xref: /kernel/linux/linux-5.10/fs/nfs/dir.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 *  linux/fs/nfs/dir.c
4 *
5 *  Copyright (C) 1992  Rick Sladkey
6 *
7 *  nfs directory handling functions
8 *
9 * 10 Apr 1996	Added silly rename for unlink	--okir
10 * 28 Sep 1996	Improved directory cache --okir
11 * 23 Aug 1997  Claus Heine claus@momo.math.rwth-aachen.de
12 *              Re-implemented silly rename for unlink, newly implemented
13 *              silly rename for nfs_rename() following the suggestions
14 *              of Olaf Kirch (okir) found in this file.
15 *              Following Linus comments on my original hack, this version
16 *              depends only on the dcache stuff and doesn't touch the inode
17 *              layer (iput() and friends).
18 *  6 Jun 1999	Cache readdir lookups in the page cache. -DaveM
19 */
20
21#include <linux/module.h>
22#include <linux/time.h>
23#include <linux/errno.h>
24#include <linux/stat.h>
25#include <linux/fcntl.h>
26#include <linux/string.h>
27#include <linux/kernel.h>
28#include <linux/slab.h>
29#include <linux/mm.h>
30#include <linux/sunrpc/clnt.h>
31#include <linux/nfs_fs.h>
32#include <linux/nfs_mount.h>
33#include <linux/pagemap.h>
34#include <linux/pagevec.h>
35#include <linux/namei.h>
36#include <linux/mount.h>
37#include <linux/swap.h>
38#include <linux/sched.h>
39#include <linux/kmemleak.h>
40#include <linux/xattr.h>
41
42#include "delegation.h"
43#include "iostat.h"
44#include "internal.h"
45#include "fscache.h"
46
47#include "nfstrace.h"
48
49/* #define NFS_DEBUG_VERBOSE 1 */
50
51static int nfs_opendir(struct inode *, struct file *);
52static int nfs_closedir(struct inode *, struct file *);
53static int nfs_readdir(struct file *, struct dir_context *);
54static int nfs_fsync_dir(struct file *, loff_t, loff_t, int);
55static loff_t nfs_llseek_dir(struct file *, loff_t, int);
56static void nfs_readdir_clear_array(struct page*);
57
58const struct file_operations nfs_dir_operations = {
59	.llseek		= nfs_llseek_dir,
60	.read		= generic_read_dir,
61	.iterate_shared	= nfs_readdir,
62	.open		= nfs_opendir,
63	.release	= nfs_closedir,
64	.fsync		= nfs_fsync_dir,
65};
66
67const struct address_space_operations nfs_dir_aops = {
68	.freepage = nfs_readdir_clear_array,
69};
70
71static struct nfs_open_dir_context *alloc_nfs_open_dir_context(struct inode *dir, const struct cred *cred)
72{
73	struct nfs_inode *nfsi = NFS_I(dir);
74	struct nfs_open_dir_context *ctx;
75	ctx = kmalloc(sizeof(*ctx), GFP_KERNEL);
76	if (ctx != NULL) {
77		ctx->duped = 0;
78		ctx->attr_gencount = nfsi->attr_gencount;
79		ctx->dir_cookie = 0;
80		ctx->dup_cookie = 0;
81		ctx->cred = get_cred(cred);
82		spin_lock(&dir->i_lock);
83		if (list_empty(&nfsi->open_files) &&
84		    (nfsi->cache_validity & NFS_INO_DATA_INVAL_DEFER))
85			nfsi->cache_validity |= NFS_INO_INVALID_DATA |
86				NFS_INO_REVAL_FORCED;
87		list_add(&ctx->list, &nfsi->open_files);
88		spin_unlock(&dir->i_lock);
89		return ctx;
90	}
91	return  ERR_PTR(-ENOMEM);
92}
93
94static void put_nfs_open_dir_context(struct inode *dir, struct nfs_open_dir_context *ctx)
95{
96	spin_lock(&dir->i_lock);
97	list_del(&ctx->list);
98	spin_unlock(&dir->i_lock);
99	put_cred(ctx->cred);
100	kfree(ctx);
101}
102
103/*
104 * Open file
105 */
106static int
107nfs_opendir(struct inode *inode, struct file *filp)
108{
109	int res = 0;
110	struct nfs_open_dir_context *ctx;
111
112	dfprintk(FILE, "NFS: open dir(%pD2)\n", filp);
113
114	nfs_inc_stats(inode, NFSIOS_VFSOPEN);
115
116	ctx = alloc_nfs_open_dir_context(inode, current_cred());
117	if (IS_ERR(ctx)) {
118		res = PTR_ERR(ctx);
119		goto out;
120	}
121	filp->private_data = ctx;
122out:
123	return res;
124}
125
126static int
127nfs_closedir(struct inode *inode, struct file *filp)
128{
129	put_nfs_open_dir_context(file_inode(filp), filp->private_data);
130	return 0;
131}
132
133struct nfs_cache_array_entry {
134	u64 cookie;
135	u64 ino;
136	struct qstr string;
137	unsigned char d_type;
138};
139
140struct nfs_cache_array {
141	int size;
142	int eof_index;
143	u64 last_cookie;
144	struct nfs_cache_array_entry array[];
145};
146
147typedef struct {
148	struct file	*file;
149	struct page	*page;
150	struct dir_context *ctx;
151	unsigned long	page_index;
152	u64		*dir_cookie;
153	u64		last_cookie;
154	loff_t		current_index;
155	loff_t		prev_index;
156
157	unsigned long	dir_verifier;
158	unsigned long	timestamp;
159	unsigned long	gencount;
160	unsigned int	cache_entry_index;
161	bool plus;
162	bool eof;
163} nfs_readdir_descriptor_t;
164
165static
166void nfs_readdir_init_array(struct page *page)
167{
168	struct nfs_cache_array *array;
169
170	array = kmap_atomic(page);
171	memset(array, 0, sizeof(struct nfs_cache_array));
172	array->eof_index = -1;
173	kunmap_atomic(array);
174}
175
176/*
177 * we are freeing strings created by nfs_add_to_readdir_array()
178 */
179static
180void nfs_readdir_clear_array(struct page *page)
181{
182	struct nfs_cache_array *array;
183	int i;
184
185	array = kmap_atomic(page);
186	for (i = 0; i < array->size; i++)
187		kfree(array->array[i].string.name);
188	array->size = 0;
189	kunmap_atomic(array);
190}
191
192/*
193 * the caller is responsible for freeing qstr.name
194 * when called by nfs_readdir_add_to_array, the strings will be freed in
195 * nfs_clear_readdir_array()
196 */
197static
198int nfs_readdir_make_qstr(struct qstr *string, const char *name, unsigned int len)
199{
200	string->len = len;
201	string->name = kmemdup_nul(name, len, GFP_KERNEL);
202	if (string->name == NULL)
203		return -ENOMEM;
204	/*
205	 * Avoid a kmemleak false positive. The pointer to the name is stored
206	 * in a page cache page which kmemleak does not scan.
207	 */
208	kmemleak_not_leak(string->name);
209	string->hash = full_name_hash(NULL, name, len);
210	return 0;
211}
212
213static
214int nfs_readdir_add_to_array(struct nfs_entry *entry, struct page *page)
215{
216	struct nfs_cache_array *array = kmap(page);
217	struct nfs_cache_array_entry *cache_entry;
218	int ret;
219
220	cache_entry = &array->array[array->size];
221
222	/* Check that this entry lies within the page bounds */
223	ret = -ENOSPC;
224	if ((char *)&cache_entry[1] - (char *)page_address(page) > PAGE_SIZE)
225		goto out;
226
227	cache_entry->cookie = entry->prev_cookie;
228	cache_entry->ino = entry->ino;
229	cache_entry->d_type = entry->d_type;
230	ret = nfs_readdir_make_qstr(&cache_entry->string, entry->name, entry->len);
231	if (ret)
232		goto out;
233	array->last_cookie = entry->cookie;
234	array->size++;
235	if (entry->eof != 0)
236		array->eof_index = array->size;
237out:
238	kunmap(page);
239	return ret;
240}
241
242static inline
243int is_32bit_api(void)
244{
245#ifdef CONFIG_COMPAT
246	return in_compat_syscall();
247#else
248	return (BITS_PER_LONG == 32);
249#endif
250}
251
252static
253bool nfs_readdir_use_cookie(const struct file *filp)
254{
255	if ((filp->f_mode & FMODE_32BITHASH) ||
256	    (!(filp->f_mode & FMODE_64BITHASH) && is_32bit_api()))
257		return false;
258	return true;
259}
260
261static
262int nfs_readdir_search_for_pos(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
263{
264	loff_t diff = desc->ctx->pos - desc->current_index;
265	unsigned int index;
266
267	if (diff < 0)
268		goto out_eof;
269	if (diff >= array->size) {
270		if (array->eof_index >= 0)
271			goto out_eof;
272		return -EAGAIN;
273	}
274
275	index = (unsigned int)diff;
276	*desc->dir_cookie = array->array[index].cookie;
277	desc->cache_entry_index = index;
278	return 0;
279out_eof:
280	desc->eof = true;
281	return -EBADCOOKIE;
282}
283
284static bool
285nfs_readdir_inode_mapping_valid(struct nfs_inode *nfsi)
286{
287	if (nfsi->cache_validity & (NFS_INO_INVALID_ATTR|NFS_INO_INVALID_DATA))
288		return false;
289	smp_rmb();
290	return !test_bit(NFS_INO_INVALIDATING, &nfsi->flags);
291}
292
293static
294int nfs_readdir_search_for_cookie(struct nfs_cache_array *array, nfs_readdir_descriptor_t *desc)
295{
296	int i;
297	loff_t new_pos;
298	int status = -EAGAIN;
299
300	for (i = 0; i < array->size; i++) {
301		if (array->array[i].cookie == *desc->dir_cookie) {
302			struct nfs_inode *nfsi = NFS_I(file_inode(desc->file));
303			struct nfs_open_dir_context *ctx = desc->file->private_data;
304
305			new_pos = desc->current_index + i;
306			if (ctx->attr_gencount != nfsi->attr_gencount ||
307			    !nfs_readdir_inode_mapping_valid(nfsi)) {
308				ctx->duped = 0;
309				ctx->attr_gencount = nfsi->attr_gencount;
310			} else if (new_pos < desc->prev_index) {
311				if (ctx->duped > 0
312				    && ctx->dup_cookie == *desc->dir_cookie) {
313					if (printk_ratelimit()) {
314						pr_notice("NFS: directory %pD2 contains a readdir loop."
