xref: /kernel/linux/linux-5.10/fs/kernfs/dir.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0-only
2/*
3 * fs/kernfs/dir.c - kernfs directory implementation
4 *
5 * Copyright (c) 2001-3 Patrick Mochel
6 * Copyright (c) 2007 SUSE Linux Products GmbH
7 * Copyright (c) 2007, 2013 Tejun Heo <tj@kernel.org>
8 */
9
10#include <linux/sched.h>
11#include <linux/fs.h>
12#include <linux/namei.h>
13#include <linux/idr.h>
14#include <linux/slab.h>
15#include <linux/security.h>
16#include <linux/hash.h>
17
18#include "kernfs-internal.h"
19
20DEFINE_MUTEX(kernfs_mutex);
21static DEFINE_SPINLOCK(kernfs_rename_lock);	/* kn->parent and ->name */
22/*
23 * Don't use rename_lock to piggy back on pr_cont_buf. We don't want to
24 * call pr_cont() while holding rename_lock. Because sometimes pr_cont()
25 * will perform wakeups when releasing console_sem. Holding rename_lock
26 * will introduce deadlock if the scheduler reads the kernfs_name in the
27 * wakeup path.
28 */
29static DEFINE_SPINLOCK(kernfs_pr_cont_lock);
30static char kernfs_pr_cont_buf[PATH_MAX];	/* protected by pr_cont_lock */
31static DEFINE_SPINLOCK(kernfs_idr_lock);	/* root->ino_idr */
32
33#define rb_to_kn(X) rb_entry((X), struct kernfs_node, rb)
34
35static bool kernfs_active(struct kernfs_node *kn)
36{
37	lockdep_assert_held(&kernfs_mutex);
38	return atomic_read(&kn->active) >= 0;
39}
40
41static bool kernfs_lockdep(struct kernfs_node *kn)
42{
43#ifdef CONFIG_DEBUG_LOCK_ALLOC
44	return kn->flags & KERNFS_LOCKDEP;
45#else
46	return false;
47#endif
48}
49
50static int kernfs_name_locked(struct kernfs_node *kn, char *buf, size_t buflen)
51{
52	if (!kn)
53		return strlcpy(buf, "(null)", buflen);
54
55	return strlcpy(buf, kn->parent ? kn->name : "/", buflen);
56}
57
58/* kernfs_node_depth - compute depth from @from to @to */
59static size_t kernfs_depth(struct kernfs_node *from, struct kernfs_node *to)
60{
61	size_t depth = 0;
62
63	while (to->parent && to != from) {
64		depth++;
65		to = to->parent;
66	}
67	return depth;
68}
69
70static struct kernfs_node *kernfs_common_ancestor(struct kernfs_node *a,
71						  struct kernfs_node *b)
72{
73	size_t da, db;
74	struct kernfs_root *ra = kernfs_root(a), *rb = kernfs_root(b);
75
76	if (ra != rb)
77		return NULL;
78
79	da = kernfs_depth(ra->kn, a);
80	db = kernfs_depth(rb->kn, b);
81
82	while (da > db) {
83		a = a->parent;
84		da--;
85	}
86	while (db > da) {
87		b = b->parent;
88		db--;
89	}
90
91	/* worst case b and a will be the same at root */
92	while (b != a) {
93		b = b->parent;
94		a = a->parent;
95	}
96
97	return a;
98}
99
100/**
101 * kernfs_path_from_node_locked - find a pseudo-absolute path to @kn_to,
102 * where kn_from is treated as root of the path.
103 * @kn_from: kernfs node which should be treated as root for the path
104 * @kn_to: kernfs node to which path is needed
105 * @buf: buffer to copy the path into
106 * @buflen: size of @buf
107 *
108 * We need to handle couple of scenarios here:
109 * [1] when @kn_from is an ancestor of @kn_to at some level
110 * kn_from: /n1/n2/n3
111 * kn_to:   /n1/n2/n3/n4/n5
112 * result:  /n4/n5
113 *
114 * [2] when @kn_from is on a different hierarchy and we need to find common
115 * ancestor between @kn_from and @kn_to.
116 * kn_from: /n1/n2/n3/n4
117 * kn_to:   /n1/n2/n5
118 * result:  /../../n5
119 * OR
120 * kn_from: /n1/n2/n3/n4/n5   [depth=5]
121 * kn_to:   /n1/n2/n3         [depth=3]
122 * result:  /../..
123 *
124 * [3] when @kn_to is NULL result will be "(null)"
125 *
126 * Returns the length of the full path.  If the full length is equal to or
127 * greater than @buflen, @buf contains the truncated path with the trailing
128 * '\0'.  On error, -errno is returned.
129 */
130static int kernfs_path_from_node_locked(struct kernfs_node *kn_to,
131					struct kernfs_node *kn_from,
132					char *buf, size_t buflen)
133{
134	struct kernfs_node *kn, *common;
135	const char parent_str[] = "/..";
136	size_t depth_from, depth_to, len = 0;
137	int i, j;
138
139	if (!kn_to)
140		return strlcpy(buf, "(null)", buflen);
141
142	if (!kn_from)
143		kn_from = kernfs_root(kn_to)->kn;
144
145	if (kn_from == kn_to)
146		return strlcpy(buf, "/", buflen);
147
148	if (!buf)
149		return -EINVAL;
150
151	common = kernfs_common_ancestor(kn_from, kn_to);
152	if (WARN_ON(!common))
153		return -EINVAL;
154
155	depth_to = kernfs_depth(common, kn_to);
156	depth_from = kernfs_depth(common, kn_from);
157
158	buf[0] = '\0';
159
160	for (i = 0; i < depth_from; i++)
161		len += strlcpy(buf + len, parent_str,
162			       len < buflen ? buflen - len : 0);
163
164	/* Calculate how many bytes we need for the rest */
165	for (i = depth_to - 1; i >= 0; i--) {
166		for (kn = kn_to, j = 0; j < i; j++)
167			kn = kn->parent;
168		len += strlcpy(buf + len, "/",
169			       len < buflen ? buflen - len : 0);
170		len += strlcpy(buf + len, kn->name,
171			       len < buflen ? buflen - len : 0);
172	}
173
174	return len;
175}
176
177/**
178 * kernfs_name - obtain the name of a given node
179 * @kn: kernfs_node of interest
180 * @buf: buffer to copy @kn's name into
181 * @buflen: size of @buf
182 *
183 * Copies the name of @kn into @buf of @buflen bytes.  The behavior is
184 * similar to strlcpy().  It returns the length of @kn's name and if @buf
185 * isn't long enough, it's filled upto @buflen-1 and nul terminated.
186 *
187 * Fills buffer with "(null)" if @kn is NULL.
188 *
189 * This function can be called from any context.
190 */
191int kernfs_name(struct kernfs_node *kn, char *buf, size_t buflen)
192{
193	unsigned long flags;
194	int ret;
195
196	spin_lock_irqsave(&kernfs_rename_lock, flags);
197	ret = kernfs_name_locked(kn, buf, buflen);
198	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
199	return ret;
200}
201
202/**
203 * kernfs_path_from_node - build path of node @to relative to @from.
204 * @from: parent kernfs_node relative to which we need to build the path
205 * @to: kernfs_node of interest
206 * @buf: buffer to copy @to's path into
207 * @buflen: size of @buf
208 *
209 * Builds @to's path relative to @from in @buf. @from and @to must
210 * be on the same kernfs-root. If @from is not parent of @to, then a relative
211 * path (which includes '..'s) as needed to reach from @from to @to is
212 * returned.
