xref: /kernel/linux/linux-5.10/fs/nfs/direct.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * linux/fs/nfs/direct.c
4 *
5 * Copyright (C) 2003 by Chuck Lever <cel@netapp.com>
6 *
7 * High-performance uncached I/O for the Linux NFS client
8 *
9 * There are important applications whose performance or correctness
10 * depends on uncached access to file data.  Database clusters
11 * (multiple copies of the same instance running on separate hosts)
12 * implement their own cache coherency protocol that subsumes file
13 * system cache protocols.  Applications that process datasets
14 * considerably larger than the client's memory do not always benefit
15 * from a local cache.  A streaming video server, for instance, has no
16 * need to cache the contents of a file.
17 *
18 * When an application requests uncached I/O, all read and write requests
19 * are made directly to the server; data stored or fetched via these
20 * requests is not cached in the Linux page cache.  The client does not
21 * correct unaligned requests from applications.  All requested bytes are
22 * held on permanent storage before a direct write system call returns to
23 * an application.
24 *
25 * Solaris implements an uncached I/O facility called directio() that
26 * is used for backups and sequential I/O to very large files.  Solaris
27 * also supports uncaching whole NFS partitions with "-o forcedirectio,"
28 * an undocumented mount option.
29 *
30 * Designed by Jeff Kimmel, Chuck Lever, and Trond Myklebust, with
31 * help from Andrew Morton.
32 *
33 * 18 Dec 2001	Initial implementation for 2.4  --cel
34 * 08 Jul 2002	Version for 2.4.19, with bug fixes --trondmy
35 * 08 Jun 2003	Port to 2.5 APIs  --cel
36 * 31 Mar 2004	Handle direct I/O without VFS support  --cel
37 * 15 Sep 2004	Parallel async reads  --cel
38 * 04 May 2005	support O_DIRECT with aio  --cel
39 *
40 */
41
42#include <linux/errno.h>
43#include <linux/sched.h>
44#include <linux/kernel.h>
45#include <linux/file.h>
46#include <linux/pagemap.h>
47#include <linux/kref.h>
48#include <linux/slab.h>
49#include <linux/task_io_accounting_ops.h>
50#include <linux/module.h>
51
52#include <linux/nfs_fs.h>
53#include <linux/nfs_page.h>
54#include <linux/sunrpc/clnt.h>
55
56#include <linux/uaccess.h>
57#include <linux/atomic.h>
58
59#include "internal.h"
60#include "iostat.h"
61#include "pnfs.h"
62
63#define NFSDBG_FACILITY		NFSDBG_VFS
64
65static struct kmem_cache *nfs_direct_cachep;
66
67struct nfs_direct_req {
68	struct kref		kref;		/* release manager */
69
70	/* I/O parameters */
71	struct nfs_open_context	*ctx;		/* file open context info */
72	struct nfs_lock_context *l_ctx;		/* Lock context info */
73	struct kiocb *		iocb;		/* controlling i/o request */
74	struct inode *		inode;		/* target file of i/o */
75
76	/* completion state */
77	atomic_t		io_count;	/* i/os we're waiting for */
78	spinlock_t		lock;		/* protect completion state */
79
80	loff_t			io_start;	/* Start offset for I/O */
81	ssize_t			count,		/* bytes actually processed */
82				max_count,	/* max expected count */
83				bytes_left,	/* bytes left to be sent */
84				error;		/* any reported error */
85	struct completion	completion;	/* wait for i/o completion */
86
87	/* commit state */
88	struct nfs_mds_commit_info mds_cinfo;	/* Storage for cinfo */
89	struct pnfs_ds_commit_info ds_cinfo;	/* Storage for cinfo */
90	struct work_struct	work;
91	int			flags;
92	/* for write */
93#define NFS_ODIRECT_DO_COMMIT		(1)	/* an unstable reply was received */
94#define NFS_ODIRECT_RESCHED_WRITES	(2)	/* write verification failed */
95	/* for read */
96#define NFS_ODIRECT_SHOULD_DIRTY	(3)	/* dirty user-space page after read */
97#define NFS_ODIRECT_DONE		INT_MAX	/* write verification failed */
98};
99
100static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops;
101static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops;
102static void nfs_direct_write_complete(struct nfs_direct_req *dreq);