315								"Please contact your server vendor.  "
316								"The file: %.*s has duplicate cookie %llu\n",
317								desc->file, array->array[i].string.len,
318								array->array[i].string.name, *desc->dir_cookie);
319					}
320					status = -ELOOP;
321					goto out;
322				}
323				ctx->dup_cookie = *desc->dir_cookie;
324				ctx->duped = -1;
325			}
326			if (nfs_readdir_use_cookie(desc->file))
327				desc->ctx->pos = *desc->dir_cookie;
328			else
329				desc->ctx->pos = new_pos;
330			desc->prev_index = new_pos;
331			desc->cache_entry_index = i;
332			return 0;
333		}
334	}
335	if (array->eof_index >= 0) {
336		status = -EBADCOOKIE;
337		if (*desc->dir_cookie == array->last_cookie)
338			desc->eof = true;
339	}
340out:
341	return status;
342}
343
344static
345int nfs_readdir_search_array(nfs_readdir_descriptor_t *desc)
346{
347	struct nfs_cache_array *array;
348	int status;
349
350	array = kmap(desc->page);
351
352	if (*desc->dir_cookie == 0)
353		status = nfs_readdir_search_for_pos(array, desc);
354	else
355		status = nfs_readdir_search_for_cookie(array, desc);
356
357	if (status == -EAGAIN) {
358		desc->last_cookie = array->last_cookie;
359		desc->current_index += array->size;
360		desc->page_index++;
361	}
362	kunmap(desc->page);
363	return status;
364}
365
366/* Fill a page with xdr information before transferring to the cache page */
367static
368int nfs_readdir_xdr_filler(struct page **pages, nfs_readdir_descriptor_t *desc,
369			struct nfs_entry *entry, struct file *file, struct inode *inode)
370{
371	struct nfs_open_dir_context *ctx = file->private_data;
372	const struct cred *cred = ctx->cred;
373	unsigned long	timestamp, gencount;
374	int		error;
375
376 again:
377	timestamp = jiffies;
378	gencount = nfs_inc_attr_generation_counter();
379	desc->dir_verifier = nfs_save_change_attribute(inode);
380	error = NFS_PROTO(inode)->readdir(file_dentry(file), cred, entry->cookie, pages,
381					  NFS_SERVER(inode)->dtsize, desc->plus);
382	if (error < 0) {
383		/* We requested READDIRPLUS, but the server doesn't grok it */
384		if (error == -ENOTSUPP && desc->plus) {
385			NFS_SERVER(inode)->caps &= ~NFS_CAP_READDIRPLUS;
386			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
387			desc->plus = false;
388			goto again;
389		}
390		goto error;
391	}
392	desc->timestamp = timestamp;
393	desc->gencount = gencount;
394error:
395	return error;
396}
397
398static int xdr_decode(nfs_readdir_descriptor_t *desc,
399		      struct nfs_entry *entry, struct xdr_stream *xdr)
400{
401	struct inode *inode = file_inode(desc->file);
402	int error;
403
404	error = NFS_PROTO(inode)->decode_dirent(xdr, entry, desc->plus);
405	if (error)
406		return error;
407	entry->fattr->time_start = desc->timestamp;
408	entry->fattr->gencount = desc->gencount;
409	return 0;
410}
411
412/* Match file and dirent using either filehandle or fileid
413 * Note: caller is responsible for checking the fsid
414 */
415static
416int nfs_same_file(struct dentry *dentry, struct nfs_entry *entry)
417{
418	struct inode *inode;
419	struct nfs_inode *nfsi;
420
421	if (d_really_is_negative(dentry))
422		return 0;
423
424	inode = d_inode(dentry);
425	if (is_bad_inode(inode) || NFS_STALE(inode))
426		return 0;
427
428	nfsi = NFS_I(inode);
429	if (entry->fattr->fileid != nfsi->fileid)
430		return 0;
431	if (entry->fh->size && nfs_compare_fh(entry->fh, &nfsi->fh) != 0)
432		return 0;
433	return 1;
434}
435
436static
437bool nfs_use_readdirplus(struct inode *dir, struct dir_context *ctx)
438{
439	if (!nfs_server_capable(dir, NFS_CAP_READDIRPLUS))
440		return false;
441	if (test_and_clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(dir)->flags))
442		return true;
443	if (ctx->pos == 0)
444		return true;
445	return false;
446}
447
448/*
449 * This function is called by the lookup and getattr code to request the
450 * use of readdirplus to accelerate any future lookups in the same
451 * directory.
452 */
453void nfs_advise_use_readdirplus(struct inode *dir)
454{
455	struct nfs_inode *nfsi = NFS_I(dir);
456
457	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
458	    !list_empty(&nfsi->open_files))
459		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
460}
461
462/*
463 * This function is mainly for use by nfs_getattr().
464 *
465 * If this is an 'ls -l', we want to force use of readdirplus.
466 * Do this by checking if there is an active file descriptor
467 * and calling nfs_advise_use_readdirplus, then forcing a
468 * cache flush.
469 */
470void nfs_force_use_readdirplus(struct inode *dir)
471{
472	struct nfs_inode *nfsi = NFS_I(dir);
473
474	if (nfs_server_capable(dir, NFS_CAP_READDIRPLUS) &&
475	    !list_empty(&nfsi->open_files)) {
476		set_bit(NFS_INO_ADVISE_RDPLUS, &nfsi->flags);
477		invalidate_mapping_pages(dir->i_mapping,
478			nfsi->page_index + 1, -1);
479	}
480}
481
482static
483void nfs_prime_dcache(struct dentry *parent, struct nfs_entry *entry,
484		unsigned long dir_verifier)
485{
486	struct qstr filename = QSTR_INIT(entry->name, entry->len);
487	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
488	struct dentry *dentry;
489	struct dentry *alias;
490	struct inode *inode;
491	int status;
492
493	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FILEID))
494		return;
495	if (!(entry->fattr->valid & NFS_ATTR_FATTR_FSID))
496		return;
497	if (filename.len == 0)
498		return;
499	/* Validate that the name doesn't contain any illegal '\0' */
500	if (strnlen(filename.name, filename.len) != filename.len)
501		return;
502	/* ...or '/' */
503	if (strnchr(filename.name, filename.len, '/'))
504		return;
505	if (filename.name[0] == '.') {
506		if (filename.len == 1)
507			return;
508		if (filename.len == 2 && filename.name[1] == '.')
509			return;
510	}
511	filename.hash = full_name_hash(parent, filename.name, filename.len);
512
513	dentry = d_lookup(parent, &filename);
514again:
515	if (!dentry) {
516		dentry = d_alloc_parallel(parent, &filename, &wq);
517		if (IS_ERR(dentry))
518			return;
519	}
520	if (!d_in_lookup(dentry)) {
521		/* Is there a mountpoint here? If so, just exit */
522		if (!nfs_fsid_equal(&NFS_SB(dentry->d_sb)->fsid,
523					&entry->fattr->fsid))
524			goto out;
525		if (nfs_same_file(dentry, entry)) {
526			if (!entry->fh->size)
527				goto out;
528			nfs_set_verifier(dentry, dir_verifier);
529			status = nfs_refresh_inode(d_inode(dentry), entry->fattr);
530			if (!status)
531				nfs_setsecurity(d_inode(dentry), entry->fattr, entry->label);
532			goto out;
533		} else {
534			d_invalidate(dentry);
535			dput(dentry);
536			dentry = NULL;
537			goto again;
538		}
539	}
540	if (!entry->fh->size) {
541		d_lookup_done(dentry);
542		goto out;
543	}
544
545	inode = nfs_fhget(dentry->d_sb, entry->fh, entry->fattr, entry->label);
546	alias = d_splice_alias(inode, dentry);
547	d_lookup_done(dentry);
548	if (alias) {
549		if (IS_ERR(alias))
550			goto out;
551		dput(dentry);
552		dentry = alias;
553	}
554	nfs_set_verifier(dentry, dir_verifier);
555out:
556	dput(dentry);
557}
558
559/* Perform conversion from xdr to cache array */
560static
561int nfs_readdir_page_filler(nfs_readdir_descriptor_t *desc, struct nfs_entry *entry,
562				struct page **xdr_pages, struct page *page, unsigned int buflen)
563{
564	struct xdr_stream stream;
565	struct xdr_buf buf;
566	struct page *scratch;
567	struct nfs_cache_array *array;
568	unsigned int count = 0;
569	int status;
570
571	scratch = alloc_page(GFP_KERNEL);
572	if (scratch == NULL)
573		return -ENOMEM;
574
575	if (buflen == 0)
576		goto out_nopages;
577
578	xdr_init_decode_pages(&stream, &buf, xdr_pages, buflen);
579	xdr_set_scratch_buffer(&stream, page_address(scratch), PAGE_SIZE);
580
581	do {
582		if (entry->label)
583			entry->label->len = NFS4_MAXLABELLEN;
584
585		status = xdr_decode(desc, entry, &stream);
586		if (status != 0) {
587			if (status == -EAGAIN)
588				status = 0;
589			break;
590		}
591
592		count++;
593
594		if (desc->plus)
595			nfs_prime_dcache(file_dentry(desc->file), entry,
596					desc->dir_verifier);
597
598		status = nfs_readdir_add_to_array(entry, page);
599		if (status != 0)
600			break;
601	} while (!entry->eof);
602
603out_nopages:
604	if (count == 0 || (status == -EBADCOOKIE && entry->eof != 0)) {
605		array = kmap(page);
606		array->eof_index = array->size;
607		status = 0;
608		kunmap(page);
609	}
610
611	put_page(scratch);
612	return status;
613}
614
615static
616void nfs_readdir_free_pages(struct page **pages, unsigned int npages)
617{
618	unsigned int i;
619	for (i = 0; i < npages; i++)
620		put_page(pages[i]);
621}
622
623/*
624 * nfs_readdir_alloc_pages() will allocate pages that must be freed with a call
625 * to nfs_readdir_free_pages()
626 */
627static
628int nfs_readdir_alloc_pages(struct page **pages, unsigned int npages)
629{
630	unsigned int i;
631
632	for (i = 0; i < npages; i++) {
633		struct page *page = alloc_page(GFP_KERNEL);
634		if (page == NULL)
635			goto out_freepages;
636		pages[i] = page;
637	}
638	return 0;
639
640out_freepages:
641	nfs_readdir_free_pages(pages, i);
642	return -ENOMEM;
643}
644
645static
646int nfs_readdir_xdr_to_array(nfs_readdir_descriptor_t *desc, struct page *page, struct inode *inode)
647{
648	struct page *pages[NFS_MAX_READDIR_PAGES];
649	struct nfs_entry entry;
650	struct file	*file = desc->file;
651	struct nfs_cache_array *array;
652	int status = -ENOMEM;
653	unsigned int array_size = ARRAY_SIZE(pages);
654
655	nfs_readdir_init_array(page);
656
657	entry.prev_cookie = 0;
658	entry.cookie = desc->last_cookie;
659	entry.eof = 0;
660	entry.fh = nfs_alloc_fhandle();
661	entry.fattr = nfs_alloc_fattr();
662	entry.server = NFS_SERVER(inode);
663	if (entry.fh == NULL || entry.fattr == NULL)
664		goto out;
665
666	entry.label = nfs4_label_alloc(NFS_SERVER(inode), GFP_NOWAIT);
667	if (IS_ERR(entry.label)) {
668		status = PTR_ERR(entry.label);
669		goto out;
670	}
671
672	array = kmap(page);
673
674	status = nfs_readdir_alloc_pages(pages, array_size);
675	if (status < 0)
676		goto out_release_array;
677	do {
678		unsigned int pglen;
679		status = nfs_readdir_xdr_filler(pages, desc, &entry, file, inode);
680
681		if (status < 0)
682			break;
683		pglen = status;
684		status = nfs_readdir_page_filler(desc, &entry, pages, page, pglen);
685		if (status < 0) {
686			if (status == -ENOSPC)
687				status = 0;
688			break;
689		}
690	} while (array->eof_index < 0);
691
692	nfs_readdir_free_pages(pages, array_size);
693out_release_array:
694	kunmap(page);
695	nfs4_label_free(entry.label);
696out:
697	nfs_free_fattr(entry.fattr);
698	nfs_free_fhandle(entry.fh);
699	return status;
700}
701
702/*
703 * Now we cache directories properly, by converting xdr information
704 * to an array that can be used for lookups later.  This results in
705 * fewer cache pages, since we can store more information on each page.
706 * We only need to convert from xdr once so future lookups are much simpler
707 */
708static
709int nfs_readdir_filler(void *data, struct page* page)
710{
711	nfs_readdir_descriptor_t *desc = data;
712	struct inode	*inode = file_inode(desc->file);
713	int ret;
714
715	ret = nfs_readdir_xdr_to_array(desc, page, inode);
716	if (ret < 0)
717		goto error;
718	SetPageUptodate(page);
719
720	if (invalidate_inode_pages2_range(inode->i_mapping, page->index + 1, -1) < 0) {
721		/* Should never happen */
722		nfs_zap_mapping(inode, inode->i_mapping);
723	}
724	unlock_page(page);
725	return 0;
726 error:
727	nfs_readdir_clear_array(page);
728	unlock_page(page);
729	return ret;
730}
731
732static
733void cache_page_release(nfs_readdir_descriptor_t *desc)
734{
735	put_page(desc->page);
736	desc->page = NULL;
737}
738
739static
740struct page *get_cache_page(nfs_readdir_descriptor_t *desc)
741{
742	return read_cache_page(desc->file->f_mapping, desc->page_index,
743			nfs_readdir_filler, desc);
744}
745
746/*
747 * Returns 0 if desc->dir_cookie was found on page desc->page_index
748 * and locks the page to prevent removal from the page cache.
749 */
750static
751int find_and_lock_cache_page(nfs_readdir_descriptor_t *desc)
752{
753	struct inode *inode = file_inode(desc->file);
754	struct nfs_inode *nfsi = NFS_I(inode);
755	int res;
756
757	desc->page = get_cache_page(desc);
758	if (IS_ERR(desc->page))
759		return PTR_ERR(desc->page);
760	res = lock_page_killable(desc->page);
761	if (res != 0)
762		goto error;
763	res = -EAGAIN;
764	if (desc->page->mapping != NULL) {
765		res = nfs_readdir_search_array(desc);
766		if (res == 0) {
767			nfsi->page_index = desc->page_index;
768			return 0;
769		}
770	}
771	unlock_page(desc->page);
772error:
773	cache_page_release(desc);
774	return res;
775}
776
777/* Search for desc->dir_cookie from the beginning of the page cache */
778static inline
779int readdir_search_pagecache(nfs_readdir_descriptor_t *desc)
780{
781	int res;
782
783	if (desc->page_index == 0) {
784		desc->current_index = 0;
785		desc->prev_index = 0;
786		desc->last_cookie = 0;
787	}
788	do {
789		res = find_and_lock_cache_page(desc);
790	} while (res == -EAGAIN);
791	return res;
792}
793
794/*
795 * Once we've found the start of the dirent within a page: fill 'er up...
