1// SPDX-License-Identifier: GPL-2.0-only 2/* 3 * fs/kernfs/dir.c - kernfs directory implementation 4 * 5 * Copyright (c) 2001-3 Patrick Mochel 6 * Copyright (c) 2007 SUSE Linux Products GmbH 7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org> 8 */ 9 10#include <linux/sched.h> 11#include <linux/fs.h> 12#include <linux/namei.h> 13#include <linux/idr.h> 14#include <linux/slab.h> 15#include <linux/security.h> 16#include <linux/hash.h> 17 18#include "kernfs-internal.h" 19 20DEFINE_MUTEX(kernfs_mutex); 21static DEFINE_SPINLOCK(kernfs_rename_lock); /* kn->parent and ->name */ 22/* 23 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to 24 * call pr_cont() while holding rename_lock. Because sometimes pr_cont() 25 * will perform wakeups when releasing console_sem. Holding rename_lock 26 * will introduce deadlock if the scheduler reads the kernfs_name in the 27 * wakeup path. 28 */ 29static DEFINE_SPINLOCK(kernfs_pr_cont_lock); 30static char kernfs_pr_cont_buf[PATH_MAX]; /* protected by pr_cont_lock */ 31static DEFINE_SPINLOCK(kernfs_idr_lock); /* root->ino_idr */ 32 33#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb) 34 35static bool kernfs_active(struct kernfs_node *kn) 36{ 37 lockdep_assert_held(&kernfs_mutex); 38 return atomic_read(&kn->active) >= 0; 39} 40 41static bool kernfs_lockdep(struct kernfs_node *kn) 42{ 43#ifdef CONFIG_DEBUG_LOCK_ALLOC 44 return kn->flags & KERNFS_LOCKDEP; 45#else 46 return false; 47#endif 48} 49 50static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen) 51{ 52 if (!kn) 53 return strlcpy(buf, "(null)", buflen); 54 55 return strlcpy(buf, kn->parent ? kn->name : "/", buflen); 56} 57 58/* kernfs_node_depth - compute depth from @from to @to */ 59static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to) 60{ 61 size_t depth = 0; 62 63 while (to->parent && to != from) { 64 depth++; 65 to = to->parent; 66 } 67 return depth; 68} 69 70static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a, 71 struct kernfs_node *b) 72{ 73 size_t da, db; 74 struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b); 75 76 if (ra != rb) 77 return NULL; 78 79 da = kernfs_depth(ra->kn, a); 80 db = kernfs_depth(rb->kn, b); 81 82 while (da > db) { 83 a = a->parent; 84 da--; 85 } 86 while (db > da) { 87 b = b->parent; 88 db--; 89 } 90 91 /* worst case b and a will be the same at root */ 92 while (b != a) { 93 b = b->parent; 94 a = a->parent; 95 } 96 97 return a; 98} 99 100/** 101 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to, 102 * where kn_from is treated as root of the path. 103 * @kn_from: kernfs node which should be treated as root for the path 104 * @kn_to: kernfs node to which path is needed 105 * @buf: buffer to copy the path into 106 * @buflen: size of @buf 107 * 108 * We need to handle couple of scenarios here: 109 * [1] when @kn_from is an ancestor of @kn_to at some level 110 * kn_from: /n1/n2/n3 111 * kn_to: /n1/n2/n3/n4/n5 112 * result: /n4/n5 113 * 114 * [2] when @kn_from is on a different hierarchy and we need to find common 115 * ancestor between @kn_from and @kn_to. 116 * kn_from: /n1/n2/n3/n4 117 * kn_to: /n1/n2/n5 118 * result: /../../n5 119 * OR 120 * kn_from: /n1/n2/n3/n4/n5 [depth=5] 121 * kn_to: /n1/n2/n3 [depth=3] 122 * result: /../.. 123 * 124 * [3] when @kn_to is NULL result will be "(null)" 125 * 126 * Returns the length of the full path. If the full length is equal to or 127 * greater than @buflen, @buf contains the truncated path with the trailing 128 * '\0'. On error, -errno is returned. 129 */ 130static int kernfs_path_from_node_locked(struct kernfs_node *kn_to, 131 struct kernfs_node *kn_from, 132 char *buf, size_t buflen) 133{ 134 struct kernfs_node *kn, *common; 135 const char parent_str[] = "/.."; 136 size_t depth_from, depth_to, len = 0; 137 int i, j; 138 139 if (!kn_to) 140 return strlcpy(buf, "(null)", buflen); 141 142 if (!kn_from) 143 kn_from = kernfs_root(kn_to)->kn; 144 145 if (kn_from == kn_to) 146 return strlcpy(buf, "/", buflen); 147 148 if (!buf) 149 return -EINVAL; 150 151 common = kernfs_common_ancestor(kn_from, kn_to); 152 if (WARN_ON(!common)) 153 return -EINVAL; 154 155 depth_to = kernfs_depth(common, kn_to); 156 depth_from = kernfs_depth(common, kn_from); 157 158 buf[0] = '\0'; 159 160 for (i = 0; i < depth_from; i++) 161 len += strlcpy(buf + len, parent_str, 162 len < buflen ? buflen - len : 0); 163 164 /* Calculate how many bytes we need for the rest */ 165 for (i = depth_to - 1; i >= 0; i--) { 166 for (kn = kn_to, j = 0; j < i; j++) 167 kn = kn->parent; 168 len += strlcpy(buf + len, "/", 169 len < buflen ? buflen - len : 0); 170 len += strlcpy(buf + len, kn->name, 171 len < buflen ? buflen - len : 0); 172 } 173 174 return len; 175} 176 177/** 178 * kernfs_name - obtain the name of a given node 179 * @kn: kernfs_node of interest 180 * @buf: buffer to copy @kn's name into 181 * @buflen: size of @buf 182 * 183 * Copies the name of @kn into @buf of @buflen bytes. The behavior is 184 * similar to strlcpy(). It returns the length of @kn's name and if @buf 185 * isn't long enough, it's filled upto @buflen-1 and nul terminated. 186 * 187 * Fills buffer with "(null)" if @kn is NULL. 188 * 189 * This function can be called from any context. 190 */ 191int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen) 192{ 193 unsigned long flags; 194 int ret; 195 196 spin_lock_irqsave(&kernfs_rename_lock, flags); 197 ret = kernfs_name_locked(kn, buf, buflen); 198 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 199 return ret; 200} 201 202/** 203 * kernfs_path_from_node - build path of node @to relative to @from. 204 * @from: parent kernfs_node relative to which we need to build the path 205 * @to: kernfs_node of interest 206 * @buf: buffer to copy @to's path into 207 * @buflen: size of @buf 208 * 209 * Builds @to's path relative to @from in @buf. @from and @to must 210 * be on the same kernfs-root. If @from is not parent of @to, then a relative 211 * path (which includes '..'s) as needed to reach from @from to @to is 212 * returned. 