1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * linux/fs/nfs/dir.c 4 * 5 * Copyright (C) 1992 Rick Sladkey 6 * 7 * nfs directory handling functions 8 * 9 * 10 Apr 1996 Added silly rename for unlink --okir 10 * 28 Sep 1996 Improved directory cache --okir 11 * 23 Aug 1997 Claus Heine claus@momo.math.rwth-aachen.de 12 * Re-implemented silly rename for unlink, newly implemented 13 * silly rename for nfs_rename() following the suggestions 14 * of Olaf Kirch (okir) found in this file. 15 * Following Linus comments on my original hack, this version 16 * depends only on the dcache stuff and doesn't touch the inode 17 * layer (iput() and friends). 18 * 6 Jun 1999 Cache readdir lookups in the page cache. -DaveM 19 */ 20 21#include <linux/module.h> 22#include <linux/time.h> 23#include <linux/errno.h> 24#include <linux/stat.h> 25#include <linux/fcntl.h> 26#include <linux/string.h> 27#include <linux/kernel.h> 28#include <linux/slab.h> 29#include <linux/mm.h> 30#include <linux/sunrpc/clnt.h> 31#include <linux/nfs_fs.h> 32#include <linux/nfs_mount.h> 33#include <linux/pagemap.h> 34#include <linux/pagevec.h> 35#include <linux/namei.h> 36#include <linux/mount.h> 37#include <linux/swap.h> 38#include <linux/sched.h> 39#include <linux/kmemleak.h> 40#include <linux/xattr.h> 41 42#include "delegation.h" 43#include "iostat.h" 44#include "internal.h" 45#include "fscache.h" 46 47#include "nfstrace.h" 48 49/* #define NFS_DEBUG_VERBOSE 1 */ 50 51static int nfs_opendir(struct inode *, struct file *); 52static int nfs_closedir(struct inode *, struct file *); 53static int nfs_readdir(struct file *, struct dir_context *); 54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int); 55static loff_t nfs_llseek_dir(struct file *, loff_t, int); 56static void nfs_readdir_clear_array(struct page*); 57 58const struct file_operations nfs_dir_operations = { 59 .llseek = nfs_llseek_dir, 60 .read = generic_read_dir, 61 .iterate_shared = nfs_readdir, 62 .open = nfs_opendir, 63 .release = nfs_closedir, 64 .fsync = nfs_fsync_dir, 65}; 66 67const struct address_space_operations nfs_dir_aops = { 68 .freepage = nfs_readdir_clear_array, 69}; 70 71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred) 72{ 73 struct nfs_inode *nfsi = NFS_I(dir); 74 struct nfs_open_dir_context *ctx; 75 ctx = kmalloc(sizeof(*ctx), GFP_KERNEL); 76 if (ctx != NULL) { 77 ctx->duped = 0; 78 ctx->attr_gencount = nfsi->attr_gencount; 79 ctx->dir_cookie = 0; 80 ctx->dup_cookie = 0; 81 ctx->cred = get_cred(cred); 82 spin_lock(&dir->i_lock); 83 if (list_empty(&nfsi->open_files) && 84 (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER)) 85 nfsi->cache_validity |= NFS_INO_INVALID_DATA | 86 NFS_INO_REVAL_FORCED; 87 list_add(&ctx->list, &nfsi->open_files); 88 spin_unlock(&dir->i_lock); 89 return ctx; 90 } 91 return ERR_PTR(-ENOMEM); 92} 93 94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx) 95{ 96 spin_lock(&dir->i_lock); 97 list_del(&ctx->list); 98 spin_unlock(&dir->i_lock); 99 put_cred(ctx->cred); 100 kfree(ctx); 101} 102 103/* 104 * Open file 105 */ 106static int 107nfs_opendir(struct inode *inode, struct file *filp) 108{ 109 int res = 0; 110 struct nfs_open_dir_context *ctx; 111 112 dfprintk(FILE, "NFS: open dir(%pD2)\n", filp); 113 114 nfs_inc_stats(inode, NFSIOS_VFSOPEN); 115 116 ctx = alloc_nfs_open_dir_context(inode, current_cred()); 117 if (IS_ERR(ctx)) { 118 res = PTR_ERR(ctx); 119 goto out; 120 } 121 filp->private_data = ctx; 122out: 123 return res; 124} 125 126static int 127nfs_closedir(struct inode *inode, struct file *filp) 128{ 129 put_nfs_open_dir_context(file_inode(filp), filp->private_data); 130 return 0; 131} 132 133struct nfs_cache_array_entry { 134 u64 cookie; 135 u64 ino; 136 struct qstr string; 137 unsigned char d_type; 138}; 139 140struct nfs_cache_array { 141 int size; 142 int eof_index; 143 u64 last_cookie; 144 struct nfs_cache_array_entry array[]; 145}; 146 147typedef struct { 148 struct file *file; 149 struct page *page; 150 struct dir_context *ctx; 151 unsigned long page_index; 152 u64 *dir_cookie; 153 u64 last_cookie; 154 loff_t current_index; 155 loff_t prev_index; 156 157 unsigned long dir_verifier; 158 unsigned long timestamp; 159 unsigned long gencount; 160 unsigned int cache_entry_index; 161 bool plus; 162 bool eof; 163} nfs_readdir_descriptor_t; 164 165static 166void nfs_readdir_init_array(struct page *page) 167{ 168 struct nfs_cache_array *array; 169 170 array = kmap_atomic(page); 171 memset(array, 0, sizeof(struct nfs_cache_array)); 172 array->eof_index = -1; 173 kunmap_atomic(array); 174} 175 176/* 177 * we are freeing strings created by nfs_add_to_readdir_array() 178 */ 179static 180void nfs_readdir_clear_array(struct page *page) 181{ 182 struct nfs_cache_array *array; 183 int i; 184 185 array = kmap_atomic(page); 186 for (i = 0; i < array->size; i++) 187 kfree(array->array[i].string.name); 188 array->size = 0; 189 kunmap_atomic(array); 190} 191 192/* 193 * the caller is responsible for freeing qstr.name 194 * when called by nfs_readdir_add_to_array, the strings will be freed in 195 * nfs_clear_readdir_array() 196 */ 197static 198int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len) 199{ 200 string->len = len; 201 string->name = kmemdup_nul(name, len, GFP_KERNEL); 202 if (string->name == NULL) 203 return -ENOMEM; 204 /* 205 * Avoid a kmemleak false positive. The pointer to the name is stored 206 * in a page cache page which kmemleak does not scan. 207 */ 208 kmemleak_not_leak(string->name); 209 string->hash = full_name_hash(NULL, name, len); 210 return 0; 211} 212 213static 214int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page) 215{ 216 struct nfs_cache_array *array = kmap(page); 217 struct nfs_cache_array_entry *cache_entry; 218 int ret; 219 220 cache_entry = &array->array[array->size]; 221 222 /* Check that this entry lies within the page bounds */ 223 ret = -ENOSPC; 224 if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE) 225 goto out; 226 227 cache_entry->cookie = entry->prev_cookie; 228 cache_entry->ino = entry->ino; 229 cache_entry->d_type = entry->d_type; 230 ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len); 231 if (ret) 232 goto out; 233 array->last_cookie = entry->cookie; 234 array->size++; 235 if (entry->eof != 0) 236 array->eof_index = array->size; 237out: 238 kunmap(page); 239 return ret; 240} 241 242static inline 243int is_32bit_api(void) 244{ 245#ifdef CONFIG_COMPAT 246 return in_compat_syscall(); 247#else 248 return (BITS_PER_LONG == 32); 249#endif 250} 251 252static 253bool nfs_readdir_use_cookie(const struct file *filp) 254{ 255 if ((filp->f_mode & FMODE_32BITHASH) || 256 (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api())) 257 return false; 258 return true; 259} 260 261static 262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 263{ 264 loff_t diff = desc->ctx->pos - desc->current_index; 265 unsigned int index; 266 267 if (diff < 0) 268 goto out_eof; 269 if (diff >= array->size) { 270 if (array->eof_index >= 0) 271 goto out_eof; 272 return -EAGAIN; 273 } 274 275 index = (unsigned int)diff; 276 *desc->dir_cookie = array->array[index].cookie; 277 desc->cache_entry_index = index; 278 return 0; 279out_eof: 280 desc->eof = true; 281 return -EBADCOOKIE; 282} 283 284static bool 285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi) 286{ 287 if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA)) 288 return false; 289 smp_rmb(); 290 return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags); 291} 292 293static 294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc) 295{ 296 int i; 297 loff_t new_pos; 298 int status = -EAGAIN; 299 300 for (i = 0; i < array->size; i++) { 301 if (array->array[i].cookie == *desc->dir_cookie) { 302 struct nfs_inode *nfsi = NFS_I(file_inode(desc->file)); 303 struct nfs_open_dir_context *ctx = desc->file->private_data; 304 305 new_pos = desc->current_index + i; 306 if (ctx->attr_gencount != nfsi->attr_gencount || 307 !nfs_readdir_inode_mapping_valid(nfsi)) { 308 ctx->duped = 0; 309 ctx->attr_gencount = nfsi->attr_gencount; 310 } else if (new_pos < desc->prev_index) { 311 if (ctx->duped > 0 312 && ctx->dup_cookie == *desc->dir_cookie) { 313 if (printk_ratelimit()) { 314 pr_notice("NFS: directory %pD2 contains a readdir loop." 315 "Please contact your server vendor. " 316 "The file: %.*s has duplicate cookie %llu\n", 317 desc->file, array->array[i].string.len, 318 array->array[i].string.name, *desc->dir_cookie); 319 } 320 status = -ELOOP; 321 goto out; 322 } 323 ctx->dup_cookie = *desc->dir_cookie; 324 ctx->duped = -1; 325 } 326 if (nfs_readdir_use_cookie(desc->file)) 327 desc->ctx->pos = *desc->dir_cookie; 328 else 329 desc->ctx->pos = new_pos; 330 desc->prev_index = new_pos; 331 desc->cache_entry_index = i; 332 return 0; 333 } 334 } 335 if (array->eof_index >= 0) { 336 status = -EBADCOOKIE; 337 if (*desc->dir_cookie == array->last_cookie) 338 desc->eof = true; 339 } 340out: 341 return status; 342} 343 344static 345int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc) 346{ 347 struct nfs_cache_array *array; 348 int status; 349 350 array = kmap(desc->page); 351 352 if (*desc->dir_cookie == 0) 353 status = nfs_readdir_search_for_pos(array, desc); 354 else 355 status = nfs_readdir_search_for_cookie(array, desc); 356 357 if (status == -EAGAIN) { 358 desc->last_cookie = array->last_cookie; 359 desc->current_index += array->size; 360 desc->page_index++; 361 } 362 kunmap(desc->page); 363 return status; 364} 365 366/* Fill a page with xdr information before transferring to the cache page */ 367static 368int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc, 369 struct nfs_entry *entry, struct file *file, struct inode *inode) 370{ 371 struct nfs_open_dir_context *ctx = file->private_data; 372 const struct cred *cred = ctx->cred; 373 unsigned long timestamp, gencount; 374 int error; 375 376 again: 377 timestamp = jiffies; 378 gencount = nfs_inc_attr_generation_counter(); 379 desc->dir_verifier = nfs_save_change_attribute(inode); 380 error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages, 381 NFS_SERVER(inode)->dtsize, desc->plus); 