213 *
214 * Returns the length of the full path.  If the full length is equal to or
215 * greater than @buflen, @buf contains the truncated path with the trailing
216 * '\0'.  On error, -errno is returned.
217 */
218int kernfs_path_from_node(struct kernfs_node *to, struct kernfs_node *from,
219			  char *buf, size_t buflen)
220{
221	unsigned long flags;
222	int ret;
223
224	spin_lock_irqsave(&kernfs_rename_lock, flags);
225	ret = kernfs_path_from_node_locked(to, from, buf, buflen);
226	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
227	return ret;
228}
229EXPORT_SYMBOL_GPL(kernfs_path_from_node);
230
231/**
232 * pr_cont_kernfs_name - pr_cont name of a kernfs_node
233 * @kn: kernfs_node of interest
234 *
235 * This function can be called from any context.
236 */
237void pr_cont_kernfs_name(struct kernfs_node *kn)
238{
239	unsigned long flags;
240
241	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
242
243	kernfs_name(kn, kernfs_pr_cont_buf, sizeof(kernfs_pr_cont_buf));
244	pr_cont("%s", kernfs_pr_cont_buf);
245
246	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
247}
248
249/**
250 * pr_cont_kernfs_path - pr_cont path of a kernfs_node
251 * @kn: kernfs_node of interest
252 *
253 * This function can be called from any context.
254 */
255void pr_cont_kernfs_path(struct kernfs_node *kn)
256{
257	unsigned long flags;
258	int sz;
259
260	spin_lock_irqsave(&kernfs_pr_cont_lock, flags);
261
262	sz = kernfs_path_from_node(kn, NULL, kernfs_pr_cont_buf,
263				   sizeof(kernfs_pr_cont_buf));
264	if (sz < 0) {
265		pr_cont("(error)");
266		goto out;
267	}
268
269	if (sz >= sizeof(kernfs_pr_cont_buf)) {
270		pr_cont("(name too long)");
271		goto out;
272	}
273
274	pr_cont("%s", kernfs_pr_cont_buf);
275
276out:
277	spin_unlock_irqrestore(&kernfs_pr_cont_lock, flags);
278}
279
280/**
281 * kernfs_get_parent - determine the parent node and pin it
282 * @kn: kernfs_node of interest
283 *
284 * Determines @kn's parent, pins and returns it.  This function can be
285 * called from any context.
286 */
287struct kernfs_node *kernfs_get_parent(struct kernfs_node *kn)
288{
289	struct kernfs_node *parent;
290	unsigned long flags;
291
292	spin_lock_irqsave(&kernfs_rename_lock, flags);
293	parent = kn->parent;
294	kernfs_get(parent);
295	spin_unlock_irqrestore(&kernfs_rename_lock, flags);
296
297	return parent;
298}
299
300/**
301 *	kernfs_name_hash
302 *	@name: Null terminated string to hash
303 *	@ns:   Namespace tag to hash
304 *
305 *	Returns 31 bit hash of ns + name (so it fits in an off_t )
306 */
307static unsigned int kernfs_name_hash(const char *name, const void *ns)
308{
309	unsigned long hash = init_name_hash(ns);
310	unsigned int len = strlen(name);
311	while (len--)
312		hash = partial_name_hash(*name++, hash);
313	hash = end_name_hash(hash);
314	hash &= 0x7fffffffU;
315	/* Reserve hash numbers 0, 1 and INT_MAX for magic directory entries */
316	if (hash < 2)
317		hash += 2;
318	if (hash >= INT_MAX)
319		hash = INT_MAX - 1;
320	return hash;
321}
322
323static int kernfs_name_compare(unsigned int hash, const char *name,
324			       const void *ns, const struct kernfs_node *kn)
325{
326	if (hash < kn->hash)
327		return -1;
328	if (hash > kn->hash)
329		return 1;
330	if (ns < kn->ns)
331		return -1;
332	if (ns > kn->ns)
333		return 1;
334	return strcmp(name, kn->name);
335}
336
337static int kernfs_sd_compare(const struct kernfs_node *left,
338			     const struct kernfs_node *right)
339{
340	return kernfs_name_compare(left->hash, left->name, left->ns, right);
341}
342
343/**
344 *	kernfs_link_sibling - link kernfs_node into sibling rbtree
345 *	@kn: kernfs_node of interest
346 *
347 *	Link @kn into its sibling rbtree which starts from
348 *	@kn->parent->dir.children.
349 *
350 *	Locking:
351 *	mutex_lock(kernfs_mutex)
352 *
353 *	RETURNS:
354 *	0 on susccess -EEXIST on failure.
355 */
356static int kernfs_link_sibling(struct kernfs_node *kn)
357{
358	struct rb_node **node = &kn->parent->dir.children.rb_node;
359	struct rb_node *parent = NULL;
360
361	while (*node) {
362		struct kernfs_node *pos;
363		int result;
364
365		pos = rb_to_kn(*node);
366		parent = *node;
367		result = kernfs_sd_compare(kn, pos);
368		if (result < 0)
369			node = &pos->rb.rb_left;
370		else if (result > 0)
371			node = &pos->rb.rb_right;
372		else
373			return -EEXIST;
374	}
375
376	/* add new node and rebalance the tree */
377	rb_link_node(&kn->rb, parent, node);
378	rb_insert_color(&kn->rb, &kn->parent->dir.children);
379
380	/* successfully added, account subdir number */
381	if (kernfs_type(kn) == KERNFS_DIR)
382		kn->parent->dir.subdirs++;
383
384	return 0;
385}
386
387/**
388 *	kernfs_unlink_sibling - unlink kernfs_node from sibling rbtree
389 *	@kn: kernfs_node of interest
390 *
391 *	Try to unlink @kn from its sibling rbtree which starts from
392 *	kn->parent->dir.children.  Returns %true if @kn was actually
393 *	removed, %false if @kn wasn't on the rbtree.
394 *
395 *	Locking:
396 *	mutex_lock(kernfs_mutex)
397 */
398static bool kernfs_unlink_sibling(struct kernfs_node *kn)
399{
400	if (RB_EMPTY_NODE(&kn->rb))
401		return false;
402
403	if (kernfs_type(kn) == KERNFS_DIR)
404		kn->parent->dir.subdirs--;
405
406	rb_erase(&kn->rb, &kn->parent->dir.children);
407	RB_CLEAR_NODE(&kn->rb);
408	return true;
409}
410
411/**
412 *	kernfs_get_active - get an active reference to kernfs_node
413 *	@kn: kernfs_node to get an active reference to
414 *
415 *	Get an active reference of @kn.  This function is noop if @kn
416 *	is NULL.
417 *
418 *	RETURNS:
419 *	Pointer to @kn on success, NULL on failure.
420 */
421struct kernfs_node *kernfs_get_active(struct kernfs_node *kn)
422{
423	if (unlikely(!kn))
424		return NULL;
425
426	if (!atomic_inc_unless_negative(&kn->active))
427		return NULL;
428
429	if (kernfs_lockdep(kn))
430		rwsem_acquire_read(&kn->dep_map, 0, 1, _RET_IP_);
431	return kn;
432}
433
434/**
435 *	kernfs_put_active - put an active reference to kernfs_node
436 *	@kn: kernfs_node to put an active reference to
437 *
438 *	Put an active reference to @kn.  This function is noop if @kn
439 *	is NULL.