103static void nfs_direct_write_schedule_work(struct work_struct *work);
104
105static inline void get_dreq(struct nfs_direct_req *dreq)
106{
107	atomic_inc(&dreq->io_count);
108}
109
110static inline int put_dreq(struct nfs_direct_req *dreq)
111{
112	return atomic_dec_and_test(&dreq->io_count);
113}
114
115static void
116nfs_direct_handle_truncated(struct nfs_direct_req *dreq,
117			    const struct nfs_pgio_header *hdr,
118			    ssize_t dreq_len)
119{
120	if (!(test_bit(NFS_IOHDR_ERROR, &hdr->flags) ||
121	      test_bit(NFS_IOHDR_EOF, &hdr->flags)))
122		return;
123	if (dreq->max_count >= dreq_len) {
124		dreq->max_count = dreq_len;
125		if (dreq->count > dreq_len)
126			dreq->count = dreq_len;
127
128		if (test_bit(NFS_IOHDR_ERROR, &hdr->flags))
129			dreq->error = hdr->error;
130		else /* Clear outstanding error if this is EOF */
131			dreq->error = 0;
132	}
133}
134
135static void
136nfs_direct_count_bytes(struct nfs_direct_req *dreq,
137		       const struct nfs_pgio_header *hdr)
138{
139	loff_t hdr_end = hdr->io_start + hdr->good_bytes;
140	ssize_t dreq_len = 0;
141
142	if (hdr_end > dreq->io_start)
143		dreq_len = hdr_end - dreq->io_start;
144
145	nfs_direct_handle_truncated(dreq, hdr, dreq_len);
146
147	if (dreq_len > dreq->max_count)
148		dreq_len = dreq->max_count;
149
150	if (dreq->count < dreq_len)
151		dreq->count = dreq_len;
152}
153
154/**
155 * nfs_direct_IO - NFS address space operation for direct I/O
156 * @iocb: target I/O control block
157 * @iter: I/O buffer
158 *
159 * The presence of this routine in the address space ops vector means
160 * the NFS client supports direct I/O. However, for most direct IO, we
161 * shunt off direct read and write requests before the VFS gets them,
162 * so this method is only ever called for swap.
163 */
164ssize_t nfs_direct_IO(struct kiocb *iocb, struct iov_iter *iter)
165{
166	struct inode *inode = iocb->ki_filp->f_mapping->host;
167
168	/* we only support swap file calling nfs_direct_IO */
169	if (!IS_SWAPFILE(inode))
170		return 0;
171
172	VM_BUG_ON(iov_iter_count(iter) != PAGE_SIZE);
173
174	if (iov_iter_rw(iter) == READ)
175		return nfs_file_direct_read(iocb, iter, true);
176	return nfs_file_direct_write(iocb, iter, true);
177}
178
179static void nfs_direct_release_pages(struct page **pages, unsigned int npages)
180{
181	unsigned int i;
182	for (i = 0; i < npages; i++)
183		put_page(pages[i]);
184}
185
186void nfs_init_cinfo_from_dreq(struct nfs_commit_info *cinfo,
187			      struct nfs_direct_req *dreq)
188{
189	cinfo->inode = dreq->inode;
190	cinfo->mds = &dreq->mds_cinfo;
191	cinfo->ds = &dreq->ds_cinfo;
192	cinfo->dreq = dreq;
193	cinfo->completion_ops = &nfs_direct_commit_completion_ops;
194}
195
196static inline struct nfs_direct_req *nfs_direct_req_alloc(void)
197{
198	struct nfs_direct_req *dreq;
199
200	dreq = kmem_cache_zalloc(nfs_direct_cachep, GFP_KERNEL);
201	if (!dreq)
202		return NULL;
203
204	kref_init(&dreq->kref);
205	kref_get(&dreq->kref);
206	init_completion(&dreq->completion);
207	INIT_LIST_HEAD(&dreq->mds_cinfo.list);
208	pnfs_init_ds_commit_info(&dreq->ds_cinfo);
209	INIT_WORK(&dreq->work, nfs_direct_write_schedule_work);
210	spin_lock_init(&dreq->lock);
211
212	return dreq;
213}
214
215static void nfs_direct_req_free(struct kref *kref)
216{
217	struct nfs_direct_req *dreq = container_of(kref, struct nfs_direct_req, kref);
218
219	pnfs_release_ds_info(&dreq->ds_cinfo, dreq->inode);
220	if (dreq->l_ctx != NULL)
221		nfs_put_lock_context(dreq->l_ctx);
222	if (dreq->ctx != NULL)
223		put_nfs_open_context(dreq->ctx);
224	kmem_cache_free(nfs_direct_cachep, dreq);
225}
226
227static void nfs_direct_req_release(struct nfs_direct_req *dreq)
228{
229	kref_put(&dreq->kref, nfs_direct_req_free);
230}
231
232ssize_t nfs_dreq_bytes_left(struct nfs_direct_req *dreq)
233{
234	return dreq->bytes_left;
235}
236EXPORT_SYMBOL_GPL(nfs_dreq_bytes_left);
237
238/*
239 * Collects and returns the final error value/byte-count.