796 */
797static
798int nfs_do_filldir(nfs_readdir_descriptor_t *desc)
799{
800	struct file	*file = desc->file;
801	int i = 0;
802	int res = 0;
803	struct nfs_cache_array *array = NULL;
804	struct nfs_open_dir_context *ctx = file->private_data;
805
806	array = kmap(desc->page);
807	for (i = desc->cache_entry_index; i < array->size; i++) {
808		struct nfs_cache_array_entry *ent;
809
810		ent = &array->array[i];
811		if (!dir_emit(desc->ctx, ent->string.name, ent->string.len,
812		    nfs_compat_user_ino64(ent->ino), ent->d_type)) {
813			desc->eof = true;
814			break;
815		}
816		if (i < (array->size-1))
817			*desc->dir_cookie = array->array[i+1].cookie;
818		else
819			*desc->dir_cookie = array->last_cookie;
820		if (nfs_readdir_use_cookie(file))
821			desc->ctx->pos = *desc->dir_cookie;
822		else
823			desc->ctx->pos++;
824		if (ctx->duped != 0)
825			ctx->duped = 1;
826	}
827	if (array->eof_index >= 0)
828		desc->eof = true;
829
830	kunmap(desc->page);
831	dfprintk(DIRCACHE, "NFS: nfs_do_filldir() filling ended @ cookie %Lu; returning = %d\n",
832			(unsigned long long)*desc->dir_cookie, res);
833	return res;
834}
835
836/*
837 * If we cannot find a cookie in our cache, we suspect that this is
838 * because it points to a deleted file, so we ask the server to return
839 * whatever it thinks is the next entry. We then feed this to filldir.
840 * If all goes well, we should then be able to find our way round the
841 * cache on the next call to readdir_search_pagecache();
842 *
843 * NOTE: we cannot add the anonymous page to the pagecache because
844 *	 the data it contains might not be page aligned. Besides,
845 *	 we should already have a complete representation of the
846 *	 directory in the page cache by the time we get here.
847 */
848static inline
849int uncached_readdir(nfs_readdir_descriptor_t *desc)
850{
851	struct page	*page = NULL;
852	int		status;
853	struct inode *inode = file_inode(desc->file);
854	struct nfs_open_dir_context *ctx = desc->file->private_data;
855
856	dfprintk(DIRCACHE, "NFS: uncached_readdir() searching for cookie %Lu\n",
857			(unsigned long long)*desc->dir_cookie);
858
859	page = alloc_page(GFP_HIGHUSER);
860	if (!page) {
861		status = -ENOMEM;
862		goto out;
863	}
864
865	desc->page_index = 0;
866	desc->last_cookie = *desc->dir_cookie;
867	desc->page = page;
868	ctx->duped = 0;
869
870	status = nfs_readdir_xdr_to_array(desc, page, inode);
871	if (status < 0)
872		goto out_release;
873
874	status = nfs_do_filldir(desc);
875
876 out_release:
877	nfs_readdir_clear_array(desc->page);
878	cache_page_release(desc);
879 out:
880	dfprintk(DIRCACHE, "NFS: %s: returns %d\n",
881			__func__, status);
882	return status;
883}
884
885/* The file offset position represents the dirent entry number.  A
886   last cookie cache takes care of the common case of reading the
887   whole directory.
888 */
889static int nfs_readdir(struct file *file, struct dir_context *ctx)
890{
891	struct dentry	*dentry = file_dentry(file);
892	struct inode	*inode = d_inode(dentry);
893	struct nfs_open_dir_context *dir_ctx = file->private_data;
894	nfs_readdir_descriptor_t my_desc = {
895		.file = file,
896		.ctx = ctx,
897		.dir_cookie = &dir_ctx->dir_cookie,
898		.plus = nfs_use_readdirplus(inode, ctx),
899	},
900			*desc = &my_desc;
901	int res = 0;
902
903	dfprintk(FILE, "NFS: readdir(%pD2) starting at cookie %llu\n",
904			file, (long long)ctx->pos);
905	nfs_inc_stats(inode, NFSIOS_VFSGETDENTS);
906
907	/*
908	 * ctx->pos points to the dirent entry number.
909	 * *desc->dir_cookie has the cookie for the next entry. We have
910	 * to either find the entry with the appropriate number or
911	 * revalidate the cookie.
912	 */
913	if (ctx->pos == 0 || nfs_attribute_cache_expired(inode))
914		res = nfs_revalidate_mapping(inode, file->f_mapping);
915	if (res < 0)
916		goto out;
917
918	do {
919		res = readdir_search_pagecache(desc);
920
921		if (res == -EBADCOOKIE) {
922			res = 0;
923			/* This means either end of directory */
924			if (*desc->dir_cookie && !desc->eof) {
925				/* Or that the server has 'lost' a cookie */
926				res = uncached_readdir(desc);
927				if (res == 0)
928					continue;
929			}
930			break;
931		}
932		if (res == -ETOOSMALL && desc->plus) {
933			clear_bit(NFS_INO_ADVISE_RDPLUS, &NFS_I(inode)->flags);
934			nfs_zap_caches(inode);
935			desc->page_index = 0;
936			desc->plus = false;
937			desc->eof = false;
938			continue;
939		}
940		if (res < 0)
941			break;
942
943		res = nfs_do_filldir(desc);
944		unlock_page(desc->page);
945		cache_page_release(desc);
946		if (res < 0)
947			break;
948	} while (!desc->eof);
949out:
950	if (res > 0)
951		res = 0;
952	dfprintk(FILE, "NFS: readdir(%pD2) returns %d\n", file, res);
953	return res;
954}
955
956static loff_t nfs_llseek_dir(struct file *filp, loff_t offset, int whence)
957{
958	struct nfs_open_dir_context *dir_ctx = filp->private_data;
959
960	dfprintk(FILE, "NFS: llseek dir(%pD2, %lld, %d)\n",
961			filp, offset, whence);
962
963	switch (whence) {
964	default:
965		return -EINVAL;
966	case SEEK_SET:
967		if (offset < 0)
968			return -EINVAL;
969		spin_lock(&filp->f_lock);
970		break;
971	case SEEK_CUR:
972		if (offset == 0)
973			return filp->f_pos;
974		spin_lock(&filp->f_lock);
975		offset += filp->f_pos;
976		if (offset < 0) {
977			spin_unlock(&filp->f_lock);
978			return -EINVAL;
979		}
980	}
981	if (offset != filp->f_pos) {
982		filp->f_pos = offset;
983		if (nfs_readdir_use_cookie(filp))
984			dir_ctx->dir_cookie = offset;
985		else
986			dir_ctx->dir_cookie = 0;
987		dir_ctx->duped = 0;
988	}
989	spin_unlock(&filp->f_lock);
990	return offset;
991}
992
993/*
994 * All directory operations under NFS are synchronous, so fsync()
995 * is a dummy operation.
996 */
997static int nfs_fsync_dir(struct file *filp, loff_t start, loff_t end,
998			 int datasync)
999{
1000	dfprintk(FILE, "NFS: fsync dir(%pD2) datasync %d\n", filp, datasync);
1001
1002	nfs_inc_stats(file_inode(filp), NFSIOS_VFSFSYNC);
1003	return 0;
1004}
1005
1006/**
1007 * nfs_force_lookup_revalidate - Mark the directory as having changed
1008 * @dir: pointer to directory inode
1009 *
1010 * This forces the revalidation code in nfs_lookup_revalidate() to do a
1011 * full lookup on all child dentries of 'dir' whenever a change occurs
1012 * on the server that might have invalidated our dcache.
1013 *
1014 * Note that we reserve bit '0' as a tag to let us know when a dentry
1015 * was revalidated while holding a delegation on its inode.
1016 *
1017 * The caller should be holding dir->i_lock
1018 */
1019void nfs_force_lookup_revalidate(struct inode *dir)
1020{
1021	NFS_I(dir)->cache_change_attribute += 2;
1022}
1023EXPORT_SYMBOL_GPL(nfs_force_lookup_revalidate);
1024
1025/**
1026 * nfs_verify_change_attribute - Detects NFS remote directory changes
1027 * @dir: pointer to parent directory inode
1028 * @verf: previously saved change attribute
1029 *
1030 * Return "false" if the verifiers doesn't match the change attribute.
1031 * This would usually indicate that the directory contents have changed on
1032 * the server, and that any dentries need revalidating.
1033 */
1034static bool nfs_verify_change_attribute(struct inode *dir, unsigned long verf)
1035{
1036	return (verf & ~1UL) == nfs_save_change_attribute(dir);
1037}
1038
1039static void nfs_set_verifier_delegated(unsigned long *verf)
1040{
1041	*verf |= 1UL;
1042}
1043
1044#if IS_ENABLED(CONFIG_NFS_V4)
1045static void nfs_unset_verifier_delegated(unsigned long *verf)
1046{
1047	*verf &= ~1UL;
1048}
1049#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1050
1051static bool nfs_test_verifier_delegated(unsigned long verf)
1052{
1053	return verf & 1;
1054}
1055
1056static bool nfs_verifier_is_delegated(struct dentry *dentry)
1057{
1058	return nfs_test_verifier_delegated(dentry->d_time);
1059}
1060
1061static void nfs_set_verifier_locked(struct dentry *dentry, unsigned long verf)
1062{
1063	struct inode *inode = d_inode(dentry);
1064	struct inode *dir = d_inode(dentry->d_parent);
1065
1066	if (!nfs_verify_change_attribute(dir, verf))
1067		return;
1068	if (inode && NFS_PROTO(inode)->have_delegation(inode, FMODE_READ))
1069		nfs_set_verifier_delegated(&verf);
1070	dentry->d_time = verf;
1071}
1072
1073/**
1074 * nfs_set_verifier - save a parent directory verifier in the dentry
1075 * @dentry: pointer to dentry
1076 * @verf: verifier to save
1077 *
1078 * Saves the parent directory verifier in @dentry. If the inode has
1079 * a delegation, we also tag the dentry as having been revalidated
1080 * while holding a delegation so that we know we don't have to
1081 * look it up again after a directory change.
1082 */
1083void nfs_set_verifier(struct dentry *dentry, unsigned long verf)
1084{
1085
1086	spin_lock(&dentry->d_lock);
1087	nfs_set_verifier_locked(dentry, verf);
1088	spin_unlock(&dentry->d_lock);
1089}
1090EXPORT_SYMBOL_GPL(nfs_set_verifier);
1091
1092#if IS_ENABLED(CONFIG_NFS_V4)
1093/**
1094 * nfs_clear_verifier_delegated - clear the dir verifier delegation tag
1095 * @inode: pointer to inode
1096 *
1097 * Iterates through the dentries in the inode alias list and clears
1098 * the tag used to indicate that the dentry has been revalidated
1099 * while holding a delegation.
1100 * This function is intended for use when the delegation is being
1101 * returned or revoked.
1102 */
1103void nfs_clear_verifier_delegated(struct inode *inode)
1104{
1105	struct dentry *alias;
1106
1107	if (!inode)
1108		return;
1109	spin_lock(&inode->i_lock);
1110	hlist_for_each_entry(alias, &inode->i_dentry, d_u.d_alias) {
1111		spin_lock(&alias->d_lock);
1112		nfs_unset_verifier_delegated(&alias->d_time);
1113		spin_unlock(&alias->d_lock);
1114	}
1115	spin_unlock(&inode->i_lock);
1116}
1117EXPORT_SYMBOL_GPL(nfs_clear_verifier_delegated);
1118#endif /* IS_ENABLED(CONFIG_NFS_V4) */
1119
1120/*
1121 * A check for whether or not the parent directory has changed.
1122 * In the case it has, we assume that the dentries are untrustworthy
1123 * and may need to be looked up again.
1124 * If rcu_walk prevents us from performing a full check, return 0.
1125 */
1126static int nfs_check_verifier(struct inode *dir, struct dentry *dentry,
1127			      int rcu_walk)
1128{
1129	if (IS_ROOT(dentry))
1130		return 1;
1131	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONE)
1132		return 0;
1133	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1134		return 0;
1135	/* Revalidate nfsi->cache_change_attribute before we declare a match */
1136	if (nfs_mapping_need_revalidate_inode(dir)) {
1137		if (rcu_walk)
1138			return 0;
1139		if (__nfs_revalidate_inode(NFS_SERVER(dir), dir) < 0)
1140			return 0;
1141	}
1142	if (!nfs_verify_change_attribute(dir, dentry->d_time))
1143		return 0;
1144	return 1;
1145}
1146
1147/*
1148 * Use intent information to check whether or not we're going to do
1149 * an O_EXCL create using this path component.
