445	/*
446	 * Check if an unstable page is currently being committed and
447	 * if so, have the VM treat it as if the page is under writeback
448	 * so it will not block due to pages that will shortly be freeable.
449	 */
450	nfsi = NFS_I(mapping->host);
451	if (atomic_read(&nfsi->commit_info.rpcs_out)) {
452		*writeback = true;
453		return;
454	}
455
456	/*
457	 * If PagePrivate() is set, then the page is not freeable and as the
458	 * inode is not being committed, it's not going to be cleaned in the
459	 * near future so treat it as dirty
460	 */
461	if (PagePrivate(page))
462		*dirty = true;
463}
464
465/*
466 * Attempt to clear the private state associated with a page when an error
467 * occurs that requires the cached contents of an inode to be written back or
468 * destroyed
469 * - Called if either PG_private or fscache is set on the page
470 * - Caller holds page lock
471 * - Return 0 if successful, -error otherwise
472 */
473static int nfs_launder_page(struct page *page)
474{
475	struct inode *inode = page_file_mapping(page)->host;
476	struct nfs_inode *nfsi = NFS_I(inode);
477
478	dfprintk(PAGECACHE, "NFS: launder_page(%ld, %llu)\n",
479		inode->i_ino, (long long)page_offset(page));
480
481	nfs_fscache_wait_on_page_write(nfsi, page);
482	return nfs_wb_page(inode, page);
483}
484
485static int nfs_swap_activate(struct swap_info_struct *sis, struct file *file,
486						sector_t *span)
487{
488	unsigned long blocks;
489	long long isize;
490	struct inode *inode = file_inode(file);
491	struct rpc_clnt *clnt = NFS_CLIENT(inode);
492	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
493
494	spin_lock(&inode->i_lock);
495	blocks = inode->i_blocks;
496	isize = inode->i_size;
497	spin_unlock(&inode->i_lock);
498	if (blocks*512 < isize) {
499		pr_warn("swap activate: swapfile has holes\n");
500		return -EINVAL;
501	}
502
503	*span = sis->pages;
504
505
506	if (cl->rpc_ops->enable_swap)
507		cl->rpc_ops->enable_swap(inode);
508
509	return rpc_clnt_swap_activate(clnt);
510}
511
512static void nfs_swap_deactivate(struct file *file)
513{
514	struct inode *inode = file_inode(file);
515	struct rpc_clnt *clnt = NFS_CLIENT(inode);
516	struct nfs_client *cl = NFS_SERVER(inode)->nfs_client;
517
518	rpc_clnt_swap_deactivate(clnt);
519	if (cl->rpc_ops->disable_swap)
520		cl->rpc_ops->disable_swap(file_inode(file));
521}
522
523const struct address_space_operations nfs_file_aops = {
524	.readpage = nfs_readpage,
525	.readpages = nfs_readpages,
526	.set_page_dirty = __set_page_dirty_nobuffers,
527	.writepage = nfs_writepage,
528	.writepages = nfs_writepages,
529	.write_begin = nfs_write_begin,
530	.write_end = nfs_write_end,
531	.invalidatepage = nfs_invalidate_page,
532	.releasepage = nfs_release_page,
533	.direct_IO = nfs_direct_IO,
534#ifdef CONFIG_MIGRATION
535	.migratepage = nfs_migrate_page,
536#endif
537	.launder_page = nfs_launder_page,
538	.is_dirty_writeback = nfs_check_dirty_writeback,
539	.error_remove_page = generic_error_remove_page,
540	.swap_activate = nfs_swap_activate,
541	.swap_deactivate = nfs_swap_deactivate,
542};
543
544/*
545 * Notification that a PTE pointing to an NFS page is about to be made
546 * writable, implying that someone is about to modify the page through a
547 * shared-writable mapping
548 */
549static vm_fault_t nfs_vm_page_mkwrite(struct vm_fault *vmf)
550{
551	struct page *page = vmf->page;
552	struct file *filp = vmf->vma->vm_file;
553	struct inode *inode = file_inode(filp);
554	unsigned pagelen;
555	vm_fault_t ret = VM_FAULT_NOPAGE;
556	struct address_space *mapping;
557
558	dfprintk(PAGECACHE, "NFS: vm_page_mkwrite(%pD2(%lu), offset %lld)\n",
559		filp, filp->f_mapping->host->i_ino,
560		(long long)page_offset(page));
561
562	sb_start_pagefault(inode->i_sb);
563
564	/* make sure the cache has finished storing the page */
565	nfs_fscache_wait_on_page_write(NFS_I(inode), page);
566
567	wait_on_bit_action(&NFS_I(inode)->flags, NFS_INO_INVALIDATING,
568			nfs_wait_bit_killable, TASK_KILLABLE);
569
570	lock_page(page);
571	mapping = page_file_mapping(page);
572	if (mapping != inode->i_mapping)
