1// SPDX-License-Identifier: GPL-2.0-or-later 2/* 3 * Copyright (C) International Business Machines Corp., 2000-2004 4 */ 5 6/* 7 * jfs_dtree.c: directory B+-tree manager 8 * 9 * B+-tree with variable length key directory: 10 * 11 * each directory page is structured as an array of 32-byte 12 * directory entry slots initialized as a freelist 13 * to avoid search/compaction of free space at insertion. 14 * when an entry is inserted, a number of slots are allocated 15 * from the freelist as required to store variable length data 16 * of the entry; when the entry is deleted, slots of the entry 17 * are returned to freelist. 18 * 19 * leaf entry stores full name as key and file serial number 20 * (aka inode number) as data. 21 * internal/router entry stores sufffix compressed name 22 * as key and simple extent descriptor as data. 23 * 24 * each directory page maintains a sorted entry index table 25 * which stores the start slot index of sorted entries 26 * to allow binary search on the table. 27 * 28 * directory starts as a root/leaf page in on-disk inode 29 * inline data area. 30 * when it becomes full, it starts a leaf of a external extent 31 * of length of 1 block. each time the first leaf becomes full, 32 * it is extended rather than split (its size is doubled), 33 * until its length becoms 4 KBytes, from then the extent is split 34 * with new 4 Kbyte extent when it becomes full 35 * to reduce external fragmentation of small directories. 36 * 37 * blah, blah, blah, for linear scan of directory in pieces by 38 * readdir(). 39 * 40 * 41 * case-insensitive directory file system 42 * 43 * names are stored in case-sensitive way in leaf entry. 44 * but stored, searched and compared in case-insensitive (uppercase) order 45 * (i.e., both search key and entry key are folded for search/compare): 46 * (note that case-sensitive order is BROKEN in storage, e.g., 47 * sensitive: Ad, aB, aC, aD -> insensitive: aB, aC, aD, Ad 48 * 49 * entries which folds to the same key makes up a equivalent class 50 * whose members are stored as contiguous cluster (may cross page boundary) 51 * but whose order is arbitrary and acts as duplicate, e.g., 52 * abc, Abc, aBc, abC) 53 * 54 * once match is found at leaf, requires scan forward/backward 55 * either for, in case-insensitive search, duplicate 56 * or for, in case-sensitive search, for exact match 57 * 58 * router entry must be created/stored in case-insensitive way 59 * in internal entry: 60 * (right most key of left page and left most key of right page 61 * are folded, and its suffix compression is propagated as router 62 * key in parent) 63 * (e.g., if split occurs <abc> and <aBd>, <ABD> trather than <aB> 64 * should be made the router key for the split) 65 * 66 * case-insensitive search: 67 * 68 * fold search key; 69 * 70 * case-insensitive search of B-tree: 71 * for internal entry, router key is already folded; 72 * for leaf entry, fold the entry key before comparison. 73 * 74 * if (leaf entry case-insensitive match found) 75 * if (next entry satisfies case-insensitive match) 76 * return EDUPLICATE; 77 * if (prev entry satisfies case-insensitive match) 78 * return EDUPLICATE; 79 * return match; 80 * else 81 * return no match; 82 * 83 * serialization: 84 * target directory inode lock is being held on entry/exit 85 * of all main directory service routines. 86 * 87 * log based recovery: 88 */ 89 90#include <linux/fs.h> 91#include <linux/quotaops.h> 92#include <linux/slab.h> 93#include "jfs_incore.h" 94#include "jfs_superblock.h" 95#include "jfs_filsys.h" 96#include "jfs_metapage.h" 97#include "jfs_dmap.h" 98#include "jfs_unicode.h" 99#include "jfs_debug.h" 100 101/* dtree split parameter */ 102struct dtsplit { 103 struct metapage *mp; 104 s16 index; 105 s16 nslot; 106 struct component_name *key; 107 ddata_t *data; 108 struct pxdlist *pxdlist; 109}; 110 111#define DT_PAGE(IP, MP) BT_PAGE(IP, MP, dtpage_t, i_dtroot) 112 113/* get page buffer for specified block address */ 114#define DT_GETPAGE(IP, BN, MP, SIZE, P, RC) \ 115do { \ 116 BT_GETPAGE(IP, BN, MP, dtpage_t, SIZE, P, RC, i_dtroot); \ 117 if (!(RC)) { \ 118 if (((P)->header.nextindex > \ 119 (((BN) == 0) ? DTROOTMAXSLOT : (P)->header.maxslot)) || \ 120 ((BN) && ((P)->header.maxslot > DTPAGEMAXSLOT))) { \ 121 BT_PUTPAGE(MP); \ 122 jfs_error((IP)->i_sb, \ 123 "DT_GETPAGE: dtree page corrupt\n"); \ 124 MP = NULL; \ 125 RC = -EIO; \ 126 } \ 127 } \ 128} while (0) 129 130/* for consistency */ 131#define DT_PUTPAGE(MP) BT_PUTPAGE(MP) 132 133#define DT_GETSEARCH(IP, LEAF, BN, MP, P, INDEX) \ 134 BT_GETSEARCH(IP, LEAF, BN, MP, dtpage_t, P, INDEX, i_dtroot) 135 136/* 137 * forward references 138 */ 139static int dtSplitUp(tid_t tid, struct inode *ip, 140 struct dtsplit * split, struct btstack * btstack); 141 142static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split, 143 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rxdp); 144 145static int dtExtendPage(tid_t tid, struct inode *ip, 146 struct dtsplit * split, struct btstack * btstack); 147 148static int dtSplitRoot(tid_t tid, struct inode *ip, 149 struct dtsplit * split, struct metapage ** rmpp); 150 151static int dtDeleteUp(tid_t tid, struct inode *ip, struct metapage * fmp, 152 dtpage_t * fp, struct btstack * btstack); 153 154static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p); 155 156static int dtReadFirst(struct inode *ip, struct btstack * btstack); 157 158static int dtReadNext(struct inode *ip, 159 loff_t * offset, struct btstack * btstack); 160 161static int dtCompare(struct component_name * key, dtpage_t * p, int si); 162 163static int ciCompare(struct component_name * key, dtpage_t * p, int si, 164 int flag); 165 166static void dtGetKey(dtpage_t * p, int i, struct component_name * key, 167 int flag); 168 169static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp, 170 int ri, struct component_name * key, int flag); 171 172static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key, 173 ddata_t * data, struct dt_lock **); 174 175static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp, 176 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock, 177 int do_index); 178 179static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock); 180 181static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock); 182 183static void dtLinelockFreelist(dtpage_t * p, int m, struct dt_lock ** dtlock); 184 185#define ciToUpper(c) UniStrupr((c)->name) 186 187/* 188 * read_index_page() 189 * 190 * Reads a page of a directory's index table. 191 * Having metadata mapped into the directory inode's address space 192 * presents a multitude of problems. We avoid this by mapping to 193 * the absolute address space outside of the *_metapage routines 194 */ 195static struct metapage *read_index_page(struct inode *inode, s64 blkno) 196{ 197 int rc; 198 s64 xaddr; 199 int xflag; 200 s32 xlen; 201 202 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1); 203 if (rc || (xaddr == 0)) 204 return NULL; 205 206 return read_metapage(inode, xaddr, PSIZE, 1); 207} 208 209/* 210 * get_index_page() 211 * 212 * Same as get_index_page(), but get's a new page without reading 213 */ 214static struct metapage *get_index_page(struct inode *inode, s64 blkno) 215{ 216 int rc; 217 s64 xaddr; 218 int xflag; 219 s32 xlen; 220 221 rc = xtLookup(inode, blkno, 1, &xflag, &xaddr, &xlen, 1); 222 if (rc || (xaddr == 0)) 223 return NULL; 224 225 return get_metapage(inode, xaddr, PSIZE, 1); 226} 227 228/* 229 * find_index() 230 * 231 * Returns dtree page containing directory table entry for specified 232 * index and pointer to its entry. 233 * 234 * mp must be released by caller. 235 */ 236static struct dir_table_slot *find_index(struct inode *ip, u32 index, 237 struct metapage ** mp, s64 *lblock) 238{ 239 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 240 s64 blkno; 241 s64 offset; 242 int page_offset; 243 struct dir_table_slot *slot; 244 static int maxWarnings = 10; 245 246 if (index < 2) { 247 if (maxWarnings) { 248 jfs_warn("find_entry called with index = %d", index); 249 maxWarnings--; 250 } 251 return NULL; 252 } 253 254 if (index >= jfs_ip->next_index) { 255 jfs_warn("find_entry called with index >= next_index"); 256 return NULL; 257 } 258 259 if (jfs_dirtable_inline(ip)) { 260 /* 261 * Inline directory table 262 */ 263 *mp = NULL; 264 slot = &jfs_ip->i_dirtable[index - 2]; 265 } else { 266 offset = (index - 2) * sizeof(struct dir_table_slot); 267 page_offset = offset & (PSIZE - 1); 268 blkno = ((offset + 1) >> L2PSIZE) << 269 JFS_SBI(ip->i_sb)->l2nbperpage; 270 271 if (*mp && (*lblock != blkno)) { 272 release_metapage(*mp); 273 *mp = NULL; 274 } 275 if (!(*mp)) { 276 *lblock = blkno; 277 *mp = read_index_page(ip, blkno); 278 } 279 if (!(*mp)) { 280 jfs_err("free_index: error reading directory table"); 281 return NULL; 282 } 283 284 slot = 285 (struct dir_table_slot *) ((char *) (*mp)->data + 286 page_offset); 287 } 288 return slot; 289} 290 291static inline void lock_index(tid_t tid, struct inode *ip, struct metapage * mp, 292 u32 index) 293{ 294 struct tlock *tlck; 295 struct linelock *llck; 296 struct lv *lv; 297 298 tlck = txLock(tid, ip, mp, tlckDATA); 299 llck = (struct linelock *) tlck->lock; 300 301 if (llck->index >= llck->maxcnt) 302 llck = txLinelock(llck); 303 lv = &llck->lv[llck->index]; 304 305 /* 306 * Linelock slot size is twice the size of directory table 307 * slot size. 512 entries per page. 308 */ 309 lv->offset = ((index - 2) & 511) >> 1; 310 lv->length = 1; 311 llck->index++; 312} 313 314/* 315 * add_index() 316 * 317 * Adds an entry to the directory index table. This is used to provide 318 * each directory entry with a persistent index in which to resume 319 * directory traversals 320 */ 321static u32 add_index(tid_t tid, struct inode *ip, s64 bn, int slot) 322{ 323 struct super_block *sb = ip->i_sb; 324 struct jfs_sb_info *sbi = JFS_SBI(sb); 325 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 326 u64 blkno; 327 struct dir_table_slot *dirtab_slot; 328 u32 index; 329 struct linelock *llck; 330 struct lv *lv; 331 struct metapage *mp; 332 s64 offset; 333 uint page_offset; 334 struct tlock *tlck; 335 s64 xaddr; 336 337 ASSERT(DO_INDEX(ip)); 338 339 if (jfs_ip->next_index < 2) { 340 jfs_warn("add_index: next_index = %d. Resetting!", 341 jfs_ip->next_index); 342 jfs_ip->next_index = 2; 343 } 344 345 index = jfs_ip->next_index++; 346 347 if (index <= MAX_INLINE_DIRTABLE_ENTRY) { 348 /* 349 * i_size reflects size of index table, or 8 bytes per entry. 350 */ 351 ip->i_size = (loff_t) (index - 1) << 3; 352 353 /* 354 * dir table fits inline within inode 355 */ 356 dirtab_slot = &jfs_ip->i_dirtable[index-2]; 357 dirtab_slot->flag = DIR_INDEX_VALID; 358 dirtab_slot->slot = slot; 359 DTSaddress(dirtab_slot, bn); 360 361 set_cflag(COMMIT_Dirtable, ip); 362 363 return index; 364 } 365 if (index == (MAX_INLINE_DIRTABLE_ENTRY + 1)) { 366 struct dir_table_slot temp_table[12]; 367 368 /* 369 * It's time to move the inline table to an external 370 * page and begin to build the xtree 371 */ 372 if (dquot_alloc_block(ip, sbi->nbperpage)) 373 goto clean_up; 374 if (dbAlloc(ip, 0, sbi->nbperpage, &xaddr)) { 375 dquot_free_block(ip, sbi->nbperpage); 376 goto clean_up; 377 } 378 379 /* 380 * Save the table, we're going to overwrite it with the 381 * xtree root 382 */ 383 memcpy(temp_table, &jfs_ip->i_dirtable, sizeof(temp_table)); 384 385 /* 386 * Initialize empty x-tree 387 */ 388 xtInitRoot(tid, ip); 389 390 /* 391 * Add the first block to the xtree 392 */ 393 if (xtInsert(tid, ip, 0, 0, sbi->nbperpage, &xaddr, 0)) { 394 /* This really shouldn't fail */ 395 jfs_warn("add_index: xtInsert failed!"); 396 memcpy(&jfs_ip->i_dirtable, temp_table, 397 sizeof (temp_table)); 398 dbFree(ip, xaddr, sbi->nbperpage); 399 dquot_free_block(ip, sbi->nbperpage); 400 goto clean_up; 401 } 402 ip->i_size = PSIZE; 403 404 mp = get_index_page(ip, 0); 405 if (!mp) { 406 jfs_err("add_index: get_metapage failed!"); 407 xtTruncate(tid, ip, 0, COMMIT_PWMAP); 408 memcpy(&jfs_ip->i_dirtable, temp_table, 409 sizeof (temp_table)); 410 goto clean_up; 411 } 412 tlck = txLock(tid, ip, mp, tlckDATA); 413 llck = (struct linelock *) & tlck->lock; 414 ASSERT(llck->index == 0); 415 lv = &llck->lv[0]; 416 417 lv->offset = 0; 418 lv->length = 6; /* tlckDATA slot size is 16 bytes */ 419 llck->index++; 420 421 memcpy(mp->data, temp_table, sizeof(temp_table)); 422 423 mark_metapage_dirty(mp); 424 release_metapage(mp); 425 426 /* 427 * Logging is now directed by xtree tlocks 428 */ 429 clear_cflag(COMMIT_Dirtable, ip); 430 } 431 432 offset = (index - 2) * sizeof(struct dir_table_slot); 433 page_offset = offset & (PSIZE - 1); 434 blkno = ((offset + 1) >> L2PSIZE) << sbi->l2nbperpage; 435 if (page_offset == 