1150 */
1151static int nfs_is_exclusive_create(struct inode *dir, unsigned int flags)
1152{
1153	if (NFS_PROTO(dir)->version == 2)
1154		return 0;
1155	return flags & LOOKUP_EXCL;
1156}
1157
1158/*
1159 * Inode and filehandle revalidation for lookups.
1160 *
1161 * We force revalidation in the cases where the VFS sets LOOKUP_REVAL,
1162 * or if the intent information indicates that we're about to open this
1163 * particular file and the "nocto" mount flag is not set.
1164 *
1165 */
1166static
1167int nfs_lookup_verify_inode(struct inode *inode, unsigned int flags)
1168{
1169	struct nfs_server *server = NFS_SERVER(inode);
1170	int ret;
1171
1172	if (IS_AUTOMOUNT(inode))
1173		return 0;
1174
1175	if (flags & LOOKUP_OPEN) {
1176		switch (inode->i_mode & S_IFMT) {
1177		case S_IFREG:
1178			/* A NFSv4 OPEN will revalidate later */
1179			if (server->caps & NFS_CAP_ATOMIC_OPEN)
1180				goto out;
1181			fallthrough;
1182		case S_IFDIR:
1183			if (server->flags & NFS_MOUNT_NOCTO)
1184				break;
1185			/* NFS close-to-open cache consistency validation */
1186			goto out_force;
1187		}
1188	}
1189
1190	/* VFS wants an on-the-wire revalidation */
1191	if (flags & LOOKUP_REVAL)
1192		goto out_force;
1193out:
1194	return (inode->i_nlink == 0) ? -ESTALE : 0;
1195out_force:
1196	if (flags & LOOKUP_RCU)
1197		return -ECHILD;
1198	ret = __nfs_revalidate_inode(server, inode);
1199	if (ret != 0)
1200		return ret;
1201	goto out;
1202}
1203
1204static void nfs_mark_dir_for_revalidate(struct inode *inode)
1205{
1206	struct nfs_inode *nfsi = NFS_I(inode);
1207
1208	spin_lock(&inode->i_lock);
1209	nfsi->cache_validity |= NFS_INO_REVAL_PAGECACHE;
1210	spin_unlock(&inode->i_lock);
1211}
1212
1213/*
1214 * We judge how long we want to trust negative
1215 * dentries by looking at the parent inode mtime.
1216 *
1217 * If parent mtime has changed, we revalidate, else we wait for a
1218 * period corresponding to the parent's attribute cache timeout value.
1219 *
1220 * If LOOKUP_RCU prevents us from performing a full check, return 1
1221 * suggesting a reval is needed.
1222 *
1223 * Note that when creating a new file, or looking up a rename target,
1224 * then it shouldn't be necessary to revalidate a negative dentry.
1225 */
1226static inline
1227int nfs_neg_need_reval(struct inode *dir, struct dentry *dentry,
1228		       unsigned int flags)
1229{
1230	if (flags & (LOOKUP_CREATE | LOOKUP_RENAME_TARGET))
1231		return 0;
1232	if (NFS_SERVER(dir)->flags & NFS_MOUNT_LOOKUP_CACHE_NONEG)
1233		return 1;
1234	return !nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU);
1235}
1236
1237static int
1238nfs_lookup_revalidate_done(struct inode *dir, struct dentry *dentry,
1239			   struct inode *inode, int error)
1240{
1241	switch (error) {
1242	case 1:
1243		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is valid\n",
1244			__func__, dentry);
1245		return 1;
1246	case 0:
1247		/*
1248		 * We can't d_drop the root of a disconnected tree:
1249		 * its d_hash is on the s_anon list and d_drop() would hide
1250		 * it from shrink_dcache_for_unmount(), leading to busy
1251		 * inodes on unmount and further oopses.
1252		 */
1253		if (inode && IS_ROOT(dentry))
1254			return 1;
1255		dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) is invalid\n",
1256				__func__, dentry);
1257		return 0;
1258	}
1259	dfprintk(LOOKUPCACHE, "NFS: %s(%pd2) lookup returned error %d\n",
1260				__func__, dentry, error);
1261	return error;
1262}
1263
1264static int
1265nfs_lookup_revalidate_negative(struct inode *dir, struct dentry *dentry,
1266			       unsigned int flags)
1267{
1268	int ret = 1;
1269	if (nfs_neg_need_reval(dir, dentry, flags)) {
1270		if (flags & LOOKUP_RCU)
1271			return -ECHILD;
1272		ret = 0;
1273	}
1274	return nfs_lookup_revalidate_done(dir, dentry, NULL, ret);
1275}
1276
1277static int
1278nfs_lookup_revalidate_delegated(struct inode *dir, struct dentry *dentry,
1279				struct inode *inode)
1280{
1281	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1282	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1283}
1284
1285static int
1286nfs_lookup_revalidate_dentry(struct inode *dir, struct dentry *dentry,
1287			     struct inode *inode)
1288{
1289	struct nfs_fh *fhandle;
1290	struct nfs_fattr *fattr;
1291	struct nfs4_label *label;
1292	unsigned long dir_verifier;
1293	int ret;
1294
1295	ret = -ENOMEM;
1296	fhandle = nfs_alloc_fhandle();
1297	fattr = nfs_alloc_fattr();
1298	label = nfs4_label_alloc(NFS_SERVER(inode), GFP_KERNEL);
1299	if (fhandle == NULL || fattr == NULL || IS_ERR(label))
1300		goto out;
1301
1302	dir_verifier = nfs_save_change_attribute(dir);
1303	ret = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1304	if (ret < 0) {
1305		switch (ret) {
1306		case -ESTALE:
1307		case -ENOENT:
1308			ret = 0;
1309			break;
1310		case -ETIMEDOUT:
1311			if (NFS_SERVER(inode)->flags & NFS_MOUNT_SOFTREVAL)
1312				ret = 1;
1313		}
1314		goto out;
1315	}
1316	ret = 0;
1317	if (nfs_compare_fh(NFS_FH(inode), fhandle))
1318		goto out;
1319	if (nfs_refresh_inode(inode, fattr) < 0)
1320		goto out;
1321
1322	nfs_setsecurity(inode, fattr, label);
1323	nfs_set_verifier(dentry, dir_verifier);
1324
1325	/* set a readdirplus hint that we had a cache miss */
1326	nfs_force_use_readdirplus(dir);
1327	ret = 1;
1328out:
1329	nfs_free_fattr(fattr);
1330	nfs_free_fhandle(fhandle);
1331	nfs4_label_free(label);
1332
1333	/*
1334	 * If the lookup failed despite the dentry change attribute being
1335	 * a match, then we should revalidate the directory cache.
1336	 */
1337	if (!ret && nfs_verify_change_attribute(dir, dentry->d_time))
1338		nfs_mark_dir_for_revalidate(dir);
1339	return nfs_lookup_revalidate_done(dir, dentry, inode, ret);
1340}
1341
1342/*
1343 * This is called every time the dcache has a lookup hit,
1344 * and we should check whether we can really trust that
1345 * lookup.
1346 *
1347 * NOTE! The hit can be a negative hit too, don't assume
1348 * we have an inode!
1349 *
1350 * If the parent directory is seen to have changed, we throw out the
1351 * cached dentry and do a new lookup.
1352 */
1353static int
1354nfs_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1355			 unsigned int flags)
1356{
1357	struct inode *inode;
1358	int error;
1359
1360	nfs_inc_stats(dir, NFSIOS_DENTRYREVALIDATE);
1361	inode = d_inode(dentry);
1362
1363	if (!inode)
1364		return nfs_lookup_revalidate_negative(dir, dentry, flags);
1365
1366	if (is_bad_inode(inode)) {
1367		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1368				__func__, dentry);
1369		goto out_bad;
1370	}
1371
1372	if (nfs_verifier_is_delegated(dentry))
1373		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1374
1375	/* Force a full look up iff the parent directory has changed */
1376	if (!(flags & (LOOKUP_EXCL | LOOKUP_REVAL)) &&
1377	    nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU)) {
1378		error = nfs_lookup_verify_inode(inode, flags);
1379		if (error) {
1380			if (error == -ESTALE)
1381				nfs_mark_dir_for_revalidate(dir);
1382			goto out_bad;
1383		}
1384		nfs_advise_use_readdirplus(dir);
1385		goto out_valid;
1386	}
1387
1388	if (flags & LOOKUP_RCU)
1389		return -ECHILD;
1390
1391	if (NFS_STALE(inode))
1392		goto out_bad;
1393
1394	trace_nfs_lookup_revalidate_enter(dir, dentry, flags);
1395	error = nfs_lookup_revalidate_dentry(dir, dentry, inode);
1396	trace_nfs_lookup_revalidate_exit(dir, dentry, flags, error);
1397	return error;
1398out_valid:
1399	return nfs_lookup_revalidate_done(dir, dentry, inode, 1);
1400out_bad:
1401	if (flags & LOOKUP_RCU)
1402		return -ECHILD;
1403	return nfs_lookup_revalidate_done(dir, dentry, inode, 0);
1404}
1405
1406static int
1407__nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags,
1408			int (*reval)(struct inode *, struct dentry *, unsigned int))
1409{
1410	struct dentry *parent;
1411	struct inode *dir;
1412	int ret;
1413
1414	if (flags & LOOKUP_RCU) {
1415		parent = READ_ONCE(dentry->d_parent);
1416		dir = d_inode_rcu(parent);
1417		if (!dir)
1418			return -ECHILD;
1419		ret = reval(dir, dentry, flags);
1420		if (parent != READ_ONCE(dentry->d_parent))
1421			return -ECHILD;
1422	} else {
1423		parent = dget_parent(dentry);
1424		ret = reval(d_inode(parent), dentry, flags);
1425		dput(parent);
1426	}
1427	return ret;
1428}
1429
1430static int nfs_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1431{
1432	return __nfs_lookup_revalidate(dentry, flags, nfs_do_lookup_revalidate);
1433}
1434
1435/*
1436 * A weaker form of d_revalidate for revalidating just the d_inode(dentry)
1437 * when we don't really care about the dentry name. This is called when a
1438 * pathwalk ends on a dentry that was not found via a normal lookup in the
1439 * parent dir (e.g.: ".", "..", procfs symlinks or mountpoint traversals).
1440 *
1441 * In this situation, we just want to verify that the inode itself is OK
1442 * since the dentry might have changed on the server.
1443 */
1444static int nfs_weak_revalidate(struct dentry *dentry, unsigned int flags)
1445{
1446	struct inode *inode = d_inode(dentry);
1447	int error = 0;
1448
1449	/*
1450	 * I believe we can only get a negative dentry here in the case of a
1451	 * procfs-style symlink. Just assume it's correct for now, but we may
1452	 * eventually need to do something more here.
1453	 */
1454	if (!inode) {
1455		dfprintk(LOOKUPCACHE, "%s: %pd2 has negative inode\n",
1456				__func__, dentry);
1457		return 1;
1458	}
1459
1460	if (is_bad_inode(inode)) {
1461		dfprintk(LOOKUPCACHE, "%s: %pd2 has dud inode\n",
1462				__func__, dentry);
1463		return 0;
1464	}
1465
1466	error = nfs_lookup_verify_inode(inode, flags);
1467	dfprintk(LOOKUPCACHE, "NFS: %s: inode %lu is %s\n",
1468			__func__, inode->i_ino, error ? "invalid" : "valid");
1469	return !error;
1470}
1471
1472/*
1473 * This is called from dput() when d_count is going to 0.
1474 */
1475static int nfs_dentry_delete(const struct dentry *dentry)
1476{
1477	dfprintk(VFS, "NFS: dentry_delete(%pd2, %x)\n",
1478		dentry, dentry->d_flags);
1479
1480	/* Unhash any dentry with a stale inode */
1481	if (d_really_is_positive(dentry) && NFS_STALE(d_inode(dentry)))
1482		return 1;
1483
1484	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1485		/* Unhash it, so that ->d_iput() would be called */
1486		return 1;
1487	}
1488	if (!(dentry->d_sb->s_flags & SB_ACTIVE)) {
1489		/* Unhash it, so that ancestors of killed async unlink
1490		 * files will be cleaned up during umount */
1491		return 1;
1492	}
1493	return 0;
1494
1495}
1496
1497/* Ensure that we revalidate inode->i_nlink */
1498static void nfs_drop_nlink(struct inode *inode)
1499{
1500	spin_lock(&inode->i_lock);
1501	/* drop the inode if we're reasonably sure this is the last link */
1502	if (inode->i_nlink > 0)
1503		drop_nlink(inode);
1504	NFS_I(inode)->attr_gencount = nfs_inc_attr_generation_counter();
1505	NFS_I(inode)->cache_validity |= NFS_INO_INVALID_CHANGE
1506		| NFS_INO_INVALID_CTIME
1507		| NFS_INO_INVALID_OTHER
1508		| NFS_INO_REVAL_FORCED;
1509	spin_unlock(&inode->i_lock);
1510}
1511
1512/*
1513 * Called when the dentry loses inode.