440 */
441void kernfs_put_active(struct kernfs_node *kn)
442{
443	int v;
444
445	if (unlikely(!kn))
446		return;
447
448	if (kernfs_lockdep(kn))
449		rwsem_release(&kn->dep_map, _RET_IP_);
450	v = atomic_dec_return(&kn->active);
451	if (likely(v != KN_DEACTIVATED_BIAS))
452		return;
453
454	wake_up_all(&kernfs_root(kn)->deactivate_waitq);
455}
456
457/**
458 * kernfs_drain - drain kernfs_node
459 * @kn: kernfs_node to drain
460 *
461 * Drain existing usages and nuke all existing mmaps of @kn.  Mutiple
462 * removers may invoke this function concurrently on @kn and all will
463 * return after draining is complete.
464 */
465static void kernfs_drain(struct kernfs_node *kn)
466	__releases(&kernfs_mutex) __acquires(&kernfs_mutex)
467{
468	struct kernfs_root *root = kernfs_root(kn);
469
470	lockdep_assert_held(&kernfs_mutex);
471	WARN_ON_ONCE(kernfs_active(kn));
472
473	mutex_unlock(&kernfs_mutex);
474
475	if (kernfs_lockdep(kn)) {
476		rwsem_acquire(&kn->dep_map, 0, 0, _RET_IP_);
477		if (atomic_read(&kn->active) != KN_DEACTIVATED_BIAS)
478			lock_contended(&kn->dep_map, _RET_IP_);
479	}
480
481	/* but everyone should wait for draining */
482	wait_event(root->deactivate_waitq,
483		   atomic_read(&kn->active) == KN_DEACTIVATED_BIAS);
484
485	if (kernfs_lockdep(kn)) {
486		lock_acquired(&kn->dep_map, _RET_IP_);
487		rwsem_release(&kn->dep_map, _RET_IP_);
488	}
489
490	kernfs_drain_open_files(kn);
491
492	mutex_lock(&kernfs_mutex);
493}
494
495/**
496 * kernfs_get - get a reference count on a kernfs_node
497 * @kn: the target kernfs_node
498 */
499void kernfs_get(struct kernfs_node *kn)
500{
501	if (kn) {
502		WARN_ON(!atomic_read(&kn->count));
503		atomic_inc(&kn->count);
504	}
505}
506EXPORT_SYMBOL_GPL(kernfs_get);
507
508/**
509 * kernfs_put - put a reference count on a kernfs_node
510 * @kn: the target kernfs_node
511 *
512 * Put a reference count of @kn and destroy it if it reached zero.
513 */
514void kernfs_put(struct kernfs_node *kn)
515{
516	struct kernfs_node *parent;
517	struct kernfs_root *root;
518
519	if (!kn || !atomic_dec_and_test(&kn->count))
520		return;
521	root = kernfs_root(kn);
522 repeat:
523	/*
524	 * Moving/renaming is always done while holding reference.
525	 * kn->parent won't change beneath us.
526	 */
527	parent = kn->parent;
528
529	WARN_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS,
530		  "kernfs_put: %s/%s: released with incorrect active_ref %d\n",
531		  parent ? parent->name : "", kn->name, atomic_read(&kn->active));
532
533	if (kernfs_type(kn) == KERNFS_LINK)
534		kernfs_put(kn->symlink.target_kn);
535
536	kfree_const(kn->name);
537
538	if (kn->iattr) {
539		simple_xattrs_free(&kn->iattr->xattrs);
540		kmem_cache_free(kernfs_iattrs_cache, kn->iattr);
541	}
542	spin_lock(&kernfs_idr_lock);
543	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
544	spin_unlock(&kernfs_idr_lock);
545	kmem_cache_free(kernfs_node_cache, kn);
546
547	kn = parent;
548	if (kn) {
549		if (atomic_dec_and_test(&kn->count))
550			goto repeat;
551	} else {
552		/* just released the root kn, free @root too */
553		idr_destroy(&root->ino_idr);
554		kfree(root);
555	}
556}
557EXPORT_SYMBOL_GPL(kernfs_put);
558
559static int kernfs_dop_revalidate(struct dentry *dentry, unsigned int flags)
560{
561	struct kernfs_node *kn;
562
563	if (flags & LOOKUP_RCU)
564		return -ECHILD;
565
566	/* Always perform fresh lookup for negatives */
567	if (d_really_is_negative(dentry))
568		goto out_bad_unlocked;
569
570	kn = kernfs_dentry_node(dentry);
571	mutex_lock(&kernfs_mutex);
572
573	/* The kernfs node has been deactivated */
574	if (!kernfs_active(kn))
575		goto out_bad;
576
577	/* The kernfs node has been moved? */
578	if (kernfs_dentry_node(dentry->d_parent) != kn->parent)
579		goto out_bad;
580
581	/* The kernfs node has been renamed */
582	if (strcmp(dentry->d_name.name, kn->name) != 0)
583		goto out_bad;
584
585	/* The kernfs node has been moved to a different namespace */
586	if (kn->parent && kernfs_ns_enabled(kn->parent) &&
587	    kernfs_info(dentry->d_sb)->ns != kn->ns)
588		goto out_bad;
589
590	mutex_unlock(&kernfs_mutex);
591	return 1;
592out_bad:
593	mutex_unlock(&kernfs_mutex);
594out_bad_unlocked:
595	return 0;
596}
597
598const struct dentry_operations kernfs_dops = {
599	.d_revalidate	= kernfs_dop_revalidate,
600};
601
602/**
603 * kernfs_node_from_dentry - determine kernfs_node associated with a dentry
604 * @dentry: the dentry in question
605 *
606 * Return the kernfs_node associated with @dentry.  If @dentry is not a
607 * kernfs one, %NULL is returned.
608 *
609 * While the returned kernfs_node will stay accessible as long as @dentry
610 * is accessible, the returned node can be in any state and the caller is
611 * fully responsible for determining what's accessible.
612 */
613struct kernfs_node *kernfs_node_from_dentry(struct dentry *dentry)
614{
615	if (dentry->d_sb->s_op == &kernfs_sops &&
616	    !d_really_is_negative(dentry))
617		return kernfs_dentry_node(dentry);
618	return NULL;
619}
620
621static struct kernfs_node *__kernfs_new_node(struct kernfs_root *root,
622					     struct kernfs_node *parent,
623					     const char *name, umode_t mode,
624					     kuid_t uid, kgid_t gid,
625					     unsigned flags)
626{
627	struct kernfs_node *kn;
628	u32 id_highbits;
629	int ret;
630
631	name = kstrdup_const(name, GFP_KERNEL);
632	if (!name)
633		return NULL;
634
635	kn = kmem_cache_zalloc(kernfs_node_cache, GFP_KERNEL);
636	if (!kn)
637		goto err_out1;
638
639	idr_preload(GFP_KERNEL);
640	spin_lock(&kernfs_idr_lock);
641	ret = idr_alloc_cyclic(&root->ino_idr, kn, 1, 0, GFP_ATOMIC);
642	if (ret >= 0 && ret < root->last_id_lowbits)
643		root->id_highbits++;
644	id_highbits = root->id_highbits;
645	root->last_id_lowbits = ret;
646	spin_unlock(&kernfs_idr_lock);
647	idr_preload_end();
648	if (ret < 0)
649		goto err_out2;
650
651	kn->id = (u64)id_highbits << 32 | ret;
652
653	atomic_set(&kn->count, 1);
654	atomic_set(&kn->active, KN_DEACTIVATED_BIAS);
655	RB_CLEAR_NODE(&kn->rb);
656
657	kn->name = name;
658	kn->mode = mode;
659	kn->flags = flags;
660
661	if (!uid_eq(uid, GLOBAL_ROOT_UID) || !gid_eq(gid, GLOBAL_ROOT_GID)) {
662		struct iattr iattr = {
663			.ia_valid = ATTR_UID | ATTR_GID,
664			.ia_uid = uid,
665			.ia_gid = gid,
666		};
667
668		ret = __kernfs_setattr(kn, &iattr);
669		if (ret < 0)
670			goto err_out3;
671	}
672
673	if (parent) {
674		ret = security_kernfs_init_security(parent, kn);
675		if (ret)
676			goto err_out3;
677	}
678
679	return kn;
680
681 err_out3:
682	spin_lock(&kernfs_idr_lock);
683	idr_remove(&root->ino_idr, (u32)kernfs_ino(kn));
684	spin_unlock(&kernfs_idr_lock);
685 err_out2:
686	kmem_cache_free(kernfs_node_cache, kn);
687 err_out1:
688	kfree_const(name);
689	return NULL;
690}
691
692struct kernfs_node *kernfs_new_node(struct kernfs_node *parent,
693				    const char *name, umode_t mode,
694				    kuid_t uid, kgid_t gid,
695				    unsigned flags)
696{
697	struct kernfs_node *kn;
698
699	if (parent->mode & S_ISGID) {
700		/* this code block imitates inode_init_owner() for
701		 * kernfs
702		 */
703
704		if (parent->iattr)
705			gid = parent->iattr->ia_gid;
706
707		if (flags & KERNFS_DIR)
708			mode |= S_ISGID;
709	}
710
711	kn = __kernfs_new_node(kernfs_root(parent), parent,
712			       name, mode, uid, gid, flags);
713	if (kn) {
714		kernfs_get(parent);
715		kn->parent = parent;
716	}
717	return kn;
718}
719
720/*
721 * kernfs_find_and_get_node_by_id - get kernfs_node from node id
722 * @root: the kernfs root
723 * @id: the target node id
724 *
725 * @id's lower 32bits encode ino and upper gen.  If the gen portion is
726 * zero, all generations are matched.