573		goto out_unlock;
574
575	wait_on_page_writeback(page);
576
577	pagelen = nfs_page_length(page);
578	if (pagelen == 0)
579		goto out_unlock;
580
581	ret = VM_FAULT_LOCKED;
582	if (nfs_flush_incompatible(filp, page) == 0 &&
583	    nfs_updatepage(filp, page, 0, pagelen) == 0)
584		goto out;
585
586	ret = VM_FAULT_SIGBUS;
587out_unlock:
588	unlock_page(page);
589out:
590	sb_end_pagefault(inode->i_sb);
591	return ret;
592}
593
594static const struct vm_operations_struct nfs_file_vm_ops = {
595	.fault = filemap_fault,
596	.map_pages = filemap_map_pages,
597	.page_mkwrite = nfs_vm_page_mkwrite,
598};
599
600static int nfs_need_check_write(struct file *filp, struct inode *inode,
601				int error)
602{
603	struct nfs_open_context *ctx;
604
605	ctx = nfs_file_open_context(filp);
606	if (nfs_error_is_fatal_on_server(error) ||
607	    nfs_ctx_key_to_expire(ctx, inode))
608		return 1;
609	return 0;
610}
611
612ssize_t nfs_file_write(struct kiocb *iocb, struct iov_iter *from)
613{
614	struct file *file = iocb->ki_filp;
615	struct inode *inode = file_inode(file);
616	unsigned long written = 0;
617	ssize_t result;
618	errseq_t since;
619	int error;
620
621	result = nfs_key_timeout_notify(file, inode);
622	if (result)
623		return result;
624
625	if (iocb->ki_flags & IOCB_DIRECT)
626		return nfs_file_direct_write(iocb, from, false);
627
628	dprintk("NFS: write(%pD2, %zu@%Ld)\n",
629		file, iov_iter_count(from), (long long) iocb->ki_pos);
630
631	if (IS_SWAPFILE(inode))
632		goto out_swapfile;
633	/*
634	 * O_APPEND implies that we must revalidate the file length.
635	 */
636	if (iocb->ki_flags & IOCB_APPEND) {
637		result = nfs_revalidate_file_size(inode, file);
638		if (result)
639			goto out;
640	}
641	if (iocb->ki_pos > i_size_read(inode))
642		nfs_revalidate_mapping(inode, file->f_mapping);
643
644	since = filemap_sample_wb_err(file->f_mapping);
645	nfs_start_io_write(inode);
646	result = generic_write_checks(iocb, from);
647	if (result > 0) {
648		current->backing_dev_info = inode_to_bdi(inode);
649		result = generic_perform_write(file, from, iocb->ki_pos);
650		current->backing_dev_info = NULL;
651	}
652	nfs_end_io_write(inode);
653	if (result <= 0)
654		goto out;
655
656	written = result;
657	iocb->ki_pos += written;
658	result = generic_write_sync(iocb, written);
659	if (result < 0)
660		goto out;
661
662	/* Return error values */
663	error = filemap_check_wb_err(file->f_mapping, since);
664	if (nfs_need_check_write(file, inode, error)) {
665		int err = nfs_wb_all(inode);
666		if (err < 0)
667			result = err;
668	}
669	nfs_add_stats(inode, NFSIOS_NORMALWRITTENBYTES, written);
670out:
671	return result;
672
673out_swapfile:
674	printk(KERN_INFO "NFS: attempt to write to active swap file!\n");
675	return -ETXTBSY;
676}
677EXPORT_SYMBOL_GPL(nfs_file_write);
678
679static int
680do_getlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
681{
682	struct inode *inode = filp->f_mapping->host;
683	int status = 0;
684	unsigned int saved_type = fl->fl_type;
685
686	/* Try local locking first */
687	posix_test_lock(filp, fl);
688	if (fl->fl_type != F_UNLCK) {
689		/* found a conflict */
690		goto out;
691	}
692	fl->fl_type = saved_type;
693
694	if (NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
695		goto out_noconflict;
696
697	if (is_local)
698		goto out_noconflict;
699
700	status = NFS_PROTO(inode)->lock(filp, cmd, fl);
701out:
702	return status;
703out_noconflict:
704	fl->fl_type = F_UNLCK;
705	goto out;
706}
707
708static int
709do_unlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
710{
711	struct inode *inode = filp->f_mapping->host;
712	struct nfs_lock_context *l_ctx;
713	int status;
714
715	/*
716	 * Flush all pending writes before doing anything
717	 * with locks..
718	 */
719	nfs_wb_all(inode);
720
721	l_ctx = nfs_get_lock_context(nfs_file_open_context(filp));
722	if (!IS_ERR(l_ctx)) {
723		status = nfs_iocounter_wait(l_ctx);
724		nfs_put_lock_context(l_ctx);
725		/*  NOTE: special case
726		 * 	If we're signalled while cleaning up locks on process exit, we
727		 * 	still need to complete the unlock.