213 * 214 * Returns the length of the full path. If the full length is equal to or 215 * greater than @buflen, @buf contains the truncated path with the trailing 216 * '\0'. On error, -errno is returned. 217 */ 218int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from, 219 char *buf, size_t buflen) 220{ 221 unsigned long flags; 222 int ret; 223 224 spin_lock_irqsave(&kernfs_rename_lock, flags); 225 ret = kernfs_path_from_node_locked(to, from, buf, buflen); 226 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 227 return ret; 228} 229EXPORT_SYMBOL_GPL(kernfs_path_from_node); 230 231/** 232 * pr_cont_kernfs_name - pr_cont name of a kernfs_node 233 * @kn: kernfs_node of interest 234 * 235 * This function can be called from any context. 236 */ 237void pr_cont_kernfs_name(struct kernfs_node *kn) 238{ 239 unsigned long flags; 240 241 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 242 243 kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf)); 244 pr_cont("%s", kernfs_pr_cont_buf); 245 246 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 247} 248 249/** 250 * pr_cont_kernfs_path - pr_cont path of a kernfs_node 251 * @kn: kernfs_node of interest 252 * 253 * This function can be called from any context. 254 */ 255void pr_cont_kernfs_path(struct kernfs_node *kn) 256{ 257 unsigned long flags; 258 int sz; 259 260 spin_lock_irqsave(&kernfs_pr_cont_lock, flags); 261 262 sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf, 263 sizeof(kernfs_pr_cont_buf)); 264 if (sz < 0) { 265 pr_cont("(error)"); 266 goto out; 267 } 268 269 if (sz >= sizeof(kernfs_pr_cont_buf)) { 270 pr_cont("(name too long)"); 271 goto out; 272 } 273 274 pr_cont("%s", kernfs_pr_cont_buf); 275 276out: 277 spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags); 278} 279 280/** 281 * kernfs_get_parent - determine the parent node and pin it 282 * @kn: kernfs_node of interest 283 * 284 * Determines @kn's parent, pins and returns it. This function can be 285 * called from any context. 286 */ 287struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn) 288{ 289 struct kernfs_node *parent; 290 unsigned long flags; 291 292 spin_lock_irqsave(&kernfs_rename_lock, flags); 293 parent = kn->parent; 294 kernfs_get(parent); 295 spin_unlock_irqrestore(&kernfs_rename_lock, flags); 296 297 return parent; 298} 299 300/** 301 * kernfs_name_hash 302 * @name: Null terminated string to hash 303 * @ns: Namespace tag to hash 304 * 305 * Returns 31 bit hash of ns + name (so it fits in an off_t ) 306 */ 307static unsigned int kernfs_name_hash(const char *name, const void *ns) 308{ 309 unsigned long hash = init_name_hash(ns); 310 unsigned int len = strlen(name); 311 while (len--) 312 hash = partial_name_hash(*name++, hash); 313 hash = end_name_hash(hash); 314 hash &= 0x7fffffffU; 315 /* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */ 316 if (hash < 2) 317 hash += 2; 318 if (hash >= INT_MAX) 319 hash = INT_MAX - 1; 320 return hash; 321} 322 323static int kernfs_name_compare(unsigned int hash, const char *name, 324 const void *ns, const struct kernfs_node *kn) 325{ 326 if (hash < kn->hash) 327 return -1; 328 if (hash > kn->hash) 329 return 1; 330 if (ns < kn->ns) 331 return -1; 332 if (ns > kn->ns) 333 return 1; 334 return strcmp(name, kn->name); 335} 336 337static int kernfs_sd_compare(const struct kernfs_node *left, 338 const struct kernfs_node *right) 339{ 340 return kernfs_name_compare(left->hash, left->name, left->ns, right); 341} 342 343/** 344 * kernfs_link_sibling - link kernfs_node into sibling rbtree 345 * @kn: kernfs_node of interest 346 * 347 * Link @kn into its sibling rbtree which starts from 348 * @kn->parent->dir.children. 349 * 350 * Locking: 351 * mutex_lock(kernfs_mutex) 352 * 353 * RETURNS: 354 * 0 on susccess -EEXIST on failure. 355 */ 356static int kernfs_link_sibling(struct kernfs_node *kn) 357{ 358 struct rb_node **node = &kn->parent->dir.children.rb_node; 359 struct rb_node *parent = NULL; 360 361 while (*node) { 362 struct kernfs_node *pos; 363 int result; 364 365 pos = rb_to_kn(*node); 366 parent = *node; 367 result = kernfs_sd_compare(kn, pos); 368 if (result < 0) 369 node = &pos->rb.rb_left; 370 else if (result > 0) 371 node = &pos->rb.rb_right; 372 else 373 return -EEXIST; 374 } 375 376 /* add new node and rebalance the tree */ 377 rb_link_node(&kn->rb, parent, node); 378 rb_insert_color(&kn->rb, &kn->parent->dir.children); 379 380 /* successfully added, account subdir number */ 381 if (kernfs_type(kn) == KERNFS_DIR) 382 kn->parent->dir.subdirs++; 383 384 return 0; 385} 386 387/** 388 * kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree 389 * @kn: kernfs_node of interest 390 * 391 * Try to unlink @kn from its sibling rbtree which starts from 392 * kn->parent->dir.children. Returns %true if @kn was actually 393 * removed, %false if @kn wasn't on the rbtree. 394 * 395 * Locking: 396 * mutex_lock(kernfs_mutex) 397 */ 398static bool kernfs_unlink_sibling(struct kernfs_node *kn) 399{ 400 if (RB_EMPTY_NODE(&kn->rb)) 401 return false; 402 403 if (kernfs_type(kn) == KERNFS_DIR) 404 kn->parent->dir.subdirs--; 405 406 rb_erase(&kn->rb, &kn->parent->dir.children); 407 RB_CLEAR_NODE(&kn->rb); 408 return true; 409} 410 411/** 412 * kernfs_get_active - get an active reference to kernfs_node 413 * @kn: kernfs_node to get an active reference to 414 * 415 * Get an active reference of @kn. This function is noop if @kn 416 * is NULL. 417 * 418 * RETURNS: 419 * Pointer to @kn on success, NULL on failure. 420 */ 421struct kernfs_node *kernfs_get_active(struct kernfs_node *kn) 422{ 423 if (unlikely(!kn)) 424 return NULL; 425 426 if (!atomic_inc_unless_negative(&kn->active)) 427 return NULL; 428 429 if (kernfs_lockdep(kn)) 430 rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_); 431 return kn; 432} 433 434/** 435 * kernfs_put_active - put an active reference to kernfs_node 436 * @kn: kernfs_node to put an active reference to 437 * 438 * Put an active reference to @kn. This function is noop if @kn 439 * is NULL. 440 */ 441void kernfs_put_active(struct kernfs_node *kn) 442{ 443 int v; 444 445 if (unlikely(!kn)) 446 return; 447 448 if (kernfs_lockdep(kn)) 449 rwsem_release(&kn->dep_map, _RET_IP_); 450 v = atomic_dec_return(&kn->active); 451 if (likely(v != KN_DEACTIVATED_BIAS)) 452 return; 453 454 wake_up_all(&kernfs_root(kn)->deactivate_waitq); 455} 456 457/** 458 * kernfs_drain - drain kernfs_node 459 * @kn: kernfs_node to drain 460 * 461 * Drain existing usages and nuke all existing mmaps of @kn. Mutiple 462 * removers may invoke this function concurrently on @kn and all will 463 * return after draining is complete. 