0) { 436 /* 437 * This will be the beginning of a new page 438 */ 439 xaddr = 0; 440 if (xtInsert(tid, ip, 0, blkno, sbi->nbperpage, &xaddr, 0)) { 441 jfs_warn("add_index: xtInsert failed!"); 442 goto clean_up; 443 } 444 ip->i_size += PSIZE; 445 446 if ((mp = get_index_page(ip, blkno))) 447 memset(mp->data, 0, PSIZE); /* Just looks better */ 448 else 449 xtTruncate(tid, ip, offset, COMMIT_PWMAP); 450 } else 451 mp = read_index_page(ip, blkno); 452 453 if (!mp) { 454 jfs_err("add_index: get/read_metapage failed!"); 455 goto clean_up; 456 } 457 458 lock_index(tid, ip, mp, index); 459 460 dirtab_slot = 461 (struct dir_table_slot *) ((char *) mp->data + page_offset); 462 dirtab_slot->flag = DIR_INDEX_VALID; 463 dirtab_slot->slot = slot; 464 DTSaddress(dirtab_slot, bn); 465 466 mark_metapage_dirty(mp); 467 release_metapage(mp); 468 469 return index; 470 471 clean_up: 472 473 jfs_ip->next_index--; 474 475 return 0; 476} 477 478/* 479 * free_index() 480 * 481 * Marks an entry to the directory index table as free. 482 */ 483static void free_index(tid_t tid, struct inode *ip, u32 index, u32 next) 484{ 485 struct dir_table_slot *dirtab_slot; 486 s64 lblock; 487 struct metapage *mp = NULL; 488 489 dirtab_slot = find_index(ip, index, &mp, &lblock); 490 491 if (!dirtab_slot) 492 return; 493 494 dirtab_slot->flag = DIR_INDEX_FREE; 495 dirtab_slot->slot = dirtab_slot->addr1 = 0; 496 dirtab_slot->addr2 = cpu_to_le32(next); 497 498 if (mp) { 499 lock_index(tid, ip, mp, index); 500 mark_metapage_dirty(mp); 501 release_metapage(mp); 502 } else 503 set_cflag(COMMIT_Dirtable, ip); 504} 505 506/* 507 * modify_index() 508 * 509 * Changes an entry in the directory index table 510 */ 511static void modify_index(tid_t tid, struct inode *ip, u32 index, s64 bn, 512 int slot, struct metapage ** mp, s64 *lblock) 513{ 514 struct dir_table_slot *dirtab_slot; 515 516 dirtab_slot = find_index(ip, index, mp, lblock); 517 518 if (!dirtab_slot) 519 return; 520 521 DTSaddress(dirtab_slot, bn); 522 dirtab_slot->slot = slot; 523 524 if (*mp) { 525 lock_index(tid, ip, *mp, index); 526 mark_metapage_dirty(*mp); 527 } else 528 set_cflag(COMMIT_Dirtable, ip); 529} 530 531/* 532 * read_index() 533 * 534 * reads a directory table slot 535 */ 536static int read_index(struct inode *ip, u32 index, 537 struct dir_table_slot * dirtab_slot) 538{ 539 s64 lblock; 540 struct metapage *mp = NULL; 541 struct dir_table_slot *slot; 542 543 slot = find_index(ip, index, &mp, &lblock); 544 if (!slot) { 545 return -EIO; 546 } 547 548 memcpy(dirtab_slot, slot, sizeof(struct dir_table_slot)); 549 550 if (mp) 551 release_metapage(mp); 552 553 return 0; 554} 555 556/* 557 * dtSearch() 558 * 559 * function: 560 * Search for the entry with specified key 561 * 562 * parameter: 563 * 564 * return: 0 - search result on stack, leaf page pinned; 565 * errno - I/O error 566 */ 567int dtSearch(struct inode *ip, struct component_name * key, ino_t * data, 568 struct btstack * btstack, int flag) 569{ 570 int rc = 0; 571 int cmp = 1; /* init for empty page */ 572 s64 bn; 573 struct metapage *mp; 574 dtpage_t *p; 575 s8 *stbl; 576 int base, index, lim; 577 struct btframe *btsp; 578 pxd_t *pxd; 579 int psize = 288; /* initial in-line directory */ 580 ino_t inumber; 581 struct component_name ciKey; 582 struct super_block *sb = ip->i_sb; 583 584 ciKey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t), 585 GFP_NOFS); 586 if (!ciKey.name) { 587 rc = -ENOMEM; 588 goto dtSearch_Exit2; 589 } 590 591 592 /* uppercase search key for c-i directory */ 593 UniStrcpy(ciKey.name, key->name); 594 ciKey.namlen = key->namlen; 595 596 /* only uppercase if case-insensitive support is on */ 597 if ((JFS_SBI(sb)->mntflag & JFS_OS2) == JFS_OS2) { 598 ciToUpper(&ciKey); 599 } 600 BT_CLR(btstack); /* reset stack */ 601 602 /* init level count for max pages to split */ 603 btstack->nsplit = 1; 604 605 /* 606 * search down tree from root: 607 * 608 * between two consecutive entries of <Ki, Pi> and <Kj, Pj> of 609 * internal page, child page Pi contains entry with k, Ki <= K < Kj. 610 * 611 * if entry with search key K is not found 612 * internal page search find the entry with largest key Ki 613 * less than K which point to the child page to search; 614 * leaf page search find the entry with smallest key Kj 615 * greater than K so that the returned index is the position of 616 * the entry to be shifted right for insertion of new entry. 617 * for empty tree, search key is greater than any key of the tree. 618 * 619 * by convention, root bn = 0. 620 */ 621 for (bn = 0;;) { 622 /* get/pin the page to search */ 623 DT_GETPAGE(ip, bn, mp, psize, p, rc); 624 if (rc) 625 goto dtSearch_Exit1; 626 627 /* get sorted entry table of the page */ 628 stbl = DT_GETSTBL(p); 629 630 /* 631 * binary search with search key K on the current page. 632 */ 633 for (base = 0, lim = p->header.nextindex; lim; lim >>= 1) { 634 index = base + (lim >> 1); 635 636 if (stbl[index] < 0) { 637 rc = -EIO; 638 goto out; 639 } 640 641 if (p->header.flag & BT_LEAF) { 642 /* uppercase leaf name to compare */ 643 cmp = 644 ciCompare(&ciKey, p, stbl[index], 645 JFS_SBI(sb)->mntflag); 646 } else { 647 /* router key is in uppercase */ 648 649 cmp = dtCompare(&ciKey, p, stbl[index]); 650 651 652 } 653 if (cmp == 0) { 654 /* 655 * search hit 656 */ 657 /* search hit - leaf page: 658 * return the entry found 659 */ 660 if (p->header.flag & BT_LEAF) { 661 inumber = le32_to_cpu( 662 ((struct ldtentry *) & p->slot[stbl[index]])->inumber); 663 664 /* 665 * search for JFS_LOOKUP 666 */ 667 if (flag == JFS_LOOKUP) { 668 *data = inumber; 669 rc = 0; 670 goto out; 671 } 672 673 /* 674 * search for JFS_CREATE 675 */ 676 if (flag == JFS_CREATE) { 677 *data = inumber; 678 rc = -EEXIST; 679 goto out; 680 } 681 682 /* 683 * search for JFS_REMOVE or JFS_RENAME 684 */ 685 if ((flag == JFS_REMOVE || 686 flag == JFS_RENAME) && 687 *data != inumber) { 688 rc = -ESTALE; 689 goto out; 690 } 691 692 /* 693 * JFS_REMOVE|JFS_FINDDIR|JFS_RENAME 694 */ 695 /* save search result */ 696 *data = inumber; 697 btsp = btstack->top; 698 btsp->bn = bn; 699 btsp->index = index; 700 btsp->mp = mp; 701 702 rc = 0; 703 goto dtSearch_Exit1; 704 } 705 706 /* search hit - internal page: 707 * descend/search its child page 708 */ 709 goto getChild; 710 } 711 712 if (cmp > 0) { 713 base = index + 1; 714 --lim; 715 } 716 } 717 718 /* 719 * search miss 720 * 721 * base is the smallest index with key (Kj) greater than 722 * search key (K) and may be zero or (maxindex + 1) index. 723 */ 724 /* 725 * search miss - leaf page 726 * 727 * return location of entry (base) where new entry with 728 * search key K is to be inserted. 729 */ 730 if (p->header.flag & BT_LEAF) { 731 /* 732 * search for JFS_LOOKUP, JFS_REMOVE, or JFS_RENAME 733 */ 734 if (flag == JFS_LOOKUP || flag == JFS_REMOVE || 735 flag == JFS_RENAME) { 736 rc = -ENOENT; 737 goto out; 738 } 739 740 /* 741 * search for JFS_CREATE|JFS_FINDDIR: 742 * 743 * save search result 744 */ 745 *data = 0; 746 btsp = btstack->top; 747 btsp->bn = bn; 748 btsp->index = base; 749 btsp->mp = mp; 750 751 rc = 0; 752 goto dtSearch_Exit1; 753 } 754 755 /* 756 * search miss - internal page 757 * 758 * if base is non-zero, decrement base by one to get the parent 759 * entry of the child page to search. 760 */ 761 index = base ? base - 1 : base; 762 763 /* 764 * go down to child page 765 */ 766 getChild: 767 /* update max. number of pages to split */ 768 if (BT_STACK_FULL(btstack)) { 769 /* Something's corrupted, mark filesystem dirty so 770 * chkdsk will fix it. 771 */ 772 jfs_error(sb, "stack overrun!\n"); 773 BT_STACK_DUMP(btstack); 774 rc = -EIO; 775 goto out; 776 } 777 btstack->nsplit++; 778 779 /* push (bn, index) of the parent page/entry */ 780 BT_PUSH(btstack, bn, index); 781 782 /* get the child page block number */ 783 pxd = (pxd_t *) & p->slot[stbl[index]]; 784 bn = addressPXD(pxd); 785 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize; 786 787 /* unpin the parent page */ 788 DT_PUTPAGE(mp); 789 } 790 791 out: 792 DT_PUTPAGE(mp); 793 794 dtSearch_Exit1: 795 796 kfree(ciKey.name); 797 798 dtSearch_Exit2: 799 800 return rc; 801} 802 803 804/* 805 * dtInsert() 806 * 807 * function: insert an entry to directory tree 808 * 809 * parameter: 810 * 811 * return: 0 - success; 812 * errno - failure; 813 */ 814int dtInsert(tid_t tid, struct inode *ip, 815 struct component_name * name, ino_t * fsn, struct btstack * btstack) 816{ 817 int rc = 0; 818 struct metapage *mp; /* meta-page buffer */ 819 dtpage_t *p; /* base B+-tree index page */ 820 s64 bn; 821 int index; 822 struct dtsplit split; /* split information */ 823 ddata_t data; 824 struct dt_lock *dtlck; 825 int n; 826 struct tlock *tlck; 827 struct lv *lv; 828 829 /* 830 * retrieve search result 831 * 832 * dtSearch() returns (leaf page pinned, index at which to insert). 833 * n.b. dtSearch() may return index of (maxindex + 1) of 834 * the full page. 835 */ 836 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index); 837 838 /* 839 * insert entry for new key 840 */ 841 if (DO_INDEX(ip)) { 842 if (JFS_IP(ip)->next_index == DIREND) { 843 DT_PUTPAGE(mp); 844 return -EMLINK; 845 } 846 n = NDTLEAF(name->namlen); 847 data.leaf.tid = tid; 848 data.leaf.ip = ip; 849 } else { 850 n = NDTLEAF_LEGACY(name->namlen); 851 data.leaf.ip = NULL; /* signifies legacy directory format */ 852 } 853 data.leaf.ino = *fsn; 854 855 /* 856 * leaf page does not have enough room for new entry: 857 * 858 * extend/split the leaf page; 859 * 860 * dtSplitUp() will insert the entry and unpin the leaf page. 861 */ 862 if (n > p->header.freecnt) { 863 split.mp = mp; 864 split.index = index; 865 split.nslot = n; 866 split.key = name; 867 split.data = &data; 868 rc = dtSplitUp(tid, ip, &split, btstack); 869 return rc; 870 } 871 872 /* 873 * leaf page does have enough room for new entry: 874 * 875 * insert the new data entry into the leaf page; 876 */ 877 BT_MARK_DIRTY(mp, ip); 878 /* 879 * acquire a transaction lock on the leaf page 880 */ 881 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 882 dtlck = (struct dt_lock *) & tlck->lock; 883 ASSERT(dtlck->index == 0); 884 lv = & dtlck->lv[0]; 885 886 /* linelock header */ 887 lv->offset = 0; 888 lv->length = 1; 889 dtlck->index++; 890 891 dtInsertEntry(p, index, name, &data, &dtlck); 892 893 /* linelock stbl of non-root leaf page */ 894 if (!(p->header.flag & BT_ROOT)) { 895 if (dtlck->index >= dtlck->maxcnt) 896 dtlck = (struct dt_lock *) txLinelock(dtlck); 897 lv = & dtlck->lv[dtlck->index]; 898 n = index >> L2DTSLOTSIZE; 899 lv->offset = p->header.stblindex + n; 900 lv->length = 901 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1; 902 dtlck->index++; 903 } 904 905 /* unpin the leaf page */ 906 DT_PUTPAGE(mp); 907 908 return 0; 909} 910 911 912/* 913 * dtSplitUp() 914 * 915 * function: propagate insertion bottom up; 916 * 917 * parameter: 918 * 919 * return: 0 - success; 920 * errno - failure; 921 * leaf page unpinned; 922 */ 923static int dtSplitUp(tid_t tid, 924 struct inode *ip, struct dtsplit * split, struct btstack * btstack) 925{ 926 struct jfs_sb_info *sbi = JFS_SBI(ip->i_sb); 927 int rc = 0; 928 struct metapage *smp; 929 dtpage_t *sp; /* split page */ 930 struct metapage *rmp; 931 dtpage_t *rp; /* new right page split from sp */ 932 pxd_t rpxd; /* new right page extent descriptor */ 933 struct metapage *lmp; 934 dtpage_t *lp; /* left child page */ 935 int skip; /* index of entry of insertion */ 936 struct btframe *parent; /* parent page entry on traverse stack */ 937 s64 xaddr, nxaddr; 938 int xlen, xsize; 939 struct pxdlist pxdlist; 940 pxd_t *pxd; 941 struct component_name key = { 0, NULL }; 942 ddata_t *data = split->data; 943 int n; 944 struct dt_lock *dtlck; 945 struct tlock *tlck; 946 struct lv *lv; 947 int quota_allocation = 0; 948 949 /* get split page */ 950 smp = split->mp; 951 sp = DT_PAGE(ip, smp); 952 953 key.name = kmalloc_array(JFS_NAME_MAX + 2, sizeof(wchar_t), GFP_NOFS); 954 if (!key.name) { 955 DT_PUTPAGE(smp); 956 rc = -ENOMEM; 957 goto dtSplitUp_Exit; 958 } 959 960 /* 961 * split leaf page 962 * 963 * The split routines insert the new entry, and 964 * acquire txLock as appropriate. 