1514 * We use it to clean up silly-renamed files.
1515 */
1516static void nfs_dentry_iput(struct dentry *dentry, struct inode *inode)
1517{
1518	if (S_ISDIR(inode->i_mode))
1519		/* drop any readdir cache as it could easily be old */
1520		NFS_I(inode)->cache_validity |= NFS_INO_INVALID_DATA;
1521
1522	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
1523		nfs_complete_unlink(dentry, inode);
1524		nfs_drop_nlink(inode);
1525	}
1526	iput(inode);
1527}
1528
1529static void nfs_d_release(struct dentry *dentry)
1530{
1531	/* free cached devname value, if it survived that far */
1532	if (unlikely(dentry->d_fsdata)) {
1533		if (dentry->d_flags & DCACHE_NFSFS_RENAMED)
1534			WARN_ON(1);
1535		else
1536			kfree(dentry->d_fsdata);
1537	}
1538}
1539
1540const struct dentry_operations nfs_dentry_operations = {
1541	.d_revalidate	= nfs_lookup_revalidate,
1542	.d_weak_revalidate	= nfs_weak_revalidate,
1543	.d_delete	= nfs_dentry_delete,
1544	.d_iput		= nfs_dentry_iput,
1545	.d_automount	= nfs_d_automount,
1546	.d_release	= nfs_d_release,
1547};
1548EXPORT_SYMBOL_GPL(nfs_dentry_operations);
1549
1550struct dentry *nfs_lookup(struct inode *dir, struct dentry * dentry, unsigned int flags)
1551{
1552	struct dentry *res;
1553	struct inode *inode = NULL;
1554	struct nfs_fh *fhandle = NULL;
1555	struct nfs_fattr *fattr = NULL;
1556	struct nfs4_label *label = NULL;
1557	unsigned long dir_verifier;
1558	int error;
1559
1560	dfprintk(VFS, "NFS: lookup(%pd2)\n", dentry);
1561	nfs_inc_stats(dir, NFSIOS_VFSLOOKUP);
1562
1563	if (unlikely(dentry->d_name.len > NFS_SERVER(dir)->namelen))
1564		return ERR_PTR(-ENAMETOOLONG);
1565
1566	/*
1567	 * If we're doing an exclusive create, optimize away the lookup
1568	 * but don't hash the dentry.
1569	 */
1570	if (nfs_is_exclusive_create(dir, flags) || flags & LOOKUP_RENAME_TARGET)
1571		return NULL;
1572
1573	res = ERR_PTR(-ENOMEM);
1574	fhandle = nfs_alloc_fhandle();
1575	fattr = nfs_alloc_fattr();
1576	if (fhandle == NULL || fattr == NULL)
1577		goto out;
1578
1579	label = nfs4_label_alloc(NFS_SERVER(dir), GFP_NOWAIT);
1580	if (IS_ERR(label))
1581		goto out;
1582
1583	dir_verifier = nfs_save_change_attribute(dir);
1584	trace_nfs_lookup_enter(dir, dentry, flags);
1585	error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, label);
1586	if (error == -ENOENT)
1587		goto no_entry;
1588	if (error < 0) {
1589		res = ERR_PTR(error);
1590		goto out_label;
1591	}
1592	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1593	res = ERR_CAST(inode);
1594	if (IS_ERR(res))
1595		goto out_label;
1596
1597	/* Notify readdir to use READDIRPLUS */
1598	nfs_force_use_readdirplus(dir);
1599
1600no_entry:
1601	res = d_splice_alias(inode, dentry);
1602	if (res != NULL) {
1603		if (IS_ERR(res))
1604			goto out_label;
1605		dentry = res;
1606	}
1607	nfs_set_verifier(dentry, dir_verifier);
1608out_label:
1609	trace_nfs_lookup_exit(dir, dentry, flags, error);
1610	nfs4_label_free(label);
1611out:
1612	nfs_free_fattr(fattr);
1613	nfs_free_fhandle(fhandle);
1614	return res;
1615}
1616EXPORT_SYMBOL_GPL(nfs_lookup);
1617
1618#if IS_ENABLED(CONFIG_NFS_V4)
1619static int nfs4_lookup_revalidate(struct dentry *, unsigned int);
1620
1621const struct dentry_operations nfs4_dentry_operations = {
1622	.d_revalidate	= nfs4_lookup_revalidate,
1623	.d_weak_revalidate	= nfs_weak_revalidate,
1624	.d_delete	= nfs_dentry_delete,
1625	.d_iput		= nfs_dentry_iput,
1626	.d_automount	= nfs_d_automount,
1627	.d_release	= nfs_d_release,
1628};
1629EXPORT_SYMBOL_GPL(nfs4_dentry_operations);
1630
1631static struct nfs_open_context *create_nfs_open_context(struct dentry *dentry, int open_flags, struct file *filp)
1632{
1633	return alloc_nfs_open_context(dentry, flags_to_mode(open_flags), filp);
1634}
1635
1636static int do_open(struct inode *inode, struct file *filp)
1637{
1638	nfs_fscache_open_file(inode, filp);
1639	return 0;
1640}
1641
1642static int nfs_finish_open(struct nfs_open_context *ctx,
1643			   struct dentry *dentry,
1644			   struct file *file, unsigned open_flags)
1645{
1646	int err;
1647
1648	err = finish_open(file, dentry, do_open);
1649	if (err)
1650		goto out;
1651	if (S_ISREG(file->f_path.dentry->d_inode->i_mode))
1652		nfs_file_set_open_context(file, ctx);
1653	else
1654		err = -EOPENSTALE;
1655out:
1656	return err;
1657}
1658
1659int nfs_atomic_open(struct inode *dir, struct dentry *dentry,
1660		    struct file *file, unsigned open_flags,
1661		    umode_t mode)
1662{
1663	DECLARE_WAIT_QUEUE_HEAD_ONSTACK(wq);
1664	struct nfs_open_context *ctx;
1665	struct dentry *res;
1666	struct iattr attr = { .ia_valid = ATTR_OPEN };
1667	struct inode *inode;
1668	unsigned int lookup_flags = 0;
1669	bool switched = false;
1670	int created = 0;
1671	int err;
1672
1673	/* Expect a negative dentry */
1674	BUG_ON(d_inode(dentry));
1675
1676	dfprintk(VFS, "NFS: atomic_open(%s/%lu), %pd\n",
1677			dir->i_sb->s_id, dir->i_ino, dentry);
1678
1679	err = nfs_check_flags(open_flags);
1680	if (err)
1681		return err;
1682
1683	/* NFS only supports OPEN on regular files */
1684	if ((open_flags & O_DIRECTORY)) {
1685		if (!d_in_lookup(dentry)) {
1686			/*
1687			 * Hashed negative dentry with O_DIRECTORY: dentry was
1688			 * revalidated and is fine, no need to perform lookup
1689			 * again
1690			 */
1691			return -ENOENT;
1692		}
1693		lookup_flags = LOOKUP_OPEN|LOOKUP_DIRECTORY;
1694		goto no_open;
1695	}
1696
1697	if (dentry->d_name.len > NFS_SERVER(dir)->namelen)
1698		return -ENAMETOOLONG;
1699
1700	if (open_flags & O_CREAT) {
1701		struct nfs_server *server = NFS_SERVER(dir);
1702
1703		if (!(server->attr_bitmask[2] & FATTR4_WORD2_MODE_UMASK))
1704			mode &= ~current_umask();
1705
1706		attr.ia_valid |= ATTR_MODE;
1707		attr.ia_mode = mode;
1708	}
1709	if (open_flags & O_TRUNC) {
1710		attr.ia_valid |= ATTR_SIZE;
1711		attr.ia_size = 0;
1712	}
1713
1714	if (!(open_flags & O_CREAT) && !d_in_lookup(dentry)) {
1715		d_drop(dentry);
1716		switched = true;
1717		dentry = d_alloc_parallel(dentry->d_parent,
1718					  &dentry->d_name, &wq);
1719		if (IS_ERR(dentry))
1720			return PTR_ERR(dentry);
1721		if (unlikely(!d_in_lookup(dentry)))
1722			return finish_no_open(file, dentry);
1723	}
1724
1725	ctx = create_nfs_open_context(dentry, open_flags, file);
1726	err = PTR_ERR(ctx);
1727	if (IS_ERR(ctx))
1728		goto out;
1729
1730	trace_nfs_atomic_open_enter(dir, ctx, open_flags);
1731	inode = NFS_PROTO(dir)->open_context(dir, ctx, open_flags, &attr, &created);
1732	if (created)
1733		file->f_mode |= FMODE_CREATED;
1734	if (IS_ERR(inode)) {
1735		err = PTR_ERR(inode);
1736		trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1737		put_nfs_open_context(ctx);
1738		d_drop(dentry);
1739		switch (err) {
1740		case -ENOENT:
1741			d_splice_alias(NULL, dentry);
1742			nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1743			break;
1744		case -EISDIR:
1745		case -ENOTDIR:
1746			goto no_open;
1747		case -ELOOP:
1748			if (!(open_flags & O_NOFOLLOW))
1749				goto no_open;
1750			break;
1751			/* case -EINVAL: */
1752		default:
1753			break;
1754		}
1755		goto out;
1756	}
1757
1758	err = nfs_finish_open(ctx, ctx->dentry, file, open_flags);
1759	trace_nfs_atomic_open_exit(dir, ctx, open_flags, err);
1760	put_nfs_open_context(ctx);
1761out:
1762	if (unlikely(switched)) {
1763		d_lookup_done(dentry);
1764		dput(dentry);
1765	}
1766	return err;
1767
1768no_open:
1769	res = nfs_lookup(dir, dentry, lookup_flags);
1770	if (!res) {
1771		inode = d_inode(dentry);
1772		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1773		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode)))
1774			res = ERR_PTR(-ENOTDIR);
1775		else if (inode && S_ISREG(inode->i_mode))
1776			res = ERR_PTR(-EOPENSTALE);
1777	} else if (!IS_ERR(res)) {
1778		inode = d_inode(res);
1779		if ((lookup_flags & LOOKUP_DIRECTORY) && inode &&
1780		    !(S_ISDIR(inode->i_mode) || S_ISLNK(inode->i_mode))) {
1781			dput(res);
1782			res = ERR_PTR(-ENOTDIR);
1783		} else if (inode && S_ISREG(inode->i_mode)) {
1784			dput(res);
1785			res = ERR_PTR(-EOPENSTALE);
1786		}
1787	}
1788	if (switched) {
1789		d_lookup_done(dentry);
1790		if (!res)
1791			res = dentry;
1792		else
1793			dput(dentry);
1794	}
1795	if (IS_ERR(res))
1796		return PTR_ERR(res);
1797	return finish_no_open(file, res);
1798}
1799EXPORT_SYMBOL_GPL(nfs_atomic_open);
1800
1801static int
1802nfs4_do_lookup_revalidate(struct inode *dir, struct dentry *dentry,
1803			  unsigned int flags)
1804{
1805	struct inode *inode;
1806
1807	if (!(flags & LOOKUP_OPEN) || (flags & LOOKUP_DIRECTORY))
1808		goto full_reval;
1809	if (d_mountpoint(dentry))
1810		goto full_reval;
1811
1812	inode = d_inode(dentry);
1813
1814	/* We can't create new files in nfs_open_revalidate(), so we
1815	 * optimize away revalidation of negative dentries.