464 */ 465static void kernfs_drain(struct kernfs_node *kn) 466 __releases(&kernfs_mutex) __acquires(&kernfs_mutex) 467{ 468 struct kernfs_root *root = kernfs_root(kn); 469 470 lockdep_assert_held(&kernfs_mutex); 471 WARN_ON_ONCE(kernfs_active(kn)); 472 473 mutex_unlock(&kernfs_mutex); 474 475 if (kernfs_lockdep(kn)) { 476 rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_); 477 if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS) 478 lock_contended(&kn->dep_map, _RET_IP_); 479 } 480 481 /* but everyone should wait for draining */ 482 wait_event(root->deactivate_waitq, 483 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS); 484 485 if (kernfs_lockdep(kn)) { 486 lock_acquired(&kn->dep_map, _RET_IP_); 487 rwsem_release(&kn->dep_map, _RET_IP_); 488 } 489 490 kernfs_drain_open_files(kn); 491 492 mutex_lock(&kernfs_mutex); 493} 494 495/** 496 * kernfs_get - get a reference count on a kernfs_node 497 * @kn: the target kernfs_node 498 */ 499void kernfs_get(struct kernfs_node *kn) 500{ 501 if (kn) { 502 WARN_ON(!atomic_read(&kn->count)); 503 atomic_inc(&kn->count); 504 } 505} 506EXPORT_SYMBOL_GPL(kernfs_get); 507 508/** 509 * kernfs_put - put a reference count on a kernfs_node 510 * @kn: the target kernfs_node 511 * 512 * Put a reference count of @kn and destroy it if it reached zero. 513 */ 514void kernfs_put(struct kernfs_node *kn) 515{ 516 struct kernfs_node *parent; 517 struct kernfs_root *root; 518 519 if (!kn || !atomic_dec_and_test(&kn->count)) 520 return; 521 root = kernfs_root(kn); 522 repeat: 523 /* 524 * Moving/renaming is always done while holding reference. 525 * kn->parent won't change beneath us. 526 */ 527 parent = kn->parent; 528 529 WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS, 530 "kernfs_put: %s/%s: released with incorrect active_ref %d\n", 531 parent ? parent->name : "", kn->name, atomic_read(&kn->active)); 532 533 if (kernfs_type(kn) == KERNFS_LINK) 534 kernfs_put(kn->symlink.target_kn); 535 536 kfree_const(kn->name); 537 538 if (kn->iattr) { 539 simple_xattrs_free(&kn->iattr->xattrs); 540 kmem_cache_free(kernfs_iattrs_cache, kn->iattr); 541 } 542 spin_lock(&kernfs_idr_lock); 543 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 544 spin_unlock(&kernfs_idr_lock); 545 kmem_cache_free(kernfs_node_cache, kn); 546 547 kn = parent; 548 if (kn) { 549 if (atomic_dec_and_test(&kn->count)) 550 goto repeat; 551 } else { 552 /* just released the root kn, free @root too */ 553 idr_destroy(&root->ino_idr); 554 kfree(root); 555 } 556} 557EXPORT_SYMBOL_GPL(kernfs_put); 558 559static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags) 560{ 561 struct kernfs_node *kn; 562 563 if (flags & LOOKUP_RCU) 564 return -ECHILD; 565 566 /* Always perform fresh lookup for negatives */ 567 if (d_really_is_negative(dentry)) 568 goto out_bad_unlocked; 569 570 kn = kernfs_dentry_node(dentry); 571 mutex_lock(&kernfs_mutex); 572 573 /* The kernfs node has been deactivated */ 574 if (!kernfs_active(kn)) 575 goto out_bad; 576 577 /* The kernfs node has been moved? */ 578 if (kernfs_dentry_node(dentry->d_parent) != kn->parent) 579 goto out_bad; 580 581 /* The kernfs node has been renamed */ 582 if (strcmp(dentry->d_name.name, kn->name) != 0) 583 goto out_bad; 584 585 /* The kernfs node has been moved to a different namespace */ 586 if (kn->parent && kernfs_ns_enabled(kn->parent) && 587 kernfs_info(dentry->d_sb)->ns != kn->ns) 588 goto out_bad; 589 590 mutex_unlock(&kernfs_mutex); 591 return 1; 592out_bad: 593 mutex_unlock(&kernfs_mutex); 594out_bad_unlocked: 595 return 0; 596} 597 598const struct dentry_operations kernfs_dops = { 599 .d_revalidate = kernfs_dop_revalidate, 600}; 601 602/** 603 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry 604 * @dentry: the dentry in question 605 * 606 * Return the kernfs_node associated with @dentry. If @dentry is not a 607 * kernfs one, %NULL is returned. 608 * 609 * While the returned kernfs_node will stay accessible as long as @dentry 610 * is accessible, the returned node can be in any state and the caller is 611 * fully responsible for determining what's accessible. 612 */ 613struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry) 614{ 615 if (dentry->d_sb->s_op == &kernfs_sops && 616 !d_really_is_negative(dentry)) 617 return kernfs_dentry_node(dentry); 618 return NULL; 619} 620 621static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root, 622 struct kernfs_node *parent, 623 const char *name, umode_t mode, 624 kuid_t uid, kgid_t gid, 625 unsigned flags) 626{ 627 struct kernfs_node *kn; 628 u32 id_highbits; 629 int ret; 630 631 name = kstrdup_const(name, GFP_KERNEL); 632 if (!name) 633 return NULL; 634 635 kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL); 636 if (!kn) 637 goto err_out1; 638 639 idr_preload(GFP_KERNEL); 640 spin_lock(&kernfs_idr_lock); 641 ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC); 642 if (ret >= 0 && ret < root->last_id_lowbits) 643 root->id_highbits++; 644 id_highbits = root->id_highbits; 645 root->last_id_lowbits = ret; 646 spin_unlock(&kernfs_idr_lock); 647 idr_preload_end(); 648 if (ret < 0) 649 goto err_out2; 650 651 kn->id = (u64)id_highbits << 32 | ret; 652 653 atomic_set(&kn->count, 1); 654 atomic_set(&kn->active, KN_DEACTIVATED_BIAS); 655 RB_CLEAR_NODE(&kn->rb); 656 657 kn->name = name; 658 kn->mode = mode; 659 kn->flags = flags; 660 661 if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) { 662 struct iattr iattr = { 663 .ia_valid = ATTR_UID | ATTR_GID, 664 .ia_uid = uid, 665 .ia_gid = gid, 666 }; 667 668 ret = __kernfs_setattr(kn, &iattr); 669 if (ret < 0) 670 goto err_out3; 671 } 672 673 if (parent) { 674 ret = security_kernfs_init_security(parent, kn); 675 if (ret) 676 goto err_out3; 677 } 678 679 return kn; 680 681 err_out3: 682 spin_lock(&kernfs_idr_lock); 683 idr_remove(&root->ino_idr, (u32)kernfs_ino(kn)); 684 spin_unlock(&kernfs_idr_lock); 685 err_out2: 686 kmem_cache_free(kernfs_node_cache, kn); 687 err_out1: 688 kfree_const(name); 689 return NULL; 690} 691 692struct kernfs_node *kernfs_new_node(struct kernfs_node *parent, 693 const char *name, umode_t mode, 694 kuid_t uid, kgid_t gid, 695 unsigned flags) 696{ 697 struct kernfs_node *kn; 698 699 if (parent->mode & S_ISGID) { 700 /* this code block imitates inode_init_owner() for 701 * kernfs 702 */ 703 704 if (parent->iattr) 705 gid = parent->iattr->ia_gid; 706 707 if (flags & KERNFS_DIR) 708 mode |= S_ISGID; 709 } 710 711 kn = __kernfs_new_node(kernfs_root(parent), parent, 712 name, mode, uid, gid, flags); 713 if (kn) { 714 kernfs_get(parent); 715 kn->parent = parent; 716 } 717 return kn; 718} 719 720/* 721 * kernfs_find_and_get_node_by_id - get kernfs_node from node id 722 * @root: the kernfs root 723 * @id: the target node id 724 * 725 * @id's lower 32bits encode ino and upper gen. If the gen portion is 726 * zero, all generations are matched. 727 * 728 * RETURNS: 729 * NULL on failure. Return a kernfs node with reference counter incremented 730 */ 731struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root, 732 u64 id) 733{ 734 struct kernfs_node *kn; 735 ino_t ino = kernfs_id_ino(id); 736 u32 gen = kernfs_id_gen(id); 737 738 spin_lock(&kernfs_idr_lock); 739 740 kn = idr_find(&root->ino_idr, (u32)ino); 741 if (!kn) 742 goto err_unlock; 743 744 if (sizeof(ino_t) >= sizeof(u64)) { 745 /* we looked up with the low 32bits, compare the whole */ 746 if (kernfs_ino(kn) != ino) 747 goto err_unlock; 748 } else { 749 /* 0 matches all generations */ 750 if (unlikely(gen && kernfs_gen(kn) != gen)) 751 goto err_unlock; 752 } 753 754 /* 755 * ACTIVATED is protected with kernfs_mutex but it was clear when 756 * @kn was added to idr and we just wanna see it set. No need to 757 * grab kernfs_mutex. 758 */ 759 if (unlikely(!(kn->flags & KERNFS_ACTIVATED) || 760 !atomic_inc_not_zero(&kn->count))) 761 goto err_unlock; 762 763 spin_unlock(&kernfs_idr_lock); 764 return kn; 765err_unlock: 766 spin_unlock(&kernfs_idr_lock); 767 return NULL; 768} 769 770/** 771 * kernfs_add_one - add kernfs_node to parent without warning 772 * @kn: kernfs_node to be added 773 * 774 * The caller must already have initialized @kn->parent. This 775 * function increments nlink of the parent's inode if @kn is a 776 * directory and link into the children list of the parent. 777 * 778 * RETURNS: 779 * 0 on success, -EEXIST if entry with the given name already 780 * exists. 781 */ 782int kernfs_add_one(struct kernfs_node *kn) 783{ 784 struct kernfs_node *parent = kn->parent; 785 struct kernfs_iattrs *ps_iattr; 786 bool has_ns; 787 int ret; 788 789 mutex_lock(&kernfs_mutex); 790 791 ret = -EINVAL; 792 has_ns = kernfs_ns_enabled(parent); 793 if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 794 has_ns ? "required" : "invalid", parent->name, kn->name)) 795 goto out_unlock; 796 797 if (kernfs_type(parent) != KERNFS_DIR) 798 goto out_unlock; 799 800 ret = -ENOENT; 801 if (parent->flags & KERNFS_EMPTY_DIR) 802 goto out_unlock; 803 804 if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent)) 805 goto out_unlock; 806 807 kn->hash = kernfs_name_hash(kn->name, kn->ns); 808 809 ret = kernfs_link_sibling(kn); 810 if (ret) 811 goto out_unlock; 812 813 /* Update timestamps on the parent */ 814 ps_iattr = parent->iattr; 815 if (ps_iattr) { 816 ktime_get_real_ts64(&ps_iattr->ia_ctime); 817 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 818 } 819 820 mutex_unlock(&kernfs_mutex); 821 822 /* 823 * Activate the new node unless CREATE_DEACTIVATED is requested. 824 * If not activated here, the kernfs user is responsible for 825 * activating the node with kernfs_activate(). A node which hasn't 826 * been activated is not visible to userland and its removal won't 827 * trigger deactivation. 828 */ 829 if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 830 kernfs_activate(kn); 831 return 0; 832 833out_unlock: 834 mutex_unlock(&kernfs_mutex); 835 return ret; 836} 837 838/** 839 * kernfs_find_ns - find kernfs_node with the given name 840 * @parent: kernfs_node to search under 841 * @name: name to look for 842 * @ns: the namespace tag to use 843 * 844 * Look for kernfs_node with name @name under @parent. Returns pointer to 845 * the found kernfs_node on success, %NULL on failure. 846 */ 847static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent, 848 const unsigned char *name, 849 const void *ns) 850{ 851 struct rb_node *node = parent->dir.children.rb_node; 852 bool has_ns = kernfs_ns_enabled(parent); 853 unsigned int hash; 854 855 lockdep_assert_held(&kernfs_mutex); 856 857 if (has_ns != (bool)ns) { 858 WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n", 859 has_ns ? "required" : "invalid", parent->name, name); 860 return NULL; 861 } 862 863 hash = kernfs_name_hash(name, ns); 864 while (node) { 865 struct kernfs_node *kn; 866 int result; 867 868 kn = rb_to_kn(node); 869 result = kernfs_name_compare(hash, name, ns, kn); 870 if (result < 0) 871 node = node->rb_left; 872 else if (result > 0) 873 node = node->rb_right; 874 else 875 return kn; 876 } 877 return NULL; 878} 879 880static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent, 881 const unsigned char *path, 882 const void *ns) 883{ 884 size_t len; 885 char *p, *name; 886 887 lockdep_assert_held(&kernfs_mutex); 888 889 spin_lock_irq(&kernfs_pr_cont_lock); 890 891 len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf)); 892 893 if (len >= sizeof(kernfs_pr_cont_buf)) { 894 spin_unlock_irq(&kernfs_pr_cont_lock); 895 return NULL; 896 } 897 898 p = kernfs_pr_cont_buf; 899 900 while ((name = strsep(&p, "/")) && parent) { 901 if (*name == '\0') 902 continue; 903 parent = kernfs_find_ns(parent, name, ns); 904 } 905 906 spin_unlock_irq(&kernfs_pr_cont_lock); 907 908 return parent; 909} 910 911/** 912 * kernfs_find_and_get_ns - find and get kernfs_node with the given name 913 * @parent: kernfs_node to search under 914 * @name: name to look for 915 * @ns: the namespace tag to use 916 * 917 * Look for kernfs_node with name @name under @parent and get a reference 918 * if found. This function may sleep and returns pointer to the found 919 * kernfs_node on success, %NULL on failure. 