965 */ 966 /* 967 * split root leaf page: 968 */ 969 if (sp->header.flag & BT_ROOT) { 970 /* 971 * allocate a single extent child page 972 */ 973 xlen = 1; 974 n = sbi->bsize >> L2DTSLOTSIZE; 975 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */ 976 n -= DTROOTMAXSLOT - sp->header.freecnt; /* header + entries */ 977 if (n <= split->nslot) 978 xlen++; 979 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr))) { 980 DT_PUTPAGE(smp); 981 goto freeKeyName; 982 } 983 984 pxdlist.maxnpxd = 1; 985 pxdlist.npxd = 0; 986 pxd = &pxdlist.pxd[0]; 987 PXDaddress(pxd, xaddr); 988 PXDlength(pxd, xlen); 989 split->pxdlist = &pxdlist; 990 rc = dtSplitRoot(tid, ip, split, &rmp); 991 992 if (rc) 993 dbFree(ip, xaddr, xlen); 994 else 995 DT_PUTPAGE(rmp); 996 997 DT_PUTPAGE(smp); 998 999 if (!DO_INDEX(ip)) 1000 ip->i_size = xlen << sbi->l2bsize; 1001 1002 goto freeKeyName; 1003 } 1004 1005 /* 1006 * extend first leaf page 1007 * 1008 * extend the 1st extent if less than buffer page size 1009 * (dtExtendPage() reurns leaf page unpinned) 1010 */ 1011 pxd = &sp->header.self; 1012 xlen = lengthPXD(pxd); 1013 xsize = xlen << sbi->l2bsize; 1014 if (xsize < PSIZE) { 1015 xaddr = addressPXD(pxd); 1016 n = xsize >> L2DTSLOTSIZE; 1017 n -= (n + 31) >> L2DTSLOTSIZE; /* stbl size */ 1018 if ((n + sp->header.freecnt) <= split->nslot) 1019 n = xlen + (xlen << 1); 1020 else 1021 n = xlen; 1022 1023 /* Allocate blocks to quota. */ 1024 rc = dquot_alloc_block(ip, n); 1025 if (rc) 1026 goto extendOut; 1027 quota_allocation += n; 1028 1029 if ((rc = dbReAlloc(sbi->ipbmap, xaddr, (s64) xlen, 1030 (s64) n, &nxaddr))) 1031 goto extendOut; 1032 1033 pxdlist.maxnpxd = 1; 1034 pxdlist.npxd = 0; 1035 pxd = &pxdlist.pxd[0]; 1036 PXDaddress(pxd, nxaddr); 1037 PXDlength(pxd, xlen + n); 1038 split->pxdlist = &pxdlist; 1039 if ((rc = dtExtendPage(tid, ip, split, btstack))) { 1040 nxaddr = addressPXD(pxd); 1041 if (xaddr != nxaddr) { 1042 /* free relocated extent */ 1043 xlen = lengthPXD(pxd); 1044 dbFree(ip, nxaddr, (s64) xlen); 1045 } else { 1046 /* free extended delta */ 1047 xlen = lengthPXD(pxd) - n; 1048 xaddr = addressPXD(pxd) + xlen; 1049 dbFree(ip, xaddr, (s64) n); 1050 } 1051 } else if (!DO_INDEX(ip)) 1052 ip->i_size = lengthPXD(pxd) << sbi->l2bsize; 1053 1054 1055 extendOut: 1056 DT_PUTPAGE(smp); 1057 goto freeKeyName; 1058 } 1059 1060 /* 1061 * split leaf page <sp> into <sp> and a new right page <rp>. 1062 * 1063 * return <rp> pinned and its extent descriptor <rpxd> 1064 */ 1065 /* 1066 * allocate new directory page extent and 1067 * new index page(s) to cover page split(s) 1068 * 1069 * allocation hint: ? 1070 */ 1071 n = btstack->nsplit; 1072 pxdlist.maxnpxd = pxdlist.npxd = 0; 1073 xlen = sbi->nbperpage; 1074 for (pxd = pxdlist.pxd; n > 0; n--, pxd++) { 1075 if ((rc = dbAlloc(ip, 0, (s64) xlen, &xaddr)) == 0) { 1076 PXDaddress(pxd, xaddr); 1077 PXDlength(pxd, xlen); 1078 pxdlist.maxnpxd++; 1079 continue; 1080 } 1081 1082 DT_PUTPAGE(smp); 1083 1084 /* undo allocation */ 1085 goto splitOut; 1086 } 1087 1088 split->pxdlist = &pxdlist; 1089 if ((rc = dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd))) { 1090 DT_PUTPAGE(smp); 1091 1092 /* undo allocation */ 1093 goto splitOut; 1094 } 1095 1096 if (!DO_INDEX(ip)) 1097 ip->i_size += PSIZE; 1098 1099 /* 1100 * propagate up the router entry for the leaf page just split 1101 * 1102 * insert a router entry for the new page into the parent page, 1103 * propagate the insert/split up the tree by walking back the stack 1104 * of (bn of parent page, index of child page entry in parent page) 1105 * that were traversed during the search for the page that split. 1106 * 1107 * the propagation of insert/split up the tree stops if the root 1108 * splits or the page inserted into doesn't have to split to hold 1109 * the new entry. 1110 * 1111 * the parent entry for the split page remains the same, and 1112 * a new entry is inserted at its right with the first key and 1113 * block number of the new right page. 1114 * 1115 * There are a maximum of 4 pages pinned at any time: 1116 * two children, left parent and right parent (when the parent splits). 1117 * keep the child pages pinned while working on the parent. 1118 * make sure that all pins are released at exit. 1119 */ 1120 while ((parent = BT_POP(btstack)) != NULL) { 1121 /* parent page specified by stack frame <parent> */ 1122 1123 /* keep current child pages (<lp>, <rp>) pinned */ 1124 lmp = smp; 1125 lp = sp; 1126 1127 /* 1128 * insert router entry in parent for new right child page <rp> 1129 */ 1130 /* get the parent page <sp> */ 1131 DT_GETPAGE(ip, parent->bn, smp, PSIZE, sp, rc); 1132 if (rc) { 1133 DT_PUTPAGE(lmp); 1134 DT_PUTPAGE(rmp); 1135 goto splitOut; 1136 } 1137 1138 /* 1139 * The new key entry goes ONE AFTER the index of parent entry, 1140 * because the split was to the right. 1141 */ 1142 skip = parent->index + 1; 1143 1144 /* 1145 * compute the key for the router entry 1146 * 1147 * key suffix compression: 1148 * for internal pages that have leaf pages as children, 1149 * retain only what's needed to distinguish between 1150 * the new entry and the entry on the page to its left. 1151 * If the keys compare equal, retain the entire key. 1152 * 1153 * note that compression is performed only at computing 1154 * router key at the lowest internal level. 1155 * further compression of the key between pairs of higher 1156 * level internal pages loses too much information and 1157 * the search may fail. 1158 * (e.g., two adjacent leaf pages of {a, ..., x} {xx, ...,} 1159 * results in two adjacent parent entries (a)(xx). 1160 * if split occurs between these two entries, and 1161 * if compression is applied, the router key of parent entry 1162 * of right page (x) will divert search for x into right 1163 * subtree and miss x in the left subtree.) 1164 * 1165 * the entire key must be retained for the next-to-leftmost 1166 * internal key at any level of the tree, or search may fail 1167 * (e.g., ?) 1168 */ 1169 switch (rp->header.flag & BT_TYPE) { 1170 case BT_LEAF: 1171 /* 1172 * compute the length of prefix for suffix compression 1173 * between last entry of left page and first entry 1174 * of right page 1175 */ 1176 if ((sp->header.flag & BT_ROOT && skip > 1) || 1177 sp->header.prev != 0 || skip > 1) { 1178 /* compute uppercase router prefix key */ 1179 rc = ciGetLeafPrefixKey(lp, 1180 lp->header.nextindex-1, 1181 rp, 0, &key, 1182 sbi->mntflag); 1183 if (rc) { 1184 DT_PUTPAGE(lmp); 1185 DT_PUTPAGE(rmp); 1186 DT_PUTPAGE(smp); 1187 goto splitOut; 1188 } 1189 } else { 1190 /* next to leftmost entry of 1191 lowest internal level */ 1192 1193 /* compute uppercase router key */ 1194 dtGetKey(rp, 0, &key, sbi->mntflag); 1195 key.name[key.namlen] = 0; 1196 1197 if ((sbi->mntflag & JFS_OS2) == JFS_OS2) 1198 ciToUpper(&key); 1199 } 1200 1201 n = NDTINTERNAL(key.namlen); 1202 break; 1203 1204 case BT_INTERNAL: 1205 dtGetKey(rp, 0, &key, sbi->mntflag); 1206 n = NDTINTERNAL(key.namlen); 1207 break; 1208 1209 default: 1210 jfs_err("dtSplitUp(): UFO!"); 1211 break; 1212 } 1213 1214 /* unpin left child page */ 1215 DT_PUTPAGE(lmp); 1216 1217 /* 1218 * compute the data for the router entry 1219 */ 1220 data->xd = rpxd; /* child page xd */ 1221 1222 /* 1223 * parent page is full - split the parent page 1224 */ 1225 if (n > sp->header.freecnt) { 1226 /* init for parent page split */ 1227 split->mp = smp; 1228 split->index = skip; /* index at insert */ 1229 split->nslot = n; 1230 split->key = &key; 1231 /* split->data = data; */ 1232 1233 /* unpin right child page */ 1234 DT_PUTPAGE(rmp); 1235 1236 /* The split routines insert the new entry, 1237 * acquire txLock as appropriate. 1238 * return <rp> pinned and its block number <rbn>. 1239 */ 1240 rc = (sp->header.flag & BT_ROOT) ? 1241 dtSplitRoot(tid, ip, split, &rmp) : 1242 dtSplitPage(tid, ip, split, &rmp, &rp, &rpxd); 1243 if (rc) { 1244 DT_PUTPAGE(smp); 1245 goto splitOut; 1246 } 1247 1248 /* smp and rmp are pinned */ 1249 } 1250 /* 1251 * parent page is not full - insert router entry in parent page 1252 */ 1253 else { 1254 BT_MARK_DIRTY(smp, ip); 1255 /* 1256 * acquire a transaction lock on the parent page 1257 */ 1258 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY); 1259 dtlck = (struct dt_lock *) & tlck->lock; 1260 ASSERT(dtlck->index == 0); 1261 lv = & dtlck->lv[0]; 1262 1263 /* linelock header */ 1264 lv->offset = 0; 1265 lv->length = 1; 1266 dtlck->index++; 1267 1268 /* linelock stbl of non-root parent page */ 1269 if (!(sp->header.flag & BT_ROOT)) { 1270 lv++; 1271 n = skip >> L2DTSLOTSIZE; 1272 lv->offset = sp->header.stblindex + n; 1273 lv->length = 1274 ((sp->header.nextindex - 1275 1) >> L2DTSLOTSIZE) - n + 1; 1276 dtlck->index++; 1277 } 1278 1279 dtInsertEntry(sp, skip, &key, data, &dtlck); 1280 1281 /* exit propagate up */ 1282 break; 1283 } 1284 } 1285 1286 /* unpin current split and its right page */ 1287 DT_PUTPAGE(smp); 1288 DT_PUTPAGE(rmp); 1289 1290 /* 1291 * free remaining extents allocated for split 1292 */ 1293 splitOut: 1294 n = pxdlist.npxd; 1295 pxd = &pxdlist.pxd[n]; 1296 for (; n < pxdlist.maxnpxd; n++, pxd++) 1297 dbFree(ip, addressPXD(pxd), (s64) lengthPXD(pxd)); 1298 1299 freeKeyName: 1300 kfree(key.name); 1301 1302 /* Rollback quota allocation */ 1303 if (rc && quota_allocation) 1304 dquot_free_block(ip, quota_allocation); 1305 1306 dtSplitUp_Exit: 1307 1308 return rc; 1309} 1310 1311 1312/* 1313 * dtSplitPage() 1314 * 1315 * function: Split a non-root page of a btree. 1316 * 1317 * parameter: 1318 * 1319 * return: 0 - success; 1320 * errno - failure; 1321 * return split and new page pinned; 1322 */ 1323static int dtSplitPage(tid_t tid, struct inode *ip, struct dtsplit * split, 1324 struct metapage ** rmpp, dtpage_t ** rpp, pxd_t * rpxdp) 1325{ 1326 int rc = 0; 1327 struct metapage *smp; 1328 dtpage_t *sp; 1329 struct metapage *rmp; 1330 dtpage_t *rp; /* new right page allocated */ 1331 s64 rbn; /* new right page block number */ 1332 struct metapage *mp; 1333 dtpage_t *p; 1334 s64 nextbn; 1335 struct pxdlist *pxdlist; 1336 pxd_t *pxd; 1337 int skip, nextindex, half, left, nxt, off, si; 1338 struct ldtentry *ldtentry; 1339 struct idtentry *idtentry; 1340 u8 *stbl; 1341 struct dtslot *f; 1342 int fsi, stblsize; 1343 int n; 1344 struct dt_lock *sdtlck, *rdtlck; 1345 struct tlock *tlck; 1346 struct dt_lock *dtlck; 1347 struct lv *slv, *rlv, *lv; 1348 1349 /* get split page */ 1350 smp = split->mp; 1351 sp = DT_PAGE(ip, smp); 1352 1353 /* 1354 * allocate the new right page for the split 1355 */ 1356 pxdlist = split->pxdlist; 1357 pxd = &pxdlist->pxd[pxdlist->npxd]; 1358 pxdlist->npxd++; 1359 rbn = addressPXD(pxd); 1360 rmp = get_metapage(ip, rbn, PSIZE, 1); 1361 if (rmp == NULL) 1362 return -EIO; 1363 1364 /* Allocate blocks to quota. */ 1365 rc = dquot_alloc_block(ip, lengthPXD(pxd)); 1366 if (rc) { 1367 release_metapage(rmp); 1368 return rc; 1369 } 1370 1371 jfs_info("dtSplitPage: ip:0x%p smp:0x%p rmp:0x%p", ip, smp, rmp); 1372 1373 BT_MARK_DIRTY(rmp, ip); 1374 /* 1375 * acquire a transaction lock on the new right page 1376 */ 1377 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW); 1378 rdtlck = (struct dt_lock *) & tlck->lock; 1379 1380 rp = (dtpage_t *) rmp->data; 1381 *rpp = rp; 1382 rp->header.self = *pxd; 1383 1384 BT_MARK_DIRTY(smp, ip); 1385 /* 1386 * acquire a transaction lock on the split page 1387 * 1388 * action: 1389 */ 1390 tlck = txLock(tid, ip, smp, tlckDTREE | tlckENTRY); 1391 sdtlck = (struct dt_lock *) & tlck->lock; 1392 1393 /* linelock header of split page */ 1394 ASSERT(sdtlck->index == 0); 1395 slv = & sdtlck->lv[0]; 1396 slv->offset = 0; 1397 slv->length = 1; 1398 sdtlck->index++; 1399 1400 /* 1401 * initialize/update sibling pointers between sp and rp 1402 */ 1403 nextbn = le64_to_cpu(sp->header.next); 1404 rp->header.next = cpu_to_le64(nextbn); 1405 rp->header.prev = cpu_to_le64(addressPXD(&sp->header.self)); 1406 sp->header.next = cpu_to_le64(rbn); 1407 1408 /* 1409 * initialize new right page 1410 */ 1411 rp->header.flag = sp->header.flag; 1412 1413 /* compute sorted entry table at start of extent data area */ 1414 rp->header.nextindex = 0; 1415 rp->header.stblindex = 1; 1416 1417 n = PSIZE >> L2DTSLOTSIZE; 1418 rp->header.maxslot = n; 1419 stblsize = (n + 31) >> L2DTSLOTSIZE; /* in unit of slot */ 1420 1421 /* init freelist */ 1422 fsi = rp->header.stblindex + stblsize; 1423 rp->header.freelist = fsi; 1424 rp->header.freecnt = rp->header.maxslot - fsi; 1425 1426 /* 1427 * sequential append at tail: append without split 1428 * 1429 * If splitting the last page on a level because of appending 1430 * a entry to it (skip is maxentry), it's likely that the access is 1431 * sequential. Adding an empty page on the side of the level is less 1432 * work and can push the fill factor much higher than normal. 1433 * If we're wrong it's no big deal, we'll just do the split the right 1434 * way next time. 1435 * (It may look like it's equally easy to do a similar hack for 1436 * reverse sorted data, that is, split the tree left, 1437 * but it's not. Be my guest.) 