728		 */
729		if (status < 0 && !(fl->fl_flags & FL_CLOSE))
730			return status;
731	}
732
733	/*
734	 * Use local locking if mounted with "-onolock" or with appropriate
735	 * "-olocal_lock="
736	 */
737	if (!is_local)
738		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
739	else
740		status = locks_lock_file_wait(filp, fl);
741	return status;
742}
743
744static int
745do_setlk(struct file *filp, int cmd, struct file_lock *fl, int is_local)
746{
747	struct inode *inode = filp->f_mapping->host;
748	int status;
749
750	/*
751	 * Flush all pending writes before doing anything
752	 * with locks..
753	 */
754	status = nfs_sync_mapping(filp->f_mapping);
755	if (status != 0)
756		goto out;
757
758	/*
759	 * Use local locking if mounted with "-onolock" or with appropriate
760	 * "-olocal_lock="
761	 */
762	if (!is_local)
763		status = NFS_PROTO(inode)->lock(filp, cmd, fl);
764	else
765		status = locks_lock_file_wait(filp, fl);
766	if (status < 0)
767		goto out;
768
769	/*
770	 * Invalidate cache to prevent missing any changes.  If
771	 * the file is mapped, clear the page cache as well so
772	 * those mappings will be loaded.
773	 *
774	 * This makes locking act as a cache coherency point.
775	 */
776	nfs_sync_mapping(filp->f_mapping);
777	if (!NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) {
778		nfs_zap_caches(inode);
779		if (mapping_mapped(filp->f_mapping))
780			nfs_revalidate_mapping(inode, filp->f_mapping);
781	}
782out:
783	return status;
784}
785
786/*
787 * Lock a (portion of) a file
788 */
789int nfs_lock(struct file *filp, int cmd, struct file_lock *fl)
790{
791	struct inode *inode = filp->f_mapping->host;
792	int ret = -ENOLCK;
793	int is_local = 0;
794
795	dprintk("NFS: lock(%pD2, t=%x, fl=%x, r=%lld:%lld)\n",
796			filp, fl->fl_type, fl->fl_flags,
797			(long long)fl->fl_start, (long long)fl->fl_end);
798
799	nfs_inc_stats(inode, NFSIOS_VFSLOCK);
800
801	/* No mandatory locks over NFS */
802	if (__mandatory_lock(inode) && fl->fl_type != F_UNLCK)
803		goto out_err;
804
805	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FCNTL)
806		is_local = 1;
807
808	if (NFS_PROTO(inode)->lock_check_bounds != NULL) {
809		ret = NFS_PROTO(inode)->lock_check_bounds(fl);
810		if (ret < 0)
811			goto out_err;
812	}
813
814	if (IS_GETLK(cmd))
815		ret = do_getlk(filp, cmd, fl, is_local);
816	else if (fl->fl_type == F_UNLCK)
817		ret = do_unlk(filp, cmd, fl, is_local);
818	else
819		ret = do_setlk(filp, cmd, fl, is_local);
820out_err:
821	return ret;
822}
823EXPORT_SYMBOL_GPL(nfs_lock);
824
825/*
826 * Lock a (portion of) a file
827 */
828int nfs_flock(struct file *filp, int cmd, struct file_lock *fl)
829{
830	struct inode *inode = filp->f_mapping->host;
831	int is_local = 0;
832
833	dprintk("NFS: flock(%pD2, t=%x, fl=%x)\n",
834			filp, fl->fl_type, fl->fl_flags);
835
836	if (!(fl->fl_flags & FL_FLOCK))
837		return -ENOLCK;
838
839	/*
840	 * The NFSv4 protocol doesn't support LOCK_MAND, which is not part of
841	 * any standard. In principle we might be able to support LOCK_MAND
842	 * on NFSv2/3 since NLMv3/4 support DOS share modes, but for now the
843	 * NFS code is not set up for it.
844	 */
845	if (fl->fl_type & LOCK_MAND)
846		return -EINVAL;
847
848	if (NFS_SERVER(inode)->flags & NFS_MOUNT_LOCAL_FLOCK)
849		is_local = 1;
850
851	/* We're simulating flock() locks using posix locks on the server */
852	if (fl->fl_type == F_UNLCK)
853		return do_unlk(filp, cmd, fl, is_local);
854	return do_setlk(filp, cmd, fl, is_local);
855}
856EXPORT_SYMBOL_GPL(nfs_flock);
857
858const struct file_operations nfs_file_operations = {
859	.llseek		= nfs_file_llseek,
860	.read_iter	= nfs_file_read,
861	.write_iter	= nfs_file_write,
862	.mmap		= nfs_file_mmap,
863	.open		= nfs_file_open,
864	.flush		= nfs_file_flush,
865	.release	= nfs_file_release,
866	.fsync		= nfs_file_fsync,
867	.lock		= nfs_lock,
868	.flock		= nfs_flock,
869	.splice_read	= generic_file_splice_read,
870	.splice_write	= iter_file_splice_write,
871	.check_flags	= nfs_check_flags,
872	.setlease	= simple_nosetlease,
873};
874EXPORT_SYMBOL_GPL(nfs_file_operations);
875