240 */
241static ssize_t nfs_direct_wait(struct nfs_direct_req *dreq)
242{
243	ssize_t result = -EIOCBQUEUED;
244
245	/* Async requests don't wait here */
246	if (dreq->iocb)
247		goto out;
248
249	result = wait_for_completion_killable(&dreq->completion);
250
251	if (!result) {
252		result = dreq->count;
253		WARN_ON_ONCE(dreq->count < 0);
254	}
255	if (!result)
256		result = dreq->error;
257
258out:
259	return (ssize_t) result;
260}
261
262/*
263 * Synchronous I/O uses a stack-allocated iocb.  Thus we can't trust
264 * the iocb is still valid here if this is a synchronous request.
265 */
266static void nfs_direct_complete(struct nfs_direct_req *dreq)
267{
268	struct inode *inode = dreq->inode;
269
270	inode_dio_end(inode);
271
272	if (dreq->iocb) {
273		long res = (long) dreq->error;
274		if (dreq->count != 0) {
275			res = (long) dreq->count;
276			WARN_ON_ONCE(dreq->count < 0);
277		}
278		dreq->iocb->ki_complete(dreq->iocb, res, 0);
279	}
280
281	complete(&dreq->completion);
282
283	nfs_direct_req_release(dreq);
284}
285
286static void nfs_direct_read_completion(struct nfs_pgio_header *hdr)
287{
288	unsigned long bytes = 0;
289	struct nfs_direct_req *dreq = hdr->dreq;
290
291	spin_lock(&dreq->lock);
292	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
293		spin_unlock(&dreq->lock);
294		goto out_put;
295	}
296
297	nfs_direct_count_bytes(dreq, hdr);
298	spin_unlock(&dreq->lock);
299
300	while (!list_empty(&hdr->pages)) {
301		struct nfs_page *req = nfs_list_entry(hdr->pages.next);
302		struct page *page = req->wb_page;
303
304		if (!PageCompound(page) && bytes < hdr->good_bytes &&
305		    (dreq->flags == NFS_ODIRECT_SHOULD_DIRTY))
306			set_page_dirty(page);
307		bytes += req->wb_bytes;
308		nfs_list_remove_request(req);
309		nfs_release_request(req);
310	}
311out_put:
312	if (put_dreq(dreq))
313		nfs_direct_complete(dreq);
314	hdr->release(hdr);
315}
316
317static void nfs_read_sync_pgio_error(struct list_head *head, int error)
318{
319	struct nfs_page *req;
320
321	while (!list_empty(head)) {
322		req = nfs_list_entry(head->next);
323		nfs_list_remove_request(req);
324		nfs_release_request(req);
325	}
326}
327
328static void nfs_direct_pgio_init(struct nfs_pgio_header *hdr)
329{
330	get_dreq(hdr->dreq);
331}
332
333static const struct nfs_pgio_completion_ops nfs_direct_read_completion_ops = {
334	.error_cleanup = nfs_read_sync_pgio_error,
335	.init_hdr = nfs_direct_pgio_init,
336	.completion = nfs_direct_read_completion,
337};
338
339/*
340 * For each rsize'd chunk of the user's buffer, dispatch an NFS READ
341 * operation.  If nfs_readdata_alloc() or get_user_pages() fails,
342 * bail and stop sending more reads.  Read length accounting is
343 * handled automatically by nfs_direct_read_result().  Otherwise, if
344 * no requests have been sent, just return an error.
345 */
346
347static ssize_t nfs_direct_read_schedule_iovec(struct nfs_direct_req *dreq,
348					      struct iov_iter *iter,
349					      loff_t pos)
350{
351	struct nfs_pageio_descriptor desc;
352	struct inode *inode = dreq->inode;
353	ssize_t result = -EINVAL;
354	size_t requested_bytes = 0;
355	size_t rsize = max_t(size_t, NFS_SERVER(inode)->rsize, PAGE_SIZE);
356
357	nfs_pageio_init_read(&desc, dreq->inode, false,
358			     &nfs_direct_read_completion_ops);
359	get_dreq(dreq);
360	desc.pg_dreq = dreq;
361	inode_dio_begin(inode);
362
363	while (iov_iter_count(iter)) {
364		struct page **pagevec;
365		size_t bytes;
366		size_t pgbase;
367		unsigned npages, i;
368
369		result = iov_iter_get_pages_alloc(iter, &pagevec,
370						  rsize, &pgbase);
371		if (result < 0)
372			break;
373
374		bytes = result;
375		iov_iter_advance(iter, bytes);
376		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
377		for (i = 0; i < npages; i++) {
378			struct nfs_page *req;
379			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
380			/* XXX do we need to do the eof zeroing found in async_filler? */
381			req = nfs_create_request(dreq->ctx, pagevec[i],
382						 pgbase, req_len);
383			if (IS_ERR(req)) {
384				result = PTR_ERR(req);
385				break;
386			}
387			req->wb_index = pos >> PAGE_SHIFT;
388			req->wb_offset = pos & ~PAGE_MASK;
389			if (!nfs_pageio_add_request(&desc, req)) {
390				result = desc.pg_error;
391				nfs_release_request(req);
392				break;
393			}
394			pgbase = 0;
395			bytes -= req_len;
396			requested_bytes += req_len;
397			pos += req_len;
398			dreq->bytes_left -= req_len;
399		}
400		nfs_direct_release_pages(pagevec, npages);
401		kvfree(pagevec);
402		if (result < 0)
403			break;
404	}
405
406	nfs_pageio_complete(&desc);
407
408	/*
409	 * If no bytes were started, return the error, and let the
410	 * generic layer handle the completion.