920 */ 921struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent, 922 const char *name, const void *ns) 923{ 924 struct kernfs_node *kn; 925 926 mutex_lock(&kernfs_mutex); 927 kn = kernfs_find_ns(parent, name, ns); 928 kernfs_get(kn); 929 mutex_unlock(&kernfs_mutex); 930 931 return kn; 932} 933EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns); 934 935/** 936 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path 937 * @parent: kernfs_node to search under 938 * @path: path to look for 939 * @ns: the namespace tag to use 940 * 941 * Look for kernfs_node with path @path under @parent and get a reference 942 * if found. This function may sleep and returns pointer to the found 943 * kernfs_node on success, %NULL on failure. 944 */ 945struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent, 946 const char *path, const void *ns) 947{ 948 struct kernfs_node *kn; 949 950 mutex_lock(&kernfs_mutex); 951 kn = kernfs_walk_ns(parent, path, ns); 952 kernfs_get(kn); 953 mutex_unlock(&kernfs_mutex); 954 955 return kn; 956} 957 958/** 959 * kernfs_create_root - create a new kernfs hierarchy 960 * @scops: optional syscall operations for the hierarchy 961 * @flags: KERNFS_ROOT_* flags 962 * @priv: opaque data associated with the new directory 963 * 964 * Returns the root of the new hierarchy on success, ERR_PTR() value on 965 * failure. 966 */ 967struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops, 968 unsigned int flags, void *priv) 969{ 970 struct kernfs_root *root; 971 struct kernfs_node *kn; 972 973 root = kzalloc(sizeof(*root), GFP_KERNEL); 974 if (!root) 975 return ERR_PTR(-ENOMEM); 976 977 idr_init(&root->ino_idr); 978 INIT_LIST_HEAD(&root->supers); 979 980 /* 981 * On 64bit ino setups, id is ino. On 32bit, low 32bits are ino. 982 * High bits generation. The starting value for both ino and 983 * genenration is 1. Initialize upper 32bit allocation 984 * accordingly. 985 */ 986 if (sizeof(ino_t) >= sizeof(u64)) 987 root->id_highbits = 0; 988 else 989 root->id_highbits = 1; 990 991 kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO, 992 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, 993 KERNFS_DIR); 994 if (!kn) { 995 idr_destroy(&root->ino_idr); 996 kfree(root); 997 return ERR_PTR(-ENOMEM); 998 } 999 1000 kn->priv = priv; 1001 kn->dir.root = root; 1002 1003 root->syscall_ops = scops; 1004 root->flags = flags; 1005 root->kn = kn; 1006 init_waitqueue_head(&root->deactivate_waitq); 1007 1008 if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED)) 1009 kernfs_activate(kn); 1010 1011 return root; 1012} 1013 1014/** 1015 * kernfs_destroy_root - destroy a kernfs hierarchy 1016 * @root: root of the hierarchy to destroy 1017 * 1018 * Destroy the hierarchy anchored at @root by removing all existing 1019 * directories and destroying @root. 1020 */ 1021void kernfs_destroy_root(struct kernfs_root *root) 1022{ 1023 kernfs_remove(root->kn); /* will also free @root */ 1024} 1025 1026/** 1027 * kernfs_create_dir_ns - create a directory 1028 * @parent: parent in which to create a new directory 1029 * @name: name of the new directory 1030 * @mode: mode of the new directory 1031 * @uid: uid of the new directory 1032 * @gid: gid of the new directory 1033 * @priv: opaque data associated with the new directory 1034 * @ns: optional namespace tag of the directory 1035 * 1036 * Returns the created node on success, ERR_PTR() value on failure. 1037 */ 1038struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent, 1039 const char *name, umode_t mode, 1040 kuid_t uid, kgid_t gid, 1041 void *priv, const void *ns) 1042{ 1043 struct kernfs_node *kn; 1044 int rc; 1045 1046 /* allocate */ 1047 kn = kernfs_new_node(parent, name, mode | S_IFDIR, 1048 uid, gid, KERNFS_DIR); 1049 if (!kn) 1050 return ERR_PTR(-ENOMEM); 1051 1052 kn->dir.root = parent->dir.root; 1053 kn->ns = ns; 1054 kn->priv = priv; 1055 1056 /* link in */ 1057 rc = kernfs_add_one(kn); 1058 if (!rc) 1059 return kn; 1060 1061 kernfs_put(kn); 1062 return ERR_PTR(rc); 1063} 1064 1065/** 1066 * kernfs_create_empty_dir - create an always empty directory 1067 * @parent: parent in which to create a new directory 1068 * @name: name of the new directory 1069 * 1070 * Returns the created node on success, ERR_PTR() value on failure. 1071 */ 1072struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent, 1073 const char *name) 1074{ 1075 struct kernfs_node *kn; 1076 int rc; 1077 1078 /* allocate */ 1079 kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR, 1080 GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR); 1081 if (!kn) 1082 return ERR_PTR(-ENOMEM); 1083 1084 kn->flags |= KERNFS_EMPTY_DIR; 1085 kn->dir.root = parent->dir.root; 1086 kn->ns = NULL; 1087 kn->priv = NULL; 1088 1089 /* link in */ 1090 rc = kernfs_add_one(kn); 1091 if (!rc) 1092 return kn; 1093 1094 kernfs_put(kn); 1095 return ERR_PTR(rc); 1096} 1097 1098static struct dentry *kernfs_iop_lookup(struct inode *dir, 1099 struct dentry *dentry, 1100 unsigned int flags) 1101{ 1102 struct dentry *ret; 1103 struct kernfs_node *parent = dir->i_private; 1104 struct kernfs_node *kn; 1105 struct inode *inode; 1106 const void *ns = NULL; 1107 1108 mutex_lock(&kernfs_mutex); 1109 1110 if (kernfs_ns_enabled(parent)) 1111 ns = kernfs_info(dir->i_sb)->ns; 1112 1113 kn = kernfs_find_ns(parent, dentry->d_name.name, ns); 1114 1115 /* no such entry */ 1116 if (!kn || !kernfs_active(kn)) { 1117 ret = NULL; 1118 goto out_unlock; 1119 } 1120 1121 /* attach dentry and inode */ 1122 inode = kernfs_get_inode(dir->i_sb, kn); 1123 if (!inode) { 1124 ret = ERR_PTR(-ENOMEM); 1125 goto out_unlock; 1126 } 1127 1128 /* instantiate and hash dentry */ 1129 ret = d_splice_alias(inode, dentry); 