382 if (error < 0) { 383 /* We requested READDIRPLUS, but the server doesn't grok it */ 384 if (error == -ENOTSUPP && desc->plus) { 385 NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS; 386 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 387 desc->plus = false; 388 goto again; 389 } 390 goto error; 391 } 392 desc->timestamp = timestamp; 393 desc->gencount = gencount; 394error: 395 return error; 396} 397 398static int xdr_decode(nfs_readdir_descriptor_t *desc, 399 struct nfs_entry *entry, struct xdr_stream *xdr) 400{ 401 struct inode *inode = file_inode(desc->file); 402 int error; 403 404 error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus); 405 if (error) 406 return error; 407 entry->fattr->time_start = desc->timestamp; 408 entry->fattr->gencount = desc->gencount; 409 return 0; 410} 411 412/* Match file and dirent using either filehandle or fileid 413 * Note: caller is responsible for checking the fsid 414 */ 415static 416int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry) 417{ 418 struct inode *inode; 419 struct nfs_inode *nfsi; 420 421 if (d_really_is_negative(dentry)) 422 return 0; 423 424 inode = d_inode(dentry); 425 if (is_bad_inode(inode) || NFS_STALE(inode)) 426 return 0; 427 428 nfsi = NFS_I(inode); 429 if (entry->fattr->fileid != nfsi->fileid) 430 return 0; 431 if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0) 432 return 0; 433 return 1; 434} 435 436static 437bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx) 438{ 439 if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS)) 440 return false; 441 if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags)) 442 return true; 443 if (ctx->pos == 0) 444 return true; 445 return false; 446} 447 448/* 449 * This function is called by the lookup and getattr code to request the 450 * use of readdirplus to accelerate any future lookups in the same 451 * directory. 452 */ 453void nfs_advise_use_readdirplus(struct inode *dir) 454{ 455 struct nfs_inode *nfsi = NFS_I(dir); 456 457 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 458 !list_empty(&nfsi->open_files)) 459 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 460} 461 462/* 463 * This function is mainly for use by nfs_getattr(). 464 * 465 * If this is an 'ls -l', we want to force use of readdirplus. 466 * Do this by checking if there is an active file descriptor 467 * and calling nfs_advise_use_readdirplus, then forcing a 468 * cache flush. 469 */ 470void nfs_force_use_readdirplus(struct inode *dir) 471{ 472 struct nfs_inode *nfsi = NFS_I(dir); 473 474 if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) && 475 !list_empty(&nfsi->open_files)) { 476 set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags); 477 invalidate_mapping_pages(dir->i_mapping, 478 nfsi->page_index + 1, -1); 479 } 480} 481 482static 483void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry, 484 unsigned long dir_verifier) 485{ 486 struct qstr filename = QSTR_INIT(entry->name, entry->len); 487 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 488 struct dentry *dentry; 489 struct dentry *alias; 490 struct inode *inode; 491 int status; 492 493 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID)) 494 return; 495 if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID)) 496 return; 497 if (filename.len == 0) 498 return; 499 /* Validate that the name doesn't contain any illegal '\0' */ 500 if (strnlen(filename.name, filename.len) != filename.len) 501 return; 502 /* ...or '/' */ 503 if (strnchr(filename.name, filename.len, '/')) 504 return; 505 if (filename.name[0] == '.') { 506 if (filename.len == 1) 507 return; 508 if (filename.len == 2 && filename.name[1] == '.') 509 return; 510 } 511 filename.hash = full_name_hash(parent, filename.name, filename.len); 512 513 dentry = d_lookup(parent, &filename); 514again: 515 if (!dentry) { 516 dentry = d_alloc_parallel(parent, &filename, &wq); 517 if (IS_ERR(dentry)) 518 return; 519 } 520 if (!d_in_lookup(dentry)) { 521 /* Is there a mountpoint here? If so, just exit */ 522 if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid, 523 &entry->fattr->fsid)) 524 goto out; 525 if (nfs_same_file(dentry, entry)) { 526 if (!entry->fh->size) 527 goto out; 528 nfs_set_verifier(dentry, dir_verifier); 529 status = nfs_refresh_inode(d_inode(dentry), entry->fattr); 530 if (!status) 531 nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label); 532 goto out; 533 } else { 534 d_invalidate(dentry); 535 dput(dentry); 536 dentry = NULL; 537 goto again; 538 } 539 } 540 if (!entry->fh->size) { 541 d_lookup_done(dentry); 542 goto out; 543 } 544 545 inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label); 546 alias = d_splice_alias(inode, dentry); 547 d_lookup_done(dentry); 548 if (alias) { 549 if (IS_ERR(alias)) 550 goto out; 551 dput(dentry); 552 dentry = alias; 553 } 554 nfs_set_verifier(dentry, dir_verifier); 555out: 556 dput(dentry); 557} 558 559/* Perform conversion from xdr to cache array */ 560static 561int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry, 562 struct page **xdr_pages, struct page *page, unsigned int buflen) 563{ 564 struct xdr_stream stream; 565 struct xdr_buf buf; 566 struct page *scratch; 567 struct nfs_cache_array *array; 568 unsigned int count = 0; 569 int status; 570 571 scratch = alloc_page(GFP_KERNEL); 572 if (scratch == NULL) 573 return -ENOMEM; 574 575 if (buflen == 0) 576 goto out_nopages; 577 578 xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen); 579 xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE); 580 581 do { 582 if (entry->label) 583 entry->label->len = NFS4_MAXLABELLEN; 584 585 status = xdr_decode(desc, entry, &stream); 586 if (status != 0) { 587 if (status == -EAGAIN) 588 status = 0; 589 break; 590 } 591 592 count++; 593 594 if (desc->plus) 595 nfs_prime_dcache(file_dentry(desc->file), entry, 596 desc->dir_verifier); 597 598 status = nfs_readdir_add_to_array(entry, page); 599 if (status != 0) 600 break; 601 } while (!entry->eof); 602 603out_nopages: 604 if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) { 605 array = kmap(page); 606 array->eof_index = array->size; 607 status = 0; 608 kunmap(page); 609 } 610 611 put_page(scratch); 612 return status; 613} 614 615static 616void nfs_readdir_free_pages(struct page **pages, unsigned int npages) 617{ 618 unsigned int i; 619 for (i = 0; i < npages; i++) 620 put_page(pages[i]); 621} 622 623/* 624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call 625 * to nfs_readdir_free_pages() 626 */ 627static 628int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages) 629{ 630 unsigned int i; 631 632 for (i = 0; i < npages; i++) { 633 struct page *page = alloc_page(GFP_KERNEL); 634 if (page == NULL) 635 goto out_freepages; 636 pages[i] = page; 637 } 638 return 0; 639 640out_freepages: 641 nfs_readdir_free_pages(pages, i); 642 return -ENOMEM; 643} 644 645static 646int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode) 647{ 648 struct page *pages[NFS_MAX_READDIR_PAGES]; 649 struct nfs_entry entry; 650 struct file *file = desc->file; 651 struct nfs_cache_array *array; 652 int status = -ENOMEM; 653 unsigned int array_size = ARRAY_SIZE(pages); 654 655 nfs_readdir_init_array(page); 656 657 entry.prev_cookie = 0; 658 entry.cookie = desc->last_cookie; 659 entry.eof = 0; 660 entry.fh = nfs_alloc_fhandle(); 661 entry.fattr = nfs_alloc_fattr(); 662 entry.server = NFS_SERVER(inode); 663 if (entry.fh == NULL || entry.fattr == NULL) 664 goto out; 665 666 entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT); 667 if (IS_ERR(entry.label)) { 668 status = PTR_ERR(entry.label); 669 goto out; 670 } 671 672 array = kmap(page); 673 674 status = nfs_readdir_alloc_pages(pages, array_size); 675 if (status < 0) 676 goto out_release_array; 677 do { 678 unsigned int pglen; 679 status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode); 680 681 if (status < 0) 682 break; 683 pglen = status; 684 status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen); 685 if (status < 0) { 686 if (status == -ENOSPC) 687 status = 0; 688 break; 689 } 690 } while (array->eof_index < 0); 691 692 nfs_readdir_free_pages(pages, array_size); 693out_release_array: 694 kunmap(page); 695 nfs4_label_free(entry.label); 696out: 697 nfs_free_fattr(entry.fattr); 698 nfs_free_fhandle(entry.fh); 699 return status; 700} 701 702/* 703 * Now we cache directories properly, by converting xdr information 704 * to an array that can be used for lookups later. This results in 705 * fewer cache pages, since we can store more information on each page. 706 * We only need to convert from xdr once so future lookups are much simpler 707 */ 708static 709int nfs_readdir_filler(void *data, struct page* page) 710{ 711 nfs_readdir_descriptor_t *desc = data; 712 struct inode *inode = file_inode(desc->file); 713 int ret; 714 715 ret = nfs_readdir_xdr_to_array(desc, page, inode); 716 if (ret < 0) 717 goto error; 718 SetPageUptodate(page); 719 720 if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) { 721 /* Should never happen */ 722 nfs_zap_mapping(inode, inode->i_mapping); 723 } 724 unlock_page(page); 725 return 0; 726 error: 727 nfs_readdir_clear_array(page); 728 unlock_page(page); 729 return ret; 730} 731 732static 733void cache_page_release(nfs_readdir_descriptor_t *desc) 734{ 735 put_page(desc->page); 736 desc->page = NULL; 737} 738 739static 740struct page *get_cache_page(nfs_readdir_descriptor_t *desc) 741{ 742 return read_cache_page(desc->file->f_mapping, desc->page_index, 743 nfs_readdir_filler, desc); 744} 745 746/* 747 * Returns 0 if desc->dir_cookie was found on page desc->page_index 748 * and locks the page to prevent removal from the page cache. 