411	 */
412	if (requested_bytes == 0) {
413		inode_dio_end(inode);
414		nfs_direct_req_release(dreq);
415		return result < 0 ? result : -EIO;
416	}
417
418	if (put_dreq(dreq))
419		nfs_direct_complete(dreq);
420	return requested_bytes;
421}
422
423/**
424 * nfs_file_direct_read - file direct read operation for NFS files
425 * @iocb: target I/O control block
426 * @iter: vector of user buffers into which to read data
427 * @swap: flag indicating this is swap IO, not O_DIRECT IO
428 *
429 * We use this function for direct reads instead of calling
430 * generic_file_aio_read() in order to avoid gfar's check to see if
431 * the request starts before the end of the file.  For that check
432 * to work, we must generate a GETATTR before each direct read, and
433 * even then there is a window between the GETATTR and the subsequent
434 * READ where the file size could change.  Our preference is simply
435 * to do all reads the application wants, and the server will take
436 * care of managing the end of file boundary.
437 *
438 * This function also eliminates unnecessarily updating the file's
439 * atime locally, as the NFS server sets the file's atime, and this
440 * client must read the updated atime from the server back into its
441 * cache.
442 */
443ssize_t nfs_file_direct_read(struct kiocb *iocb, struct iov_iter *iter,
444			     bool swap)
445{
446	struct file *file = iocb->ki_filp;
447	struct address_space *mapping = file->f_mapping;
448	struct inode *inode = mapping->host;
449	struct nfs_direct_req *dreq;
450	struct nfs_lock_context *l_ctx;
451	ssize_t result, requested;
452	size_t count = iov_iter_count(iter);
453	nfs_add_stats(mapping->host, NFSIOS_DIRECTREADBYTES, count);
454
455	dfprintk(FILE, "NFS: direct read(%pD2, %zd@%Ld)\n",
456		file, count, (long long) iocb->ki_pos);
457
458	result = 0;
459	if (!count)
460		goto out;
461
462	task_io_account_read(count);
463
464	result = -ENOMEM;
465	dreq = nfs_direct_req_alloc();
466	if (dreq == NULL)
467		goto out;
468
469	dreq->inode = inode;
470	dreq->bytes_left = dreq->max_count = count;
471	dreq->io_start = iocb->ki_pos;
472	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
473	l_ctx = nfs_get_lock_context(dreq->ctx);
474	if (IS_ERR(l_ctx)) {
475		result = PTR_ERR(l_ctx);
476		nfs_direct_req_release(dreq);
477		goto out_release;
478	}
479	dreq->l_ctx = l_ctx;
480	if (!is_sync_kiocb(iocb))
481		dreq->iocb = iocb;
482
483	if (iter_is_iovec(iter))
484		dreq->flags = NFS_ODIRECT_SHOULD_DIRTY;
485
486	if (!swap)
487		nfs_start_io_direct(inode);
488
489	NFS_I(inode)->read_io += count;
490	requested = nfs_direct_read_schedule_iovec(dreq, iter, iocb->ki_pos);
491
492	if (!swap)
493		nfs_end_io_direct(inode);
494
495	if (requested > 0) {
496		result = nfs_direct_wait(dreq);
497		if (result > 0) {
498			requested -= result;
499			iocb->ki_pos += result;
500		}
501		iov_iter_revert(iter, requested);
502	} else {
503		result = requested;
504	}
505
506out_release:
507	nfs_direct_req_release(dreq);
508out:
509	return result;
510}
511
512static void nfs_direct_add_page_head(struct list_head *list,
513				     struct nfs_page *req)
514{
515	struct nfs_page *head = req->wb_head;
516
517	if (!list_empty(&head->wb_list) || !nfs_lock_request(head))
518		return;
519	if (!list_empty(&head->wb_list)) {
520		nfs_unlock_request(head);
521		return;
522	}
523	list_add(&head->wb_list, list);
524	kref_get(&head->wb_kref);
525	kref_get(&head->wb_kref);
526}
527
528static void nfs_direct_join_group(struct list_head *list,
529				  struct nfs_commit_info *cinfo,
530				  struct inode *inode)
531{
532	struct nfs_page *req, *subreq;
533
534	list_for_each_entry(req, list, wb_list) {
535		if (req->wb_head != req) {
536			nfs_direct_add_page_head(&req->wb_list, req);
537			continue;
538		}
539		subreq = req->wb_this_page;
540		if (subreq == req)
541			continue;
542		do {
543			/*
544			 * Remove subrequests from this list before freeing
545			 * them in the call to nfs_join_page_group().