1130 out_unlock: 1131 mutex_unlock(&kernfs_mutex); 1132 return ret; 1133} 1134 1135static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry, 1136 umode_t mode) 1137{ 1138 struct kernfs_node *parent = dir->i_private; 1139 struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops; 1140 int ret; 1141 1142 if (!scops || !scops->mkdir) 1143 return -EPERM; 1144 1145 if (!kernfs_get_active(parent)) 1146 return -ENODEV; 1147 1148 ret = scops->mkdir(parent, dentry->d_name.name, mode); 1149 1150 kernfs_put_active(parent); 1151 return ret; 1152} 1153 1154static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry) 1155{ 1156 struct kernfs_node *kn = kernfs_dentry_node(dentry); 1157 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1158 int ret; 1159 1160 if (!scops || !scops->rmdir) 1161 return -EPERM; 1162 1163 if (!kernfs_get_active(kn)) 1164 return -ENODEV; 1165 1166 ret = scops->rmdir(kn); 1167 1168 kernfs_put_active(kn); 1169 return ret; 1170} 1171 1172static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry, 1173 struct inode *new_dir, struct dentry *new_dentry, 1174 unsigned int flags) 1175{ 1176 struct kernfs_node *kn = kernfs_dentry_node(old_dentry); 1177 struct kernfs_node *new_parent = new_dir->i_private; 1178 struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops; 1179 int ret; 1180 1181 if (flags) 1182 return -EINVAL; 1183 1184 if (!scops || !scops->rename) 1185 return -EPERM; 1186 1187 if (!kernfs_get_active(kn)) 1188 return -ENODEV; 1189 1190 if (!kernfs_get_active(new_parent)) { 1191 kernfs_put_active(kn); 1192 return -ENODEV; 1193 } 1194 1195 ret = scops->rename(kn, new_parent, new_dentry->d_name.name); 1196 1197 kernfs_put_active(new_parent); 1198 kernfs_put_active(kn); 1199 return ret; 1200} 1201 1202const struct inode_operations kernfs_dir_iops = { 1203 .lookup = kernfs_iop_lookup, 1204 .permission = kernfs_iop_permission, 1205 .setattr = kernfs_iop_setattr, 1206 .getattr = kernfs_iop_getattr, 1207 .listxattr = kernfs_iop_listxattr, 1208 1209 .mkdir = kernfs_iop_mkdir, 1210 .rmdir = kernfs_iop_rmdir, 1211 .rename = kernfs_iop_rename, 1212}; 1213 1214static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos) 1215{ 1216 struct kernfs_node *last; 1217 1218 while (true) { 1219 struct rb_node *rbn; 1220 1221 last = pos; 1222 1223 if (kernfs_type(pos) != KERNFS_DIR) 1224 break; 1225 1226 rbn = rb_first(&pos->dir.children); 1227 if (!rbn) 1228 break; 1229 1230 pos = rb_to_kn(rbn); 1231 } 1232 1233 return last; 1234} 1235 1236/** 1237 * kernfs_next_descendant_post - find the next descendant for post-order walk 1238 * @pos: the current position (%NULL to initiate traversal) 1239 * @root: kernfs_node whose descendants to walk 1240 * 1241 * Find the next descendant to visit for post-order traversal of @root's 1242 * descendants. @root is included in the iteration and the last node to be 1243 * visited. 1244 */ 1245static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos, 1246 struct kernfs_node *root) 1247{ 1248 struct rb_node *rbn; 1249 1250 lockdep_assert_held(&kernfs_mutex); 1251 1252 /* if first iteration, visit leftmost descendant which may be root */ 1253 if (!pos) 1254 return kernfs_leftmost_descendant(root); 1255 1256 /* if we visited @root, we're done */ 1257 if (pos == root) 1258 return NULL; 1259 1260 /* if there's an unvisited sibling, visit its leftmost descendant */ 1261 rbn = rb_next(&pos->rb); 1262 if (rbn) 1263 return kernfs_leftmost_descendant(rb_to_kn(rbn)); 1264 1265 /* no sibling left, visit parent */ 1266 return pos->parent; 1267} 1268 1269/** 1270 * kernfs_activate - activate a node which started deactivated 1271 * @kn: kernfs_node whose subtree is to be activated 1272 * 1273 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node 1274 * needs to be explicitly activated. A node which hasn't been activated 1275 * isn't visible to userland and deactivation is skipped during its 1276 * removal. This is useful to construct atomic init sequences where 1277 * creation of multiple nodes should either succeed or fail atomically. 1278 * 1279 * The caller is responsible for ensuring that this function is not called 1280 * after kernfs_remove*() is invoked on @kn. 1281 */ 1282void kernfs_activate(struct kernfs_node *kn) 1283{ 1284 struct kernfs_node *pos; 1285 1286 mutex_lock(&kernfs_mutex); 1287 1288 pos = NULL; 1289 while ((pos = kernfs_next_descendant_post(pos, kn))) { 1290 if (pos->flags & KERNFS_ACTIVATED) 1291 continue; 1292 1293 WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb)); 1294 WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS); 1295 1296 atomic_sub(KN_DEACTIVATED_BIAS, &pos->active); 1297 pos->flags |= KERNFS_ACTIVATED; 1298 } 1299 1300 mutex_unlock(&kernfs_mutex); 1301} 1302 1303static void __kernfs_remove(struct kernfs_node *kn) 1304{ 1305 struct kernfs_node *pos; 1306 1307 lockdep_assert_held(&kernfs_mutex); 1308 1309 /* 1310 * Short-circuit if non-root @kn has already finished removal. 1311 * This is for kernfs_remove_self() which plays with active ref 1312 * after removal. 1313 */ 1314 if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb))) 1315 return; 1316 1317 pr_debug("kernfs %s: removing\n", kn->name); 1318 1319 /* prevent any new usage under @kn by deactivating all nodes */ 1320 pos = NULL; 1321 while ((pos = kernfs_next_descendant_post(pos, kn))) 1322 if (kernfs_active(pos)) 1323 atomic_add(KN_DEACTIVATED_BIAS, &pos->active); 1324 1325 /* deactivate and unlink the subtree node-by-node */ 1326 do { 1327 pos = kernfs_leftmost_descendant(kn); 1328 1329 /* 1330 * kernfs_drain() drops kernfs_mutex temporarily and @pos's 1331 * base ref could have been put by someone else by the time 1332 * the function returns. Make sure it doesn't go away 1333 * underneath us. 1334 */ 1335 kernfs_get(pos); 1336 1337 /* 1338 * Drain iff @kn was activated. This avoids draining and 1339 * its lockdep annotations for nodes which have never been 1340 * activated and allows embedding kernfs_remove() in create 1341 * error paths without worrying about draining. 