727 *
728 * RETURNS:
729 * NULL on failure. Return a kernfs node with reference counter incremented
730 */
731struct kernfs_node *kernfs_find_and_get_node_by_id(struct kernfs_root *root,
732						   u64 id)
733{
734	struct kernfs_node *kn;
735	ino_t ino = kernfs_id_ino(id);
736	u32 gen = kernfs_id_gen(id);
737
738	spin_lock(&kernfs_idr_lock);
739
740	kn = idr_find(&root->ino_idr, (u32)ino);
741	if (!kn)
742		goto err_unlock;
743
744	if (sizeof(ino_t) >= sizeof(u64)) {
745		/* we looked up with the low 32bits, compare the whole */
746		if (kernfs_ino(kn) != ino)
747			goto err_unlock;
748	} else {
749		/* 0 matches all generations */
750		if (unlikely(gen && kernfs_gen(kn) != gen))
751			goto err_unlock;
752	}
753
754	/*
755	 * ACTIVATED is protected with kernfs_mutex but it was clear when
756	 * @kn was added to idr and we just wanna see it set.  No need to
757	 * grab kernfs_mutex.
758	 */
759	if (unlikely(!(kn->flags & KERNFS_ACTIVATED) ||
760		     !atomic_inc_not_zero(&kn->count)))
761		goto err_unlock;
762
763	spin_unlock(&kernfs_idr_lock);
764	return kn;
765err_unlock:
766	spin_unlock(&kernfs_idr_lock);
767	return NULL;
768}
769
770/**
771 *	kernfs_add_one - add kernfs_node to parent without warning
772 *	@kn: kernfs_node to be added
773 *
774 *	The caller must already have initialized @kn->parent.  This
775 *	function increments nlink of the parent's inode if @kn is a
776 *	directory and link into the children list of the parent.
777 *
778 *	RETURNS:
779 *	0 on success, -EEXIST if entry with the given name already
780 *	exists.
781 */
782int kernfs_add_one(struct kernfs_node *kn)
783{
784	struct kernfs_node *parent = kn->parent;
785	struct kernfs_iattrs *ps_iattr;
786	bool has_ns;
787	int ret;
788
789	mutex_lock(&kernfs_mutex);
790
791	ret = -EINVAL;
792	has_ns = kernfs_ns_enabled(parent);
793	if (WARN(has_ns != (bool)kn->ns, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
794		 has_ns ? "required" : "invalid", parent->name, kn->name))
795		goto out_unlock;
796
797	if (kernfs_type(parent) != KERNFS_DIR)
798		goto out_unlock;
799
800	ret = -ENOENT;
801	if (parent->flags & KERNFS_EMPTY_DIR)
802		goto out_unlock;
803
804	if ((parent->flags & KERNFS_ACTIVATED) && !kernfs_active(parent))
805		goto out_unlock;
806
807	kn->hash = kernfs_name_hash(kn->name, kn->ns);
808
809	ret = kernfs_link_sibling(kn);
810	if (ret)
811		goto out_unlock;
812
813	/* Update timestamps on the parent */
814	ps_iattr = parent->iattr;
815	if (ps_iattr) {
816		ktime_get_real_ts64(&ps_iattr->ia_ctime);
817		ps_iattr->ia_mtime = ps_iattr->ia_ctime;
818	}
819
820	mutex_unlock(&kernfs_mutex);
821
822	/*
823	 * Activate the new node unless CREATE_DEACTIVATED is requested.
824	 * If not activated here, the kernfs user is responsible for
825	 * activating the node with kernfs_activate().  A node which hasn't
826	 * been activated is not visible to userland and its removal won't
827	 * trigger deactivation.
828	 */
829	if (!(kernfs_root(kn)->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
830		kernfs_activate(kn);
831	return 0;
832
833out_unlock:
834	mutex_unlock(&kernfs_mutex);
835	return ret;
836}
837
838/**
839 * kernfs_find_ns - find kernfs_node with the given name
840 * @parent: kernfs_node to search under
841 * @name: name to look for
842 * @ns: the namespace tag to use
843 *
844 * Look for kernfs_node with name @name under @parent.  Returns pointer to
845 * the found kernfs_node on success, %NULL on failure.
846 */
847static struct kernfs_node *kernfs_find_ns(struct kernfs_node *parent,
848					  const unsigned char *name,
849					  const void *ns)
850{
851	struct rb_node *node = parent->dir.children.rb_node;
852	bool has_ns = kernfs_ns_enabled(parent);
853	unsigned int hash;
854
855	lockdep_assert_held(&kernfs_mutex);
856
857	if (has_ns != (bool)ns) {
858		WARN(1, KERN_WARNING "kernfs: ns %s in '%s' for '%s'\n",
859		     has_ns ? "required" : "invalid", parent->name, name);
860		return NULL;
861	}
862
863	hash = kernfs_name_hash(name, ns);
864	while (node) {
865		struct kernfs_node *kn;
866		int result;
867
868		kn = rb_to_kn(node);
869		result = kernfs_name_compare(hash, name, ns, kn);
870		if (result < 0)
871			node = node->rb_left;
872		else if (result > 0)
873			node = node->rb_right;
874		else
875			return kn;
876	}
877	return NULL;
878}
879
880static struct kernfs_node *kernfs_walk_ns(struct kernfs_node *parent,
881					  const unsigned char *path,
882					  const void *ns)
883{
884	size_t len;
885	char *p, *name;
886
887	lockdep_assert_held(&kernfs_mutex);
888
889	spin_lock_irq(&kernfs_pr_cont_lock);
890
891	len = strlcpy(kernfs_pr_cont_buf, path, sizeof(kernfs_pr_cont_buf));
892
893	if (len >= sizeof(kernfs_pr_cont_buf)) {
894		spin_unlock_irq(&kernfs_pr_cont_lock);
895		return NULL;
896	}
897
898	p = kernfs_pr_cont_buf;
899
900	while ((name = strsep(&p, "/")) && parent) {
901		if (*name == '\0')
902			continue;
903		parent = kernfs_find_ns(parent, name, ns);
904	}
905
906	spin_unlock_irq(&kernfs_pr_cont_lock);
907
908	return parent;
909}
910
911/**
912 * kernfs_find_and_get_ns - find and get kernfs_node with the given name
913 * @parent: kernfs_node to search under
914 * @name: name to look for
915 * @ns: the namespace tag to use
916 *
917 * Look for kernfs_node with name @name under @parent and get a reference
918 * if found.  This function may sleep and returns pointer to the found
919 * kernfs_node on success, %NULL on failure.