749 */ 750static 751int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc) 752{ 753 struct inode *inode = file_inode(desc->file); 754 struct nfs_inode *nfsi = NFS_I(inode); 755 int res; 756 757 desc->page = get_cache_page(desc); 758 if (IS_ERR(desc->page)) 759 return PTR_ERR(desc->page); 760 res = lock_page_killable(desc->page); 761 if (res != 0) 762 goto error; 763 res = -EAGAIN; 764 if (desc->page->mapping != NULL) { 765 res = nfs_readdir_search_array(desc); 766 if (res == 0) { 767 nfsi->page_index = desc->page_index; 768 return 0; 769 } 770 } 771 unlock_page(desc->page); 772error: 773 cache_page_release(desc); 774 return res; 775} 776 777/* Search for desc->dir_cookie from the beginning of the page cache */ 778static inline 779int readdir_search_pagecache(nfs_readdir_descriptor_t *desc) 780{ 781 int res; 782 783 if (desc->page_index == 0) { 784 desc->current_index = 0; 785 desc->prev_index = 0; 786 desc->last_cookie = 0; 787 } 788 do { 789 res = find_and_lock_cache_page(desc); 790 } while (res == -EAGAIN); 791 return res; 792} 793 794/* 795 * Once we've found the start of the dirent within a page: fill 'er up... 796 */ 797static 798int nfs_do_filldir(nfs_readdir_descriptor_t *desc) 799{ 800 struct file *file = desc->file; 801 int i = 0; 802 int res = 0; 803 struct nfs_cache_array *array = NULL; 804 struct nfs_open_dir_context *ctx = file->private_data; 805 806 array = kmap(desc->page); 807 for (i = desc->cache_entry_index; i < array->size; i++) { 808 struct nfs_cache_array_entry *ent; 809 810 ent = &array->array[i]; 811 if (!dir_emit(desc->ctx, ent->string.name, ent->string.len, 812 nfs_compat_user_ino64(ent->ino), ent->d_type)) { 813 desc->eof = true; 814 break; 815 } 816 if (i < (array->size-1)) 817 *desc->dir_cookie = array->array[i+1].cookie; 818 else 819 *desc->dir_cookie = array->last_cookie; 820 if (nfs_readdir_use_cookie(file)) 821 desc->ctx->pos = *desc->dir_cookie; 822 else 823 desc->ctx->pos++; 824 if (ctx->duped != 0) 825 ctx->duped = 1; 826 } 827 if (array->eof_index >= 0) 828 desc->eof = true; 829 830 kunmap(desc->page); 831 dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n", 832 (unsigned long long)*desc->dir_cookie, res); 833 return res; 834} 835 836/* 837 * If we cannot find a cookie in our cache, we suspect that this is 838 * because it points to a deleted file, so we ask the server to return 839 * whatever it thinks is the next entry. We then feed this to filldir. 840 * If all goes well, we should then be able to find our way round the 841 * cache on the next call to readdir_search_pagecache(); 842 * 843 * NOTE: we cannot add the anonymous page to the pagecache because 844 * the data it contains might not be page aligned. Besides, 845 * we should already have a complete representation of the 846 * directory in the page cache by the time we get here. 847 */ 848static inline 849int uncached_readdir(nfs_readdir_descriptor_t *desc) 850{ 851 struct page *page = NULL; 852 int status; 853 struct inode *inode = file_inode(desc->file); 854 struct nfs_open_dir_context *ctx = desc->file->private_data; 855 856 dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n", 857 (unsigned long long)*desc->dir_cookie); 858 859 page = alloc_page(GFP_HIGHUSER); 860 if (!page) { 861 status = -ENOMEM; 862 goto out; 863 } 864 865 desc->page_index = 0; 866 desc->last_cookie = *desc->dir_cookie; 867 desc->page = page; 868 ctx->duped = 0; 869 870 status = nfs_readdir_xdr_to_array(desc, page, inode); 871 if (status < 0) 872 goto out_release; 873 874 status = nfs_do_filldir(desc); 875 876 out_release: 877 nfs_readdir_clear_array(desc->page); 878 cache_page_release(desc); 879 out: 880 dfprintk(DIRCACHE, "NFS: %s: returns %d\n", 881 __func__, status); 882 return status; 883} 884 885/* The file offset position represents the dirent entry number. A 886 last cookie cache takes care of the common case of reading the 887 whole directory. 888 */ 889static int nfs_readdir(struct file *file, struct dir_context *ctx) 890{ 891 struct dentry *dentry = file_dentry(file); 892 struct inode *inode = d_inode(dentry); 893 struct nfs_open_dir_context *dir_ctx = file->private_data; 894 nfs_readdir_descriptor_t my_desc = { 895 .file = file, 896 .ctx = ctx, 897 .dir_cookie = &dir_ctx->dir_cookie, 898 .plus = nfs_use_readdirplus(inode, ctx), 899 }, 900 *desc = &my_desc; 901 int res = 0; 902 903 dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n", 904 file, (long long)ctx->pos); 905 nfs_inc_stats(inode, NFSIOS_VFSGETDENTS); 906 907 /* 908 * ctx->pos points to the dirent entry number. 909 * *desc->dir_cookie has the cookie for the next entry. We have 910 * to either find the entry with the appropriate number or 911 * revalidate the cookie. 912 */ 913 if (ctx->pos == 0 || nfs_attribute_cache_expired(inode)) 914 res = nfs_revalidate_mapping(inode, file->f_mapping); 915 if (res < 0) 916 goto out; 917 918 do { 919 res = readdir_search_pagecache(desc); 920 921 if (res == -EBADCOOKIE) { 922 res = 0; 923 /* This means either end of directory */ 924 if (*desc->dir_cookie && !desc->eof) { 925 /* Or that the server has 'lost' a cookie */ 926 res = uncached_readdir(desc); 927 if (res == 0) 928 continue; 929 } 930 break; 931 } 932 if (res == -ETOOSMALL && desc->plus) { 933 clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags); 934 nfs_zap_caches(inode); 935 desc->page_index = 0; 936 desc->plus = false; 937 desc->eof = false; 938 continue; 939 } 940 if (res < 0) 941 break; 942 943 res = nfs_do_filldir(desc); 944 unlock_page(desc->page); 945 cache_page_release(desc); 946 if (res < 0) 947 break; 948 } while (!desc->eof); 949out: 950 if (res > 0) 951 res = 0; 952 dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res); 953 return res; 954} 955 956static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence) 957{ 958 struct nfs_open_dir_context *dir_ctx = filp->private_data; 959 960 dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n", 961 filp, offset, whence); 962 963 switch (whence) { 964 default: 965 return -EINVAL; 966 case SEEK_SET: 967 if (offset < 0) 968 return -EINVAL; 969 spin_lock(&filp->f_lock); 970 break; 971 case SEEK_CUR: 972 if (offset == 0) 973 return filp->f_pos; 974 spin_lock(&filp->f_lock); 975 offset += filp->f_pos; 976 if (offset < 0) { 977 spin_unlock(&filp->f_lock); 978 return -EINVAL; 979 } 980 } 981 if (offset != filp->f_pos) { 982 filp->f_pos = offset; 983 if (nfs_readdir_use_cookie(filp)) 984 dir_ctx->dir_cookie = offset; 985 else 986 dir_ctx->dir_cookie = 0; 987 dir_ctx->duped = 0; 988 } 989 spin_unlock(&filp->f_lock); 990 return offset; 991} 992 993/* 994 * All directory operations under NFS are synchronous, so fsync() 995 * is a dummy operation. 996 */ 997static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end, 998 int datasync) 999{ 1000 dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync); 1001 1002 nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC); 1003 return 0; 1004} 1005 1006/** 1007 * nfs_force_lookup_revalidate - Mark the directory as having changed 1008 * @dir: pointer to directory inode 1009 * 1010 * This forces the revalidation code in nfs_lookup_revalidate() to do a 1011 * full lookup on all child dentries of 'dir' whenever a change occurs 1012 * on the server that might have invalidated our dcache. 1013 * 1014 * Note that we reserve bit '0' as a tag to let us know when a dentry 1015 * was revalidated while holding a delegation on its inode. 1016 * 1017 * The caller should be holding dir->i_lock 1018 */ 1019void nfs_force_lookup_revalidate(struct inode *dir) 1020{ 1021 NFS_I(dir)->cache_change_attribute += 2; 1022} 1023EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate); 1024 1025/** 1026 * nfs_verify_change_attribute - Detects NFS remote directory changes 1027 * @dir: pointer to parent directory inode 1028 * @verf: previously saved change attribute 1029 * 1030 * Return "false" if the verifiers doesn't match the change attribute. 1031 * This would usually indicate that the directory contents have changed on 1032 * the server, and that any dentries need revalidating. 1033 */ 1034static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf) 1035{ 1036 return (verf & ~1UL) == nfs_save_change_attribute(dir); 1037} 1038 1039static void nfs_set_verifier_delegated(unsigned long *verf) 1040{ 1041 *verf |= 1UL; 1042} 1043 1044#if IS_ENABLED(CONFIG_NFS_V4) 1045static void nfs_unset_verifier_delegated(unsigned long *verf) 1046{ 1047 *verf &= ~1UL; 1048} 1049#endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1050 1051static bool nfs_test_verifier_delegated(unsigned long verf) 1052{ 1053 return verf & 1; 1054} 1055 1056static bool nfs_verifier_is_delegated(struct dentry *dentry) 1057{ 1058 return nfs_test_verifier_delegated(dentry->d_time); 1059} 1060 1061static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf) 1062{ 1063 struct inode *inode = d_inode(dentry); 1064 struct inode *dir = d_inode(dentry->d_parent); 1065 1066 if (!nfs_verify_change_attribute(dir, verf)) 1067 return; 1068 if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ)) 1069 nfs_set_verifier_delegated(&verf); 1070 dentry->d_time = verf; 1071} 1072 1073/** 1074 * nfs_set_verifier - save a parent directory verifier in the dentry 1075 * @dentry: pointer to dentry 1076 * @verf: verifier to save 1077 * 1078 * Saves the parent directory verifier in @dentry. If the inode has 1079 * a delegation, we also tag the dentry as having been revalidated 1080 * while holding a delegation so that we know we don't have to 1081 * look it up again after a directory change. 1082 */ 1083void nfs_set_verifier(struct dentry *dentry, unsigned long verf) 1084{ 1085 1086 spin_lock(&dentry->d_lock); 1087 nfs_set_verifier_locked(dentry, verf); 1088 spin_unlock(&dentry->d_lock); 1089} 1090EXPORT_SYMBOL_GPL(nfs_set_verifier); 1091 1092#if IS_ENABLED(CONFIG_NFS_V4) 1093/** 1094 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag 1095 * @inode: pointer to inode 1096 * 1097 * Iterates through the dentries in the inode alias list and clears 1098 * the tag used to indicate that the dentry has been revalidated 1099 * while holding a delegation. 1100 * This function is intended for use when the delegation is being 1101 * returned or revoked. 1102 */ 1103void nfs_clear_verifier_delegated(struct inode *inode) 1104{ 1105 struct dentry *alias; 1106 1107 if (!inode) 1108 return; 1109 spin_lock(&inode->i_lock); 1110 hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) { 1111 spin_lock(&alias->d_lock); 1112 nfs_unset_verifier_delegated(&alias->d_time); 1113 spin_unlock(&alias->d_lock); 1114 } 1115 spin_unlock(&inode->i_lock); 1116} 1117EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated); 1118#endif /* IS_ENABLED(CONFIG_NFS_V4) */ 1119 1120/* 1121 * A check for whether or not the parent directory has changed. 