546			 */
547			if (!list_empty(&subreq->wb_list)) {
548				nfs_list_remove_request(subreq);
549				nfs_release_request(subreq);
550			}
551		} while ((subreq = subreq->wb_this_page) != req);
552		nfs_join_page_group(req, cinfo, inode);
553	}
554}
555
556static void
557nfs_direct_write_scan_commit_list(struct inode *inode,
558				  struct list_head *list,
559				  struct nfs_commit_info *cinfo)
560{
561	mutex_lock(&NFS_I(cinfo->inode)->commit_mutex);
562	pnfs_recover_commit_reqs(list, cinfo);
563	nfs_scan_commit_list(&cinfo->mds->list, list, cinfo, 0);
564	mutex_unlock(&NFS_I(cinfo->inode)->commit_mutex);
565}
566
567static void nfs_direct_write_reschedule(struct nfs_direct_req *dreq)
568{
569	struct nfs_pageio_descriptor desc;
570	struct nfs_page *req, *tmp;
571	LIST_HEAD(reqs);
572	struct nfs_commit_info cinfo;
573	LIST_HEAD(failed);
574
575	nfs_init_cinfo_from_dreq(&cinfo, dreq);
576	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
577
578	nfs_direct_join_group(&reqs, &cinfo, dreq->inode);
579
580	dreq->count = 0;
581	dreq->max_count = 0;
582	list_for_each_entry(req, &reqs, wb_list)
583		dreq->max_count += req->wb_bytes;
584	nfs_clear_pnfs_ds_commit_verifiers(&dreq->ds_cinfo);
585	get_dreq(dreq);
586
587	nfs_pageio_init_write(&desc, dreq->inode, FLUSH_STABLE, false,
588			      &nfs_direct_write_completion_ops);
589	desc.pg_dreq = dreq;
590
591	list_for_each_entry_safe(req, tmp, &reqs, wb_list) {
592		/* Bump the transmission count */
593		req->wb_nio++;
594		if (!nfs_pageio_add_request(&desc, req)) {
595			nfs_list_move_request(req, &failed);
596			spin_lock(&cinfo.inode->i_lock);
597			dreq->flags = 0;
598			if (desc.pg_error < 0)
599				dreq->error = desc.pg_error;
600			else
601				dreq->error = -EIO;
602			spin_unlock(&cinfo.inode->i_lock);
603		}
604		nfs_release_request(req);
605	}
606	nfs_pageio_complete(&desc);
607
608	while (!list_empty(&failed)) {
609		req = nfs_list_entry(failed.next);
610		nfs_list_remove_request(req);
611		nfs_unlock_and_release_request(req);
612	}
613
614	if (put_dreq(dreq))
615		nfs_direct_write_complete(dreq);
616}
617
618static void nfs_direct_commit_complete(struct nfs_commit_data *data)
619{
620	const struct nfs_writeverf *verf = data->res.verf;
621	struct nfs_direct_req *dreq = data->dreq;
622	struct nfs_commit_info cinfo;
623	struct nfs_page *req;
624	int status = data->task.tk_status;
625
626	if (status < 0) {
627		/* Errors in commit are fatal */
628		dreq->error = status;
629		dreq->max_count = 0;
630		dreq->count = 0;
631		dreq->flags = NFS_ODIRECT_DONE;
632	} else if (dreq->flags == NFS_ODIRECT_DONE)
633		status = dreq->error;
634
635	nfs_init_cinfo_from_dreq(&cinfo, dreq);
636
637	while (!list_empty(&data->pages)) {
638		req = nfs_list_entry(data->pages.next);
639		nfs_list_remove_request(req);
640		if (status >= 0 && !nfs_write_match_verf(verf, req)) {
641			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
642			/*
643			 * Despite the reboot, the write was successful,
644			 * so reset wb_nio.