1816	 */
1817	if (inode == NULL)
1818		goto full_reval;
1819
1820	if (nfs_verifier_is_delegated(dentry))
1821		return nfs_lookup_revalidate_delegated(dir, dentry, inode);
1822
1823	/* NFS only supports OPEN on regular files */
1824	if (!S_ISREG(inode->i_mode))
1825		goto full_reval;
1826
1827	/* We cannot do exclusive creation on a positive dentry */
1828	if (flags & (LOOKUP_EXCL | LOOKUP_REVAL))
1829		goto reval_dentry;
1830
1831	/* Check if the directory changed */
1832	if (!nfs_check_verifier(dir, dentry, flags & LOOKUP_RCU))
1833		goto reval_dentry;
1834
1835	/* Let f_op->open() actually open (and revalidate) the file */
1836	return 1;
1837reval_dentry:
1838	if (flags & LOOKUP_RCU)
1839		return -ECHILD;
1840	return nfs_lookup_revalidate_dentry(dir, dentry, inode);
1841
1842full_reval:
1843	return nfs_do_lookup_revalidate(dir, dentry, flags);
1844}
1845
1846static int nfs4_lookup_revalidate(struct dentry *dentry, unsigned int flags)
1847{
1848	return __nfs_lookup_revalidate(dentry, flags,
1849			nfs4_do_lookup_revalidate);
1850}
1851
1852#endif /* CONFIG_NFSV4 */
1853
1854struct dentry *
1855nfs_add_or_obtain(struct dentry *dentry, struct nfs_fh *fhandle,
1856				struct nfs_fattr *fattr,
1857				struct nfs4_label *label)
1858{
1859	struct dentry *parent = dget_parent(dentry);
1860	struct inode *dir = d_inode(parent);
1861	struct inode *inode;
1862	struct dentry *d;
1863	int error;
1864
1865	d_drop(dentry);
1866
1867	if (fhandle->size == 0) {
1868		error = NFS_PROTO(dir)->lookup(dir, dentry, fhandle, fattr, NULL);
1869		if (error)
1870			goto out_error;
1871	}
1872	nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
1873	if (!(fattr->valid & NFS_ATTR_FATTR)) {
1874		struct nfs_server *server = NFS_SB(dentry->d_sb);
1875		error = server->nfs_client->rpc_ops->getattr(server, fhandle,
1876				fattr, NULL, NULL);
1877		if (error < 0)
1878			goto out_error;
1879	}
1880	inode = nfs_fhget(dentry->d_sb, fhandle, fattr, label);
1881	d = d_splice_alias(inode, dentry);
1882out:
1883	dput(parent);
1884	return d;
1885out_error:
1886	d = ERR_PTR(error);
1887	goto out;
1888}
1889EXPORT_SYMBOL_GPL(nfs_add_or_obtain);
1890
1891/*
1892 * Code common to create, mkdir, and mknod.
1893 */
1894int nfs_instantiate(struct dentry *dentry, struct nfs_fh *fhandle,
1895				struct nfs_fattr *fattr,
1896				struct nfs4_label *label)
1897{
1898	struct dentry *d;
1899
1900	d = nfs_add_or_obtain(dentry, fhandle, fattr, label);
1901	if (IS_ERR(d))
1902		return PTR_ERR(d);
1903
1904	/* Callers don't care */
1905	dput(d);
1906	return 0;
1907}
1908EXPORT_SYMBOL_GPL(nfs_instantiate);
1909
1910/*
1911 * Following a failed create operation, we drop the dentry rather
1912 * than retain a negative dentry. This avoids a problem in the event
1913 * that the operation succeeded on the server, but an error in the
1914 * reply path made it appear to have failed.
1915 */
1916int nfs_create(struct inode *dir, struct dentry *dentry,
1917		umode_t mode, bool excl)
1918{
1919	struct iattr attr;
1920	int open_flags = excl ? O_CREAT | O_EXCL : O_CREAT;
1921	int error;
1922
1923	dfprintk(VFS, "NFS: create(%s/%lu), %pd\n",
1924			dir->i_sb->s_id, dir->i_ino, dentry);
1925
1926	attr.ia_mode = mode;
1927	attr.ia_valid = ATTR_MODE;
1928
1929	trace_nfs_create_enter(dir, dentry, open_flags);
1930	error = NFS_PROTO(dir)->create(dir, dentry, &attr, open_flags);
1931	trace_nfs_create_exit(dir, dentry, open_flags, error);
1932	if (error != 0)
1933		goto out_err;
1934	return 0;
1935out_err:
1936	d_drop(dentry);
1937	return error;
1938}
1939EXPORT_SYMBOL_GPL(nfs_create);
1940
1941/*
1942 * See comments for nfs_proc_create regarding failed operations.
1943 */
1944int
1945nfs_mknod(struct inode *dir, struct dentry *dentry, umode_t mode, dev_t rdev)
1946{
1947	struct iattr attr;
1948	int status;
1949
1950	dfprintk(VFS, "NFS: mknod(%s/%lu), %pd\n",
1951			dir->i_sb->s_id, dir->i_ino, dentry);
1952
1953	attr.ia_mode = mode;
1954	attr.ia_valid = ATTR_MODE;
1955
1956	trace_nfs_mknod_enter(dir, dentry);
1957	status = NFS_PROTO(dir)->mknod(dir, dentry, &attr, rdev);
1958	trace_nfs_mknod_exit(dir, dentry, status);
1959	if (status != 0)
1960		goto out_err;
1961	return 0;
1962out_err:
1963	d_drop(dentry);
1964	return status;
1965}
1966EXPORT_SYMBOL_GPL(nfs_mknod);
1967
1968/*
1969 * See comments for nfs_proc_create regarding failed operations.
1970 */
1971int nfs_mkdir(struct inode *dir, struct dentry *dentry, umode_t mode)
1972{
1973	struct iattr attr;
1974	int error;
1975
1976	dfprintk(VFS, "NFS: mkdir(%s/%lu), %pd\n",
1977			dir->i_sb->s_id, dir->i_ino, dentry);
1978
1979	attr.ia_valid = ATTR_MODE;
1980	attr.ia_mode = mode | S_IFDIR;
1981
1982	trace_nfs_mkdir_enter(dir, dentry);
1983	error = NFS_PROTO(dir)->mkdir(dir, dentry, &attr);
1984	trace_nfs_mkdir_exit(dir, dentry, error);
1985	if (error != 0)
1986		goto out_err;
1987	return 0;
1988out_err:
1989	d_drop(dentry);
1990	return error;
1991}
1992EXPORT_SYMBOL_GPL(nfs_mkdir);
1993
1994static void nfs_dentry_handle_enoent(struct dentry *dentry)
1995{
1996	if (simple_positive(dentry))
1997		d_delete(dentry);
1998}
1999
2000int nfs_rmdir(struct inode *dir, struct dentry *dentry)
2001{
2002	int error;
2003
2004	dfprintk(VFS, "NFS: rmdir(%s/%lu), %pd\n",
2005			dir->i_sb->s_id, dir->i_ino, dentry);
2006
2007	trace_nfs_rmdir_enter(dir, dentry);
2008	if (d_really_is_positive(dentry)) {
2009		down_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2010		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2011		/* Ensure the VFS deletes this inode */
2012		switch (error) {
2013		case 0:
2014			clear_nlink(d_inode(dentry));
2015			break;
2016		case -ENOENT:
2017			nfs_dentry_handle_enoent(dentry);
2018		}
2019		up_write(&NFS_I(d_inode(dentry))->rmdir_sem);
2020	} else
2021		error = NFS_PROTO(dir)->rmdir(dir, &dentry->d_name);
2022	trace_nfs_rmdir_exit(dir, dentry, error);
2023
2024	return error;
2025}
2026EXPORT_SYMBOL_GPL(nfs_rmdir);
2027
2028/*
2029 * Remove a file after making sure there are no pending writes,
2030 * and after checking that the file has only one user.
2031 *
2032 * We invalidate the attribute cache and free the inode prior to the operation
2033 * to avoid possible races if the server reuses the inode.
2034 */
2035static int nfs_safe_remove(struct dentry *dentry)
2036{
2037	struct inode *dir = d_inode(dentry->d_parent);
2038	struct inode *inode = d_inode(dentry);
2039	int error = -EBUSY;
2040
2041	dfprintk(VFS, "NFS: safe_remove(%pd2)\n", dentry);
2042
2043	/* If the dentry was sillyrenamed, we simply call d_delete() */
2044	if (dentry->d_flags & DCACHE_NFSFS_RENAMED) {
2045		error = 0;
2046		goto out;
2047	}
2048
2049	trace_nfs_remove_enter(dir, dentry);
2050	if (inode != NULL) {
2051		error = NFS_PROTO(dir)->remove(dir, dentry);
2052		if (error == 0)
2053			nfs_drop_nlink(inode);
2054	} else
2055		error = NFS_PROTO(dir)->remove(dir, dentry);
2056	if (error == -ENOENT)
2057		nfs_dentry_handle_enoent(dentry);
2058	trace_nfs_remove_exit(dir, dentry, error);
2059out:
2060	return error;
2061}
2062
2063/*  We do silly rename. In case sillyrename() returns -EBUSY, the inode
2064 *  belongs to an active ".nfs..." file and we return -EBUSY.
2065 *
2066 *  If sillyrename() returns 0, we do nothing, otherwise we unlink.
2067 */
2068int nfs_unlink(struct inode *dir, struct dentry *dentry)
2069{
2070	int error;
2071	int need_rehash = 0;
2072
2073	dfprintk(VFS, "NFS: unlink(%s/%lu, %pd)\n", dir->i_sb->s_id,
2074		dir->i_ino, dentry);
2075
2076	trace_nfs_unlink_enter(dir, dentry);
2077	spin_lock(&dentry->d_lock);
2078	if (d_count(dentry) > 1) {
2079		spin_unlock(&dentry->d_lock);
2080		/* Start asynchronous writeout of the inode */
2081		write_inode_now(d_inode(dentry), 0);
2082		error = nfs_sillyrename(dir, dentry);
2083		goto out;
2084	}
2085	if (!d_unhashed(dentry)) {
2086		__d_drop(dentry);
2087		need_rehash = 1;
2088	}
2089	spin_unlock(&dentry->d_lock);
2090	error = nfs_safe_remove(dentry);
2091	if (!error || error == -ENOENT) {
2092		nfs_set_verifier(dentry, nfs_save_change_attribute(dir));
2093	} else if (need_rehash)
2094		d_rehash(dentry);
2095out:
2096	trace_nfs_unlink_exit(dir, dentry, error);
2097	return error;
2098}
2099EXPORT_SYMBOL_GPL(nfs_unlink);
2100
2101/*
2102 * To create a symbolic link, most file systems instantiate a new inode,
2103 * add a page to it containing the path, then write it out to the disk
2104 * using prepare_write/commit_write.
2105 *
2106 * Unfortunately the NFS client can't create the in-core inode first
2107 * because it needs a file handle to create an in-core inode (see
2108 * fs/nfs/inode.c:nfs_fhget).  We only have a file handle *after* the
2109 * symlink request has completed on the server.
2110 *
2111 * So instead we allocate a raw page, copy the symname into it, then do
2112 * the SYMLINK request with the page as the buffer.  If it succeeds, we
2113 * now have a new file handle and can instantiate an in-core NFS inode
2114 * and move the raw page into its mapping.
2115 */
2116int nfs_symlink(struct inode *dir, struct dentry *dentry, const char *symname)
2117{
2118	struct page *page;
2119	char *kaddr;
2120	struct iattr attr;
2121	unsigned int pathlen = strlen(symname);
2122	int error;
2123
2124	dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s)\n", dir->i_sb->s_id,
2125		dir->i_ino, dentry, symname);
2126
2127	if (pathlen > PAGE_SIZE)
2128		return -ENAMETOOLONG;
2129
2130	attr.ia_mode = S_IFLNK | S_IRWXUGO;
2131	attr.ia_valid = ATTR_MODE;
2132
2133	page = alloc_page(GFP_USER);
2134	if (!page)
2135		return -ENOMEM;
2136
2137	kaddr = page_address(page);
2138	memcpy(kaddr, symname, pathlen);
2139	if (pathlen < PAGE_SIZE)
2140		memset(kaddr + pathlen, 0, PAGE_SIZE - pathlen);
2141
2142	trace_nfs_symlink_enter(dir, dentry);
2143	error = NFS_PROTO(dir)->symlink(dir, dentry, page, pathlen, &attr);
2144	trace_nfs_symlink_exit(dir, dentry, error);
2145	if (error != 0) {
2146		dfprintk(VFS, "NFS: symlink(%s/%lu, %pd, %s) error %d\n",
2147			dir->i_sb->s_id, dir->i_ino,
2148			dentry, symname, error);
2149		d_drop(dentry);
2150		__free_page(page);
2151		return error;
2152	}
2153
2154	/*
2155	 * No big deal if we can't add this page to the page cache here.
2156	 * READLINK will get the missing page from the server if needed.
2157	 */
2158	if (!add_to_page_cache_lru(page, d_inode(dentry)->i_mapping, 0,
2159							GFP_KERNEL)) {
2160		SetPageUptodate(page);
2161		unlock_page(page);
2162		/*
2163		 * add_to_page_cache_lru() grabs an extra page refcount.
2164		 * Drop it here to avoid leaking this page later.