1122 * In the case it has, we assume that the dentries are untrustworthy 1123 * and may need to be looked up again. 1124 * If rcu_walk prevents us from performing a full check, return 0. 1125 */ 1126static int nfs_check_verifier(struct inode *dir, struct dentry *dentry, 1127 int rcu_walk) 1128{ 1129 if (IS_ROOT(dentry)) 1130 return 1; 1131 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE) 1132 return 0; 1133 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1134 return 0; 1135 /* Revalidate nfsi->cache_change_attribute before we declare a match */ 1136 if (nfs_mapping_need_revalidate_inode(dir)) { 1137 if (rcu_walk) 1138 return 0; 1139 if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0) 1140 return 0; 1141 } 1142 if (!nfs_verify_change_attribute(dir, dentry->d_time)) 1143 return 0; 1144 return 1; 1145} 1146 1147/* 1148 * Use intent information to check whether or not we're going to do 1149 * an O_EXCL create using this path component. 1150 */ 1151static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags) 1152{ 1153 if (NFS_PROTO(dir)->version == 2) 1154 return 0; 1155 return flags & LOOKUP_EXCL; 1156} 1157 1158/* 1159 * Inode and filehandle revalidation for lookups. 1160 * 1161 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL, 1162 * or if the intent information indicates that we're about to open this 1163 * particular file and the "nocto" mount flag is not set. 1164 * 1165 */ 1166static 1167int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags) 1168{ 1169 struct nfs_server *server = NFS_SERVER(inode); 1170 int ret; 1171 1172 if (IS_AUTOMOUNT(inode)) 1173 return 0; 1174 1175 if (flags & LOOKUP_OPEN) { 1176 switch (inode->i_mode & S_IFMT) { 1177 case S_IFREG: 1178 /* A NFSv4 OPEN will revalidate later */ 1179 if (server->caps & NFS_CAP_ATOMIC_OPEN) 1180 goto out; 1181 fallthrough; 1182 case S_IFDIR: 1183 if (server->flags & NFS_MOUNT_NOCTO) 1184 break; 1185 /* NFS close-to-open cache consistency validation */ 1186 goto out_force; 1187 } 1188 } 1189 1190 /* VFS wants an on-the-wire revalidation */ 1191 if (flags & LOOKUP_REVAL) 1192 goto out_force; 1193out: 1194 return (inode->i_nlink == 0) ? -ESTALE : 0; 1195out_force: 1196 if (flags & LOOKUP_RCU) 1197 return -ECHILD; 1198 ret = __nfs_revalidate_inode(server, inode); 1199 if (ret != 0) 1200 return ret; 1201 goto out; 1202} 1203 1204static void nfs_mark_dir_for_revalidate(struct inode *inode) 1205{ 1206 struct nfs_inode *nfsi = NFS_I(inode); 1207 1208 spin_lock(&inode->i_lock); 1209 nfsi->cache_validity |= NFS_INO_REVAL_PAGECACHE; 1210 spin_unlock(&inode->i_lock); 1211} 1212 1213/* 1214 * We judge how long we want to trust negative 1215 * dentries by looking at the parent inode mtime. 1216 * 1217 * If parent mtime has changed, we revalidate, else we wait for a 1218 * period corresponding to the parent's attribute cache timeout value. 1219 * 1220 * If LOOKUP_RCU prevents us from performing a full check, return 1 1221 * suggesting a reval is needed. 1222 * 1223 * Note that when creating a new file, or looking up a rename target, 1224 * then it shouldn't be necessary to revalidate a negative dentry. 1225 */ 1226static inline 1227int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry, 1228 unsigned int flags) 1229{ 1230 if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET)) 1231 return 0; 1232 if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG) 1233 return 1; 1234 return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU); 1235} 1236 1237static int 1238nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry, 1239 struct inode *inode, int error) 1240{ 1241 switch (error) { 1242 case 1: 1243 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n", 1244 __func__, dentry); 1245 return 1; 1246 case 0: 1247 /* 1248 * We can't d_drop the root of a disconnected tree: 1249 * its d_hash is on the s_anon list and d_drop() would hide 1250 * it from shrink_dcache_for_unmount(), leading to busy 1251 * inodes on unmount and further oopses. 1252 */ 1253 if (inode && IS_ROOT(dentry)) 1254 return 1; 1255 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n", 1256 __func__, dentry); 1257 return 0; 1258 } 1259 dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n", 1260 __func__, dentry, error); 1261 return error; 1262} 1263 1264static int 1265nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry, 1266 unsigned int flags) 1267{ 1268 int ret = 1; 1269 if (nfs_neg_need_reval(dir, dentry, flags)) { 1270 if (flags & LOOKUP_RCU) 1271 return -ECHILD; 1272 ret = 0; 1273 } 1274 return nfs_lookup_revalidate_done(dir, dentry, NULL, ret); 1275} 1276 1277static int 1278nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry, 1279 struct inode *inode) 1280{ 1281 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1282 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1283} 1284 1285static int 1286nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry, 1287 struct inode *inode) 1288{ 1289 struct nfs_fh *fhandle; 1290 struct nfs_fattr *fattr; 1291 struct nfs4_label *label; 1292 unsigned long dir_verifier; 1293 int ret; 1294 1295 ret = -ENOMEM; 1296 fhandle = nfs_alloc_fhandle(); 1297 fattr = nfs_alloc_fattr(); 1298 label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL); 1299 if (fhandle == NULL || fattr == NULL || IS_ERR(label)) 1300 goto out; 1301 1302 dir_verifier = nfs_save_change_attribute(dir); 1303 ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1304 if (ret < 0) { 1305 switch (ret) { 1306 case -ESTALE: 1307 case -ENOENT: 1308 ret = 0; 1309 break; 1310 case -ETIMEDOUT: 1311 if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL) 1312 ret = 1; 1313 } 1314 goto out; 1315 } 1316 ret = 0; 1317 if (nfs_compare_fh(NFS_FH(inode), fhandle)) 1318 goto out; 1319 if (nfs_refresh_inode(inode, fattr) < 0) 1320 goto out; 1321 1322 nfs_setsecurity(inode, fattr, label); 1323 nfs_set_verifier(dentry, dir_verifier); 1324 1325 /* set a readdirplus hint that we had a cache miss */ 1326 nfs_force_use_readdirplus(dir); 1327 ret = 1; 1328out: 1329 nfs_free_fattr(fattr); 1330 nfs_free_fhandle(fhandle); 1331 nfs4_label_free(label); 1332 1333 /* 1334 * If the lookup failed despite the dentry change attribute being 1335 * a match, then we should revalidate the directory cache. 1336 */ 1337 if (!ret && nfs_verify_change_attribute(dir, dentry->d_time)) 1338 nfs_mark_dir_for_revalidate(dir); 1339 return nfs_lookup_revalidate_done(dir, dentry, inode, ret); 1340} 1341 1342/* 1343 * This is called every time the dcache has a lookup hit, 1344 * and we should check whether we can really trust that 1345 * lookup. 1346 * 1347 * NOTE! The hit can be a negative hit too, don't assume 1348 * we have an inode! 1349 * 1350 * If the parent directory is seen to have changed, we throw out the 1351 * cached dentry and do a new lookup. 1352 */ 1353static int 1354nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1355 unsigned int flags) 1356{ 1357 struct inode *inode; 1358 int error; 1359 1360 nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE); 1361 inode = d_inode(dentry); 1362 1363 if (!inode) 1364 return nfs_lookup_revalidate_negative(dir, dentry, flags); 1365 1366 if (is_bad_inode(inode)) { 1367 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1368 __func__, dentry); 1369 goto out_bad; 1370 } 1371 1372 if (nfs_verifier_is_delegated(dentry)) 1373 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1374 1375 /* Force a full look up iff the parent directory has changed */ 1376 if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) && 1377 nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) { 1378 error = nfs_lookup_verify_inode(inode, flags); 1379 if (error) { 1380 if (error == -ESTALE) 1381 nfs_mark_dir_for_revalidate(dir); 1382 goto out_bad; 1383 } 1384 nfs_advise_use_readdirplus(dir); 1385 goto out_valid; 1386 } 1387 1388 if (flags & LOOKUP_RCU) 1389 return -ECHILD; 1390 1391 if (NFS_STALE(inode)) 1392 goto out_bad; 1393 1394 trace_nfs_lookup_revalidate_enter(dir, dentry, flags); 1395 error = nfs_lookup_revalidate_dentry(dir, dentry, inode); 1396 trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error); 1397 return error; 1398out_valid: 1399 return nfs_lookup_revalidate_done(dir, dentry, inode, 1); 1400out_bad: 1401 if (flags & LOOKUP_RCU) 1402 return -ECHILD; 1403 return nfs_lookup_revalidate_done(dir, dentry, inode, 0); 1404} 1405 1406static int 1407__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags, 1408 int (*reval)(struct inode *, struct dentry *, unsigned int)) 1409{ 1410 struct dentry *parent; 1411 struct inode *dir; 1412 int ret; 1413 1414 if (flags & LOOKUP_RCU) { 1415 parent = READ_ONCE(dentry->d_parent); 1416 dir = d_inode_rcu(parent); 1417 if (!dir) 1418 return -ECHILD; 1419 ret = reval(dir, dentry, flags); 1420 if (parent != READ_ONCE(dentry->d_parent)) 1421 return -ECHILD; 1422 } else { 1423 parent = dget_parent(dentry); 1424 ret = reval(d_inode(parent), dentry, flags); 1425 dput(parent); 1426 } 1427 return ret; 1428} 1429 1430static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1431{ 1432 return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate); 1433} 1434 1435/* 1436 * A weaker form of d_revalidate for revalidating just the d_inode(dentry) 1437 * when we don't really care about the dentry name. This is called when a 1438 * pathwalk ends on a dentry that was not found via a normal lookup in the 1439 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals). 1440 * 1441 * In this situation, we just want to verify that the inode itself is OK 1442 * since the dentry might have changed on the server. 