645			 */
646			req->wb_nio = 0;
647			nfs_mark_request_commit(req, NULL, &cinfo, 0);
648		} else /* Error or match */
649			nfs_release_request(req);
650		nfs_unlock_and_release_request(req);
651	}
652
653	if (nfs_commit_end(cinfo.mds))
654		nfs_direct_write_complete(dreq);
655}
656
657static void nfs_direct_resched_write(struct nfs_commit_info *cinfo,
658		struct nfs_page *req)
659{
660	struct nfs_direct_req *dreq = cinfo->dreq;
661
662	spin_lock(&dreq->lock);
663	if (dreq->flags != NFS_ODIRECT_DONE)
664		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
665	spin_unlock(&dreq->lock);
666	nfs_mark_request_commit(req, NULL, cinfo, 0);
667}
668
669static const struct nfs_commit_completion_ops nfs_direct_commit_completion_ops = {
670	.completion = nfs_direct_commit_complete,
671	.resched_write = nfs_direct_resched_write,
672};
673
674static void nfs_direct_commit_schedule(struct nfs_direct_req *dreq)
675{
676	int res;
677	struct nfs_commit_info cinfo;
678	LIST_HEAD(mds_list);
679
680	nfs_init_cinfo_from_dreq(&cinfo, dreq);
681	nfs_commit_begin(cinfo.mds);
682	nfs_scan_commit(dreq->inode, &mds_list, &cinfo);
683	res = nfs_generic_commit_list(dreq->inode, &mds_list, 0, &cinfo);
684	if (res < 0) { /* res == -ENOMEM */
685		spin_lock(&dreq->lock);
686		if (dreq->flags == 0)
687			dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
688		spin_unlock(&dreq->lock);
689	}
690	if (nfs_commit_end(cinfo.mds))
691		nfs_direct_write_complete(dreq);
692}
693
694static void nfs_direct_write_clear_reqs(struct nfs_direct_req *dreq)
695{
696	struct nfs_commit_info cinfo;
697	struct nfs_page *req;
698	LIST_HEAD(reqs);
699
700	nfs_init_cinfo_from_dreq(&cinfo, dreq);
701	nfs_direct_write_scan_commit_list(dreq->inode, &reqs, &cinfo);
702
703	while (!list_empty(&reqs)) {
704		req = nfs_list_entry(reqs.next);
705		nfs_list_remove_request(req);
706		nfs_release_request(req);
707		nfs_unlock_and_release_request(req);
708	}
709}
710
711static void nfs_direct_write_schedule_work(struct work_struct *work)
712{
713	struct nfs_direct_req *dreq = container_of(work, struct nfs_direct_req, work);
714	int flags = dreq->flags;
715
716	dreq->flags = 0;
717	switch (flags) {
718		case NFS_ODIRECT_DO_COMMIT:
719			nfs_direct_commit_schedule(dreq);
720			break;
721		case NFS_ODIRECT_RESCHED_WRITES:
722			nfs_direct_write_reschedule(dreq);
723			break;
724		default:
725			nfs_direct_write_clear_reqs(dreq);
726			nfs_zap_mapping(dreq->inode, dreq->inode->i_mapping);
727			nfs_direct_complete(dreq);
728	}
729}
730
731static void nfs_direct_write_complete(struct nfs_direct_req *dreq)
732{
733	queue_work(nfsiod_workqueue, &dreq->work); /* Calls nfs_direct_write_schedule_work */
734}
735
736static void nfs_direct_write_completion(struct nfs_pgio_header *hdr)
737{
738	struct nfs_direct_req *dreq = hdr->dreq;
739	struct nfs_commit_info cinfo;
740	struct nfs_page *req = nfs_list_entry(hdr->pages.next);
741	int flags = NFS_ODIRECT_DONE;
742
743	nfs_init_cinfo_from_dreq(&cinfo, dreq);
744
745	spin_lock(&dreq->lock);
746	if (test_bit(NFS_IOHDR_REDO, &hdr->flags)) {
747		spin_unlock(&dreq->lock);
748		goto out_put;
749	}
750
751	nfs_direct_count_bytes(dreq, hdr);
752	if (hdr->good_bytes != 0 && nfs_write_need_commit(hdr)) {
753		if (!dreq->flags)
754			dreq->flags = NFS_ODIRECT_DO_COMMIT;
755		flags = dreq->flags;
756	}
757	spin_unlock(&dreq->lock);
758
759	while (!list_empty(&hdr->pages)) {
760
761		req = nfs_list_entry(hdr->pages.next);
762		nfs_list_remove_request(req);
763		if (flags == NFS_ODIRECT_DO_COMMIT) {
764			kref_get(&req->wb_kref);
765			memcpy(&req->wb_verf, &hdr->verf.verifier,
766			       sizeof(req->wb_verf));
767			nfs_mark_request_commit(req, hdr->lseg, &cinfo,
768				hdr->ds_commit_idx);
769		} else if (flags == NFS_ODIRECT_RESCHED_WRITES) {