1438 */ 1439 if (nextbn == 0 && split->index == sp->header.nextindex) { 1440 /* linelock header + stbl (first slot) of new page */ 1441 rlv = & rdtlck->lv[rdtlck->index]; 1442 rlv->offset = 0; 1443 rlv->length = 2; 1444 rdtlck->index++; 1445 1446 /* 1447 * initialize freelist of new right page 1448 */ 1449 f = &rp->slot[fsi]; 1450 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1451 f->next = fsi; 1452 f->next = -1; 1453 1454 /* insert entry at the first entry of the new right page */ 1455 dtInsertEntry(rp, 0, split->key, split->data, &rdtlck); 1456 1457 goto out; 1458 } 1459 1460 /* 1461 * non-sequential insert (at possibly middle page) 1462 */ 1463 1464 /* 1465 * update prev pointer of previous right sibling page; 1466 */ 1467 if (nextbn != 0) { 1468 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc); 1469 if (rc) { 1470 discard_metapage(rmp); 1471 return rc; 1472 } 1473 1474 BT_MARK_DIRTY(mp, ip); 1475 /* 1476 * acquire a transaction lock on the next page 1477 */ 1478 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 1479 jfs_info("dtSplitPage: tlck = 0x%p, ip = 0x%p, mp=0x%p", 1480 tlck, ip, mp); 1481 dtlck = (struct dt_lock *) & tlck->lock; 1482 1483 /* linelock header of previous right sibling page */ 1484 lv = & dtlck->lv[dtlck->index]; 1485 lv->offset = 0; 1486 lv->length = 1; 1487 dtlck->index++; 1488 1489 p->header.prev = cpu_to_le64(rbn); 1490 1491 DT_PUTPAGE(mp); 1492 } 1493 1494 /* 1495 * split the data between the split and right pages. 1496 */ 1497 skip = split->index; 1498 half = (PSIZE >> L2DTSLOTSIZE) >> 1; /* swag */ 1499 left = 0; 1500 1501 /* 1502 * compute fill factor for split pages 1503 * 1504 * <nxt> traces the next entry to move to rp 1505 * <off> traces the next entry to stay in sp 1506 */ 1507 stbl = (u8 *) & sp->slot[sp->header.stblindex]; 1508 nextindex = sp->header.nextindex; 1509 for (nxt = off = 0; nxt < nextindex; ++off) { 1510 if (off == skip) 1511 /* check for fill factor with new entry size */ 1512 n = split->nslot; 1513 else { 1514 si = stbl[nxt]; 1515 switch (sp->header.flag & BT_TYPE) { 1516 case BT_LEAF: 1517 ldtentry = (struct ldtentry *) & sp->slot[si]; 1518 if (DO_INDEX(ip)) 1519 n = NDTLEAF(ldtentry->namlen); 1520 else 1521 n = NDTLEAF_LEGACY(ldtentry-> 1522 namlen); 1523 break; 1524 1525 case BT_INTERNAL: 1526 idtentry = (struct idtentry *) & sp->slot[si]; 1527 n = NDTINTERNAL(idtentry->namlen); 1528 break; 1529 1530 default: 1531 break; 1532 } 1533 1534 ++nxt; /* advance to next entry to move in sp */ 1535 } 1536 1537 left += n; 1538 if (left >= half) 1539 break; 1540 } 1541 1542 /* <nxt> poins to the 1st entry to move */ 1543 1544 /* 1545 * move entries to right page 1546 * 1547 * dtMoveEntry() initializes rp and reserves entry for insertion 1548 * 1549 * split page moved out entries are linelocked; 1550 * new/right page moved in entries are linelocked; 1551 */ 1552 /* linelock header + stbl of new right page */ 1553 rlv = & rdtlck->lv[rdtlck->index]; 1554 rlv->offset = 0; 1555 rlv->length = 5; 1556 rdtlck->index++; 1557 1558 dtMoveEntry(sp, nxt, rp, &sdtlck, &rdtlck, DO_INDEX(ip)); 1559 1560 sp->header.nextindex = nxt; 1561 1562 /* 1563 * finalize freelist of new right page 1564 */ 1565 fsi = rp->header.freelist; 1566 f = &rp->slot[fsi]; 1567 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1568 f->next = fsi; 1569 f->next = -1; 1570 1571 /* 1572 * Update directory index table for entries now in right page 1573 */ 1574 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) { 1575 s64 lblock; 1576 1577 mp = NULL; 1578 stbl = DT_GETSTBL(rp); 1579 for (n = 0; n < rp->header.nextindex; n++) { 1580 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]]; 1581 modify_index(tid, ip, le32_to_cpu(ldtentry->index), 1582 rbn, n, &mp, &lblock); 1583 } 1584 if (mp) 1585 release_metapage(mp); 1586 } 1587 1588 /* 1589 * the skipped index was on the left page, 1590 */ 1591 if (skip <= off) { 1592 /* insert the new entry in the split page */ 1593 dtInsertEntry(sp, skip, split->key, split->data, &sdtlck); 1594 1595 /* linelock stbl of split page */ 1596 if (sdtlck->index >= sdtlck->maxcnt) 1597 sdtlck = (struct dt_lock *) txLinelock(sdtlck); 1598 slv = & sdtlck->lv[sdtlck->index]; 1599 n = skip >> L2DTSLOTSIZE; 1600 slv->offset = sp->header.stblindex + n; 1601 slv->length = 1602 ((sp->header.nextindex - 1) >> L2DTSLOTSIZE) - n + 1; 1603 sdtlck->index++; 1604 } 1605 /* 1606 * the skipped index was on the right page, 1607 */ 1608 else { 1609 /* adjust the skip index to reflect the new position */ 1610 skip -= nxt; 1611 1612 /* insert the new entry in the right page */ 1613 dtInsertEntry(rp, skip, split->key, split->data, &rdtlck); 1614 } 1615 1616 out: 1617 *rmpp = rmp; 1618 *rpxdp = *pxd; 1619 1620 return rc; 1621} 1622 1623 1624/* 1625 * dtExtendPage() 1626 * 1627 * function: extend 1st/only directory leaf page 1628 * 1629 * parameter: 1630 * 1631 * return: 0 - success; 1632 * errno - failure; 1633 * return extended page pinned; 1634 */ 1635static int dtExtendPage(tid_t tid, 1636 struct inode *ip, struct dtsplit * split, struct btstack * btstack) 1637{ 1638 struct super_block *sb = ip->i_sb; 1639 int rc; 1640 struct metapage *smp, *pmp, *mp; 1641 dtpage_t *sp, *pp; 1642 struct pxdlist *pxdlist; 1643 pxd_t *pxd, *tpxd; 1644 int xlen, xsize; 1645 int newstblindex, newstblsize; 1646 int oldstblindex, oldstblsize; 1647 int fsi, last; 1648 struct dtslot *f; 1649 struct btframe *parent; 1650 int n; 1651 struct dt_lock *dtlck; 1652 s64 xaddr, txaddr; 1653 struct tlock *tlck; 1654 struct pxd_lock *pxdlock; 1655 struct lv *lv; 1656 uint type; 1657 struct ldtentry *ldtentry; 1658 u8 *stbl; 1659 1660 /* get page to extend */ 1661 smp = split->mp; 1662 sp = DT_PAGE(ip, smp); 1663 1664 /* get parent/root page */ 1665 parent = BT_POP(btstack); 1666 DT_GETPAGE(ip, parent->bn, pmp, PSIZE, pp, rc); 1667 if (rc) 1668 return (rc); 1669 1670 /* 1671 * extend the extent 1672 */ 1673 pxdlist = split->pxdlist; 1674 pxd = &pxdlist->pxd[pxdlist->npxd]; 1675 pxdlist->npxd++; 1676 1677 xaddr = addressPXD(pxd); 1678 tpxd = &sp->header.self; 1679 txaddr = addressPXD(tpxd); 1680 /* in-place extension */ 1681 if (xaddr == txaddr) { 1682 type = tlckEXTEND; 1683 } 1684 /* relocation */ 1685 else { 1686 type = tlckNEW; 1687 1688 /* save moved extent descriptor for later free */ 1689 tlck = txMaplock(tid, ip, tlckDTREE | tlckRELOCATE); 1690 pxdlock = (struct pxd_lock *) & tlck->lock; 1691 pxdlock->flag = mlckFREEPXD; 1692 pxdlock->pxd = sp->header.self; 1693 pxdlock->index = 1; 1694 1695 /* 1696 * Update directory index table to reflect new page address 1697 */ 1698 if (DO_INDEX(ip)) { 1699 s64 lblock; 1700 1701 mp = NULL; 1702 stbl = DT_GETSTBL(sp); 1703 for (n = 0; n < sp->header.nextindex; n++) { 1704 ldtentry = 1705 (struct ldtentry *) & sp->slot[stbl[n]]; 1706 modify_index(tid, ip, 1707 le32_to_cpu(ldtentry->index), 1708 xaddr, n, &mp, &lblock); 1709 } 1710 if (mp) 1711 release_metapage(mp); 1712 } 1713 } 1714 1715 /* 1716 * extend the page 1717 */ 1718 sp->header.self = *pxd; 1719 1720 jfs_info("dtExtendPage: ip:0x%p smp:0x%p sp:0x%p", ip, smp, sp); 1721 1722 BT_MARK_DIRTY(smp, ip); 1723 /* 1724 * acquire a transaction lock on the extended/leaf page 1725 */ 1726 tlck = txLock(tid, ip, smp, tlckDTREE | type); 1727 dtlck = (struct dt_lock *) & tlck->lock; 1728 lv = & dtlck->lv[0]; 1729 1730 /* update buffer extent descriptor of extended page */ 1731 xlen = lengthPXD(pxd); 1732 xsize = xlen << JFS_SBI(sb)->l2bsize; 1733 1734 /* 1735 * copy old stbl to new stbl at start of extended area 1736 */ 1737 oldstblindex = sp->header.stblindex; 1738 oldstblsize = (sp->header.maxslot + 31) >> L2DTSLOTSIZE; 1739 newstblindex = sp->header.maxslot; 1740 n = xsize >> L2DTSLOTSIZE; 1741 newstblsize = (n + 31) >> L2DTSLOTSIZE; 1742 memcpy(&sp->slot[newstblindex], &sp->slot[oldstblindex], 1743 sp->header.nextindex); 1744 1745 /* 1746 * in-line extension: linelock old area of extended page 1747 */ 1748 if (type == tlckEXTEND) { 1749 /* linelock header */ 1750 lv->offset = 0; 1751 lv->length = 1; 1752 dtlck->index++; 1753 lv++; 1754 1755 /* linelock new stbl of extended page */ 1756 lv->offset = newstblindex; 1757 lv->length = newstblsize; 1758 } 1759 /* 1760 * relocation: linelock whole relocated area 1761 */ 1762 else { 1763 lv->offset = 0; 1764 lv->length = sp->header.maxslot + newstblsize; 1765 } 1766 1767 dtlck->index++; 1768 1769 sp->header.maxslot = n; 1770 sp->header.stblindex = newstblindex; 1771 /* sp->header.nextindex remains the same */ 1772 1773 /* 1774 * add old stbl region at head of freelist 1775 */ 1776 fsi = oldstblindex; 1777 f = &sp->slot[fsi]; 1778 last = sp->header.freelist; 1779 for (n = 0; n < oldstblsize; n++, fsi++, f++) { 1780 f->next = last; 1781 last = fsi; 1782 } 1783 sp->header.freelist = last; 1784 sp->header.freecnt += oldstblsize; 1785 1786 /* 1787 * append free region of newly extended area at tail of freelist 1788 */ 1789 /* init free region of newly extended area */ 1790 fsi = n = newstblindex + newstblsize; 1791 f = &sp->slot[fsi]; 1792 for (fsi++; fsi < sp->header.maxslot; f++, fsi++) 1793 f->next = fsi; 1794 f->next = -1; 1795 1796 /* append new free region at tail of old freelist */ 1797 fsi = sp->header.freelist; 1798 if (fsi == -1) 1799 sp->header.freelist = n; 1800 else { 1801 do { 1802 f = &sp->slot[fsi]; 1803 fsi = f->next; 1804 } while (fsi != -1); 1805 1806 f->next = n; 1807 } 1808 1809 sp->header.freecnt += sp->header.maxslot - n; 1810 1811 /* 1812 * insert the new entry 1813 */ 1814 dtInsertEntry(sp, split->index, split->key, split->data, &dtlck); 1815 1816 BT_MARK_DIRTY(pmp, ip); 1817 /* 1818 * linelock any freeslots residing in old extent 1819 */ 1820 if (type == tlckEXTEND) { 1821 n = sp->header.maxslot >> 2; 1822 if (sp->header.freelist < n) 1823 dtLinelockFreelist(sp, n, &dtlck); 1824 } 1825 1826 /* 1827 * update parent entry on the parent/root page 1828 */ 1829 /* 1830 * acquire a transaction lock on the parent/root page 1831 */ 1832 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY); 1833 dtlck = (struct dt_lock *) & tlck->lock; 1834 lv = & dtlck->lv[dtlck->index]; 1835 1836 /* linelock parent entry - 1st slot */ 1837 lv->offset = 1; 1838 lv->length = 1; 1839 dtlck->index++; 1840 1841 /* update the parent pxd for page extension */ 1842 tpxd = (pxd_t *) & pp->slot[1]; 1843 *tpxd = *pxd; 1844 1845 DT_PUTPAGE(pmp); 1846 return 0; 1847} 1848 1849 1850/* 1851 * dtSplitRoot() 1852 * 1853 * function: 1854 * split the full root page into 1855 * original/root/split page and new right page 1856 * i.e., root remains fixed in tree anchor (inode) and 1857 * the root is copied to a single new right child page 1858 * since root page << non-root page, and 1859 * the split root page contains a single entry for the 1860 * new right child page. 1861 * 1862 * parameter: 1863 * 1864 * return: 0 - success; 1865 * errno - failure; 1866 * return new page pinned; 1867 */ 1868static int dtSplitRoot(tid_t tid, 1869 struct inode *ip, struct dtsplit * split, struct metapage ** rmpp) 1870{ 1871 struct super_block *sb = ip->i_sb; 1872 struct metapage *smp; 1873 dtroot_t *sp; 1874 struct metapage *rmp; 1875 dtpage_t *rp; 1876 s64 rbn; 1877 int xlen; 1878 int xsize; 1879 struct dtslot *f; 1880 s8 *stbl; 1881 int fsi, stblsize, n; 1882 struct idtentry *s; 1883 pxd_t *ppxd; 1884 struct pxdlist *pxdlist; 1885 pxd_t *pxd; 1886 struct dt_lock *dtlck; 1887 struct tlock *tlck; 1888 struct lv *lv; 1889 int rc; 1890 1891 /* get split root page */ 1892 smp = split->mp; 1893 sp = &JFS_IP(ip)->i_dtroot; 1894 1895 /* 1896 * allocate/initialize a single (right) child page 1897 * 1898 * N.B. at first split, a one (or two) block to fit new entry 1899 * is allocated; at subsequent split, a full page is allocated; 1900 */ 1901 pxdlist = split->pxdlist; 1902 pxd = &pxdlist->pxd[pxdlist->npxd]; 1903 pxdlist->npxd++; 1904 rbn = addressPXD(pxd); 1905 xlen = lengthPXD(pxd); 1906 xsize = xlen << JFS_SBI(sb)->l2bsize; 1907 rmp = get_metapage(ip, rbn, xsize, 1); 1908 if (!rmp) 1909 return -EIO; 1910 1911 rp = rmp->data; 1912 1913 /* Allocate blocks to quota. */ 1914 rc = dquot_alloc_block(ip, lengthPXD(pxd)); 1915 if (rc) { 1916 release_metapage(rmp); 1917 return rc; 1918 } 1919 1920 BT_MARK_DIRTY(rmp, ip); 1921 /* 1922 * acquire a transaction lock on the new right page 1923 */ 1924 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckNEW); 1925 dtlck = (struct dt_lock *) & tlck->lock; 1926 1927 rp->header.flag = 1928 (sp->header.flag & BT_LEAF) ? BT_LEAF : BT_INTERNAL; 1929 rp->header.self = *pxd; 1930 1931 /* initialize sibling pointers */ 1932 rp->header.next = 0; 1933 rp->header.prev = 0; 1934 1935 /* 1936 * move in-line root page into new right page extent 1937 */ 1938 /* linelock header + copied entries + new stbl (1st slot) in new page */ 1939 ASSERT(dtlck->index == 0); 1940 lv = & dtlck->lv[0]; 1941 lv->offset = 0; 1942 lv->length = 10; /* 1 + 8 + 1 */ 1943 dtlck->index++; 1944 1945 n = xsize >> L2DTSLOTSIZE; 1946 