2165		 */
2166		put_page(page);
2167	} else
2168		__free_page(page);
2169
2170	return 0;
2171}
2172EXPORT_SYMBOL_GPL(nfs_symlink);
2173
2174int
2175nfs_link(struct dentry *old_dentry, struct inode *dir, struct dentry *dentry)
2176{
2177	struct inode *inode = d_inode(old_dentry);
2178	int error;
2179
2180	dfprintk(VFS, "NFS: link(%pd2 -> %pd2)\n",
2181		old_dentry, dentry);
2182
2183	trace_nfs_link_enter(inode, dir, dentry);
2184	d_drop(dentry);
2185	if (S_ISREG(inode->i_mode))
2186		nfs_sync_inode(inode);
2187	error = NFS_PROTO(dir)->link(inode, dir, &dentry->d_name);
2188	if (error == 0) {
2189		ihold(inode);
2190		d_add(dentry, inode);
2191	}
2192	trace_nfs_link_exit(inode, dir, dentry, error);
2193	return error;
2194}
2195EXPORT_SYMBOL_GPL(nfs_link);
2196
2197/*
2198 * RENAME
2199 * FIXME: Some nfsds, like the Linux user space nfsd, may generate a
2200 * different file handle for the same inode after a rename (e.g. when
2201 * moving to a different directory). A fail-safe method to do so would
2202 * be to look up old_dir/old_name, create a link to new_dir/new_name and
2203 * rename the old file using the sillyrename stuff. This way, the original
2204 * file in old_dir will go away when the last process iput()s the inode.
2205 *
2206 * FIXED.
2207 *
2208 * It actually works quite well. One needs to have the possibility for
2209 * at least one ".nfs..." file in each directory the file ever gets
2210 * moved or linked to which happens automagically with the new
2211 * implementation that only depends on the dcache stuff instead of
2212 * using the inode layer
2213 *
2214 * Unfortunately, things are a little more complicated than indicated
2215 * above. For a cross-directory move, we want to make sure we can get
2216 * rid of the old inode after the operation.  This means there must be
2217 * no pending writes (if it's a file), and the use count must be 1.
2218 * If these conditions are met, we can drop the dentries before doing
2219 * the rename.
2220 */
2221int nfs_rename(struct inode *old_dir, struct dentry *old_dentry,
2222	       struct inode *new_dir, struct dentry *new_dentry,
2223	       unsigned int flags)
2224{
2225	struct inode *old_inode = d_inode(old_dentry);
2226	struct inode *new_inode = d_inode(new_dentry);
2227	struct dentry *dentry = NULL, *rehash = NULL;
2228	struct rpc_task *task;
2229	int error = -EBUSY;
2230
2231	if (flags)
2232		return -EINVAL;
2233
2234	dfprintk(VFS, "NFS: rename(%pd2 -> %pd2, ct=%d)\n",
2235		 old_dentry, new_dentry,
2236		 d_count(new_dentry));
2237
2238	trace_nfs_rename_enter(old_dir, old_dentry, new_dir, new_dentry);
2239	/*
2240	 * For non-directories, check whether the target is busy and if so,
2241	 * make a copy of the dentry and then do a silly-rename. If the
2242	 * silly-rename succeeds, the copied dentry is hashed and becomes
2243	 * the new target.
2244	 */
2245	if (new_inode && !S_ISDIR(new_inode->i_mode)) {
2246		/*
2247		 * To prevent any new references to the target during the
2248		 * rename, we unhash the dentry in advance.
2249		 */
2250		if (!d_unhashed(new_dentry)) {
2251			d_drop(new_dentry);
2252			rehash = new_dentry;
2253		}
2254
2255		if (d_count(new_dentry) > 2) {
2256			int err;
2257
2258			/* copy the target dentry's name */
2259			dentry = d_alloc(new_dentry->d_parent,
2260					 &new_dentry->d_name);
2261			if (!dentry)
2262				goto out;
2263
2264			/* silly-rename the existing target ... */
2265			err = nfs_sillyrename(new_dir, new_dentry);
2266			if (err)
2267				goto out;
2268
2269			new_dentry = dentry;
2270			rehash = NULL;
2271			new_inode = NULL;
2272		}
2273	}
2274
2275	if (S_ISREG(old_inode->i_mode))
2276		nfs_sync_inode(old_inode);
2277	task = nfs_async_rename(old_dir, new_dir, old_dentry, new_dentry, NULL);
2278	if (IS_ERR(task)) {
2279		error = PTR_ERR(task);
2280		goto out;
2281	}
2282
2283	error = rpc_wait_for_completion_task(task);
2284	if (error != 0) {
2285		((struct nfs_renamedata *)task->tk_calldata)->cancelled = 1;
2286		/* Paired with the atomic_dec_and_test() barrier in rpc_do_put_task() */
2287		smp_wmb();
2288	} else
2289		error = task->tk_status;
2290	rpc_put_task(task);
2291	/* Ensure the inode attributes are revalidated */
2292	if (error == 0) {
2293		spin_lock(&old_inode->i_lock);
2294		NFS_I(old_inode)->attr_gencount = nfs_inc_attr_generation_counter();
2295		NFS_I(old_inode)->cache_validity |= NFS_INO_INVALID_CHANGE
2296			| NFS_INO_INVALID_CTIME
2297			| NFS_INO_REVAL_FORCED;
2298		spin_unlock(&old_inode->i_lock);
2299	}
2300out:
2301	if (rehash)
2302		d_rehash(rehash);
2303	trace_nfs_rename_exit(old_dir, old_dentry,
2304			new_dir, new_dentry, error);
2305	if (!error) {
2306		if (new_inode != NULL)
2307			nfs_drop_nlink(new_inode);
2308		/*
2309		 * The d_move() should be here instead of in an async RPC completion
2310		 * handler because we need the proper locks to move the dentry.  If
2311		 * we're interrupted by a signal, the async RPC completion handler
2312		 * should mark the directories for revalidation.
2313		 */
2314		d_move(old_dentry, new_dentry);
2315		nfs_set_verifier(old_dentry,
2316					nfs_save_change_attribute(new_dir));
2317	} else if (error == -ENOENT)
2318		nfs_dentry_handle_enoent(old_dentry);
2319
2320	/* new dentry created? */
2321	if (dentry)
2322		dput(dentry);
2323	return error;
2324}
2325EXPORT_SYMBOL_GPL(nfs_rename);
2326
2327static DEFINE_SPINLOCK(nfs_access_lru_lock);
2328static LIST_HEAD(nfs_access_lru_list);
2329static atomic_long_t nfs_access_nr_entries;
2330
2331static unsigned long nfs_access_max_cachesize = 4*1024*1024;
2332module_param(nfs_access_max_cachesize, ulong, 0644);
2333MODULE_PARM_DESC(nfs_access_max_cachesize, "NFS access maximum total cache length");
2334
2335static void nfs_access_free_entry(struct nfs_access_entry *entry)
2336{
2337	put_cred(entry->cred);
2338	kfree_rcu(entry, rcu_head);
2339	smp_mb__before_atomic();
2340	atomic_long_dec(&nfs_access_nr_entries);
2341	smp_mb__after_atomic();
2342}
2343
2344static void nfs_access_free_list(struct list_head *head)
2345{
2346	struct nfs_access_entry *cache;
2347
2348	while (!list_empty(head)) {
2349		cache = list_entry(head->next, struct nfs_access_entry, lru);
2350		list_del(&cache->lru);
2351		nfs_access_free_entry(cache);
2352	}
2353}
2354
2355static unsigned long
2356nfs_do_access_cache_scan(unsigned int nr_to_scan)
2357{
2358	LIST_HEAD(head);
2359	struct nfs_inode *nfsi, *next;
2360	struct nfs_access_entry *cache;
2361	long freed = 0;
2362
2363	spin_lock(&nfs_access_lru_lock);
2364	list_for_each_entry_safe(nfsi, next, &nfs_access_lru_list, access_cache_inode_lru) {
2365		struct inode *inode;
2366
2367		if (nr_to_scan-- == 0)
2368			break;
2369		inode = &nfsi->vfs_inode;
2370		spin_lock(&inode->i_lock);
2371		if (list_empty(&nfsi->access_cache_entry_lru))
2372			goto remove_lru_entry;
2373		cache = list_entry(nfsi->access_cache_entry_lru.next,
2374				struct nfs_access_entry, lru);
2375		list_move(&cache->lru, &head);
2376		rb_erase(&cache->rb_node, &nfsi->access_cache);
2377		freed++;
2378		if (!list_empty(&nfsi->access_cache_entry_lru))
2379			list_move_tail(&nfsi->access_cache_inode_lru,
2380					&nfs_access_lru_list);
2381		else {
2382remove_lru_entry:
2383			list_del_init(&nfsi->access_cache_inode_lru);
2384			smp_mb__before_atomic();
2385			clear_bit(NFS_INO_ACL_LRU_SET, &nfsi->flags);
2386			smp_mb__after_atomic();
2387		}
2388		spin_unlock(&inode->i_lock);
2389	}
2390	spin_unlock(&nfs_access_lru_lock);
2391	nfs_access_free_list(&head);
2392	return freed;
2393}
2394
2395unsigned long
2396nfs_access_cache_scan(struct shrinker *shrink, struct shrink_control *sc)
2397{
2398	int nr_to_scan = sc->nr_to_scan;
2399	gfp_t gfp_mask = sc->gfp_mask;
2400
2401	if ((gfp_mask & GFP_KERNEL) != GFP_KERNEL)
2402		return SHRINK_STOP;
2403	return nfs_do_access_cache_scan(nr_to_scan);
2404}
2405
2406
2407unsigned long
2408nfs_access_cache_count(struct shrinker *shrink, struct shrink_control *sc)
2409{
2410	return vfs_pressure_ratio(atomic_long_read(&nfs_access_nr_entries));
2411}
2412
2413static void
2414nfs_access_cache_enforce_limit(void)
2415{
2416	long nr_entries = atomic_long_read(&nfs_access_nr_entries);
2417	unsigned long diff;
2418	unsigned int nr_to_scan;
2419
2420	if (nr_entries < 0 || nr_entries <= nfs_access_max_cachesize)
2421		return;
2422	nr_to_scan = 100;
2423	diff = nr_entries - nfs_access_max_cachesize;
2424	if (diff < nr_to_scan)
2425		nr_to_scan = diff;
2426	nfs_do_access_cache_scan(nr_to_scan);
2427}
2428
2429static void __nfs_access_zap_cache(struct nfs_inode *nfsi, struct list_head *head)
2430{
2431	struct rb_root *root_node = &nfsi->access_cache;
2432	struct rb_node *n;
2433	struct nfs_access_entry *entry;
2434
2435	/* Unhook entries from the cache */
2436	while ((n = rb_first(root_node)) != NULL) {
2437		entry = rb_entry(n, struct nfs_access_entry, rb_node);
2438		rb_erase(n, root_node);
2439		list_move(&entry->lru, head);
2440	}
2441	nfsi->cache_validity &= ~NFS_INO_INVALID_ACCESS;
2442}
2443
2444void nfs_access_zap_cache(struct inode *inode)
2445{
2446	LIST_HEAD(head);
2447
2448	if (test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags) == 0)
2449		return;
2450	/* Remove from global LRU init */
2451	spin_lock(&nfs_access_lru_lock);
2452	if (test_and_clear_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2453		list_del_init(&NFS_I(inode)->access_cache_inode_lru);
2454
2455	spin_lock(&inode->i_lock);
2456	__nfs_access_zap_cache(NFS_I(inode), &head);
2457	spin_unlock(&inode->i_lock);
2458	spin_unlock(&nfs_access_lru_lock);
2459	nfs_access_free_list(&head);
2460}
2461EXPORT_SYMBOL_GPL(nfs_access_zap_cache);
2462
2463static struct nfs_access_entry *nfs_access_search_rbtree(struct inode *inode, const struct cred *cred)
2464{
2465	struct rb_node *n = NFS_I(inode)->access_cache.rb_node;
2466
2467	while (n != NULL) {
2468		struct nfs_access_entry *entry =
2469			rb_entry(n, struct nfs_access_entry, rb_node);
2470		int cmp = cred_fscmp(cred, entry->cred);
2471
2472		if (cmp < 0)
2473			n = n->rb_left;
2474		else if (cmp > 0)
2475			n = n->rb_right;
2476		else
2477			return entry;
2478	}
2479	return NULL;
2480}
2481
2482static int nfs_access_get_cached_locked(struct inode *inode, const struct cred *cred, u32 *mask, bool may_block)
2483{
2484	struct nfs_inode *nfsi = NFS_I(inode);
2485	struct nfs_access_entry *cache;
2486	bool retry = true;
2487	int err;
2488
2489	spin_lock(&inode->i_lock);
2490	for(;;) {
2491		if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2492			goto out_zap;
2493		cache = nfs_access_search_rbtree(inode, cred);
2494		err = -ENOENT;
2495		if (cache == NULL)
2496			goto out;
2497		/* Found an entry, is our attribute cache valid? */
2498		if (!nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2499			break;
2500		if (!retry)
2501			break;
2502		err = -ECHILD;
2503		if (!may_block)
2504			goto out;
2505		spin_unlock(&inode->i_lock);
2506		err = __nfs_revalidate_inode(NFS_SERVER(inode), inode);
2507		if (err)
2508			return err;
2509		spin_lock(&inode->i_lock);
2510		retry = false;
2511	}
2512	*mask = cache->mask;
2513	list_move_tail(&cache->lru, &nfsi->access_cache_entry_lru);
2514	err = 0;
2515out:
2516	spin_unlock(&inode->i_lock);
2517	return err;
2518out_zap:
2519	spin_unlock(&inode->i_lock);
2520	nfs_access_zap_cache(inode);
2521	return -ENOENT;
2522}
2523
2524static int nfs_access_get_cached_rcu(struct inode *inode, const struct cred *cred, u32 *mask)
2525{
2526	/* Only check the most recently returned cache entry,
2527	 * but do it without locking.