770			kref_get(&req->wb_kref);
771			nfs_mark_request_commit(req, NULL, &cinfo, 0);
772		}
773		nfs_unlock_and_release_request(req);
774	}
775
776out_put:
777	if (put_dreq(dreq))
778		nfs_direct_write_complete(dreq);
779	hdr->release(hdr);
780}
781
782static void nfs_write_sync_pgio_error(struct list_head *head, int error)
783{
784	struct nfs_page *req;
785
786	while (!list_empty(head)) {
787		req = nfs_list_entry(head->next);
788		nfs_list_remove_request(req);
789		nfs_unlock_and_release_request(req);
790	}
791}
792
793static void nfs_direct_write_reschedule_io(struct nfs_pgio_header *hdr)
794{
795	struct nfs_direct_req *dreq = hdr->dreq;
796
797	spin_lock(&dreq->lock);
798	if (dreq->error == 0) {
799		dreq->flags = NFS_ODIRECT_RESCHED_WRITES;
800		/* fake unstable write to let common nfs resend pages */
801		hdr->verf.committed = NFS_UNSTABLE;
802		hdr->good_bytes = hdr->args.offset + hdr->args.count -
803			hdr->io_start;
804	}
805	spin_unlock(&dreq->lock);
806}
807
808static const struct nfs_pgio_completion_ops nfs_direct_write_completion_ops = {
809	.error_cleanup = nfs_write_sync_pgio_error,
810	.init_hdr = nfs_direct_pgio_init,
811	.completion = nfs_direct_write_completion,
812	.reschedule_io = nfs_direct_write_reschedule_io,
813};
814
815
816/*
817 * NB: Return the value of the first error return code.  Subsequent
818 *     errors after the first one are ignored.
819 */
820/*
821 * For each wsize'd chunk of the user's buffer, dispatch an NFS WRITE
822 * operation.  If nfs_writedata_alloc() or get_user_pages() fails,
823 * bail and stop sending more writes.  Write length accounting is
824 * handled automatically by nfs_direct_write_result().  Otherwise, if
825 * no requests have been sent, just return an error.
826 */
827static ssize_t nfs_direct_write_schedule_iovec(struct nfs_direct_req *dreq,
828					       struct iov_iter *iter,
829					       loff_t pos, int ioflags)
830{
831	struct nfs_pageio_descriptor desc;
832	struct inode *inode = dreq->inode;
833	ssize_t result = 0;
834	size_t requested_bytes = 0;
835	size_t wsize = max_t(size_t, NFS_SERVER(inode)->wsize, PAGE_SIZE);
836
837	nfs_pageio_init_write(&desc, inode, ioflags, false,
838			      &nfs_direct_write_completion_ops);
839	desc.pg_dreq = dreq;
840	get_dreq(dreq);
841	inode_dio_begin(inode);
842
843	NFS_I(inode)->write_io += iov_iter_count(iter);
844	while (iov_iter_count(iter)) {
845		struct page **pagevec;
846		size_t bytes;
847		size_t pgbase;
848		unsigned npages, i;
849
850		result = iov_iter_get_pages_alloc(iter, &pagevec,
851						  wsize, &pgbase);
852		if (result < 0)
853			break;
854
855		bytes = result;
856		iov_iter_advance(iter, bytes);
857		npages = (result + pgbase + PAGE_SIZE - 1) / PAGE_SIZE;
858		for (i = 0; i < npages; i++) {
859			struct nfs_page *req;
860			unsigned int req_len = min_t(size_t, bytes, PAGE_SIZE - pgbase);
861
862			req = nfs_create_request(dreq->ctx, pagevec[i],
863						 pgbase, req_len);
864			if (IS_ERR(req)) {
865				result = PTR_ERR(req);
866				break;
867			}
868
869			if (desc.pg_error < 0) {
870				nfs_free_request(req);
871				result = desc.pg_error;
872				break;
873			}
874
875			nfs_lock_request(req);
876			req->wb_index = pos >> PAGE_SHIFT;
877			req->wb_offset = pos & ~PAGE_MASK;
878			if (!nfs_pageio_add_request(&desc, req)) {
879				result = desc.pg_error;
880				nfs_unlock_and_release_request(req);
881				break;
882			}
883			pgbase = 0;
884			bytes -= req_len;
885			requested_bytes += req_len;
886			pos += req_len;
887			dreq->bytes_left -= req_len;
888		}
889		nfs_direct_release_pages(pagevec, npages);
890		kvfree(pagevec);
891		if (result < 0)
892			break;
893	}
894	nfs_pageio_complete(&desc);
895
896	/*
897	 * If no bytes were started, return the error, and let the
898	 * generic layer handle the completion.