920 */
921struct kernfs_node *kernfs_find_and_get_ns(struct kernfs_node *parent,
922					   const char *name, const void *ns)
923{
924	struct kernfs_node *kn;
925
926	mutex_lock(&kernfs_mutex);
927	kn = kernfs_find_ns(parent, name, ns);
928	kernfs_get(kn);
929	mutex_unlock(&kernfs_mutex);
930
931	return kn;
932}
933EXPORT_SYMBOL_GPL(kernfs_find_and_get_ns);
934
935/**
936 * kernfs_walk_and_get_ns - find and get kernfs_node with the given path
937 * @parent: kernfs_node to search under
938 * @path: path to look for
939 * @ns: the namespace tag to use
940 *
941 * Look for kernfs_node with path @path under @parent and get a reference
942 * if found.  This function may sleep and returns pointer to the found
943 * kernfs_node on success, %NULL on failure.
944 */
945struct kernfs_node *kernfs_walk_and_get_ns(struct kernfs_node *parent,
946					   const char *path, const void *ns)
947{
948	struct kernfs_node *kn;
949
950	mutex_lock(&kernfs_mutex);
951	kn = kernfs_walk_ns(parent, path, ns);
952	kernfs_get(kn);
953	mutex_unlock(&kernfs_mutex);
954
955	return kn;
956}
957
958/**
959 * kernfs_create_root - create a new kernfs hierarchy
960 * @scops: optional syscall operations for the hierarchy
961 * @flags: KERNFS_ROOT_* flags
962 * @priv: opaque data associated with the new directory
963 *
964 * Returns the root of the new hierarchy on success, ERR_PTR() value on
965 * failure.
966 */
967struct kernfs_root *kernfs_create_root(struct kernfs_syscall_ops *scops,
968				       unsigned int flags, void *priv)
969{
970	struct kernfs_root *root;
971	struct kernfs_node *kn;
972
973	root = kzalloc(sizeof(*root), GFP_KERNEL);
974	if (!root)
975		return ERR_PTR(-ENOMEM);
976
977	idr_init(&root->ino_idr);
978	INIT_LIST_HEAD(&root->supers);
979
980	/*
981	 * On 64bit ino setups, id is ino.  On 32bit, low 32bits are ino.
982	 * High bits generation.  The starting value for both ino and
983	 * genenration is 1.  Initialize upper 32bit allocation
984	 * accordingly.
985	 */
986	if (sizeof(ino_t) >= sizeof(u64))
987		root->id_highbits = 0;
988	else
989		root->id_highbits = 1;
990
991	kn = __kernfs_new_node(root, NULL, "", S_IFDIR | S_IRUGO | S_IXUGO,
992			       GLOBAL_ROOT_UID, GLOBAL_ROOT_GID,
993			       KERNFS_DIR);
994	if (!kn) {
995		idr_destroy(&root->ino_idr);
996		kfree(root);
997		return ERR_PTR(-ENOMEM);
998	}
999
1000	kn->priv = priv;
1001	kn->dir.root = root;
1002
1003	root->syscall_ops = scops;
1004	root->flags = flags;
1005	root->kn = kn;
1006	init_waitqueue_head(&root->deactivate_waitq);
1007
1008	if (!(root->flags & KERNFS_ROOT_CREATE_DEACTIVATED))
1009		kernfs_activate(kn);
1010
1011	return root;
1012}
1013
1014/**
1015 * kernfs_destroy_root - destroy a kernfs hierarchy
1016 * @root: root of the hierarchy to destroy
1017 *
1018 * Destroy the hierarchy anchored at @root by removing all existing
1019 * directories and destroying @root.
1020 */
1021void kernfs_destroy_root(struct kernfs_root *root)
1022{
1023	kernfs_remove(root->kn);	/* will also free @root */
1024}
1025
1026/**
1027 * kernfs_create_dir_ns - create a directory
1028 * @parent: parent in which to create a new directory
1029 * @name: name of the new directory
1030 * @mode: mode of the new directory
1031 * @uid: uid of the new directory
1032 * @gid: gid of the new directory
1033 * @priv: opaque data associated with the new directory
1034 * @ns: optional namespace tag of the directory
1035 *
1036 * Returns the created node on success, ERR_PTR() value on failure.
1037 */
1038struct kernfs_node *kernfs_create_dir_ns(struct kernfs_node *parent,
1039					 const char *name, umode_t mode,
1040					 kuid_t uid, kgid_t gid,
1041					 void *priv, const void *ns)
1042{
1043	struct kernfs_node *kn;
1044	int rc;
1045
1046	/* allocate */
1047	kn = kernfs_new_node(parent, name, mode | S_IFDIR,
1048			     uid, gid, KERNFS_DIR);
1049	if (!kn)
1050		return ERR_PTR(-ENOMEM);
1051
1052	kn->dir.root = parent->dir.root;
1053	kn->ns = ns;
1054	kn->priv = priv;
1055
1056	/* link in */
1057	rc = kernfs_add_one(kn);
1058	if (!rc)
1059		return kn;
1060
1061	kernfs_put(kn);
1062	return ERR_PTR(rc);
1063}
1064
1065/**
1066 * kernfs_create_empty_dir - create an always empty directory
1067 * @parent: parent in which to create a new directory
1068 * @name: name of the new directory
1069 *
1070 * Returns the created node on success, ERR_PTR() value on failure.