1443 */ 1444static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags) 1445{ 1446 struct inode *inode = d_inode(dentry); 1447 int error = 0; 1448 1449 /* 1450 * I believe we can only get a negative dentry here in the case of a 1451 * procfs-style symlink. Just assume it's correct for now, but we may 1452 * eventually need to do something more here. 1453 */ 1454 if (!inode) { 1455 dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n", 1456 __func__, dentry); 1457 return 1; 1458 } 1459 1460 if (is_bad_inode(inode)) { 1461 dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n", 1462 __func__, dentry); 1463 return 0; 1464 } 1465 1466 error = nfs_lookup_verify_inode(inode, flags); 1467 dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n", 1468 __func__, inode->i_ino, error ? "invalid" : "valid"); 1469 return !error; 1470} 1471 1472/* 1473 * This is called from dput() when d_count is going to 0. 1474 */ 1475static int nfs_dentry_delete(const struct dentry *dentry) 1476{ 1477 dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n", 1478 dentry, dentry->d_flags); 1479 1480 /* Unhash any dentry with a stale inode */ 1481 if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry))) 1482 return 1; 1483 1484 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1485 /* Unhash it, so that ->d_iput() would be called */ 1486 return 1; 1487 } 1488 if (!(dentry->d_sb->s_flags & SB_ACTIVE)) { 1489 /* Unhash it, so that ancestors of killed async unlink 1490 * files will be cleaned up during umount */ 1491 return 1; 1492 } 1493 return 0; 1494 1495} 1496 1497/* Ensure that we revalidate inode->i_nlink */ 1498static void nfs_drop_nlink(struct inode *inode) 1499{ 1500 spin_lock(&inode->i_lock); 1501 /* drop the inode if we're reasonably sure this is the last link */ 1502 if (inode->i_nlink > 0) 1503 drop_nlink(inode); 1504 NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter(); 1505 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE 1506 | NFS_INO_INVALID_CTIME 1507 | NFS_INO_INVALID_OTHER 1508 | NFS_INO_REVAL_FORCED; 1509 spin_unlock(&inode->i_lock); 1510} 1511 1512/* 1513 * Called when the dentry loses inode. 1514 * We use it to clean up silly-renamed files. 1515 */ 1516static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode) 1517{ 1518 if (S_ISDIR(inode->i_mode)) 1519 /* drop any readdir cache as it could easily be old */ 1520 NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA; 1521 1522 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 1523 nfs_complete_unlink(dentry, inode); 1524 nfs_drop_nlink(inode); 1525 } 1526 iput(inode); 1527} 1528 1529static void nfs_d_release(struct dentry *dentry) 1530{ 1531 /* free cached devname value, if it survived that far */ 1532 if (unlikely(dentry->d_fsdata)) { 1533 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) 1534 WARN_ON(1); 1535 else 1536 kfree(dentry->d_fsdata); 1537 } 1538} 1539 1540const struct dentry_operations nfs_dentry_operations = { 1541 .d_revalidate = nfs_lookup_revalidate, 1542 .d_weak_revalidate = nfs_weak_revalidate, 1543 .d_delete = nfs_dentry_delete, 1544 .d_iput = nfs_dentry_iput, 1545 .d_automount = nfs_d_automount, 1546 .d_release = nfs_d_release, 1547}; 1548EXPORT_SYMBOL_GPL(nfs_dentry_operations); 1549 1550struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags) 1551{ 1552 struct dentry *res; 1553 struct inode *inode = NULL; 1554 struct nfs_fh *fhandle = NULL; 1555 struct nfs_fattr *fattr = NULL; 1556 struct nfs4_label *label = NULL; 1557 unsigned long dir_verifier; 1558 int error; 1559 1560 dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry); 1561 nfs_inc_stats(dir, NFSIOS_VFSLOOKUP); 1562 1563 if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen)) 1564 return ERR_PTR(-ENAMETOOLONG); 1565 1566 /* 1567 * If we're doing an exclusive create, optimize away the lookup 1568 * but don't hash the dentry. 1569 */ 1570 if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET) 1571 return NULL; 1572 1573 res = ERR_PTR(-ENOMEM); 1574 fhandle = nfs_alloc_fhandle(); 1575 fattr = nfs_alloc_fattr(); 1576 if (fhandle == NULL || fattr == NULL) 1577 goto out; 1578 1579 label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT); 1580 if (IS_ERR(label)) 1581 goto out; 1582 1583 dir_verifier = nfs_save_change_attribute(dir); 1584 trace_nfs_lookup_enter(dir, dentry, flags); 1585 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label); 1586 if (error == -ENOENT) 1587 goto no_entry; 1588 if (error < 0) { 1589 res = ERR_PTR(error); 1590 goto out_label; 1591 } 1592 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1593 res = ERR_CAST(inode); 1594 if (IS_ERR(res)) 1595 goto out_label; 1596 1597 /* Notify readdir to use READDIRPLUS */ 1598 nfs_force_use_readdirplus(dir); 1599 1600no_entry: 1601 res = d_splice_alias(inode, dentry); 1602 if (res != NULL) { 1603 if (IS_ERR(res)) 1604 goto out_label; 1605 dentry = res; 1606 } 1607 nfs_set_verifier(dentry, dir_verifier); 1608out_label: 1609 trace_nfs_lookup_exit(dir, dentry, flags, error); 1610 nfs4_label_free(label); 1611out: 1612 nfs_free_fattr(fattr); 1613 nfs_free_fhandle(fhandle); 1614 return res; 1615} 1616EXPORT_SYMBOL_GPL(nfs_lookup); 1617 1618#if IS_ENABLED(CONFIG_NFS_V4) 1619static int nfs4_lookup_revalidate(struct dentry *, unsigned int); 1620 1621const struct dentry_operations nfs4_dentry_operations = { 1622 .d_revalidate = nfs4_lookup_revalidate, 1623 .d_weak_revalidate = nfs_weak_revalidate, 1624 .d_delete = nfs_dentry_delete, 1625 .d_iput = nfs_dentry_iput, 1626 .d_automount = nfs_d_automount, 1627 .d_release = nfs_d_release, 1628}; 1629EXPORT_SYMBOL_GPL(nfs4_dentry_operations); 1630 1631static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp) 1632{ 1633 return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp); 1634} 1635 1636static int do_open(struct inode *inode, struct file *filp) 1637{ 1638 nfs_fscache_open_file(inode, filp); 1639 return 0; 1640} 1641 1642static int nfs_finish_open(struct nfs_open_context *ctx, 1643 struct dentry *dentry, 1644 struct file *file, unsigned open_flags) 1645{ 1646 int err; 1647 1648 err = finish_open(file, dentry, do_open); 1649 if (err) 1650 goto out; 1651 if (S_ISREG(file->f_path.dentry->d_inode->i_mode)) 1652 nfs_file_set_open_context(file, ctx); 1653 else 1654 err = -EOPENSTALE; 1655out: 1656 return err; 1657} 1658 1659int nfs_atomic_open(struct inode *dir, struct dentry *dentry, 1660 struct file *file, unsigned open_flags, 1661 umode_t mode) 1662{ 1663 DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq); 1664 struct nfs_open_context *ctx; 1665 struct dentry *res; 1666 struct iattr attr = { .ia_valid = ATTR_OPEN }; 1667 struct inode *inode; 1668 unsigned int lookup_flags = 0; 1669 bool switched = false; 1670 int created = 0; 1671 int err; 1672 1673 /* Expect a negative dentry */ 1674 BUG_ON(d_inode(dentry)); 1675 1676 dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n", 1677 dir->i_sb->s_id, dir->i_ino, dentry); 1678 1679 err = nfs_check_flags(open_flags); 1680 if (err) 1681 return err; 1682 1683 /* NFS only supports OPEN on regular files */ 1684 if ((open_flags & O_DIRECTORY)) { 1685 if (!d_in_lookup(dentry)) { 1686 /* 1687 * Hashed negative dentry with O_DIRECTORY: dentry was 1688 * revalidated and is fine, no need to perform lookup 1689 * again 1690 */ 1691 return -ENOENT; 1692 } 1693 lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY; 1694 goto no_open; 1695 } 1696 1697 if (dentry->d_name.len > NFS_SERVER(dir)->namelen) 1698 return -ENAMETOOLONG; 1699 1700 if (open_flags & O_CREAT) { 1701 struct nfs_server *server = NFS_SERVER(dir); 1702 1703 if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK)) 1704 mode &= ~current_umask(); 1705 1706 attr.ia_valid |= ATTR_MODE; 1707 attr.ia_mode = mode; 1708 } 1709 if (open_flags & O_TRUNC) { 1710 attr.ia_valid |= ATTR_SIZE; 1711 attr.ia_size = 0; 1712 } 1713 1714 if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) { 1715 d_drop(dentry); 1716 switched = true; 1717 dentry = d_alloc_parallel(dentry->d_parent, 1718 &dentry->d_name, &wq); 1719 if (IS_ERR(dentry)) 1720 return PTR_ERR(dentry); 1721 if (unlikely(!d_in_lookup(dentry))) 1722 return finish_no_open(file, dentry); 1723 } 1724 1725 ctx = create_nfs_open_context(dentry, open_flags, file); 1726 err = PTR_ERR(ctx); 1727 if (IS_ERR(ctx)) 1728 goto out; 1729 1730 trace_nfs_atomic_open_enter(dir, ctx, open_flags); 1731 inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created); 1732 if (created) 1733 file->f_mode |= FMODE_CREATED; 1734 if (IS_ERR(inode)) { 1735 err = PTR_ERR(inode); 1736 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1737 put_nfs_open_context(ctx); 1738 d_drop(dentry); 1739 switch (err) { 1740 case -ENOENT: 1741 d_splice_alias(NULL, dentry); 1742 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1743 break; 1744 case -EISDIR: 1745 case -ENOTDIR: 1746 goto no_open; 1747 case -ELOOP: 1748 if (!(open_flags & O_NOFOLLOW)) 1749 goto no_open; 1750 break; 1751 /* case -EINVAL: */ 1752 default: 1753 break; 1754 } 1755 goto out; 1756 } 1757 1758 err = nfs_finish_open(ctx, ctx->dentry, file, open_flags); 1759 trace_nfs_atomic_open_exit(dir, ctx, open_flags, err); 1760 put_nfs_open_context(ctx); 1761out: 1762 if (unlikely(switched)) { 1763 d_lookup_done(dentry); 1764 dput(dentry); 1765 } 1766 return err; 1767 1768no_open: 1769 res = nfs_lookup(dir, dentry, lookup_flags); 1770 if (!res) { 1771 inode = d_inode(dentry); 1772 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 1773 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) 1774 res = ERR_PTR(-ENOTDIR); 1775 else if (inode && S_ISREG(inode->i_mode)) 1776 res = ERR_PTR(-EOPENSTALE); 1777 } else if (!IS_ERR(res)) { 1778 inode = d_inode(res); 1779 if ((lookup_flags & LOOKUP_DIRECTORY) && inode && 1780 !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) { 1781 dput(res); 1782 res = ERR_PTR(-ENOTDIR); 1783 } else if (inode && S_ISREG(inode->i_mode)) { 1784 dput(res); 1785 res = ERR_PTR(-EOPENSTALE); 1786 } 1787 } 1788 if (switched) { 1789 d_lookup_done(dentry); 1790 if (!res) 1791 res = dentry; 1792 else 1793 dput(dentry); 1794 } 1795 if (IS_ERR(res)) 1796 return PTR_ERR(res); 1797 return finish_no_open(file, res); 1798} 1799EXPORT_SYMBOL_GPL(nfs_atomic_open); 1800 1801static int 1802nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry, 1803 unsigned int flags) 1804{ 1805 struct inode *inode; 1806 1807 if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY)) 1808 goto full_reval; 1809 if (d_mountpoint(dentry)) 1810 goto full_reval; 1811 1812 inode = d_inode(dentry); 1813 1814 /* We can't create new files in nfs_open_revalidate(), so we 1815 * optimize away revalidation of negative dentries. 