rp->header.maxslot = n; 1947 stblsize = (n + 31) >> L2DTSLOTSIZE; 1948 1949 /* copy old stbl to new stbl at start of extended area */ 1950 rp->header.stblindex = DTROOTMAXSLOT; 1951 stbl = (s8 *) & rp->slot[DTROOTMAXSLOT]; 1952 memcpy(stbl, sp->header.stbl, sp->header.nextindex); 1953 rp->header.nextindex = sp->header.nextindex; 1954 1955 /* copy old data area to start of new data area */ 1956 memcpy(&rp->slot[1], &sp->slot[1], IDATASIZE); 1957 1958 /* 1959 * append free region of newly extended area at tail of freelist 1960 */ 1961 /* init free region of newly extended area */ 1962 fsi = n = DTROOTMAXSLOT + stblsize; 1963 f = &rp->slot[fsi]; 1964 for (fsi++; fsi < rp->header.maxslot; f++, fsi++) 1965 f->next = fsi; 1966 f->next = -1; 1967 1968 /* append new free region at tail of old freelist */ 1969 fsi = sp->header.freelist; 1970 if (fsi == -1) 1971 rp->header.freelist = n; 1972 else { 1973 rp->header.freelist = fsi; 1974 1975 do { 1976 f = &rp->slot[fsi]; 1977 fsi = f->next; 1978 } while (fsi >= 0); 1979 1980 f->next = n; 1981 } 1982 1983 rp->header.freecnt = sp->header.freecnt + rp->header.maxslot - n; 1984 1985 /* 1986 * Update directory index table for entries now in right page 1987 */ 1988 if ((rp->header.flag & BT_LEAF) && DO_INDEX(ip)) { 1989 s64 lblock; 1990 struct metapage *mp = NULL; 1991 struct ldtentry *ldtentry; 1992 1993 stbl = DT_GETSTBL(rp); 1994 for (n = 0; n < rp->header.nextindex; n++) { 1995 ldtentry = (struct ldtentry *) & rp->slot[stbl[n]]; 1996 modify_index(tid, ip, le32_to_cpu(ldtentry->index), 1997 rbn, n, &mp, &lblock); 1998 } 1999 if (mp) 2000 release_metapage(mp); 2001 } 2002 /* 2003 * insert the new entry into the new right/child page 2004 * (skip index in the new right page will not change) 2005 */ 2006 dtInsertEntry(rp, split->index, split->key, split->data, &dtlck); 2007 2008 /* 2009 * reset parent/root page 2010 * 2011 * set the 1st entry offset to 0, which force the left-most key 2012 * at any level of the tree to be less than any search key. 2013 * 2014 * The btree comparison code guarantees that the left-most key on any 2015 * level of the tree is never used, so it doesn't need to be filled in. 2016 */ 2017 BT_MARK_DIRTY(smp, ip); 2018 /* 2019 * acquire a transaction lock on the root page (in-memory inode) 2020 */ 2021 tlck = txLock(tid, ip, smp, tlckDTREE | tlckNEW | tlckBTROOT); 2022 dtlck = (struct dt_lock *) & tlck->lock; 2023 2024 /* linelock root */ 2025 ASSERT(dtlck->index == 0); 2026 lv = & dtlck->lv[0]; 2027 lv->offset = 0; 2028 lv->length = DTROOTMAXSLOT; 2029 dtlck->index++; 2030 2031 /* update page header of root */ 2032 if (sp->header.flag & BT_LEAF) { 2033 sp->header.flag &= ~BT_LEAF; 2034 sp->header.flag |= BT_INTERNAL; 2035 } 2036 2037 /* init the first entry */ 2038 s = (struct idtentry *) & sp->slot[DTENTRYSTART]; 2039 ppxd = (pxd_t *) s; 2040 *ppxd = *pxd; 2041 s->next = -1; 2042 s->namlen = 0; 2043 2044 stbl = sp->header.stbl; 2045 stbl[0] = DTENTRYSTART; 2046 sp->header.nextindex = 1; 2047 2048 /* init freelist */ 2049 fsi = DTENTRYSTART + 1; 2050 f = &sp->slot[fsi]; 2051 2052 /* init free region of remaining area */ 2053 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++) 2054 f->next = fsi; 2055 f->next = -1; 2056 2057 sp->header.freelist = DTENTRYSTART + 1; 2058 sp->header.freecnt = DTROOTMAXSLOT - (DTENTRYSTART + 1); 2059 2060 *rmpp = rmp; 2061 2062 return 0; 2063} 2064 2065 2066/* 2067 * dtDelete() 2068 * 2069 * function: delete the entry(s) referenced by a key. 2070 * 2071 * parameter: 2072 * 2073 * return: 2074 */ 2075int dtDelete(tid_t tid, 2076 struct inode *ip, struct component_name * key, ino_t * ino, int flag) 2077{ 2078 int rc = 0; 2079 s64 bn; 2080 struct metapage *mp, *imp; 2081 dtpage_t *p; 2082 int index; 2083 struct btstack btstack; 2084 struct dt_lock *dtlck; 2085 struct tlock *tlck; 2086 struct lv *lv; 2087 int i; 2088 struct ldtentry *ldtentry; 2089 u8 *stbl; 2090 u32 table_index, next_index; 2091 struct metapage *nmp; 2092 dtpage_t *np; 2093 2094 /* 2095 * search for the entry to delete: 2096 * 2097 * dtSearch() returns (leaf page pinned, index at which to delete). 2098 */ 2099 if ((rc = dtSearch(ip, key, ino, &btstack, flag))) 2100 return rc; 2101 2102 /* retrieve search result */ 2103 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 2104 2105 /* 2106 * We need to find put the index of the next entry into the 2107 * directory index table in order to resume a readdir from this 2108 * entry. 2109 */ 2110 if (DO_INDEX(ip)) { 2111 stbl = DT_GETSTBL(p); 2112 ldtentry = (struct ldtentry *) & p->slot[stbl[index]]; 2113 table_index = le32_to_cpu(ldtentry->index); 2114 if (index == (p->header.nextindex - 1)) { 2115 /* 2116 * Last entry in this leaf page 2117 */ 2118 if ((p->header.flag & BT_ROOT) 2119 || (p->header.next == 0)) 2120 next_index = -1; 2121 else { 2122 /* Read next leaf page */ 2123 DT_GETPAGE(ip, le64_to_cpu(p->header.next), 2124 nmp, PSIZE, np, rc); 2125 if (rc) 2126 next_index = -1; 2127 else { 2128 stbl = DT_GETSTBL(np); 2129 ldtentry = 2130 (struct ldtentry *) & np-> 2131 slot[stbl[0]]; 2132 next_index = 2133 le32_to_cpu(ldtentry->index); 2134 DT_PUTPAGE(nmp); 2135 } 2136 } 2137 } else { 2138 ldtentry = 2139 (struct ldtentry *) & p->slot[stbl[index + 1]]; 2140 next_index = le32_to_cpu(ldtentry->index); 2141 } 2142 free_index(tid, ip, table_index, next_index); 2143 } 2144 /* 2145 * the leaf page becomes empty, delete the page 2146 */ 2147 if (p->header.nextindex == 1) { 2148 /* delete empty page */ 2149 rc = dtDeleteUp(tid, ip, mp, p, &btstack); 2150 } 2151 /* 2152 * the leaf page has other entries remaining: 2153 * 2154 * delete the entry from the leaf page. 2155 */ 2156 else { 2157 BT_MARK_DIRTY(mp, ip); 2158 /* 2159 * acquire a transaction lock on the leaf page 2160 */ 2161 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 2162 dtlck = (struct dt_lock *) & tlck->lock; 2163 2164 /* 2165 * Do not assume that dtlck->index will be zero. During a 2166 * rename within a directory, this transaction may have 2167 * modified this page already when adding the new entry. 2168 */ 2169 2170 /* linelock header */ 2171 if (dtlck->index >= dtlck->maxcnt) 2172 dtlck = (struct dt_lock *) txLinelock(dtlck); 2173 lv = & dtlck->lv[dtlck->index]; 2174 lv->offset = 0; 2175 lv->length = 1; 2176 dtlck->index++; 2177 2178 /* linelock stbl of non-root leaf page */ 2179 if (!(p->header.flag & BT_ROOT)) { 2180 if (dtlck->index >= dtlck->maxcnt) 2181 dtlck = (struct dt_lock *) txLinelock(dtlck); 2182 lv = & dtlck->lv[dtlck->index]; 2183 i = index >> L2DTSLOTSIZE; 2184 lv->offset = p->header.stblindex + i; 2185 lv->length = 2186 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - 2187 i + 1; 2188 dtlck->index++; 2189 } 2190 2191 /* free the leaf entry */ 2192 dtDeleteEntry(p, index, &dtlck); 2193 2194 /* 2195 * Update directory index table for entries moved in stbl 2196 */ 2197 if (DO_INDEX(ip) && index < p->header.nextindex) { 2198 s64 lblock; 2199 2200 imp = NULL; 2201 stbl = DT_GETSTBL(p); 2202 for (i = index; i < p->header.nextindex; i++) { 2203 ldtentry = 2204 (struct ldtentry *) & p->slot[stbl[i]]; 2205 modify_index(tid, ip, 2206 le32_to_cpu(ldtentry->index), 2207 bn, i, &imp, &lblock); 2208 } 2209 if (imp) 2210 release_metapage(imp); 2211 } 2212 2213 DT_PUTPAGE(mp); 2214 } 2215 2216 return rc; 2217} 2218 2219 2220/* 2221 * dtDeleteUp() 2222 * 2223 * function: 2224 * free empty pages as propagating deletion up the tree 2225 * 2226 * parameter: 2227 * 2228 * return: 2229 */ 2230static int dtDeleteUp(tid_t tid, struct inode *ip, 2231 struct metapage * fmp, dtpage_t * fp, struct btstack * btstack) 2232{ 2233 int rc = 0; 2234 struct metapage *mp; 2235 dtpage_t *p; 2236 int index, nextindex; 2237 int xlen; 2238 struct btframe *parent; 2239 struct dt_lock *dtlck; 2240 struct tlock *tlck; 2241 struct lv *lv; 2242 struct pxd_lock *pxdlock; 2243 int i; 2244 2245 /* 2246 * keep the root leaf page which has become empty 2247 */ 2248 if (BT_IS_ROOT(fmp)) { 2249 /* 2250 * reset the root 2251 * 2252 * dtInitRoot() acquires txlock on the root 2253 */ 2254 dtInitRoot(tid, ip, PARENT(ip)); 2255 2256 DT_PUTPAGE(fmp); 2257 2258 return 0; 2259 } 2260 2261 /* 2262 * free the non-root leaf page 2263 */ 2264 /* 2265 * acquire a transaction lock on the page 2266 * 2267 * write FREEXTENT|NOREDOPAGE log record 2268 * N.B. linelock is overlaid as freed extent descriptor, and 2269 * the buffer page is freed; 2270 */ 2271 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE); 2272 pxdlock = (struct pxd_lock *) & tlck->lock; 2273 pxdlock->flag = mlckFREEPXD; 2274 pxdlock->pxd = fp->header.self; 2275 pxdlock->index = 1; 2276 2277 /* update sibling pointers */ 2278 if ((rc = dtRelink(tid, ip, fp))) { 2279 BT_PUTPAGE(fmp); 2280 return rc; 2281 } 2282 2283 xlen = lengthPXD(&fp->header.self); 2284 2285 /* Free quota allocation. */ 2286 dquot_free_block(ip, xlen); 2287 2288 /* free/invalidate its buffer page */ 2289 discard_metapage(fmp); 2290 2291 /* 2292 * propagate page deletion up the directory tree 2293 * 2294 * If the delete from the parent page makes it empty, 2295 * continue all the way up the tree. 2296 * stop if the root page is reached (which is never deleted) or 2297 * if the entry deletion does not empty the page. 2298 */ 2299 while ((parent = BT_POP(btstack)) != NULL) { 2300 /* pin the parent page <sp> */ 2301 DT_GETPAGE(ip, parent->bn, mp, PSIZE, p, rc); 2302 if (rc) 2303 return rc; 2304 2305 /* 2306 * free the extent of the child page deleted 2307 */ 2308 index = parent->index; 2309 2310 /* 2311 * delete the entry for the child page from parent 2312 */ 2313 nextindex = p->header.nextindex; 2314 2315 /* 2316 * the parent has the single entry being deleted: 2317 * 2318 * free the parent page which has become empty. 2319 */ 2320 if (nextindex == 1) { 2321 /* 2322 * keep the root internal page which has become empty 2323 */ 2324 if (p->header.flag & BT_ROOT) { 2325 /* 2326 * reset the root 2327 * 2328 * dtInitRoot() acquires txlock on the root 2329 */ 2330 dtInitRoot(tid, ip, PARENT(ip)); 2331 2332 DT_PUTPAGE(mp); 2333 2334 return 0; 2335 } 2336 /* 2337 * free the parent page 2338 */ 2339 else { 2340 /* 2341 * acquire a transaction lock on the page 2342 * 2343 * write FREEXTENT|NOREDOPAGE log record 2344 */ 2345 tlck = 2346 txMaplock(tid, ip, 2347 tlckDTREE | tlckFREE); 2348 pxdlock = (struct pxd_lock *) & tlck->lock; 2349 pxdlock->flag = mlckFREEPXD; 2350 pxdlock->pxd = p->header.self; 2351 pxdlock->index = 1; 2352 2353 /* update sibling pointers */ 2354 if ((rc = dtRelink(tid, ip, p))) { 2355 DT_PUTPAGE(mp); 2356 return rc; 2357 } 2358 2359 xlen = lengthPXD(&p->header.self); 2360 2361 /* Free quota allocation */ 2362 dquot_free_block(ip, xlen); 2363 2364 /* free/invalidate its buffer page */ 2365 discard_metapage(mp); 2366 2367 /* propagate up */ 2368 continue; 2369 } 2370 } 2371 2372 /* 2373 * the parent has other entries remaining: 2374 * 2375 * delete the router entry from the parent page. 2376 */ 2377 BT_MARK_DIRTY(mp, ip); 2378 /* 2379 * acquire a transaction lock on the page 2380 * 2381 * action: router entry deletion 2382 */ 2383 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 2384 dtlck = (struct dt_lock *) & tlck->lock; 2385 2386 /* linelock header */ 2387 if (dtlck->index >= dtlck->maxcnt) 2388 dtlck = (struct dt_lock *) txLinelock(dtlck); 2389 lv = & dtlck->lv[dtlck->index]; 2390 lv->offset = 0; 2391 lv->length = 1; 2392 dtlck->index++; 2393 2394 /* linelock stbl of non-root leaf page */ 2395 if (!(p->header.flag & BT_ROOT)) { 2396 if (dtlck->index < dtlck->maxcnt) 2397 lv++; 2398 else { 2399 dtlck = (struct dt_lock *) txLinelock(dtlck); 2400 lv = & dtlck->lv[0]; 2401 } 2402 i = index >> L2DTSLOTSIZE; 2403 lv->offset = p->header.stblindex + i; 2404 lv->length = 2405 ((p->header.nextindex - 1) >> L2DTSLOTSIZE) - 2406 i + 1; 2407 dtlck->index++; 2408 } 2409 2410 /* free the router entry */ 2411 dtDeleteEntry(p, index, &dtlck); 2412 2413 /* reset key of new leftmost entry of level (for consistency) */ 2414 if (index == 0 && 2415 ((p->header.flag & BT_ROOT) || p->header.prev == 0)) 2416 dtTruncateEntry(p, 0, &dtlck); 2417 2418 /* unpin the parent page */ 2419 DT_PUTPAGE(mp); 2420 2421 /* exit propagation up */ 2422 break; 2423 } 2424 2425 if (!DO_INDEX(ip)) 2426 ip->i_size -= PSIZE; 2427 2428 return 0; 2429} 2430 2431#ifdef _NOTYET 2432/* 2433 * NAME: dtRelocate() 2434 * 2435 * FUNCTION: relocate dtpage (internal or leaf) of directory; 2436 * This function is mainly used by defragfs utility. 