1342 */ 1343 if (kn->flags & KERNFS_ACTIVATED) 1344 kernfs_drain(pos); 1345 else 1346 WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS); 1347 1348 /* 1349 * kernfs_unlink_sibling() succeeds once per node. Use it 1350 * to decide who's responsible for cleanups. 1351 */ 1352 if (!pos->parent || kernfs_unlink_sibling(pos)) { 1353 struct kernfs_iattrs *ps_iattr = 1354 pos->parent ? pos->parent->iattr : NULL; 1355 1356 /* update timestamps on the parent */ 1357 if (ps_iattr) { 1358 ktime_get_real_ts64(&ps_iattr->ia_ctime); 1359 ps_iattr->ia_mtime = ps_iattr->ia_ctime; 1360 } 1361 1362 kernfs_put(pos); 1363 } 1364 1365 kernfs_put(pos); 1366 } while (pos != kn); 1367} 1368 1369/** 1370 * kernfs_remove - remove a kernfs_node recursively 1371 * @kn: the kernfs_node to remove 1372 * 1373 * Remove @kn along with all its subdirectories and files. 1374 */ 1375void kernfs_remove(struct kernfs_node *kn) 1376{ 1377 mutex_lock(&kernfs_mutex); 1378 __kernfs_remove(kn); 1379 mutex_unlock(&kernfs_mutex); 1380} 1381 1382/** 1383 * kernfs_break_active_protection - break out of active protection 1384 * @kn: the self kernfs_node 1385 * 1386 * The caller must be running off of a kernfs operation which is invoked 1387 * with an active reference - e.g. one of kernfs_ops. Each invocation of 1388 * this function must also be matched with an invocation of 1389 * kernfs_unbreak_active_protection(). 1390 * 1391 * This function releases the active reference of @kn the caller is 1392 * holding. Once this function is called, @kn may be removed at any point 1393 * and the caller is solely responsible for ensuring that the objects it 1394 * dereferences are accessible. 1395 */ 1396void kernfs_break_active_protection(struct kernfs_node *kn) 1397{ 1398 /* 1399 * Take out ourself out of the active ref dependency chain. If 1400 * we're called without an active ref, lockdep will complain. 1401 */ 1402 kernfs_put_active(kn); 1403} 1404 1405/** 1406 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection() 1407 * @kn: the self kernfs_node 1408 * 1409 * If kernfs_break_active_protection() was called, this function must be 1410 * invoked before finishing the kernfs operation. Note that while this 1411 * function restores the active reference, it doesn't and can't actually 1412 * restore the active protection - @kn may already or be in the process of 1413 * being removed. Once kernfs_break_active_protection() is invoked, that 1414 * protection is irreversibly gone for the kernfs operation instance. 1415 * 1416 * While this function may be called at any point after 1417 * kernfs_break_active_protection() is invoked, its most useful location 1418 * would be right before the enclosing kernfs operation returns. 1419 */ 1420void kernfs_unbreak_active_protection(struct kernfs_node *kn) 1421{ 1422 /* 1423 * @kn->active could be in any state; however, the increment we do 1424 * here will be undone as soon as the enclosing kernfs operation 1425 * finishes and this temporary bump can't break anything. If @kn 1426 * is alive, nothing changes. If @kn is being deactivated, the 1427 * soon-to-follow put will either finish deactivation or restore 1428 * deactivated state. If @kn is already removed, the temporary 1429 * bump is guaranteed to be gone before @kn is released. 1430 */ 1431 atomic_inc(&kn->active); 1432 if (kernfs_lockdep(kn)) 1433 rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_); 1434} 1435 1436/** 1437 * kernfs_remove_self - remove a kernfs_node from its own method 1438 * @kn: the self kernfs_node to remove 1439 * 1440 * The caller must be running off of a kernfs operation which is invoked 1441 * with an active reference - e.g. one of kernfs_ops. This can be used to 1442 * implement a file operation which deletes itself. 1443 * 1444 * For example, the "delete" file for a sysfs device directory can be 1445 * implemented by invoking kernfs_remove_self() on the "delete" file 1446 * itself. This function breaks the circular dependency of trying to 1447 * deactivate self while holding an active ref itself. It isn't necessary 1448 * to modify the usual removal path to use kernfs_remove_self(). The 1449 * "delete" implementation can simply invoke kernfs_remove_self() on self 1450 * before proceeding with the usual removal path. kernfs will ignore later 1451 * kernfs_remove() on self. 1452 * 1453 * kernfs_remove_self() can be called multiple times concurrently on the 1454 * same kernfs_node. Only the first one actually performs removal and 1455 * returns %true. All others will wait until the kernfs operation which 1456 * won self-removal finishes and return %false. Note that the losers wait 1457 * for the completion of not only the winning kernfs_remove_self() but also 1458 * the whole kernfs_ops which won the arbitration. This can be used to 1459 * guarantee, for example, all concurrent writes to a "delete" file to 1460 * finish only after the whole operation is complete. 1461 */ 1462bool kernfs_remove_self(struct kernfs_node *kn) 1463{ 1464 bool ret; 1465 1466 mutex_lock(&kernfs_mutex); 1467 kernfs_break_active_protection(kn); 1468 1469 /* 1470 * SUICIDAL is used to arbitrate among competing invocations. Only 1471 * the first one will actually perform removal. When the removal 1472 * is complete, SUICIDED is set and the active ref is restored 1473 * while holding kernfs_mutex. The ones which lost arbitration 1474 * waits for SUICDED && drained which can happen only after the 1475 * enclosing kernfs operation which executed the winning instance 1476 * of kernfs_remove_self() finished. 1477 */ 1478 if (!(kn->flags & KERNFS_SUICIDAL)) { 1479 kn->flags |= KERNFS_SUICIDAL; 1480 __kernfs_remove(kn); 1481 kn->flags |= KERNFS_SUICIDED; 1482 ret = true; 1483 } else { 1484 wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq; 1485 DEFINE_WAIT(wait); 1486 1487 while (true) { 1488 prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE); 1489 1490 if ((kn->flags & KERNFS_SUICIDED) && 1491 atomic_read(&kn->active) == KN_DEACTIVATED_BIAS) 1492 break; 1493 1494 mutex_unlock(&kernfs_mutex); 1495 schedule(); 1496 mutex_lock(&kernfs_mutex); 1497 } 1498 finish_wait(waitq, &wait); 1499 WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb)); 1500 ret = false; 1501 } 1502 1503 /* 1504 * This must be done while holding kernfs_mutex; otherwise, waiting 1505 * for SUICIDED && deactivated could finish prematurely. 