2528	 */
2529	struct nfs_inode *nfsi = NFS_I(inode);
2530	struct nfs_access_entry *cache;
2531	int err = -ECHILD;
2532	struct list_head *lh;
2533
2534	rcu_read_lock();
2535	if (nfsi->cache_validity & NFS_INO_INVALID_ACCESS)
2536		goto out;
2537	lh = rcu_dereference(list_tail_rcu(&nfsi->access_cache_entry_lru));
2538	cache = list_entry(lh, struct nfs_access_entry, lru);
2539	if (lh == &nfsi->access_cache_entry_lru ||
2540	    cred_fscmp(cred, cache->cred) != 0)
2541		cache = NULL;
2542	if (cache == NULL)
2543		goto out;
2544	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_ACCESS))
2545		goto out;
2546	*mask = cache->mask;
2547	err = 0;
2548out:
2549	rcu_read_unlock();
2550	return err;
2551}
2552
2553int nfs_access_get_cached(struct inode *inode, const struct cred *cred,
2554			  u32 *mask, bool may_block)
2555{
2556	int status;
2557
2558	status = nfs_access_get_cached_rcu(inode, cred, mask);
2559	if (status != 0)
2560		status = nfs_access_get_cached_locked(inode, cred, mask,
2561		    may_block);
2562
2563	return status;
2564}
2565EXPORT_SYMBOL_GPL(nfs_access_get_cached);
2566
2567static void nfs_access_add_rbtree(struct inode *inode, struct nfs_access_entry *set)
2568{
2569	struct nfs_inode *nfsi = NFS_I(inode);
2570	struct rb_root *root_node = &nfsi->access_cache;
2571	struct rb_node **p = &root_node->rb_node;
2572	struct rb_node *parent = NULL;
2573	struct nfs_access_entry *entry;
2574	int cmp;
2575
2576	spin_lock(&inode->i_lock);
2577	while (*p != NULL) {
2578		parent = *p;
2579		entry = rb_entry(parent, struct nfs_access_entry, rb_node);
2580		cmp = cred_fscmp(set->cred, entry->cred);
2581
2582		if (cmp < 0)
2583			p = &parent->rb_left;
2584		else if (cmp > 0)
2585			p = &parent->rb_right;
2586		else
2587			goto found;
2588	}
2589	rb_link_node(&set->rb_node, parent, p);
2590	rb_insert_color(&set->rb_node, root_node);
2591	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2592	spin_unlock(&inode->i_lock);
2593	return;
2594found:
2595	rb_replace_node(parent, &set->rb_node, root_node);
2596	list_add_tail(&set->lru, &nfsi->access_cache_entry_lru);
2597	list_del(&entry->lru);
2598	spin_unlock(&inode->i_lock);
2599	nfs_access_free_entry(entry);
2600}
2601
2602void nfs_access_add_cache(struct inode *inode, struct nfs_access_entry *set)
2603{
2604	struct nfs_access_entry *cache = kmalloc(sizeof(*cache), GFP_KERNEL);
2605	if (cache == NULL)
2606		return;
2607	RB_CLEAR_NODE(&cache->rb_node);
2608	cache->cred = get_cred(set->cred);
2609	cache->mask = set->mask;
2610
2611	/* The above field assignments must be visible
2612	 * before this item appears on the lru.  We cannot easily
2613	 * use rcu_assign_pointer, so just force the memory barrier.
2614	 */
2615	smp_wmb();
2616	nfs_access_add_rbtree(inode, cache);
2617
2618	/* Update accounting */
2619	smp_mb__before_atomic();
2620	atomic_long_inc(&nfs_access_nr_entries);
2621	smp_mb__after_atomic();
2622
2623	/* Add inode to global LRU list */
2624	if (!test_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags)) {
2625		spin_lock(&nfs_access_lru_lock);
2626		if (!test_and_set_bit(NFS_INO_ACL_LRU_SET, &NFS_I(inode)->flags))
2627			list_add_tail(&NFS_I(inode)->access_cache_inode_lru,
2628					&nfs_access_lru_list);
2629		spin_unlock(&nfs_access_lru_lock);
2630	}
2631	nfs_access_cache_enforce_limit();
2632}
2633EXPORT_SYMBOL_GPL(nfs_access_add_cache);
2634
2635#define NFS_MAY_READ (NFS_ACCESS_READ)
2636#define NFS_MAY_WRITE (NFS_ACCESS_MODIFY | \
2637		NFS_ACCESS_EXTEND | \
2638		NFS_ACCESS_DELETE)
2639#define NFS_FILE_MAY_WRITE (NFS_ACCESS_MODIFY | \
2640		NFS_ACCESS_EXTEND)
2641#define NFS_DIR_MAY_WRITE NFS_MAY_WRITE
2642#define NFS_MAY_LOOKUP (NFS_ACCESS_LOOKUP)
2643#define NFS_MAY_EXECUTE (NFS_ACCESS_EXECUTE)
2644static int
2645nfs_access_calc_mask(u32 access_result, umode_t umode)
2646{
2647	int mask = 0;
2648
2649	if (access_result & NFS_MAY_READ)
2650		mask |= MAY_READ;
2651	if (S_ISDIR(umode)) {
2652		if ((access_result & NFS_DIR_MAY_WRITE) == NFS_DIR_MAY_WRITE)
2653			mask |= MAY_WRITE;
2654		if ((access_result & NFS_MAY_LOOKUP) == NFS_MAY_LOOKUP)
2655			mask |= MAY_EXEC;
2656	} else if (S_ISREG(umode)) {
2657		if ((access_result & NFS_FILE_MAY_WRITE) == NFS_FILE_MAY_WRITE)
2658			mask |= MAY_WRITE;
2659		if ((access_result & NFS_MAY_EXECUTE) == NFS_MAY_EXECUTE)
2660			mask |= MAY_EXEC;
2661	} else if (access_result & NFS_MAY_WRITE)
2662			mask |= MAY_WRITE;
2663	return mask;
2664}
2665
2666void nfs_access_set_mask(struct nfs_access_entry *entry, u32 access_result)
2667{
2668	entry->mask = access_result;
2669}
2670EXPORT_SYMBOL_GPL(nfs_access_set_mask);
2671
2672static int nfs_do_access(struct inode *inode, const struct cred *cred, int mask)
2673{
2674	struct nfs_access_entry cache;
2675	bool may_block = (mask & MAY_NOT_BLOCK) == 0;
2676	int cache_mask = -1;
2677	int status;
2678
2679	trace_nfs_access_enter(inode);
2680
2681	status = nfs_access_get_cached(inode, cred, &cache.mask, may_block);
2682	if (status == 0)
2683		goto out_cached;
2684
2685	status = -ECHILD;
2686	if (!may_block)
2687		goto out;
2688
2689	/*
2690	 * Determine which access bits we want to ask for...
2691	 */
2692	cache.mask = NFS_ACCESS_READ | NFS_ACCESS_MODIFY | NFS_ACCESS_EXTEND;
2693	if (nfs_server_capable(inode, NFS_CAP_XATTR)) {
2694		cache.mask |= NFS_ACCESS_XAREAD | NFS_ACCESS_XAWRITE |
2695		    NFS_ACCESS_XALIST;
2696	}
2697	if (S_ISDIR(inode->i_mode))
2698		cache.mask |= NFS_ACCESS_DELETE | NFS_ACCESS_LOOKUP;
2699	else
2700		cache.mask |= NFS_ACCESS_EXECUTE;
2701	cache.cred = cred;
2702	status = NFS_PROTO(inode)->access(inode, &cache);
2703	if (status != 0) {
2704		if (status == -ESTALE) {
2705			if (!S_ISDIR(inode->i_mode))
2706				nfs_set_inode_stale(inode);
2707			else
2708				nfs_zap_caches(inode);
2709		}
2710		goto out;
2711	}
2712	nfs_access_add_cache(inode, &cache);
2713out_cached:
2714	cache_mask = nfs_access_calc_mask(cache.mask, inode->i_mode);
2715	if ((mask & ~cache_mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) != 0)
2716		status = -EACCES;
2717out:
2718	trace_nfs_access_exit(inode, mask, cache_mask, status);
2719	return status;
2720}
2721
2722static int nfs_open_permission_mask(int openflags)
2723{
2724	int mask = 0;
2725
2726	if (openflags & __FMODE_EXEC) {
2727		/* ONLY check exec rights */
2728		mask = MAY_EXEC;
2729	} else {
2730		if ((openflags & O_ACCMODE) != O_WRONLY)
2731			mask |= MAY_READ;
2732		if ((openflags & O_ACCMODE) != O_RDONLY)
2733			mask |= MAY_WRITE;
2734	}
2735
2736	return mask;
2737}
2738
2739int nfs_may_open(struct inode *inode, const struct cred *cred, int openflags)
2740{
2741	return nfs_do_access(inode, cred, nfs_open_permission_mask(openflags));
2742}
2743EXPORT_SYMBOL_GPL(nfs_may_open);
2744
2745static int nfs_execute_ok(struct inode *inode, int mask)
2746{
2747	struct nfs_server *server = NFS_SERVER(inode);
2748	int ret = 0;
2749
2750	if (S_ISDIR(inode->i_mode))
2751		return 0;
2752	if (nfs_check_cache_invalid(inode, NFS_INO_INVALID_OTHER)) {
2753		if (mask & MAY_NOT_BLOCK)
2754			return -ECHILD;
2755		ret = __nfs_revalidate_inode(server, inode);
2756	}
2757	if (ret == 0 && !execute_ok(inode))
2758		ret = -EACCES;
2759	return ret;
2760}
2761
2762int nfs_permission(struct inode *inode, int mask)
2763{
2764	const struct cred *cred = current_cred();
2765	int res = 0;
2766
2767	nfs_inc_stats(inode, NFSIOS_VFSACCESS);
2768
2769	if ((mask & (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)
2770		goto out;
2771	/* Is this sys_access() ? */
2772	if (mask & (MAY_ACCESS | MAY_CHDIR))
2773		goto force_lookup;
2774
2775	switch (inode->i_mode & S_IFMT) {
2776		case S_IFLNK:
2777			goto out;
2778		case S_IFREG:
2779			if ((mask & MAY_OPEN) &&
2780			   nfs_server_capable(inode, NFS_CAP_ATOMIC_OPEN))
2781				return 0;
2782			break;
2783		case S_IFDIR:
2784			/*
2785			 * Optimize away all write operations, since the server
2786			 * will check permissions when we perform the op.
2787			 */
2788			if ((mask & MAY_WRITE) && !(mask & MAY_READ))
2789				goto out;
2790	}
2791
2792force_lookup:
2793	if (!NFS_PROTO(inode)->access)
2794		goto out_notsup;
2795
2796	res = nfs_do_access(inode, cred, mask);
2797out:
2798	if (!res && (mask & MAY_EXEC))
2799		res = nfs_execute_ok(inode, mask);
2800
2801	dfprintk(VFS, "NFS: permission(%s/%lu), mask=0x%x, res=%d\n",
2802		inode->i_sb->s_id, inode->i_ino, mask, res);
2803	return res;
2804out_notsup:
2805	if (mask & MAY_NOT_BLOCK)
2806		return -ECHILD;
2807
2808	res = nfs_revalidate_inode(NFS_SERVER(inode), inode);
2809	if (res == 0)
2810		res = generic_permission(inode, mask);
2811	goto out;
2812}
2813EXPORT_SYMBOL_GPL(nfs_permission);
2814
2815/*
2816 * Local variables:
2817 *  version-control: t
2818 *  kept-new-versions: 5
2819 * End:
2820 */
2821