1071 */
1072struct kernfs_node *kernfs_create_empty_dir(struct kernfs_node *parent,
1073					    const char *name)
1074{
1075	struct kernfs_node *kn;
1076	int rc;
1077
1078	/* allocate */
1079	kn = kernfs_new_node(parent, name, S_IRUGO|S_IXUGO|S_IFDIR,
1080			     GLOBAL_ROOT_UID, GLOBAL_ROOT_GID, KERNFS_DIR);
1081	if (!kn)
1082		return ERR_PTR(-ENOMEM);
1083
1084	kn->flags |= KERNFS_EMPTY_DIR;
1085	kn->dir.root = parent->dir.root;
1086	kn->ns = NULL;
1087	kn->priv = NULL;
1088
1089	/* link in */
1090	rc = kernfs_add_one(kn);
1091	if (!rc)
1092		return kn;
1093
1094	kernfs_put(kn);
1095	return ERR_PTR(rc);
1096}
1097
1098static struct dentry *kernfs_iop_lookup(struct inode *dir,
1099					struct dentry *dentry,
1100					unsigned int flags)
1101{
1102	struct dentry *ret;
1103	struct kernfs_node *parent = dir->i_private;
1104	struct kernfs_node *kn;
1105	struct inode *inode;
1106	const void *ns = NULL;
1107
1108	mutex_lock(&kernfs_mutex);
1109
1110	if (kernfs_ns_enabled(parent))
1111		ns = kernfs_info(dir->i_sb)->ns;
1112
1113	kn = kernfs_find_ns(parent, dentry->d_name.name, ns);
1114
1115	/* no such entry */
1116	if (!kn || !kernfs_active(kn)) {
1117		ret = NULL;
1118		goto out_unlock;
1119	}
1120
1121	/* attach dentry and inode */
1122	inode = kernfs_get_inode(dir->i_sb, kn);
1123	if (!inode) {
1124		ret = ERR_PTR(-ENOMEM);
1125		goto out_unlock;
1126	}
1127
1128	/* instantiate and hash dentry */
1129	ret = d_splice_alias(inode, dentry);
1130 out_unlock:
1131	mutex_unlock(&kernfs_mutex);
1132	return ret;
1133}
1134
1135static int kernfs_iop_mkdir(struct inode *dir, struct dentry *dentry,
1136			    umode_t mode)
1137{
1138	struct kernfs_node *parent = dir->i_private;
1139	struct kernfs_syscall_ops *scops = kernfs_root(parent)->syscall_ops;
1140	int ret;
1141
1142	if (!scops || !scops->mkdir)
1143		return -EPERM;
1144
1145	if (!kernfs_get_active(parent))
1146		return -ENODEV;
1147
1148	ret = scops->mkdir(parent, dentry->d_name.name, mode);
1149
1150	kernfs_put_active(parent);
1151	return ret;
1152}
1153
1154static int kernfs_iop_rmdir(struct inode *dir, struct dentry *dentry)
1155{
1156	struct kernfs_node *kn  = kernfs_dentry_node(dentry);
1157	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1158	int ret;
1159
1160	if (!scops || !scops->rmdir)
1161		return -EPERM;
1162
1163	if (!kernfs_get_active(kn))
1164		return -ENODEV;
1165
1166	ret = scops->rmdir(kn);
1167
1168	kernfs_put_active(kn);
1169	return ret;
1170}
1171
1172static int kernfs_iop_rename(struct inode *old_dir, struct dentry *old_dentry,
1173			     struct inode *new_dir, struct dentry *new_dentry,
1174			     unsigned int flags)
1175{
1176	struct kernfs_node *kn = kernfs_dentry_node(old_dentry);
1177	struct kernfs_node *new_parent = new_dir->i_private;
1178	struct kernfs_syscall_ops *scops = kernfs_root(kn)->syscall_ops;
1179	int ret;
1180
1181	if (flags)
1182		return -EINVAL;
1183
1184	if (!scops || !scops->rename)
1185		return -EPERM;
1186
1187	if (!kernfs_get_active(kn))
1188		return -ENODEV;
1189
1190	if (!kernfs_get_active(new_parent)) {
1191		kernfs_put_active(kn);
1192		return -ENODEV;
1193	}
1194
1195	ret = scops->rename(kn, new_parent, new_dentry->d_name.name);
1196
1197	kernfs_put_active(new_parent);
1198	kernfs_put_active(kn);
1199	return ret;
1200}
1201
1202const struct inode_operations kernfs_dir_iops = {
1203	.lookup		= kernfs_iop_lookup,
1204	.permission	= kernfs_iop_permission,
1205	.setattr	= kernfs_iop_setattr,
1206	.getattr	= kernfs_iop_getattr,
1207	.listxattr	= kernfs_iop_listxattr,
1208
1209	.mkdir		= kernfs_iop_mkdir,
1210	.rmdir		= kernfs_iop_rmdir,
1211	.rename		= kernfs_iop_rename,
1212};
1213
1214static struct kernfs_node *kernfs_leftmost_descendant(struct kernfs_node *pos)
1215{
1216	struct kernfs_node *last;
1217
1218	while (true) {
1219		struct rb_node *rbn;
1220
1221		last = pos;
1222
1223		if (kernfs_type(pos) != KERNFS_DIR)
1224			break;
1225
1226		rbn = rb_first(&pos->dir.children);
1227		if (!rbn)
1228			break;
1229
1230		pos = rb_to_kn(rbn);
1231	}
1232
1233	return last;
1234}
1235
1236/**
1237 * kernfs_next_descendant_post - find the next descendant for post-order walk
1238 * @pos: the current position (%NULL to initiate traversal)
1239 * @root: kernfs_node whose descendants to walk
1240 *
1241 * Find the next descendant to visit for post-order traversal of @root's
1242 * descendants.  @root is included in the iteration and the last node to be
1243 * visited.
1244 */
1245static struct kernfs_node *kernfs_next_descendant_post(struct kernfs_node *pos,
1246						       struct kernfs_node *root)
1247{
1248	struct rb_node *rbn;
1249
1250	lockdep_assert_held(&kernfs_mutex);
1251
1252	/* if first iteration, visit leftmost descendant which may be root */
1253	if (!pos)
1254		return kernfs_leftmost_descendant(root);
1255
1256	/* if we visited @root, we're done */
1257	if (pos == root)
1258		return NULL;
1259
1260	/* if there's an unvisited sibling, visit its leftmost descendant */
1261	rbn = rb_next(&pos->rb);
1262	if (rbn)
1263		return kernfs_leftmost_descendant(rb_to_kn(rbn));
1264
1265	/* no sibling left, visit parent */
1266	return pos->parent;
1267}
1268
1269/**
1270 * kernfs_activate - activate a node which started deactivated
1271 * @kn: kernfs_node whose subtree is to be activated
1272 *
1273 * If the root has KERNFS_ROOT_CREATE_DEACTIVATED set, a newly created node
1274 * needs to be explicitly activated.  A node which hasn't been activated
1275 * isn't visible to userland and deactivation is skipped during its
1276 * removal.  This is useful to construct atomic init sequences where
1277 * creation of multiple nodes should either succeed or fail atomically.
1278 *
1279 * The caller is responsible for ensuring that this function is not called
1280 * after kernfs_remove*() is invoked on @kn.
1281 */
1282void kernfs_activate(struct kernfs_node *kn)
1283{
1284	struct kernfs_node *pos;
1285
1286	mutex_lock(&kernfs_mutex);
1287
1288	pos = NULL;
1289	while ((pos = kernfs_next_descendant_post(pos, kn))) {
1290		if (pos->flags & KERNFS_ACTIVATED)
1291			continue;
1292
1293		WARN_ON_ONCE(pos->parent && RB_EMPTY_NODE(&pos->rb));
1294		WARN_ON_ONCE(atomic_read(&pos->active) != KN_DEACTIVATED_BIAS);
1295
1296		atomic_sub(KN_DEACTIVATED_BIAS, &pos->active);
1297		pos->flags |= KERNFS_ACTIVATED;
1298	}
1299
1300	mutex_unlock(&kernfs_mutex);
1301}
1302
1303static void __kernfs_remove(struct kernfs_node *kn)
1304{
1305	struct kernfs_node *pos;
1306
1307	lockdep_assert_held(&kernfs_mutex);
1308
1309	/*
1310	 * Short-circuit if non-root @kn has already finished removal.
1311	 * This is for kernfs_remove_self() which plays with active ref
1312	 * after removal.
1313	 */
1314	if (!kn || (kn->parent && RB_EMPTY_NODE(&kn->rb)))
1315		return;
1316
1317	pr_debug("kernfs %s: removing\n", kn->name);
1318
1319	/* prevent any new usage under @kn by deactivating all nodes */
1320	pos = NULL;
1321	while ((pos = kernfs_next_descendant_post(pos, kn)))
1322		if (kernfs_active(pos))
1323			atomic_add(KN_DEACTIVATED_BIAS, &pos->active);
1324
1325	/* deactivate and unlink the subtree node-by-node */
1326	do {
1327		pos = kernfs_leftmost_descendant(kn);
1328
1329		/*
1330		 * kernfs_drain() drops kernfs_mutex temporarily and @pos's
1331		 * base ref could have been put by someone else by the time
1332		 * the function returns.  Make sure it doesn't go away
1333		 * underneath us.