2437 */ 2438int dtRelocate(tid_t tid, struct inode *ip, s64 lmxaddr, pxd_t * opxd, 2439 s64 nxaddr) 2440{ 2441 int rc = 0; 2442 struct metapage *mp, *pmp, *lmp, *rmp; 2443 dtpage_t *p, *pp, *rp = 0, *lp= 0; 2444 s64 bn; 2445 int index; 2446 struct btstack btstack; 2447 pxd_t *pxd; 2448 s64 oxaddr, nextbn, prevbn; 2449 int xlen, xsize; 2450 struct tlock *tlck; 2451 struct dt_lock *dtlck; 2452 struct pxd_lock *pxdlock; 2453 s8 *stbl; 2454 struct lv *lv; 2455 2456 oxaddr = addressPXD(opxd); 2457 xlen = lengthPXD(opxd); 2458 2459 jfs_info("dtRelocate: lmxaddr:%Ld xaddr:%Ld:%Ld xlen:%d", 2460 (long long)lmxaddr, (long long)oxaddr, (long long)nxaddr, 2461 xlen); 2462 2463 /* 2464 * 1. get the internal parent dtpage covering 2465 * router entry for the tartget page to be relocated; 2466 */ 2467 rc = dtSearchNode(ip, lmxaddr, opxd, &btstack); 2468 if (rc) 2469 return rc; 2470 2471 /* retrieve search result */ 2472 DT_GETSEARCH(ip, btstack.top, bn, pmp, pp, index); 2473 jfs_info("dtRelocate: parent router entry validated."); 2474 2475 /* 2476 * 2. relocate the target dtpage 2477 */ 2478 /* read in the target page from src extent */ 2479 DT_GETPAGE(ip, oxaddr, mp, PSIZE, p, rc); 2480 if (rc) { 2481 /* release the pinned parent page */ 2482 DT_PUTPAGE(pmp); 2483 return rc; 2484 } 2485 2486 /* 2487 * read in sibling pages if any to update sibling pointers; 2488 */ 2489 rmp = NULL; 2490 if (p->header.next) { 2491 nextbn = le64_to_cpu(p->header.next); 2492 DT_GETPAGE(ip, nextbn, rmp, PSIZE, rp, rc); 2493 if (rc) { 2494 DT_PUTPAGE(mp); 2495 DT_PUTPAGE(pmp); 2496 return (rc); 2497 } 2498 } 2499 2500 lmp = NULL; 2501 if (p->header.prev) { 2502 prevbn = le64_to_cpu(p->header.prev); 2503 DT_GETPAGE(ip, prevbn, lmp, PSIZE, lp, rc); 2504 if (rc) { 2505 DT_PUTPAGE(mp); 2506 DT_PUTPAGE(pmp); 2507 if (rmp) 2508 DT_PUTPAGE(rmp); 2509 return (rc); 2510 } 2511 } 2512 2513 /* at this point, all xtpages to be updated are in memory */ 2514 2515 /* 2516 * update sibling pointers of sibling dtpages if any; 2517 */ 2518 if (lmp) { 2519 tlck = txLock(tid, ip, lmp, tlckDTREE | tlckRELINK); 2520 dtlck = (struct dt_lock *) & tlck->lock; 2521 /* linelock header */ 2522 ASSERT(dtlck->index == 0); 2523 lv = & dtlck->lv[0]; 2524 lv->offset = 0; 2525 lv->length = 1; 2526 dtlck->index++; 2527 2528 lp->header.next = cpu_to_le64(nxaddr); 2529 DT_PUTPAGE(lmp); 2530 } 2531 2532 if (rmp) { 2533 tlck = txLock(tid, ip, rmp, tlckDTREE | tlckRELINK); 2534 dtlck = (struct dt_lock *) & tlck->lock; 2535 /* linelock header */ 2536 ASSERT(dtlck->index == 0); 2537 lv = & dtlck->lv[0]; 2538 lv->offset = 0; 2539 lv->length = 1; 2540 dtlck->index++; 2541 2542 rp->header.prev = cpu_to_le64(nxaddr); 2543 DT_PUTPAGE(rmp); 2544 } 2545 2546 /* 2547 * update the target dtpage to be relocated 2548 * 2549 * write LOG_REDOPAGE of LOG_NEW type for dst page 2550 * for the whole target page (logredo() will apply 2551 * after image and update bmap for allocation of the 2552 * dst extent), and update bmap for allocation of 2553 * the dst extent; 2554 */ 2555 tlck = txLock(tid, ip, mp, tlckDTREE | tlckNEW); 2556 dtlck = (struct dt_lock *) & tlck->lock; 2557 /* linelock header */ 2558 ASSERT(dtlck->index == 0); 2559 lv = & dtlck->lv[0]; 2560 2561 /* update the self address in the dtpage header */ 2562 pxd = &p->header.self; 2563 PXDaddress(pxd, nxaddr); 2564 2565 /* the dst page is the same as the src page, i.e., 2566 * linelock for afterimage of the whole page; 2567 */ 2568 lv->offset = 0; 2569 lv->length = p->header.maxslot; 2570 dtlck->index++; 2571 2572 /* update the buffer extent descriptor of the dtpage */ 2573 xsize = xlen << JFS_SBI(ip->i_sb)->l2bsize; 2574 2575 /* unpin the relocated page */ 2576 DT_PUTPAGE(mp); 2577 jfs_info("dtRelocate: target dtpage relocated."); 2578 2579 /* the moved extent is dtpage, then a LOG_NOREDOPAGE log rec 2580 * needs to be written (in logredo(), the LOG_NOREDOPAGE log rec 2581 * will also force a bmap update ). 2582 */ 2583 2584 /* 2585 * 3. acquire maplock for the source extent to be freed; 2586 */ 2587 /* for dtpage relocation, write a LOG_NOREDOPAGE record 2588 * for the source dtpage (logredo() will init NoRedoPage 2589 * filter and will also update bmap for free of the source 2590 * dtpage), and upadte bmap for free of the source dtpage; 2591 */ 2592 tlck = txMaplock(tid, ip, tlckDTREE | tlckFREE); 2593 pxdlock = (struct pxd_lock *) & tlck->lock; 2594 pxdlock->flag = mlckFREEPXD; 2595 PXDaddress(&pxdlock->pxd, oxaddr); 2596 PXDlength(&pxdlock->pxd, xlen); 2597 pxdlock->index = 1; 2598 2599 /* 2600 * 4. update the parent router entry for relocation; 2601 * 2602 * acquire tlck for the parent entry covering the target dtpage; 2603 * write LOG_REDOPAGE to apply after image only; 2604 */ 2605 jfs_info("dtRelocate: update parent router entry."); 2606 tlck = txLock(tid, ip, pmp, tlckDTREE | tlckENTRY); 2607 dtlck = (struct dt_lock *) & tlck->lock; 2608 lv = & dtlck->lv[dtlck->index]; 2609 2610 /* update the PXD with the new address */ 2611 stbl = DT_GETSTBL(pp); 2612 pxd = (pxd_t *) & pp->slot[stbl[index]]; 2613 PXDaddress(pxd, nxaddr); 2614 lv->offset = stbl[index]; 2615 lv->length = 1; 2616 dtlck->index++; 2617 2618 /* unpin the parent dtpage */ 2619 DT_PUTPAGE(pmp); 2620 2621 return rc; 2622} 2623 2624/* 2625 * NAME: dtSearchNode() 2626 * 2627 * FUNCTION: Search for an dtpage containing a specified address 2628 * This function is mainly used by defragfs utility. 2629 * 2630 * NOTE: Search result on stack, the found page is pinned at exit. 2631 * The result page must be an internal dtpage. 2632 * lmxaddr give the address of the left most page of the 2633 * dtree level, in which the required dtpage resides. 2634 */ 2635static int dtSearchNode(struct inode *ip, s64 lmxaddr, pxd_t * kpxd, 2636 struct btstack * btstack) 2637{ 2638 int rc = 0; 2639 s64 bn; 2640 struct metapage *mp; 2641 dtpage_t *p; 2642 int psize = 288; /* initial in-line directory */ 2643 s8 *stbl; 2644 int i; 2645 pxd_t *pxd; 2646 struct btframe *btsp; 2647 2648 BT_CLR(btstack); /* reset stack */ 2649 2650 /* 2651 * descend tree to the level with specified leftmost page 2652 * 2653 * by convention, root bn = 0. 2654 */ 2655 for (bn = 0;;) { 2656 /* get/pin the page to search */ 2657 DT_GETPAGE(ip, bn, mp, psize, p, rc); 2658 if (rc) 2659 return rc; 2660 2661 /* does the xaddr of leftmost page of the levevl 2662 * matches levevl search key ? 2663 */ 2664 if (p->header.flag & BT_ROOT) { 2665 if (lmxaddr == 0) 2666 break; 2667 } else if (addressPXD(&p->header.self) == lmxaddr) 2668 break; 2669 2670 /* 2671 * descend down to leftmost child page 2672 */ 2673 if (p->header.flag & BT_LEAF) { 2674 DT_PUTPAGE(mp); 2675 return -ESTALE; 2676 } 2677 2678 /* get the leftmost entry */ 2679 stbl = DT_GETSTBL(p); 2680 pxd = (pxd_t *) & p->slot[stbl[0]]; 2681 2682 /* get the child page block address */ 2683 bn = addressPXD(pxd); 2684 psize = lengthPXD(pxd) << JFS_SBI(ip->i_sb)->l2bsize; 2685 /* unpin the parent page */ 2686 DT_PUTPAGE(mp); 2687 } 2688 2689 /* 2690 * search each page at the current levevl 2691 */ 2692 loop: 2693 stbl = DT_GETSTBL(p); 2694 for (i = 0; i < p->header.nextindex; i++) { 2695 pxd = (pxd_t *) & p->slot[stbl[i]]; 2696 2697 /* found the specified router entry */ 2698 if (addressPXD(pxd) == addressPXD(kpxd) && 2699 lengthPXD(pxd) == lengthPXD(kpxd)) { 2700 btsp = btstack->top; 2701 btsp->bn = bn; 2702 btsp->index = i; 2703 btsp->mp = mp; 2704 2705 return 0; 2706 } 2707 } 2708 2709 /* get the right sibling page if any */ 2710 if (p->header.next) 2711 bn = le64_to_cpu(p->header.next); 2712 else { 2713 DT_PUTPAGE(mp); 2714 return -ESTALE; 2715 } 2716 2717 /* unpin current page */ 2718 DT_PUTPAGE(mp); 2719 2720 /* get the right sibling page */ 2721 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 2722 if (rc) 2723 return rc; 2724 2725 goto loop; 2726} 2727#endif /* _NOTYET */ 2728 2729/* 2730 * dtRelink() 2731 * 2732 * function: 2733 * link around a freed page. 2734 * 2735 * parameter: 2736 * fp: page to be freed 2737 * 2738 * return: 2739 */ 2740static int dtRelink(tid_t tid, struct inode *ip, dtpage_t * p) 2741{ 2742 int rc; 2743 struct metapage *mp; 2744 s64 nextbn, prevbn; 2745 struct tlock *tlck; 2746 struct dt_lock *dtlck; 2747 struct lv *lv; 2748 2749 nextbn = le64_to_cpu(p->header.next); 2750 prevbn = le64_to_cpu(p->header.prev); 2751 2752 /* update prev pointer of the next page */ 2753 if (nextbn != 0) { 2754 DT_GETPAGE(ip, nextbn, mp, PSIZE, p, rc); 2755 if (rc) 2756 return rc; 2757 2758 BT_MARK_DIRTY(mp, ip); 2759 /* 2760 * acquire a transaction lock on the next page 2761 * 2762 * action: update prev pointer; 2763 */ 2764 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 2765 jfs_info("dtRelink nextbn: tlck = 0x%p, ip = 0x%p, mp=0x%p", 2766 tlck, ip, mp); 2767 dtlck = (struct dt_lock *) & tlck->lock; 2768 2769 /* linelock header */ 2770 if (dtlck->index >= dtlck->maxcnt) 2771 dtlck = (struct dt_lock *) txLinelock(dtlck); 2772 lv = & dtlck->lv[dtlck->index]; 2773 lv->offset = 0; 2774 lv->length = 1; 2775 dtlck->index++; 2776 2777 p->header.prev = cpu_to_le64(prevbn); 2778 DT_PUTPAGE(mp); 2779 } 2780 2781 /* update next pointer of the previous page */ 2782 if (prevbn != 0) { 2783 DT_GETPAGE(ip, prevbn, mp, PSIZE, p, rc); 2784 if (rc) 2785 return rc; 2786 2787 BT_MARK_DIRTY(mp, ip); 2788 /* 2789 * acquire a transaction lock on the prev page 2790 * 2791 * action: update next pointer; 2792 */ 2793 tlck = txLock(tid, ip, mp, tlckDTREE | tlckRELINK); 2794 jfs_info("dtRelink prevbn: tlck = 0x%p, ip = 0x%p, mp=0x%p", 2795 tlck, ip, mp); 2796 dtlck = (struct dt_lock *) & tlck->lock; 2797 2798 /* linelock header */ 2799 if (dtlck->index >= dtlck->maxcnt) 2800 dtlck = (struct dt_lock *) txLinelock(dtlck); 2801 lv = & dtlck->lv[dtlck->index]; 2802 lv->offset = 0; 2803 lv->length = 1; 2804 dtlck->index++; 2805 2806 p->header.next = cpu_to_le64(nextbn); 2807 DT_PUTPAGE(mp); 2808 } 2809 2810 return 0; 2811} 2812 2813 2814/* 2815 * dtInitRoot() 2816 * 2817 * initialize directory root (inline in inode) 2818 */ 2819void dtInitRoot(tid_t tid, struct inode *ip, u32 idotdot) 2820{ 2821 struct jfs_inode_info *jfs_ip = JFS_IP(ip); 2822 dtroot_t *p; 2823 int fsi; 2824 struct dtslot *f; 2825 struct tlock *tlck; 2826 struct dt_lock *dtlck; 2827 struct lv *lv; 2828 u16 xflag_save; 2829 2830 /* 2831 * If this was previously an non-empty directory, we need to remove 2832 * the old directory table. 2833 */ 2834 if (DO_INDEX(ip)) { 2835 if (!jfs_dirtable_inline(ip)) { 2836 struct tblock *tblk = tid_to_tblock(tid); 2837 /* 2838 * We're playing games with the tid's xflag. If 2839 * we're removing a regular file, the file's xtree 2840 * is committed with COMMIT_PMAP, but we always 2841 * commit the directories xtree with COMMIT_PWMAP. 2842 */ 2843 xflag_save = tblk->xflag; 2844 tblk->xflag = 0; 2845 /* 2846 * xtTruncate isn't guaranteed to fully truncate 2847 * the xtree. The caller needs to check i_size 2848 * after committing the transaction to see if 2849 * additional truncation is needed. The 2850 * COMMIT_Stale flag tells caller that we 2851 * initiated the truncation. 2852 */ 2853 xtTruncate(tid, ip, 0, COMMIT_PWMAP); 2854 set_cflag(COMMIT_Stale, ip); 2855 2856 tblk->xflag = xflag_save; 2857 } else 2858 ip->i_size = 1; 2859 2860 jfs_ip->next_index = 2; 2861 } else 2862 ip->i_size = IDATASIZE; 2863 2864 /* 2865 * acquire a transaction lock on the root 2866 * 2867 * action: directory initialization; 2868 */ 2869 tlck = txLock(tid, ip, (struct metapage *) & jfs_ip->bxflag, 2870 tlckDTREE | tlckENTRY | tlckBTROOT); 2871 dtlck = (struct dt_lock *) & tlck->lock; 2872 2873 /* linelock root */ 2874 ASSERT(dtlck->index == 0); 2875 lv = & dtlck->lv[0]; 2876 lv->offset = 0; 2877 lv->length = DTROOTMAXSLOT; 2878 dtlck->index++; 2879 2880 p = &jfs_ip->i_dtroot; 2881 2882 p->header.flag = DXD_INDEX | BT_ROOT | BT_LEAF; 2883 2884 p->header.nextindex = 0; 2885 2886 /* init freelist */ 2887 fsi = 1; 2888 f = &p->slot[fsi]; 2889 2890 /* init data area of root */ 2891 for (fsi++; fsi < DTROOTMAXSLOT; f++, fsi++) 2892 f->next = fsi; 2893 f->next = -1; 2894 2895 p->header.freelist = 1; 2896 p->header.freecnt = 8; 2897 2898 /* init '..' entry */ 2899 p->header.idotdot = cpu_to_le32(idotdot); 2900 2901 return; 2902} 2903 2904/* 2905 * add_missing_indices() 2906 * 2907 * function: Fix dtree page in which one or more entries has an invalid index. 2908 * fsck.jfs should really fix this, but it currently does not. 2909 * Called from jfs_readdir when bad index is detected. 2910 */ 2911static void add_missing_indices(struct inode *inode, s64 bn) 2912{ 2913 struct ldtentry *d; 2914 struct dt_lock *dtlck; 2915 int i; 2916 uint index; 2917 struct lv *lv; 2918 struct metapage *mp; 2919 dtpage_t *p; 2920 int rc; 2921 s8 *stbl; 2922 tid_t tid; 2923 struct tlock *tlck; 2924 2925 tid = txBegin(inode->i_sb, 0); 2926 2927 DT_GETPAGE(inode, bn, mp, PSIZE, p, rc); 2928 2929 if (rc) { 2930 printk(KERN_ERR "DT_GETPAGE failed!