1816 */ 1817 if (inode == NULL) 1818 goto full_reval; 1819 1820 if (nfs_verifier_is_delegated(dentry)) 1821 return nfs_lookup_revalidate_delegated(dir, dentry, inode); 1822 1823 /* NFS only supports OPEN on regular files */ 1824 if (!S_ISREG(inode->i_mode)) 1825 goto full_reval; 1826 1827 /* We cannot do exclusive creation on a positive dentry */ 1828 if (flags & (LOOKUP_EXCL | LOOKUP_REVAL)) 1829 goto reval_dentry; 1830 1831 /* Check if the directory changed */ 1832 if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) 1833 goto reval_dentry; 1834 1835 /* Let f_op->open() actually open (and revalidate) the file */ 1836 return 1; 1837reval_dentry: 1838 if (flags & LOOKUP_RCU) 1839 return -ECHILD; 1840 return nfs_lookup_revalidate_dentry(dir, dentry, inode); 1841 1842full_reval: 1843 return nfs_do_lookup_revalidate(dir, dentry, flags); 1844} 1845 1846static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags) 1847{ 1848 return __nfs_lookup_revalidate(dentry, flags, 1849 nfs4_do_lookup_revalidate); 1850} 1851 1852#endif /* CONFIG_NFSV4 */ 1853 1854struct dentry * 1855nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle, 1856 struct nfs_fattr *fattr, 1857 struct nfs4_label *label) 1858{ 1859 struct dentry *parent = dget_parent(dentry); 1860 struct inode *dir = d_inode(parent); 1861 struct inode *inode; 1862 struct dentry *d; 1863 int error; 1864 1865 d_drop(dentry); 1866 1867 if (fhandle->size == 0) { 1868 error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL); 1869 if (error) 1870 goto out_error; 1871 } 1872 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 1873 if (!(fattr->valid & NFS_ATTR_FATTR)) { 1874 struct nfs_server *server = NFS_SB(dentry->d_sb); 1875 error = server->nfs_client->rpc_ops->getattr(server, fhandle, 1876 fattr, NULL, NULL); 1877 if (error < 0) 1878 goto out_error; 1879 } 1880 inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label); 1881 d = d_splice_alias(inode, dentry); 1882out: 1883 dput(parent); 1884 return d; 1885out_error: 1886 d = ERR_PTR(error); 1887 goto out; 1888} 1889EXPORT_SYMBOL_GPL(nfs_add_or_obtain); 1890 1891/* 1892 * Code common to create, mkdir, and mknod. 1893 */ 1894int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle, 1895 struct nfs_fattr *fattr, 1896 struct nfs4_label *label) 1897{ 1898 struct dentry *d; 1899 1900 d = nfs_add_or_obtain(dentry, fhandle, fattr, label); 1901 if (IS_ERR(d)) 1902 return PTR_ERR(d); 1903 1904 /* Callers don't care */ 1905 dput(d); 1906 return 0; 1907} 1908EXPORT_SYMBOL_GPL(nfs_instantiate); 1909 1910/* 1911 * Following a failed create operation, we drop the dentry rather 1912 * than retain a negative dentry. This avoids a problem in the event 1913 * that the operation succeeded on the server, but an error in the 1914 * reply path made it appear to have failed. 1915 */ 1916int nfs_create(struct inode *dir, struct dentry *dentry, 1917 umode_t mode, bool excl) 1918{ 1919 struct iattr attr; 1920 int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT; 1921 int error; 1922 1923 dfprintk(VFS, "NFS: create(%s/%lu), %pd\n", 1924 dir->i_sb->s_id, dir->i_ino, dentry); 1925 1926 attr.ia_mode = mode; 1927 attr.ia_valid = ATTR_MODE; 1928 1929 trace_nfs_create_enter(dir, dentry, open_flags); 1930 error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags); 1931 trace_nfs_create_exit(dir, dentry, open_flags, error); 1932 if (error != 0) 1933 goto out_err; 1934 return 0; 1935out_err: 1936 d_drop(dentry); 1937 return error; 1938} 1939EXPORT_SYMBOL_GPL(nfs_create); 1940 1941/* 1942 * See comments for nfs_proc_create regarding failed operations. 1943 */ 1944int 1945nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev) 1946{ 1947 struct iattr attr; 1948 int status; 1949 1950 dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n", 1951 dir->i_sb->s_id, dir->i_ino, dentry); 1952 1953 attr.ia_mode = mode; 1954 attr.ia_valid = ATTR_MODE; 1955 1956 trace_nfs_mknod_enter(dir, dentry); 1957 status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev); 1958 trace_nfs_mknod_exit(dir, dentry, status); 1959 if (status != 0) 1960 goto out_err; 1961 return 0; 1962out_err: 1963 d_drop(dentry); 1964 return status; 1965} 1966EXPORT_SYMBOL_GPL(nfs_mknod); 1967 1968/* 1969 * See comments for nfs_proc_create regarding failed operations. 1970 */ 1971int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode) 1972{ 1973 struct iattr attr; 1974 int error; 1975 1976 dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n", 1977 dir->i_sb->s_id, dir->i_ino, dentry); 1978 1979 attr.ia_valid = ATTR_MODE; 1980 attr.ia_mode = mode | S_IFDIR; 1981 1982 trace_nfs_mkdir_enter(dir, dentry); 1983 error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr); 1984 trace_nfs_mkdir_exit(dir, dentry, error); 1985 if (error != 0) 1986 goto out_err; 1987 return 0; 1988out_err: 1989 d_drop(dentry); 1990 return error; 1991} 1992EXPORT_SYMBOL_GPL(nfs_mkdir); 1993 1994static void nfs_dentry_handle_enoent(struct dentry *dentry) 1995{ 1996 if (simple_positive(dentry)) 1997 d_delete(dentry); 1998} 1999 2000int nfs_rmdir(struct inode *dir, struct dentry *dentry) 2001{ 2002 int error; 2003 2004 dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n", 2005 dir->i_sb->s_id, dir->i_ino, dentry); 2006 2007 trace_nfs_rmdir_enter(dir, dentry); 2008 if (d_really_is_positive(dentry)) { 2009 down_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2010 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2011 /* Ensure the VFS deletes this inode */ 2012 switch (error) { 2013 case 0: 2014 clear_nlink(d_inode(dentry)); 2015 break; 2016 case -ENOENT: 2017 nfs_dentry_handle_enoent(dentry); 2018 } 2019 up_write(&NFS_I(d_inode(dentry))->rmdir_sem); 2020 } else 2021 error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name); 2022 trace_nfs_rmdir_exit(dir, dentry, error); 2023 2024 return error; 2025} 2026EXPORT_SYMBOL_GPL(nfs_rmdir); 2027 2028/* 2029 * Remove a file after making sure there are no pending writes, 2030 * and after checking that the file has only one user. 2031 * 2032 * We invalidate the attribute cache and free the inode prior to the operation 2033 * to avoid possible races if the server reuses the inode. 2034 */ 2035static int nfs_safe_remove(struct dentry *dentry) 2036{ 2037 struct inode *dir = d_inode(dentry->d_parent); 2038 struct inode *inode = d_inode(dentry); 2039 int error = -EBUSY; 2040 2041 dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry); 2042 2043 /* If the dentry was sillyrenamed, we simply call d_delete() */ 2044 if (dentry->d_flags & DCACHE_NFSFS_RENAMED) { 2045 error = 0; 2046 goto out; 2047 } 2048 2049 trace_nfs_remove_enter(dir, dentry); 2050 if (inode != NULL) { 2051 error = NFS_PROTO(dir)->remove(dir, dentry); 2052 if (error == 0) 2053 nfs_drop_nlink(inode); 2054 } else 2055 error = NFS_PROTO(dir)->remove(dir, dentry); 2056 if (error == -ENOENT) 2057 nfs_dentry_handle_enoent(dentry); 2058 trace_nfs_remove_exit(dir, dentry, error); 2059out: 2060 return error; 2061} 2062 2063/* We do silly rename. In case sillyrename() returns -EBUSY, the inode 2064 * belongs to an active ".nfs..." file and we return -EBUSY. 2065 * 2066 * If sillyrename() returns 0, we do nothing, otherwise we unlink. 2067 */ 2068int nfs_unlink(struct inode *dir, struct dentry *dentry) 2069{ 2070 int error; 2071 int need_rehash = 0; 2072 2073 dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id, 2074 dir->i_ino, dentry); 2075 2076 trace_nfs_unlink_enter(dir, dentry); 2077 spin_lock(&dentry->d_lock); 2078 if (d_count(dentry) > 1) { 2079 spin_unlock(&dentry->d_lock); 2080 /* Start asynchronous writeout of the inode */ 2081 write_inode_now(d_inode(dentry), 0); 2082 error = nfs_sillyrename(dir, dentry); 2083 goto out; 2084 } 2085 if (!d_unhashed(dentry)) { 2086 __d_drop(dentry); 2087 need_rehash = 1; 2088 } 2089 spin_unlock(&dentry->d_lock); 2090 error = nfs_safe_remove(dentry); 2091 if (!error || error == -ENOENT) { 2092 nfs_set_verifier(dentry, nfs_save_change_attribute(dir)); 2093 } else if (need_rehash) 2094 d_rehash(dentry); 2095out: 2096 trace_nfs_unlink_exit(dir, dentry, error); 2097 return error; 2098} 2099EXPORT_SYMBOL_GPL(nfs_unlink); 2100 2101/* 2102 * To create a symbolic link, most file systems instantiate a new inode, 2103 * add a page to it containing the path, then write it out to the disk 2104 * using prepare_write/commit_write. 2105 * 2106 * Unfortunately the NFS client can't create the in-core inode first 2107 * because it needs a file handle to create an in-core inode (see 2108 * fs/nfs/inode.c:nfs_fhget). We only have a file handle *after* the 2109 * symlink request has completed on the server. 2110 * 2111 * So instead we allocate a raw page, copy the symname into it, then do 2112 * the SYMLINK request with the page as the buffer. If it succeeds, we 2113 * now have a new file handle and can instantiate an in-core NFS inode 2114 * and move the raw page into its mapping. 2115 */ 2116int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname) 2117{ 2118 struct page *page; 2119 char *kaddr; 2120 struct iattr attr; 2121 unsigned int pathlen = strlen(symname); 2122 int error; 2123 2124 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id, 2125 dir->i_ino, dentry, symname); 2126 2127 if (pathlen > PAGE_SIZE) 2128 return -ENAMETOOLONG; 2129 2130 attr.ia_mode = S_IFLNK | S_IRWXUGO; 2131 attr.ia_valid = ATTR_MODE; 2132 2133 page = alloc_page(GFP_USER); 2134 if (!page) 2135 return -ENOMEM; 2136 2137 kaddr = page_address(page); 2138 memcpy(kaddr, symname, pathlen); 2139 if (pathlen < PAGE_SIZE) 2140 memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen); 2141 2142 trace_nfs_symlink_enter(dir, dentry); 2143 error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr); 2144 trace_nfs_symlink_exit(dir, dentry, error); 2145 if (error != 0) { 2146 dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n", 2147 dir->i_sb->s_id, dir->i_ino, 2148 dentry, symname, error); 2149 d_drop(dentry); 2150 __free_page(page); 2151 return error; 2152 } 2153 2154 /* 2155 * No big deal if we can't add this page to the page cache here. 2156 * READLINK will get the missing page from the server if needed. 