1334		 */
1335		kernfs_get(pos);
1336
1337		/*
1338		 * Drain iff @kn was activated.  This avoids draining and
1339		 * its lockdep annotations for nodes which have never been
1340		 * activated and allows embedding kernfs_remove() in create
1341		 * error paths without worrying about draining.
1342		 */
1343		if (kn->flags & KERNFS_ACTIVATED)
1344			kernfs_drain(pos);
1345		else
1346			WARN_ON_ONCE(atomic_read(&kn->active) != KN_DEACTIVATED_BIAS);
1347
1348		/*
1349		 * kernfs_unlink_sibling() succeeds once per node.  Use it
1350		 * to decide who's responsible for cleanups.
1351		 */
1352		if (!pos->parent || kernfs_unlink_sibling(pos)) {
1353			struct kernfs_iattrs *ps_iattr =
1354				pos->parent ? pos->parent->iattr : NULL;
1355
1356			/* update timestamps on the parent */
1357			if (ps_iattr) {
1358				ktime_get_real_ts64(&ps_iattr->ia_ctime);
1359				ps_iattr->ia_mtime = ps_iattr->ia_ctime;
1360			}
1361
1362			kernfs_put(pos);
1363		}
1364
1365		kernfs_put(pos);
1366	} while (pos != kn);
1367}
1368
1369/**
1370 * kernfs_remove - remove a kernfs_node recursively
1371 * @kn: the kernfs_node to remove
1372 *
1373 * Remove @kn along with all its subdirectories and files.
1374 */
1375void kernfs_remove(struct kernfs_node *kn)
1376{
1377	mutex_lock(&kernfs_mutex);
1378	__kernfs_remove(kn);
1379	mutex_unlock(&kernfs_mutex);
1380}
1381
1382/**
1383 * kernfs_break_active_protection - break out of active protection
1384 * @kn: the self kernfs_node
1385 *
1386 * The caller must be running off of a kernfs operation which is invoked
1387 * with an active reference - e.g. one of kernfs_ops.  Each invocation of
1388 * this function must also be matched with an invocation of
1389 * kernfs_unbreak_active_protection().
1390 *
1391 * This function releases the active reference of @kn the caller is
1392 * holding.  Once this function is called, @kn may be removed at any point
1393 * and the caller is solely responsible for ensuring that the objects it
1394 * dereferences are accessible.
1395 */
1396void kernfs_break_active_protection(struct kernfs_node *kn)
1397{
1398	/*
1399	 * Take out ourself out of the active ref dependency chain.  If
1400	 * we're called without an active ref, lockdep will complain.
1401	 */
1402	kernfs_put_active(kn);
1403}
1404
1405/**
1406 * kernfs_unbreak_active_protection - undo kernfs_break_active_protection()
1407 * @kn: the self kernfs_node
1408 *
1409 * If kernfs_break_active_protection() was called, this function must be
1410 * invoked before finishing the kernfs operation.  Note that while this
1411 * function restores the active reference, it doesn't and can't actually
1412 * restore the active protection - @kn may already or be in the process of
1413 * being removed.  Once kernfs_break_active_protection() is invoked, that
1414 * protection is irreversibly gone for the kernfs operation instance.
1415 *
1416 * While this function may be called at any point after
1417 * kernfs_break_active_protection() is invoked, its most useful location
1418 * would be right before the enclosing kernfs operation returns.
1419 */
1420void kernfs_unbreak_active_protection(struct kernfs_node *kn)
1421{
1422	/*
1423	 * @kn->active could be in any state; however, the increment we do
1424	 * here will be undone as soon as the enclosing kernfs operation
1425	 * finishes and this temporary bump can't break anything.  If @kn
1426	 * is alive, nothing changes.  If @kn is being deactivated, the
1427	 * soon-to-follow put will either finish deactivation or restore
1428	 * deactivated state.  If @kn is already removed, the temporary
1429	 * bump is guaranteed to be gone before @kn is released.
1430	 */
1431	atomic_inc(&kn->active);
1432	if (kernfs_lockdep(kn))
1433		rwsem_acquire(&kn->dep_map, 0, 1, _RET_IP_);
1434}
1435
1436/**
1437 * kernfs_remove_self - remove a kernfs_node from its own method
1438 * @kn: the self kernfs_node to remove
1439 *
1440 * The caller must be running off of a kernfs operation which is invoked
1441 * with an active reference - e.g. one of kernfs_ops.  This can be used to
1442 * implement a file operation which deletes itself.
1443 *
1444 * For example, the "delete" file for a sysfs device directory can be
1445 * implemented by invoking kernfs_remove_self() on the "delete" file
1446 * itself.  This function breaks the circular dependency of trying to
1447 * deactivate self while holding an active ref itself.  It isn't necessary
1448 * to modify the usual removal path to use kernfs_remove_self().  The
1449 * "delete" implementation can simply invoke kernfs_remove_self() on self
1450 * before proceeding with the usual removal path.  kernfs will ignore later
1451 * kernfs_remove() on self.
1452 *
1453 * kernfs_remove_self() can be called multiple times concurrently on the
1454 * same kernfs_node.  Only the first one actually performs removal and
1455 * returns %true.  All others will wait until the kernfs operation which
1456 * won self-removal finishes and return %false.  Note that the losers wait
1457 * for the completion of not only the winning kernfs_remove_self() but also
1458 * the whole kernfs_ops which won the arbitration.  This can be used to
1459 * guarantee, for example, all concurrent writes to a "delete" file to
1460 * finish only after the whole operation is complete.
1461 */
1462bool kernfs_remove_self(struct kernfs_node *kn)
1463{
1464	bool ret;
1465
1466	mutex_lock(&kernfs_mutex);
1467	kernfs_break_active_protection(kn);
1468
1469	/*
1470	 * SUICIDAL is used to arbitrate among competing invocations.  Only
1471	 * the first one will actually perform removal.  When the removal
1472	 * is complete, SUICIDED is set and the active ref is restored
1473	 * while holding kernfs_mutex.  The ones which lost arbitration
1474	 * waits for SUICDED && drained which can happen only after the
1475	 * enclosing kernfs operation which executed the winning instance
1476	 * of kernfs_remove_self() finished.
1477	 */
1478	if (!(kn->flags & KERNFS_SUICIDAL)) {
1479		kn->flags |= KERNFS_SUICIDAL;
1480		__kernfs_remove(kn);
1481		kn->flags |= KERNFS_SUICIDED;
1482		ret = true;
1483	} else {
1484		wait_queue_head_t *waitq = &kernfs_root(kn)->deactivate_waitq;
1485		DEFINE_WAIT(wait);
1486
1487		while (true) {
1488			prepare_to_wait(waitq, &wait, TASK_UNINTERRUPTIBLE);
1489
1490			if ((kn->flags & KERNFS_SUICIDED) &&
1491			    atomic_read(&kn->active) == KN_DEACTIVATED_BIAS)
1492				break;
1493
1494			mutex_unlock(&kernfs_mutex);
1495			schedule();
1496			mutex_lock(&kernfs_mutex);
1497		}
1498		finish_wait(waitq, &wait);
1499		WARN_ON_ONCE(!RB_EMPTY_NODE(&kn->rb));
1500		ret = false;
1501	}
1502
1503	/*
1504	 * This must be done while holding kernfs_mutex; otherwise, waiting
1505	 * for SUICIDED && deactivated could finish prematurely.