1506 */ 1507 kernfs_unbreak_active_protection(kn); 1508 1509 mutex_unlock(&kernfs_mutex); 1510 return ret; 1511} 1512 1513/** 1514 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it 1515 * @parent: parent of the target 1516 * @name: name of the kernfs_node to remove 1517 * @ns: namespace tag of the kernfs_node to remove 1518 * 1519 * Look for the kernfs_node with @name and @ns under @parent and remove it. 1520 * Returns 0 on success, -ENOENT if such entry doesn't exist. 1521 */ 1522int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name, 1523 const void *ns) 1524{ 1525 struct kernfs_node *kn; 1526 1527 if (!parent) { 1528 WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n", 1529 name); 1530 return -ENOENT; 1531 } 1532 1533 mutex_lock(&kernfs_mutex); 1534 1535 kn = kernfs_find_ns(parent, name, ns); 1536 if (kn) { 1537 kernfs_get(kn); 1538 __kernfs_remove(kn); 1539 kernfs_put(kn); 1540 } 1541 1542 mutex_unlock(&kernfs_mutex); 1543 1544 if (kn) 1545 return 0; 1546 else 1547 return -ENOENT; 1548} 1549 1550/** 1551 * kernfs_rename_ns - move and rename a kernfs_node 1552 * @kn: target node 1553 * @new_parent: new parent to put @sd under 1554 * @new_name: new name 1555 * @new_ns: new namespace tag 1556 */ 1557int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent, 1558 const char *new_name, const void *new_ns) 1559{ 1560 struct kernfs_node *old_parent; 1561 const char *old_name = NULL; 1562 int error; 1563 1564 /* can't move or rename root */ 1565 if (!kn->parent) 1566 return -EINVAL; 1567 1568 mutex_lock(&kernfs_mutex); 1569 1570 error = -ENOENT; 1571 if (!kernfs_active(kn) || !kernfs_active(new_parent) || 1572 (new_parent->flags & KERNFS_EMPTY_DIR)) 1573 goto out; 1574 1575 error = 0; 1576 if ((kn->parent == new_parent) && (kn->ns == new_ns) && 1577 (strcmp(kn->name, new_name) == 0)) 1578 goto out; /* nothing to rename */ 1579 1580 error = -EEXIST; 1581 if (kernfs_find_ns(new_parent, new_name, new_ns)) 1582 goto out; 1583 1584 /* rename kernfs_node */ 1585 if (strcmp(kn->name, new_name) != 0) { 1586 error = -ENOMEM; 1587 new_name = kstrdup_const(new_name, GFP_KERNEL); 1588 if (!new_name) 1589 goto out; 1590 } else { 1591 new_name = NULL; 1592 } 1593 1594 /* 1595 * Move to the appropriate place in the appropriate directories rbtree. 1596 */ 1597 kernfs_unlink_sibling(kn); 1598 kernfs_get(new_parent); 1599 1600 /* rename_lock protects ->parent and ->name accessors */ 1601 spin_lock_irq(&kernfs_rename_lock); 1602 1603 old_parent = kn->parent; 1604 kn->parent = new_parent; 1605 1606 kn->ns = new_ns; 1607 if (new_name) { 1608 old_name = kn->name; 1609 kn->name = new_name; 1610 } 1611 1612 spin_unlock_irq(&kernfs_rename_lock); 1613 1614 kn->hash = kernfs_name_hash(kn->name, kn->ns); 1615 kernfs_link_sibling(kn); 1616 1617 kernfs_put(old_parent); 1618 kfree_const(old_name); 1619 1620 error = 0; 1621 out: 1622 mutex_unlock(&kernfs_mutex); 1623 return error; 1624} 1625 1626/* Relationship between s_mode and the DT_xxx types */ 1627static inline unsigned char dt_type(struct kernfs_node *kn) 1628{ 1629 return (kn->mode >> 12) & 15; 1630} 1631 1632static int kernfs_dir_fop_release(struct inode *inode, struct file *filp) 1633{ 1634 kernfs_put(filp->private_data); 1635 return 0; 1636} 1637 1638static struct kernfs_node *kernfs_dir_pos(const void *ns, 1639 struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos) 1640{ 1641 if (pos) { 1642 int valid = kernfs_active(pos) && 1643 pos->parent == parent && hash == pos->hash; 1644 kernfs_put(pos); 1645 if (!valid) 1646 pos = NULL; 1647 } 1648 if (!pos && (hash > 1) && (hash < INT_MAX)) { 1649 struct rb_node *node = parent->dir.children.rb_node; 1650 while (node) { 1651 pos = rb_to_kn(node); 1652 1653 if (hash < pos->hash) 1654 node = node->rb_left; 1655 else if (hash > pos->hash) 1656 node = node->rb_right; 1657 else 1658 break; 1659 } 1660 } 1661 /* Skip over entries which are dying/dead or in the wrong namespace */ 1662 while (pos && (!kernfs_active(pos) || pos->ns != ns)) { 1663 struct rb_node *node = rb_next(&pos->rb); 1664 if (!node) 1665 pos = NULL; 1666 else 1667 pos = rb_to_kn(node); 1668 } 1669 return pos; 1670} 1671 1672static struct kernfs_node *kernfs_dir_next_pos(const void *ns, 1673 struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos) 1674{ 1675 pos = kernfs_dir_pos(ns, parent, ino, pos); 1676 if (pos) { 1677 do { 1678 struct rb_node *node = rb_next(&pos->rb); 1679 if (!node) 1680 pos = NULL; 1681 else 1682 pos = rb_to_kn(node); 1683 } while (pos && (!kernfs_active(pos) || pos->ns != ns)); 1684 } 1685 return pos; 1686} 1687 1688static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx) 1689{ 1690 struct dentry *dentry = file->f_path.dentry; 1691 struct kernfs_node *parent = kernfs_dentry_node(dentry); 1692 struct kernfs_node *pos = file->private_data; 1693 const void *ns = NULL; 1694 1695 if (!dir_emit_dots(file, ctx)) 1696 return 0; 1697 mutex_lock(&kernfs_mutex); 1698 1699 if (kernfs_ns_enabled(parent)) 1700 ns = kernfs_info(dentry->d_sb)->ns; 1701 1702 for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos); 1703 pos; 1704 pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) { 1705 const char *name = pos->name; 1706 unsigned int type = dt_type(pos); 1707 int len = strlen(name); 1708 ino_t ino = kernfs_ino(pos); 1709 1710 ctx->pos = pos->hash; 1711 file->private_data = pos; 1712 kernfs_get(pos); 1713 1714 mutex_unlock(&kernfs_mutex); 1715 if (!dir_emit(ctx, name, len, ino, type)) 1716 return 0; 1717 mutex_lock(&kernfs_mutex); 1718 } 1719 mutex_unlock(&kernfs_mutex); 1720 file->private_data = NULL; 1721 ctx->pos = INT_MAX; 1722 return 0; 1723} 1724 1725const struct file_operations kernfs_dir_fops = { 1726 .read = generic_read_dir, 1727 .iterate_shared = kernfs_fop_readdir, 1728 .release = kernfs_dir_fop_release, 1729 .llseek = generic_file_llseek, 1730}; 1731