2157 */ 2158 if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0, 2159 GFP_KERNEL)) { 2160 SetPageUptodate(page); 2161 unlock_page(page); 2162 /* 2163 * add_to_page_cache_lru() grabs an extra page refcount. 2164 * Drop it here to avoid leaking this page later. 2165 */ 2166 put_page(page); 2167 } else 2168 __free_page(page); 2169 2170 return 0; 2171} 2172EXPORT_SYMBOL_GPL(nfs_symlink); 2173 2174int 2175nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry) 2176{ 2177 struct inode *inode = d_inode(old_dentry); 2178 int error; 2179 2180 dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n", 2181 old_dentry, dentry); 2182 2183 trace_nfs_link_enter(inode, dir, dentry); 2184 d_drop(dentry); 2185 if (S_ISREG(inode->i_mode)) 2186 nfs_sync_inode(inode); 2187 error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name); 2188 if (error == 0) { 2189 ihold(inode); 2190 d_add(dentry, inode); 2191 } 2192 trace_nfs_link_exit(inode, dir, dentry, error); 2193 return error; 2194} 2195EXPORT_SYMBOL_GPL(nfs_link); 2196 2197/* 2198 * RENAME 2199 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a 2200 * different file handle for the same inode after a rename (e.g. when 2201 * moving to a different directory). A fail-safe method to do so would 2202 * be to look up old_dir/old_name, create a link to new_dir/new_name and 2203 * rename the old file using the sillyrename stuff. This way, the original 2204 * file in old_dir will go away when the last process iput()s the inode. 2205 * 2206 * FIXED. 2207 * 2208 * It actually works quite well. One needs to have the possibility for 2209 * at least one ".nfs..." file in each directory the file ever gets 2210 * moved or linked to which happens automagically with the new 2211 * implementation that only depends on the dcache stuff instead of 2212 * using the inode layer 2213 * 2214 * Unfortunately, things are a little more complicated than indicated 2215 * above. For a cross-directory move, we want to make sure we can get 2216 * rid of the old inode after the operation. This means there must be 2217 * no pending writes (if it's a file), and the use count must be 1. 2218 * If these conditions are met, we can drop the dentries before doing 2219 * the rename. 2220 */ 2221int nfs_rename(struct inode *old_dir, struct dentry *old_dentry, 2222 struct inode *new_dir, struct dentry *new_dentry, 2223 unsigned int flags) 2224{ 2225 struct inode *old_inode = d_inode(old_dentry); 2226 struct inode *new_inode = d_inode(new_dentry); 2227 struct dentry *dentry = NULL, *rehash = NULL; 2228 struct rpc_task *task; 2229 int error = -EBUSY; 2230 2231 if (flags) 2232 return -EINVAL; 2233 2234 dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n", 2235 old_dentry, new_dentry, 2236 d_count(new_dentry)); 2237 2238 trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry); 2239 /* 2240 * For non-directories, check whether the target is busy and if so, 2241 * make a copy of the dentry and then do a silly-rename. If the 2242 * silly-rename succeeds, the copied dentry is hashed and becomes 2243 * the new target. 2244 */ 2245 if (new_inode && !S_ISDIR(new_inode->i_mode)) { 2246 /* 2247 * To prevent any new references to the target during the 2248 * rename, we unhash the dentry in advance. 2249 */ 2250 if (!d_unhashed(new_dentry)) { 2251 d_drop(new_dentry); 2252 rehash = new_dentry; 2253 } 2254 2255 if (d_count(new_dentry) > 2) { 2256 int err; 2257 2258 /* copy the target dentry's name */ 2259 dentry = d_alloc(new_dentry->d_parent, 2260 &new_dentry->d_name); 2261 if (!dentry) 2262 goto out; 2263 2264 /* silly-rename the existing target ... */ 2265 err = nfs_sillyrename(new_dir, new_dentry); 2266 if (err) 2267 goto out; 2268 2269 new_dentry = dentry; 2270 rehash = NULL; 2271 new_inode = NULL; 2272 } 2273 } 2274 2275 if (S_ISREG(old_inode->i_mode)) 2276 nfs_sync_inode(old_inode); 2277 task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL); 2278 if (IS_ERR(task)) { 2279 error = PTR_ERR(task); 2280 goto out; 2281 } 2282 2283 error = rpc_wait_for_completion_task(task); 2284 if (error != 0) { 2285 ((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1; 2286 /* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */ 2287 smp_wmb(); 2288 } else 2289 error = task->tk_status; 2290 rpc_put_task(task); 2291 /* Ensure the inode attributes are revalidated */ 2292 if (error == 0) { 2293 spin_lock(&old_inode->i_lock); 2294 NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter(); 2295 NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE 2296 | NFS_INO_INVALID_CTIME 2297 | NFS_INO_REVAL_FORCED; 2298 spin_unlock(&old_inode->i_lock); 2299 } 2300out: 2301 if (rehash) 2302 d_rehash(rehash); 2303 trace_nfs_rename_exit(old_dir, old_dentry, 2304 new_dir, new_dentry, error); 2305 if (!error) { 2306 if (new_inode != NULL) 2307 nfs_drop_nlink(new_inode); 2308 /* 2309 * The d_move() should be here instead of in an async RPC completion 2310 * handler because we need the proper locks to move the dentry. If 2311 * we're interrupted by a signal, the async RPC completion handler 2312 * should mark the directories for revalidation. 2313 */ 2314 d_move(old_dentry, new_dentry); 2315 nfs_set_verifier(old_dentry, 2316 nfs_save_change_attribute(new_dir)); 2317 } else if (error == -ENOENT) 2318 nfs_dentry_handle_enoent(old_dentry); 2319 2320 /* new dentry created? */ 2321 if (dentry) 2322 dput(dentry); 2323 return error; 2324} 2325EXPORT_SYMBOL_GPL(nfs_rename); 2326 2327static DEFINE_SPINLOCK(nfs_access_lru_lock); 2328static LIST_HEAD(nfs_access_lru_list); 2329static atomic_long_t nfs_access_nr_entries; 2330 2331static unsigned long nfs_access_max_cachesize = 4*1024*1024; 2332module_param(nfs_access_max_cachesize, ulong, 0644); 2333MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length"); 2334 2335static void nfs_access_free_entry(struct nfs_access_entry *entry) 2336{ 2337 put_cred(entry->cred); 2338 kfree_rcu(entry, rcu_head); 2339 smp_mb__before_atomic(); 2340 atomic_long_dec(&nfs_access_nr_entries); 2341 smp_mb__after_atomic(); 2342} 2343 2344static void nfs_access_free_list(struct list_head *head) 2345{ 2346 struct nfs_access_entry *cache; 2347 2348 while (!list_empty(head)) { 2349 cache = list_entry(head->next, struct nfs_access_entry, lru); 2350 list_del(&cache->lru); 2351 nfs_access_free_entry(cache); 2352 } 2353} 2354 2355static unsigned long 2356nfs_do_access_cache_scan(unsigned int nr_to_scan) 2357{ 2358 LIST_HEAD(head); 2359 struct nfs_inode *nfsi, *next; 2360 struct nfs_access_entry *cache; 2361 long freed = 0; 2362 2363 spin_lock(&nfs_access_lru_lock); 2364 list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) { 2365 struct inode *inode; 2366 2367 if (nr_to_scan-- == 0) 2368 break; 2369 inode = &nfsi->vfs_inode; 2370 spin_lock(&inode->i_lock); 2371 if (list_empty(&nfsi->access_cache_entry_lru)) 2372 goto remove_lru_entry; 2373 cache = list_entry(nfsi->access_cache_entry_lru.next, 2374 struct nfs_access_entry, lru); 2375 list_move(&cache->lru, &head); 2376 rb_erase(&cache->rb_node, &nfsi->access_cache); 2377 freed++; 2378 if (!list_empty(&nfsi->access_cache_entry_lru)) 2379 list_move_tail(&nfsi->access_cache_inode_lru, 2380 &nfs_access_lru_list); 2381 else { 2382remove_lru_entry: 2383 list_del_init(&nfsi->access_cache_inode_lru); 2384 smp_mb__before_atomic(); 2385 clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags); 2386 smp_mb__after_atomic(); 2387 } 2388 spin_unlock(&inode->i_lock); 2389 } 2390 spin_unlock(&nfs_access_lru_lock); 2391 nfs_access_free_list(&head); 2392 return freed; 2393} 2394 2395unsigned long 2396nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc) 2397{ 2398 int nr_to_scan = sc->nr_to_scan; 2399 gfp_t gfp_mask = sc->gfp_mask; 2400 2401 if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL) 2402 return SHRINK_STOP; 2403 return nfs_do_access_cache_scan(nr_to_scan); 2404} 2405 2406 2407unsigned long 2408nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc) 2409{ 2410 return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries)); 2411} 2412 2413static void 2414nfs_access_cache_enforce_limit(void) 2415{ 2416 long nr_entries = atomic_long_read(&nfs_access_nr_entries); 2417 unsigned long diff; 2418 unsigned int nr_to_scan; 2419 2420 if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize) 2421 return; 2422 nr_to_scan = 100; 2423 diff = nr_entries - nfs_access_max_cachesize; 2424 if (diff < nr_to_scan) 2425 nr_to_scan = diff; 2426 nfs_do_access_cache_scan(nr_to_scan); 2427} 2428 2429static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head) 2430{ 2431 struct rb_root *root_node = &nfsi->access_cache; 2432 struct rb_node *n; 2433 struct nfs_access_entry *entry; 2434 2435 /* Unhook entries from the cache */ 2436 while ((n = rb_first(root_node)) != NULL) { 2437 entry = rb_entry(n, struct nfs_access_entry, rb_node); 2438 rb_erase(n, root_node); 2439 list_move(&entry->lru, head); 2440 } 2441 nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS; 2442} 2443 2444void nfs_access_zap_cache(struct inode *inode) 2445{ 2446 LIST_HEAD(head); 2447 2448 if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0) 2449 return; 2450 /* Remove from global LRU init */ 2451 spin_lock(&nfs_access_lru_lock); 2452 if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2453 list_del_init(&NFS_I(inode)->access_cache_inode_lru); 2454 2455 spin_lock(&inode->i_lock); 2456 __nfs_access_zap_cache(NFS_I(inode), &head); 2457 spin_unlock(&inode->i_lock); 2458 spin_unlock(&nfs_access_lru_lock); 2459 nfs_access_free_list(&head); 2460} 2461EXPORT_SYMBOL_GPL(nfs_access_zap_cache); 2462 2463static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred) 2464{ 2465 struct rb_node *n = NFS_I(inode)->access_cache.rb_node; 2466 2467 while (n != NULL) { 2468 struct nfs_access_entry *entry = 2469 rb_entry(n, struct nfs_access_entry, rb_node); 2470 int cmp = cred_fscmp(cred, entry->cred); 2471 2472 if (cmp < 0) 2473 n = n->rb_left; 2474 else if (cmp > 0) 2475 n = n->rb_right; 2476 else 2477 return entry; 2478 } 2479 return NULL; 2480} 2481 2482static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block) 2483{ 2484 struct nfs_inode *nfsi = NFS_I(inode); 2485 struct nfs_access_entry *cache; 2486 bool retry = true; 2487 int err; 2488 2489 spin_lock(&inode->i_lock); 2490 for(;;) { 2491 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2492 goto out_zap; 2493 cache = nfs_access_search_rbtree(inode, cred); 2494 err = -ENOENT; 2495 if (cache == NULL) 2496 goto out; 2497 /* Found an entry, is our attribute cache valid? */ 2498 if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2499 break; 2500 if (!retry) 2501 break; 2502 err = -ECHILD; 2503 if (!may_block) 2504 goto out; 2505 spin_unlock(&inode->i_lock); 2506 err = __nfs_revalidate_inode(NFS_SERVER(inode), inode); 2507 if (err) 2508 return err; 2509 spin_lock(&inode->i_lock); 2510 retry = false; 2511 } 2512 *mask = cache->mask; 2513 list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru); 2514 err = 0; 2515out: 2516 spin_unlock(&inode->i_lock); 2517 return err; 2518out_zap: 2519 spin_unlock(&inode->i_lock); 2520 nfs_access_zap_cache(inode); 2521 return -ENOENT; 2522} 2523 2524static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask) 2525{ 2526 /* Only check the most recently returned cache entry, 2527 * but do it without locking. 2528 */ 2529 struct nfs_inode *nfsi = NFS_I(inode); 2530 struct nfs_access_entry *cache; 2531 int err = -ECHILD; 2532 struct list_head *lh; 2533 2534 rcu_read_lock(); 2535 if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS) 2536 goto out; 2537 lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru)); 2538 cache = list_entry(lh, struct nfs_access_entry, lru); 2539 if (lh == &nfsi->access_cache_entry_lru || 2540 cred_fscmp(cred, cache->cred) != 0) 2541 cache = NULL; 2542 if (cache == NULL) 2543 goto out; 2544 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS)) 2545 goto out; 2546 *mask = cache->mask; 2547 err = 0; 2548out: 2549 rcu_read_unlock(); 2550 return err; 2551} 2552 2553int nfs_access_get_cached(struct inode *inode, const struct cred *cred, 2554 u32 *mask, bool may_block) 2555{ 2556 int status; 2557 2558 status = nfs_access_get_cached_rcu(inode, cred, mask); 2559 if (status != 0) 2560 status = nfs_access_get_cached_locked(inode, cred, mask, 2561 may_block); 2562 2563 return status; 2564} 2565EXPORT_SYMBOL_GPL(nfs_access_get_cached); 2566 2567static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set) 2568{ 2569 struct nfs_inode *nfsi = NFS_I(inode); 2570 struct rb_root *root_node = &nfsi->access_cache; 2571 struct rb_node **p = &root_node->rb_node; 2572 struct rb_node *parent = NULL; 2573 struct nfs_access_entry *entry; 2574 int cmp; 2575 2576 spin_lock(&inode->i_lock); 2577 while (*p != NULL) { 2578 parent = *p; 2579 entry = rb_entry(parent, struct nfs_access_entry, rb_node); 2580 cmp = cred_fscmp(set->cred, entry->cred); 2581 2582 if (cmp < 0) 2583 p = &parent->rb_left; 2584 else if (cmp > 0) 2585 p = &parent->rb_right; 2586 else 2587 goto found; 2588 } 2589 rb_link_node(&set->rb_node, parent, p); 2590 rb_insert_color(&set->rb_node, root_node); 2591 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2592 spin_unlock(&inode->i_lock); 2593 return; 2594found: 2595 rb_replace_node(parent, &set->rb_node, root_node); 2596 list_add_tail(&set->lru, &nfsi->access_cache_entry_lru); 2597 list_del(&entry->lru); 2598 spin_unlock(&inode->i_lock); 2599 nfs_access_free_entry(entry); 2600} 2601 2602void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set) 2603{ 2604 struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL); 2605 if (cache == NULL) 2606 return; 2607 RB_CLEAR_NODE(&cache->rb_node); 2608 cache->cred = get_cred(set->cred); 2609 cache->mask = set->mask; 2610 2611 /* The above field assignments must be visible 2612 * before this item appears on the lru. We cannot easily 2613 * use rcu_assign_pointer, so just force the memory barrier. 2614 */ 2615 smp_wmb(); 2616 nfs_access_add_rbtree(inode, cache); 2617 2618 /* Update accounting */ 2619 smp_mb__before_atomic(); 2620 atomic_long_inc(&nfs_access_nr_entries); 2621 smp_mb__after_atomic(); 2622 2623 /* Add inode to global LRU list */ 2624 if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) { 2625 spin_lock(&nfs_access_lru_lock); 2626 if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) 2627 list_add_tail(&NFS_I(inode)->access_cache_inode_lru, 2628 &nfs_access_lru_list); 2629 spin_unlock(&nfs_access_lru_lock); 2630 } 2631 nfs_access_cache_enforce_limit(); 2632} 2633EXPORT_SYMBOL_GPL(nfs_access_add_cache); 2634 2635#define NFS_MAY_READ (NFS_ACCESS_READ) 2636#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2637 NFS_ACCESS_EXTEND | \ 2638 NFS_ACCESS_DELETE) 2639#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \ 2640 NFS_ACCESS_EXTEND) 2641#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE 2642#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP) 2643#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE) 2644static int 2645nfs_access_calc_mask(u32 access_result, umode_t umode) 2646{ 2647 int mask = 0; 2648 2649 if (access_result & NFS_MAY_READ) 2650 mask |= MAY_READ; 2651 if (S_ISDIR(umode)) { 2652 if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE) 2653 mask |= MAY_WRITE; 2654 if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP) 2655 mask |= MAY_EXEC; 2656 } else if (S_ISREG(umode)) { 2657 if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE) 2658 mask |= MAY_WRITE; 2659 if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE) 2660 mask |= MAY_EXEC; 2661 } else if (access_result & NFS_MAY_WRITE) 2662 mask |= MAY_WRITE; 2663 return mask; 2664} 2665 2666void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result) 2667{ 2668 entry->mask = access_result; 2669} 2670EXPORT_SYMBOL_GPL(nfs_access_set_mask); 2671 2672static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask) 2673{ 2674 struct nfs_access_entry cache; 2675 bool may_block = (mask & MAY_NOT_BLOCK) == 0; 2676 int cache_mask = -1; 2677 int status; 2678 2679 trace_nfs_access_enter(inode); 2680 2681 status = nfs_access_get_cached(inode, cred, &cache.mask, may_block); 2682 if (status == 0) 2683 goto out_cached; 2684 2685 status = -ECHILD; 2686 if (!may_block) 2687 goto out; 2688 2689 /* 2690 * Determine which access bits we want to ask for... 2691 */ 2692 cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND; 2693 if (nfs_server_capable(inode, NFS_CAP_XATTR)) { 2694 cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE | 2695 NFS_ACCESS_XALIST; 2696 } 2697 if (S_ISDIR(inode->i_mode)) 2698 cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP; 2699 else 2700 cache.mask |= NFS_ACCESS_EXECUTE; 2701 cache.cred = cred; 2702 status = NFS_PROTO(inode)->access(inode, &cache); 2703 if (status != 0) { 2704 if (status == -ESTALE) { 2705 if (!S_ISDIR(inode->i_mode)) 2706 nfs_set_inode_stale(inode); 2707 else 2708 nfs_zap_caches(inode); 2709 } 2710 goto out; 2711 } 2712 nfs_access_add_cache(inode, &cache); 2713out_cached: 2714 cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode); 2715 if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0) 2716 status = -EACCES; 2717out: 2718 trace_nfs_access_exit(inode, mask, cache_mask, status); 2719 return status; 2720} 2721 2722static int nfs_open_permission_mask(int openflags) 2723{ 2724 int mask = 0; 2725 2726 if (openflags & __FMODE_EXEC) { 2727 /* ONLY check exec rights */ 2728 mask = MAY_EXEC; 2729 } else { 2730 if ((openflags & O_ACCMODE) != O_WRONLY) 2731 mask |= MAY_READ; 2732 if ((openflags & O_ACCMODE) != O_RDONLY) 2733 mask |= MAY_WRITE; 2734 } 2735 2736 return mask; 2737} 2738 2739int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags) 2740{ 2741 return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags)); 2742} 2743EXPORT_SYMBOL_GPL(nfs_may_open); 2744 2745static int nfs_execute_ok(struct inode *inode, int mask) 2746{ 2747 struct nfs_server *server = NFS_SERVER(inode); 2748 int ret = 0; 2749 2750 if (S_ISDIR(inode->i_mode)) 2751 return 0; 2752 if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) { 2753 if (mask & MAY_NOT_BLOCK) 2754 return -ECHILD; 2755 ret = __nfs_revalidate_inode(server, inode); 2756 } 2757 if (ret == 0 && !execute_ok(inode)) 2758 ret = -EACCES; 2759 return ret; 2760} 2761 2762int nfs_permission(struct inode *inode, int mask) 2763{ 2764 const struct cred *cred = current_cred(); 2765 int res = 0; 2766 2767 nfs_inc_stats(inode, NFSIOS_VFSACCESS); 2768 2769 if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0) 2770 goto out; 2771 /* Is this sys_access() ? */ 2772 if (mask & (MAY_ACCESS | MAY_CHDIR)) 2773 goto force_lookup; 2774 2775 switch (inode->i_mode & S_IFMT) { 2776 case S_IFLNK: 2777 goto out; 2778 case S_IFREG: 2779 if ((mask & MAY_OPEN) && 2780 nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN)) 2781 return 0; 2782 break; 2783 case S_IFDIR: 2784 /* 2785 * Optimize away all write operations, since the server 2786 * will check permissions when we perform the op. 2787 */ 2788 if ((mask & MAY_WRITE) && !(mask & MAY_READ)) 2789 goto out; 2790 } 2791 2792force_lookup: 2793 if (!NFS_PROTO(inode)->access) 2794 goto out_notsup; 2795 2796 res = nfs_do_access(inode, cred, mask); 2797out: 2798 if (!res && (mask & MAY_EXEC)) 2799 res = nfs_execute_ok(inode, mask); 2800 2801 dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n", 2802 inode->i_sb->s_id, inode->i_ino, mask, res); 2803 return res; 2804out_notsup: 2805 if (mask & MAY_NOT_BLOCK) 2806 return -ECHILD; 2807 2808 res = nfs_revalidate_inode(NFS_SERVER(inode), inode); 2809 if (res == 0) 2810 res = generic_permission(inode, mask); 2811 goto out; 2812} 2813EXPORT_SYMBOL_GPL(nfs_permission); 2814 2815/* 2816 * Local variables: 2817 * version-control: t 2818 * kept-new-versions: 5 2819 * End: 2820 */ 2821