1506	 */
1507	kernfs_unbreak_active_protection(kn);
1508
1509	mutex_unlock(&kernfs_mutex);
1510	return ret;
1511}
1512
1513/**
1514 * kernfs_remove_by_name_ns - find a kernfs_node by name and remove it
1515 * @parent: parent of the target
1516 * @name: name of the kernfs_node to remove
1517 * @ns: namespace tag of the kernfs_node to remove
1518 *
1519 * Look for the kernfs_node with @name and @ns under @parent and remove it.
1520 * Returns 0 on success, -ENOENT if such entry doesn't exist.
1521 */
1522int kernfs_remove_by_name_ns(struct kernfs_node *parent, const char *name,
1523			     const void *ns)
1524{
1525	struct kernfs_node *kn;
1526
1527	if (!parent) {
1528		WARN(1, KERN_WARNING "kernfs: can not remove '%s', no directory\n",
1529			name);
1530		return -ENOENT;
1531	}
1532
1533	mutex_lock(&kernfs_mutex);
1534
1535	kn = kernfs_find_ns(parent, name, ns);
1536	if (kn) {
1537		kernfs_get(kn);
1538		__kernfs_remove(kn);
1539		kernfs_put(kn);
1540	}
1541
1542	mutex_unlock(&kernfs_mutex);
1543
1544	if (kn)
1545		return 0;
1546	else
1547		return -ENOENT;
1548}
1549
1550/**
1551 * kernfs_rename_ns - move and rename a kernfs_node
1552 * @kn: target node
1553 * @new_parent: new parent to put @sd under
1554 * @new_name: new name
1555 * @new_ns: new namespace tag
1556 */
1557int kernfs_rename_ns(struct kernfs_node *kn, struct kernfs_node *new_parent,
1558		     const char *new_name, const void *new_ns)
1559{
1560	struct kernfs_node *old_parent;
1561	const char *old_name = NULL;
1562	int error;
1563
1564	/* can't move or rename root */
1565	if (!kn->parent)
1566		return -EINVAL;
1567
1568	mutex_lock(&kernfs_mutex);
1569
1570	error = -ENOENT;
1571	if (!kernfs_active(kn) || !kernfs_active(new_parent) ||
1572	    (new_parent->flags & KERNFS_EMPTY_DIR))
1573		goto out;
1574
1575	error = 0;
1576	if ((kn->parent == new_parent) && (kn->ns == new_ns) &&
1577	    (strcmp(kn->name, new_name) == 0))
1578		goto out;	/* nothing to rename */
1579
1580	error = -EEXIST;
1581	if (kernfs_find_ns(new_parent, new_name, new_ns))
1582		goto out;
1583
1584	/* rename kernfs_node */
1585	if (strcmp(kn->name, new_name) != 0) {
1586		error = -ENOMEM;
1587		new_name = kstrdup_const(new_name, GFP_KERNEL);
1588		if (!new_name)
1589			goto out;
1590	} else {
1591		new_name = NULL;
1592	}
1593
1594	/*
1595	 * Move to the appropriate place in the appropriate directories rbtree.
1596	 */
1597	kernfs_unlink_sibling(kn);
1598	kernfs_get(new_parent);
1599
1600	/* rename_lock protects ->parent and ->name accessors */
1601	spin_lock_irq(&kernfs_rename_lock);
1602
1603	old_parent = kn->parent;
1604	kn->parent = new_parent;
1605
1606	kn->ns = new_ns;
1607	if (new_name) {
1608		old_name = kn->name;
1609		kn->name = new_name;
1610	}
1611
1612	spin_unlock_irq(&kernfs_rename_lock);
1613
1614	kn->hash = kernfs_name_hash(kn->name, kn->ns);
1615	kernfs_link_sibling(kn);
1616
1617	kernfs_put(old_parent);
1618	kfree_const(old_name);
1619
1620	error = 0;
1621 out:
1622	mutex_unlock(&kernfs_mutex);
1623	return error;
1624}
1625
1626/* Relationship between s_mode and the DT_xxx types */
1627static inline unsigned char dt_type(struct kernfs_node *kn)
1628{
1629	return (kn->mode >> 12) & 15;
1630}
1631
1632static int kernfs_dir_fop_release(struct inode *inode, struct file *filp)
1633{
1634	kernfs_put(filp->private_data);
1635	return 0;
1636}
1637
1638static struct kernfs_node *kernfs_dir_pos(const void *ns,
1639	struct kernfs_node *parent, loff_t hash, struct kernfs_node *pos)
1640{
1641	if (pos) {
1642		int valid = kernfs_active(pos) &&
1643			pos->parent == parent && hash == pos->hash;
1644		kernfs_put(pos);
1645		if (!valid)
1646			pos = NULL;
1647	}
1648	if (!pos && (hash > 1) && (hash < INT_MAX)) {
1649		struct rb_node *node = parent->dir.children.rb_node;
1650		while (node) {
1651			pos = rb_to_kn(node);
1652
1653			if (hash < pos->hash)
1654				node = node->rb_left;
1655			else if (hash > pos->hash)
1656				node = node->rb_right;
1657			else
1658				break;
1659		}
1660	}
1661	/* Skip over entries which are dying/dead or in the wrong namespace */
1662	while (pos && (!kernfs_active(pos) || pos->ns != ns)) {
1663		struct rb_node *node = rb_next(&pos->rb);
1664		if (!node)
1665			pos = NULL;
1666		else
1667			pos = rb_to_kn(node);
1668	}
1669	return pos;
1670}
1671
1672static struct kernfs_node *kernfs_dir_next_pos(const void *ns,
1673	struct kernfs_node *parent, ino_t ino, struct kernfs_node *pos)
1674{
1675	pos = kernfs_dir_pos(ns, parent, ino, pos);
1676	if (pos) {
1677		do {
1678			struct rb_node *node = rb_next(&pos->rb);
1679			if (!node)
1680				pos = NULL;
1681			else
1682				pos = rb_to_kn(node);
1683		} while (pos && (!kernfs_active(pos) || pos->ns != ns));
1684	}
1685	return pos;
1686}
1687
1688static int kernfs_fop_readdir(struct file *file, struct dir_context *ctx)
1689{
1690	struct dentry *dentry = file->f_path.dentry;
1691	struct kernfs_node *parent = kernfs_dentry_node(dentry);
1692	struct kernfs_node *pos = file->private_data;
1693	const void *ns = NULL;
1694
1695	if (!dir_emit_dots(file, ctx))
1696		return 0;
1697	mutex_lock(&kernfs_mutex);
1698
1699	if (kernfs_ns_enabled(parent))
1700		ns = kernfs_info(dentry->d_sb)->ns;
1701
1702	for (pos = kernfs_dir_pos(ns, parent, ctx->pos, pos);
1703	     pos;
1704	     pos = kernfs_dir_next_pos(ns, parent, ctx->pos, pos)) {
1705		const char *name = pos->name;
1706		unsigned int type = dt_type(pos);
1707		int len = strlen(name);
1708		ino_t ino = kernfs_ino(pos);
1709
1710		ctx->pos = pos->hash;
1711		file->private_data = pos;
1712		kernfs_get(pos);
1713
1714		mutex_unlock(&kernfs_mutex);
1715		if (!dir_emit(ctx, name, len, ino, type))
1716			return 0;
1717		mutex_lock(&kernfs_mutex);
1718	}
1719	mutex_unlock(&kernfs_mutex);
1720	file->private_data = NULL;
1721	ctx->pos = INT_MAX;
1722	return 0;
1723}
1724
1725const struct file_operations kernfs_dir_fops = {
1726	.read		= generic_read_dir,
1727	.iterate_shared	= kernfs_fop_readdir,
1728	.release	= kernfs_dir_fop_release,
1729	.llseek		= generic_file_llseek,
1730};
1731