899	 */
900	if (requested_bytes == 0) {
901		inode_dio_end(inode);
902		nfs_direct_req_release(dreq);
903		return result < 0 ? result : -EIO;
904	}
905
906	if (put_dreq(dreq))
907		nfs_direct_write_complete(dreq);
908	return requested_bytes;
909}
910
911/**
912 * nfs_file_direct_write - file direct write operation for NFS files
913 * @iocb: target I/O control block
914 * @iter: vector of user buffers from which to write data
915 * @swap: flag indicating this is swap IO, not O_DIRECT IO
916 *
917 * We use this function for direct writes instead of calling
918 * generic_file_aio_write() in order to avoid taking the inode
919 * semaphore and updating the i_size.  The NFS server will set
920 * the new i_size and this client must read the updated size
921 * back into its cache.  We let the server do generic write
922 * parameter checking and report problems.
923 *
924 * We eliminate local atime updates, see direct read above.
925 *
926 * We avoid unnecessary page cache invalidations for normal cached
927 * readers of this file.
928 *
929 * Note that O_APPEND is not supported for NFS direct writes, as there
930 * is no atomic O_APPEND write facility in the NFS protocol.
931 */
932ssize_t nfs_file_direct_write(struct kiocb *iocb, struct iov_iter *iter,
933			      bool swap)
934{
935	ssize_t result, requested;
936	size_t count;
937	struct file *file = iocb->ki_filp;
938	struct address_space *mapping = file->f_mapping;
939	struct inode *inode = mapping->host;
940	struct nfs_direct_req *dreq;
941	struct nfs_lock_context *l_ctx;
942	loff_t pos, end;
943
944	dfprintk(FILE, "NFS: direct write(%pD2, %zd@%Ld)\n",
945		file, iov_iter_count(iter), (long long) iocb->ki_pos);
946
947	if (swap)
948		/* bypass generic checks */
949		result =  iov_iter_count(iter);
950	else
951		result = generic_write_checks(iocb, iter);
952	if (result <= 0)
953		return result;
954	count = result;
955	nfs_add_stats(mapping->host, NFSIOS_DIRECTWRITTENBYTES, count);
956
957	pos = iocb->ki_pos;
958	end = (pos + iov_iter_count(iter) - 1) >> PAGE_SHIFT;
959
960	task_io_account_write(count);
961
962	result = -ENOMEM;
963	dreq = nfs_direct_req_alloc();
964	if (!dreq)
965		goto out;
966
967	dreq->inode = inode;
968	dreq->bytes_left = dreq->max_count = count;
969	dreq->io_start = pos;
970	dreq->ctx = get_nfs_open_context(nfs_file_open_context(iocb->ki_filp));
971	l_ctx = nfs_get_lock_context(dreq->ctx);
972	if (IS_ERR(l_ctx)) {
973		result = PTR_ERR(l_ctx);
974		nfs_direct_req_release(dreq);
975		goto out_release;
976	}
977	dreq->l_ctx = l_ctx;
978	if (!is_sync_kiocb(iocb))
979		dreq->iocb = iocb;
980	pnfs_init_ds_commit_info_ops(&dreq->ds_cinfo, inode);
981
982	if (swap) {
983		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
984							    FLUSH_STABLE);
985	} else {
986		nfs_start_io_direct(inode);
987
988		requested = nfs_direct_write_schedule_iovec(dreq, iter, pos,
989							    FLUSH_COND_STABLE);
990
991		if (mapping->nrpages) {
992			invalidate_inode_pages2_range(mapping,
993						      pos >> PAGE_SHIFT, end);
994		}
995
996		nfs_end_io_direct(inode);
997	}
998
999	if (requested > 0) {
1000		result = nfs_direct_wait(dreq);
1001		if (result > 0) {
1002			requested -= result;
1003			iocb->ki_pos = pos + result;
1004			/* XXX: should check the generic_write_sync retval */
1005			generic_write_sync(iocb, result);
1006		}
1007		iov_iter_revert(iter, requested);
1008	} else {
1009		result = requested;
1010	}
1011out_release:
1012	nfs_direct_req_release(dreq);
1013out:
1014	return result;
1015}
1016
1017/**
1018 * nfs_init_directcache - create a slab cache for nfs_direct_req structures
1019 *
1020 */
1021int __init nfs_init_directcache(void)
1022{
1023	nfs_direct_cachep = kmem_cache_create("nfs_direct_cache",
1024						sizeof(struct nfs_direct_req),
1025						0, (SLAB_RECLAIM_ACCOUNT|
1026							SLAB_MEM_SPREAD),
1027						NULL);
1028	if (nfs_direct_cachep == NULL)
1029		return -ENOMEM;
1030
1031	return 0;
1032}
1033
1034/**
1035 * nfs_destroy_directcache - destroy the slab cache for nfs_direct_req structures
1036 *
1037 */
1038void nfs_destroy_directcache(void)
1039{
1040	kmem_cache_destroy(nfs_direct_cachep);
1041}
1042