\n"); 2931 goto end; 2932 } 2933 BT_MARK_DIRTY(mp, inode); 2934 2935 ASSERT(p->header.flag & BT_LEAF); 2936 2937 tlck = txLock(tid, inode, mp, tlckDTREE | tlckENTRY); 2938 if (BT_IS_ROOT(mp)) 2939 tlck->type |= tlckBTROOT; 2940 2941 dtlck = (struct dt_lock *) &tlck->lock; 2942 2943 stbl = DT_GETSTBL(p); 2944 for (i = 0; i < p->header.nextindex; i++) { 2945 d = (struct ldtentry *) &p->slot[stbl[i]]; 2946 index = le32_to_cpu(d->index); 2947 if ((index < 2) || (index >= JFS_IP(inode)->next_index)) { 2948 d->index = cpu_to_le32(add_index(tid, inode, bn, i)); 2949 if (dtlck->index >= dtlck->maxcnt) 2950 dtlck = (struct dt_lock *) txLinelock(dtlck); 2951 lv = &dtlck->lv[dtlck->index]; 2952 lv->offset = stbl[i]; 2953 lv->length = 1; 2954 dtlck->index++; 2955 } 2956 } 2957 2958 DT_PUTPAGE(mp); 2959 (void) txCommit(tid, 1, &inode, 0); 2960end: 2961 txEnd(tid); 2962} 2963 2964/* 2965 * Buffer to hold directory entry info while traversing a dtree page 2966 * before being fed to the filldir function 2967 */ 2968struct jfs_dirent { 2969 loff_t position; 2970 int ino; 2971 u16 name_len; 2972 char name[]; 2973}; 2974 2975/* 2976 * function to determine next variable-sized jfs_dirent in buffer 2977 */ 2978static inline struct jfs_dirent *next_jfs_dirent(struct jfs_dirent *dirent) 2979{ 2980 return (struct jfs_dirent *) 2981 ((char *)dirent + 2982 ((sizeof (struct jfs_dirent) + dirent->name_len + 1 + 2983 sizeof (loff_t) - 1) & 2984 ~(sizeof (loff_t) - 1))); 2985} 2986 2987/* 2988 * jfs_readdir() 2989 * 2990 * function: read directory entries sequentially 2991 * from the specified entry offset 2992 * 2993 * parameter: 2994 * 2995 * return: offset = (pn, index) of start entry 2996 * of next jfs_readdir()/dtRead() 2997 */ 2998int jfs_readdir(struct file *file, struct dir_context *ctx) 2999{ 3000 struct inode *ip = file_inode(file); 3001 struct nls_table *codepage = JFS_SBI(ip->i_sb)->nls_tab; 3002 int rc = 0; 3003 loff_t dtpos; /* legacy OS/2 style position */ 3004 struct dtoffset { 3005 s16 pn; 3006 s16 index; 3007 s32 unused; 3008 } *dtoffset = (struct dtoffset *) &dtpos; 3009 s64 bn; 3010 struct metapage *mp; 3011 dtpage_t *p; 3012 int index; 3013 s8 *stbl; 3014 struct btstack btstack; 3015 int i, next; 3016 struct ldtentry *d; 3017 struct dtslot *t; 3018 int d_namleft, len, outlen; 3019 unsigned long dirent_buf; 3020 char *name_ptr; 3021 u32 dir_index; 3022 int do_index = 0; 3023 uint loop_count = 0; 3024 struct jfs_dirent *jfs_dirent; 3025 int jfs_dirents; 3026 int overflow, fix_page, page_fixed = 0; 3027 static int unique_pos = 2; /* If we can't fix broken index */ 3028 3029 if (ctx->pos == DIREND) 3030 return 0; 3031 3032 if (DO_INDEX(ip)) { 3033 /* 3034 * persistent index is stored in directory entries. 3035 * Special cases: 0 = . 3036 * 1 = .. 3037 * -1 = End of directory 3038 */ 3039 do_index = 1; 3040 3041 dir_index = (u32) ctx->pos; 3042 3043 /* 3044 * NFSv4 reserves cookies 1 and 2 for . and .. so the value 3045 * we return to the vfs is one greater than the one we use 3046 * internally. 3047 */ 3048 if (dir_index) 3049 dir_index--; 3050 3051 if (dir_index > 1) { 3052 struct dir_table_slot dirtab_slot; 3053 3054 if (dtEmpty(ip) || 3055 (dir_index >= JFS_IP(ip)->next_index)) { 3056 /* Stale position. Directory has shrunk */ 3057 ctx->pos = DIREND; 3058 return 0; 3059 } 3060 repeat: 3061 rc = read_index(ip, dir_index, &dirtab_slot); 3062 if (rc) { 3063 ctx->pos = DIREND; 3064 return rc; 3065 } 3066 if (dirtab_slot.flag == DIR_INDEX_FREE) { 3067 if (loop_count++ > JFS_IP(ip)->next_index) { 3068 jfs_err("jfs_readdir detected infinite loop!"); 3069 ctx->pos = DIREND; 3070 return 0; 3071 } 3072 dir_index = le32_to_cpu(dirtab_slot.addr2); 3073 if (dir_index == -1) { 3074 ctx->pos = DIREND; 3075 return 0; 3076 } 3077 goto repeat; 3078 } 3079 bn = addressDTS(&dirtab_slot); 3080 index = dirtab_slot.slot; 3081 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3082 if (rc) { 3083 ctx->pos = DIREND; 3084 return 0; 3085 } 3086 if (p->header.flag & BT_INTERNAL) { 3087 jfs_err("jfs_readdir: bad index table"); 3088 DT_PUTPAGE(mp); 3089 ctx->pos = DIREND; 3090 return 0; 3091 } 3092 } else { 3093 if (dir_index == 0) { 3094 /* 3095 * self "." 3096 */ 3097 ctx->pos = 1; 3098 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR)) 3099 return 0; 3100 } 3101 /* 3102 * parent ".." 3103 */ 3104 ctx->pos = 2; 3105 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR)) 3106 return 0; 3107 3108 /* 3109 * Find first entry of left-most leaf 3110 */ 3111 if (dtEmpty(ip)) { 3112 ctx->pos = DIREND; 3113 return 0; 3114 } 3115 3116 if ((rc = dtReadFirst(ip, &btstack))) 3117 return rc; 3118 3119 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 3120 } 3121 } else { 3122 /* 3123 * Legacy filesystem - OS/2 & Linux JFS < 0.3.6 3124 * 3125 * pn = 0; index = 1: First entry "." 3126 * pn = 0; index = 2: Second entry ".." 3127 * pn > 0: Real entries, pn=1 -> leftmost page 3128 * pn = index = -1: No more entries 3129 */ 3130 dtpos = ctx->pos; 3131 if (dtpos < 2) { 3132 /* build "." entry */ 3133 ctx->pos = 1; 3134 if (!dir_emit(ctx, ".", 1, ip->i_ino, DT_DIR)) 3135 return 0; 3136 dtoffset->index = 2; 3137 ctx->pos = dtpos; 3138 } 3139 3140 if (dtoffset->pn == 0) { 3141 if (dtoffset->index == 2) { 3142 /* build ".." entry */ 3143 if (!dir_emit(ctx, "..", 2, PARENT(ip), DT_DIR)) 3144 return 0; 3145 } else { 3146 jfs_err("jfs_readdir called with invalid offset!"); 3147 } 3148 dtoffset->pn = 1; 3149 dtoffset->index = 0; 3150 ctx->pos = dtpos; 3151 } 3152 3153 if (dtEmpty(ip)) { 3154 ctx->pos = DIREND; 3155 return 0; 3156 } 3157 3158 if ((rc = dtReadNext(ip, &ctx->pos, &btstack))) { 3159 jfs_err("jfs_readdir: unexpected rc = %d from dtReadNext", 3160 rc); 3161 ctx->pos = DIREND; 3162 return 0; 3163 } 3164 /* get start leaf page and index */ 3165 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 3166 3167 /* offset beyond directory eof ? */ 3168 if (bn < 0) { 3169 ctx->pos = DIREND; 3170 return 0; 3171 } 3172 } 3173 3174 dirent_buf = __get_free_page(GFP_KERNEL); 3175 if (dirent_buf == 0) { 3176 DT_PUTPAGE(mp); 3177 jfs_warn("jfs_readdir: __get_free_page failed!"); 3178 ctx->pos = DIREND; 3179 return -ENOMEM; 3180 } 3181 3182 while (1) { 3183 jfs_dirent = (struct jfs_dirent *) dirent_buf; 3184 jfs_dirents = 0; 3185 overflow = fix_page = 0; 3186 3187 stbl = DT_GETSTBL(p); 3188 3189 for (i = index; i < p->header.nextindex; i++) { 3190 d = (struct ldtentry *) & p->slot[stbl[i]]; 3191 3192 if (((long) jfs_dirent + d->namlen + 1) > 3193 (dirent_buf + PAGE_SIZE)) { 3194 /* DBCS codepages could overrun dirent_buf */ 3195 index = i; 3196 overflow = 1; 3197 break; 3198 } 3199 3200 d_namleft = d->namlen; 3201 name_ptr = jfs_dirent->name; 3202 jfs_dirent->ino = le32_to_cpu(d->inumber); 3203 3204 if (do_index) { 3205 len = min(d_namleft, DTLHDRDATALEN); 3206 jfs_dirent->position = le32_to_cpu(d->index); 3207 /* 3208 * d->index should always be valid, but it 3209 * isn't. fsck.jfs doesn't create the 3210 * directory index for the lost+found 3211 * directory. Rather than let it go, 3212 * we can try to fix it. 3213 */ 3214 if ((jfs_dirent->position < 2) || 3215 (jfs_dirent->position >= 3216 JFS_IP(ip)->next_index)) { 3217 if (!page_fixed && !isReadOnly(ip)) { 3218 fix_page = 1; 3219 /* 3220 * setting overflow and setting 3221 * index to i will cause the 3222 * same page to be processed 3223 * again starting here 3224 */ 3225 overflow = 1; 3226 index = i; 3227 break; 3228 } 3229 jfs_dirent->position = unique_pos++; 3230 } 3231 /* 3232 * We add 1 to the index because we may 3233 * use a value of 2 internally, and NFSv4 3234 * doesn't like that. 3235 */ 3236 jfs_dirent->position++; 3237 } else { 3238 jfs_dirent->position = dtpos; 3239 len = min(d_namleft, DTLHDRDATALEN_LEGACY); 3240 } 3241 3242 /* copy the name of head/only segment */ 3243 outlen = jfs_strfromUCS_le(name_ptr, d->name, len, 3244 codepage); 3245 jfs_dirent->name_len = outlen; 3246 3247 /* copy name in the additional segment(s) */ 3248 next = d->next; 3249 while (next >= 0) { 3250 t = (struct dtslot *) & p->slot[next]; 3251 name_ptr += outlen; 3252 d_namleft -= len; 3253 /* Sanity Check */ 3254 if (d_namleft == 0) { 3255 jfs_error(ip->i_sb, 3256 "JFS:Dtree error: ino = %ld, bn=%lld, index = %d\n", 3257 (long)ip->i_ino, 3258 (long long)bn, 3259 i); 3260 goto skip_one; 3261 } 3262 len = min(d_namleft, DTSLOTDATALEN); 3263 outlen = jfs_strfromUCS_le(name_ptr, t->name, 3264 len, codepage); 3265 jfs_dirent->name_len += outlen; 3266 3267 next = t->next; 3268 } 3269 3270 jfs_dirents++; 3271 jfs_dirent = next_jfs_dirent(jfs_dirent); 3272skip_one: 3273 if (!do_index) 3274 dtoffset->index++; 3275 } 3276 3277 if (!overflow) { 3278 /* Point to next leaf page */ 3279 if (p->header.flag & BT_ROOT) 3280 bn = 0; 3281 else { 3282 bn = le64_to_cpu(p->header.next); 3283 index = 0; 3284 /* update offset (pn:index) for new page */ 3285 if (!do_index) { 3286 dtoffset->pn++; 3287 dtoffset->index = 0; 3288 } 3289 } 3290 page_fixed = 0; 3291 } 3292 3293 /* unpin previous leaf page */ 3294 DT_PUTPAGE(mp); 3295 3296 jfs_dirent = (struct jfs_dirent *) dirent_buf; 3297 while (jfs_dirents--) { 3298 ctx->pos = jfs_dirent->position; 3299 if (!dir_emit(ctx, jfs_dirent->name, 3300 jfs_dirent->name_len, 3301 jfs_dirent->ino, DT_UNKNOWN)) 3302 goto out; 3303 jfs_dirent = next_jfs_dirent(jfs_dirent); 3304 } 3305 3306 if (fix_page) { 3307 add_missing_indices(ip, bn); 3308 page_fixed = 1; 3309 } 3310 3311 if (!overflow && (bn == 0)) { 3312 ctx->pos = DIREND; 3313 break; 3314 } 3315 3316 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3317 if (rc) { 3318 free_page(dirent_buf); 3319 return rc; 3320 } 3321 } 3322 3323 out: 3324 free_page(dirent_buf); 3325 3326 return rc; 3327} 3328 3329 3330/* 3331 * dtReadFirst() 3332 * 3333 * function: get the leftmost page of the directory 3334 */ 3335static int dtReadFirst(struct inode *ip, struct btstack * btstack) 3336{ 3337 int rc = 0; 3338 s64 bn; 3339 int psize = 288; /* initial in-line directory */ 3340 struct metapage *mp; 3341 dtpage_t *p; 3342 s8 *stbl; 3343 struct btframe *btsp; 3344 pxd_t *xd; 3345 3346 BT_CLR(btstack); /* reset stack */ 3347 3348 /* 3349 * descend leftmost path of the tree 3350 * 3351 * by convention, root bn = 0. 3352 */ 3353 for (bn = 0;;) { 3354 DT_GETPAGE(ip, bn, mp, psize, p, rc); 3355 if (rc) 3356 return rc; 3357 3358 /* 3359 * leftmost leaf page 3360 */ 3361 if (p->header.flag & BT_LEAF) { 3362 /* return leftmost entry */ 3363 btsp = btstack->top; 3364 btsp->bn = bn; 3365 btsp->index = 0; 3366 btsp->mp = mp; 3367 3368 return 0; 3369 } 3370 3371 /* 3372 * descend down to leftmost child page 3373 */ 3374 if (BT_STACK_FULL(btstack)) { 3375 DT_PUTPAGE(mp); 3376 jfs_error(ip->i_sb, "btstack overrun\n"); 3377 BT_STACK_DUMP(btstack); 3378 return -EIO; 3379 } 3380 /* push (bn, index) of the parent page/entry */ 3381 BT_PUSH(btstack, bn, 0); 3382 3383 /* get the leftmost entry */ 3384 stbl = DT_GETSTBL(p); 3385 xd = (pxd_t *) & p->slot[stbl[0]]; 3386 3387 /* get the child page block address */ 3388 bn = addressPXD(xd); 3389 psize = lengthPXD(xd) << JFS_SBI(ip->i_sb)->l2bsize; 3390 3391 /* unpin the parent page */ 3392 DT_PUTPAGE(mp); 3393 } 3394} 3395 3396 3397/* 3398 * dtReadNext() 3399 * 3400 * function: get the page of the specified offset (pn:index) 3401 * 3402 * return: if (offset > eof), bn = -1; 3403 * 3404 * note: if index > nextindex of the target leaf page, 3405 * start with 1st entry of next leaf page; 3406 */ 3407static int dtReadNext(struct inode *ip, loff_t * offset, 3408 struct btstack * btstack) 3409{ 3410 int rc = 0; 3411 struct dtoffset { 3412 s16 pn; 3413 s16 index; 3414 s32 unused; 3415 } *dtoffset = (struct dtoffset *) offset; 3416 s64 bn; 3417 struct metapage *mp; 3418 dtpage_t *p; 3419 int index; 3420 int pn; 3421 s8 *stbl; 3422 struct btframe *btsp, *parent; 3423 pxd_t *xd; 3424 3425 /* 3426 * get leftmost leaf page pinned 3427 */ 3428 if ((rc = dtReadFirst(ip, btstack))) 3429 return rc; 3430 3431 /* get leaf page */ 3432 DT_GETSEARCH(ip, btstack->top, bn, mp, p, index); 3433 3434 /* get the start offset (pn:index) */ 3435 pn = dtoffset->pn - 1; /* Now pn = 0 represents leftmost leaf */ 3436 index = dtoffset->index; 3437 3438 /* start at leftmost page ? */ 3439 if (pn == 0) { 3440 /* offset beyond eof ? */ 3441 if (index < p->header.nextindex) 3442 goto out; 3443 3444 if (p->header.flag & BT_ROOT) { 3445 bn = -1; 3446 goto out; 3447 } 3448 3449 /* start with 1st entry of next leaf page */ 3450 dtoffset->pn++; 3451 dtoffset->index = index = 0; 3452 goto a; 3453 } 3454 3455 /* start at non-leftmost page: scan parent pages for large pn */ 3456 if (p->header.flag & BT_ROOT) { 3457 bn = -1; 3458 goto out; 3459 } 3460 3461 /* start after next leaf page ? */ 3462 if (pn > 1) 3463 goto b; 3464 3465 /* get leaf page pn = 1 */ 3466 a: 3467 bn = le64_to_cpu(p->header.next); 3468 3469 /* unpin leaf page */ 3470 DT_PUTPAGE(mp); 3471 3472 /* offset beyond eof ? */ 3473 if (bn == 0) { 3474 bn = -1; 3475 goto out; 3476 } 3477 3478 goto c; 3479 3480 /* 3481 * scan last internal page level to get target leaf page 3482 */ 3483 b: 3484 /* unpin leftmost leaf page */ 3485 DT_PUTPAGE(mp); 3486 3487 /* get left most parent page */ 3488 btsp = btstack->top; 3489 parent = btsp - 1; 3490 bn = parent->bn; 3491 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3492 if (rc) 3493 return rc; 3494 3495 /* scan parent pages at last internal page level */ 3496 while (pn >= p->header.nextindex) { 3497 pn -= p->header.nextindex; 3498 3499 /* get next parent page address */ 3500 bn = le64_to_cpu(p->header.next); 3501 3502 /* unpin current parent page */ 3503 DT_PUTPAGE(mp); 3504 3505 /* offset beyond eof ? */ 3506 if (bn == 0) { 3507 bn = -1; 3508 goto out; 3509 } 3510 3511 /* get next parent page */ 3512 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3513 if (rc) 3514 return rc; 3515 3516 /* update parent page stack frame */ 3517 parent->bn = bn; 3518 } 3519 3520 /* get leaf page address */ 3521 stbl = DT_GETSTBL(p); 3522 xd = (pxd_t *) & p->slot[stbl[pn]]; 3523 bn = addressPXD(xd); 3524 3525 /* unpin parent page */ 3526 DT_PUTPAGE(mp); 3527 3528 /* 3529 * get target leaf page 3530 */ 3531 c: 3532 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3533 if (rc) 3534 return rc; 3535 3536 /* 3537 * leaf page has been completed: 3538 * start with 1st entry of next leaf page 3539 */ 3540 if (index >= p->header.nextindex) { 3541 bn = le64_to_cpu(p->header.next); 3542 3543 /* unpin leaf page */ 3544 DT_PUTPAGE(mp); 3545 3546 /* offset beyond eof ? */ 3547 if (bn == 0) { 3548 bn = -1; 3549 goto out; 3550 } 3551 3552 /* get next leaf page */ 3553 DT_GETPAGE(ip, bn, mp, PSIZE, p, rc); 3554 if (rc) 3555 return rc; 3556 3557 /* start with 1st entry of next leaf page */ 3558 dtoffset->pn++; 3559 dtoffset->index = 0; 3560 } 3561 3562 out: 3563 /* return target leaf page pinned */ 3564 btsp = btstack->top; 3565 btsp->bn = bn; 3566 btsp->index = dtoffset->index; 3567 btsp->mp = mp; 3568 3569 return 0; 3570} 3571 3572 3573/* 3574 * dtCompare() 3575 * 3576 * function: compare search key with an internal entry 3577 * 3578 * return: 3579 * < 0 if k is < record 3580 * = 0 if k is = record 3581 * > 0 if k is > record 3582 */ 3583static int dtCompare(struct component_name * key, /* search key */ 3584 dtpage_t * p, /* directory page */ 3585 int si) 3586{ /* entry slot index */ 3587 wchar_t *kname; 3588 __le16 *name; 3589 int klen, namlen, len, rc; 3590 struct idtentry *ih; 3591 struct dtslot *t; 3592 3593 /* 3594 * force the left-most key on internal pages, at any level of 3595 * the tree, to be less than any search key. 3596 * this obviates having to update the leftmost key on an internal 3597 * page when the user inserts a new key in the tree smaller than 3598 * anything that has been stored. 3599 * 3600 * (? if/when dtSearch() narrows down to 1st entry (index = 0), 3601 * at any internal page at any level of the tree, 3602 * it descends to child of the entry anyway - 3603 * ? make the entry as min size dummy entry) 3604 * 3605 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF)) 3606 * return (1); 3607 */ 3608 3609 kname = key->name; 3610 klen = key->namlen; 3611 3612 ih = (struct idtentry *) & p->slot[si]; 3613 si = ih->next; 3614 name = ih->name; 3615 namlen = ih->namlen; 3616 len = min(namlen, DTIHDRDATALEN); 3617 3618 /* compare with head/only segment */ 3619 len = min(klen, len); 3620 if ((rc = UniStrncmp_le(kname, name, len))) 3621 return rc; 3622 3623 klen -= len; 3624 namlen -= len; 3625 3626 /* compare with additional segment(s) */ 3627 kname += len; 3628 while (klen > 0 && namlen > 0) { 3629 /* compare with next name segment */ 3630 t = (struct dtslot *) & p->slot[si]; 3631 len = min(namlen, DTSLOTDATALEN); 3632 len = min(klen, len); 3633 name = t->name; 3634 if ((rc = UniStrncmp_le(kname, name, len))) 3635 return rc; 3636 3637 klen -= len; 3638 namlen -= len; 3639 kname += len; 3640 si = t->next; 3641 } 3642 3643 return (klen - namlen); 3644} 3645 3646 3647 3648 3649/* 3650 * ciCompare() 3651 * 3652 * function: compare search key with an (leaf/internal) entry 3653 * 3654 * return: 3655 * < 0 if k is < record 3656 * = 0 if k is = record 3657 * > 0 if k is > record 3658 */ 3659static int ciCompare(struct component_name * key, /* search key */ 3660 dtpage_t * p, /* directory page */ 3661 int si, /* entry slot index */ 3662 int flag) 3663{ 3664 wchar_t *kname, x; 3665 __le16 *name; 3666 int klen, namlen, len, rc; 3667 struct ldtentry *lh; 3668 struct idtentry *ih; 3669 struct dtslot *t; 3670 int i; 3671 3672 /* 3673 * force the left-most key on internal pages, at any level of 3674 * the tree, to be less than any search key. 3675 * this obviates having to update the leftmost key on an internal 3676 * page when the user inserts a new key in the tree smaller than 3677 * anything that has been stored. 3678 * 3679 * (? if/when dtSearch() narrows down to 1st entry (index = 0), 3680 * at any internal page at any level of the tree, 3681 * it descends to child of the entry anyway - 3682 * ? make the entry as min size dummy entry) 3683 * 3684 * if (e->index == 0 && h->prevpg == P_INVALID && !(h->flags & BT_LEAF)) 3685 * return (1); 3686 */ 3687 3688 kname = key->name; 3689 klen = key->namlen; 3690 3691 /* 3692 * leaf page entry 3693 */ 3694 if (p->header.flag & BT_LEAF) { 3695 lh = (struct ldtentry *) & p->slot[si]; 3696 si = lh->next; 3697 name = lh->name; 3698 namlen = lh->namlen; 3699 if (flag & JFS_DIR_INDEX) 3700 len = min(namlen, DTLHDRDATALEN); 3701 else 3702 len = min(namlen, DTLHDRDATALEN_LEGACY); 3703 } 3704 /* 3705 * internal page entry 3706 */ 3707 else { 3708 ih = (struct idtentry *) & p->slot[si]; 3709 si = ih->next; 3710 name = ih->name; 3711 namlen = ih->namlen; 3712 len = min(namlen, DTIHDRDATALEN); 3713 } 3714 3715 /* compare with head/only segment */ 3716 len = min(klen, len); 3717 for (i = 0; i < len; i++, kname++, name++) { 3718 /* only uppercase if case-insensitive support is on */ 3719 if ((flag & JFS_OS2) == JFS_OS2) 3720 x = UniToupper(le16_to_cpu(*name)); 3721 else 3722 x = le16_to_cpu(*name); 3723 if ((rc = *kname - x)) 3724 return rc; 3725 } 3726 3727 klen -= len; 3728 namlen -= len; 3729 3730 /* compare with additional segment(s) */ 3731 while (klen > 0 && namlen > 0) { 3732 /* compare with next name segment */ 3733 t = (struct dtslot *) & p->slot[si]; 3734 len = min(namlen, DTSLOTDATALEN); 3735 len = min(klen, len); 3736 name = t->name; 3737 for (i = 0; i < len; i++, kname++, name++) { 3738 /* only uppercase if case-insensitive support is on */ 3739 if ((flag & JFS_OS2) == JFS_OS2) 3740 x = UniToupper(le16_to_cpu(*name)); 3741 else 3742 x = le16_to_cpu(*name); 3743 3744 if ((rc = *kname - x)) 3745 return rc; 3746 } 3747 3748 klen -= len; 3749 namlen -= len; 3750 si = t->next; 3751 } 3752 3753 return (klen - namlen); 3754} 3755 3756 3757/* 3758 * ciGetLeafPrefixKey() 3759 * 3760 * function: compute prefix of suffix compression 3761 * from two adjacent leaf entries 3762 * across page boundary 3763 * 3764 * return: non-zero on error 3765 * 3766 */ 3767static int ciGetLeafPrefixKey(dtpage_t * lp, int li, dtpage_t * rp, 3768 int ri, struct component_name * key, int flag) 3769{ 3770 int klen, namlen; 3771 wchar_t *pl, *pr, *kname; 3772 struct component_name lkey; 3773 struct component_name rkey; 3774 3775 lkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t), 3776 GFP_KERNEL); 3777 if (lkey.name == NULL) 3778 return -ENOMEM; 3779 3780 rkey.name = kmalloc_array(JFS_NAME_MAX + 1, sizeof(wchar_t), 3781 GFP_KERNEL); 3782 if (rkey.name == NULL) { 3783 kfree(lkey.name); 3784 return -ENOMEM; 3785 } 3786 3787 /* get left and right key */ 3788 dtGetKey(lp, li, &lkey, flag); 3789 lkey.name[lkey.namlen] = 0; 3790 3791 if ((flag & JFS_OS2) == JFS_OS2) 3792 ciToUpper(&lkey); 3793 3794 dtGetKey(rp, ri, &rkey, flag); 3795 rkey.name[rkey.namlen] = 0; 3796 3797 3798 if ((flag & JFS_OS2) == JFS_OS2) 3799 ciToUpper(&rkey); 3800 3801 /* compute prefix */ 3802 klen = 0; 3803 kname = key->name; 3804 namlen = min(lkey.namlen, rkey.namlen); 3805 for (pl = lkey.name, pr = rkey.name; 3806 namlen; pl++, pr++, namlen--, klen++, kname++) { 3807 *kname = *pr; 3808 if (*pl != *pr) { 3809 key->namlen = klen + 1; 3810 goto free_names; 3811 } 3812 } 3813 3814 /* l->namlen <= r->namlen since l <= r */ 3815 if (lkey.namlen < rkey.namlen) { 3816 *kname = *pr; 3817 key->namlen = klen + 1; 3818 } else /* l->namelen == r->namelen */ 3819 key->namlen = klen; 3820 3821free_names: 3822 kfree(lkey.name); 3823 kfree(rkey.name); 3824 return 0; 3825} 3826 3827 3828 3829/* 3830 * dtGetKey() 3831 * 3832 * function: get key of the entry 3833 */ 3834static void dtGetKey(dtpage_t * p, int i, /* entry index */ 3835 struct component_name * key, int flag) 3836{ 3837 int si; 3838 s8 *stbl; 3839 struct ldtentry *lh; 3840 struct idtentry *ih; 3841 struct dtslot *t; 3842 int namlen, len; 3843 wchar_t *kname; 3844 __le16 *name; 3845 3846 /* get entry */ 3847 stbl = DT_GETSTBL(p); 3848 si = stbl[i]; 3849 if (p->header.flag & BT_LEAF) { 3850 lh = (struct ldtentry *) & p->slot[si]; 3851 si = lh->next; 3852 namlen = lh->namlen; 3853 name = lh->name; 3854 if (flag & JFS_DIR_INDEX) 3855 len = min(namlen, DTLHDRDATALEN); 3856 else 3857 len = min(namlen, DTLHDRDATALEN_LEGACY); 3858 } else { 3859 ih = (struct idtentry *) & p->slot[si]; 3860 si = ih->next; 3861 namlen = ih->namlen; 3862 name = ih->name; 3863 len = min(namlen, DTIHDRDATALEN); 3864 } 3865 3866 key->namlen = namlen; 3867 kname = key->name; 3868 3869 /* 3870 * move head/only segment 3871 */ 3872 UniStrncpy_from_le(kname, name, len); 3873 3874 /* 3875 * move additional segment(s) 3876 */ 3877 while (si >= 0) { 3878 /* get next segment */ 3879 t = &p->slot[si]; 3880 kname += len; 3881 namlen -= len; 3882 len = min(namlen, DTSLOTDATALEN); 3883 UniStrncpy_from_le(kname, t->name, len); 3884 3885 si = t->next; 3886 } 3887} 3888 3889 3890/* 3891 * dtInsertEntry() 3892 * 3893 * function: allocate free slot(s) and 3894 * write a leaf/internal entry 3895 * 3896 * return: entry slot index 3897 */ 3898static void dtInsertEntry(dtpage_t * p, int index, struct component_name * key, 3899 ddata_t * data, struct dt_lock ** dtlock) 3900{ 3901 struct dtslot *h, *t; 3902 struct ldtentry *lh = NULL; 3903 struct idtentry *ih = NULL; 3904 int hsi, fsi, klen, len, nextindex; 3905 wchar_t *kname; 3906 __le16 *name; 3907 s8 *stbl; 3908 pxd_t *xd; 3909 struct dt_lock *dtlck = *dtlock; 3910 struct lv *lv; 3911 int xsi, n; 3912 s64 bn = 0; 3913 struct metapage *mp = NULL; 3914 3915 klen = key->namlen; 3916 kname = key->name; 3917 3918 /* allocate a free slot */ 3919 hsi = fsi = p->header.freelist; 3920 h = &p->slot[fsi]; 3921 p->header.freelist = h->next; 3922 --p->header.freecnt; 3923 3924 /* open new linelock */ 3925 if (dtlck->index >= dtlck->maxcnt) 3926 dtlck = (struct dt_lock *) txLinelock(dtlck); 3927 3928 lv = & dtlck->lv[dtlck->index]; 3929 lv->offset = hsi; 3930 3931 /* write head/only segment */ 3932 if (p->header.flag & BT_LEAF) { 3933 lh = (struct ldtentry *) h; 3934 lh->next = h->next; 3935 lh->inumber = cpu_to_le32(data->leaf.ino); 3936 lh->namlen = klen; 3937 name = lh->name; 3938 if (data->leaf.ip) { 3939 len = min(klen, DTLHDRDATALEN); 3940 if (!(p->header.flag & BT_ROOT)) 3941 bn = addressPXD(&p->header.self); 3942 lh->index = cpu_to_le32(add_index(data->leaf.tid, 3943 data->leaf.ip, 3944 bn, index)); 3945 } else 3946 len = min(klen, DTLHDRDATALEN_LEGACY); 3947 } else { 3948 ih = (struct idtentry *) h; 3949 ih->next = h->next; 3950 xd = (pxd_t *) ih; 3951 *xd = data->xd; 3952 ih->namlen = klen; 3953 name = ih->name; 3954 len = min(klen, DTIHDRDATALEN); 3955 } 3956 3957 UniStrncpy_to_le(name, kname, len); 3958 3959 n = 1; 3960 xsi = hsi; 3961 3962 /* write additional segment(s) */ 3963 t = h; 3964 klen -= len; 3965 while (klen) { 3966 /* get free slot */ 3967 fsi = p->header.freelist; 3968 t = &p->slot[fsi]; 3969 p->header.freelist = t->next; 3970 --p->header.freecnt; 3971 3972 /* is next slot contiguous ? */ 3973 if (fsi != xsi + 1) { 3974 /* close current linelock */ 3975 lv->length = n; 3976 dtlck->index++; 3977 3978 /* open new linelock */ 3979 if (dtlck->index < dtlck->maxcnt) 3980 lv++; 3981 else { 3982 dtlck = (struct dt_lock *) txLinelock(dtlck); 3983 lv = & dtlck->lv[0]; 3984 } 3985 3986 lv->offset = fsi; 3987 n = 0; 3988 } 3989 3990 kname += len; 3991 len = min(klen, DTSLOTDATALEN); 3992 UniStrncpy_to_le(t->name, kname, len); 3993 3994 n++; 3995 xsi = fsi; 3996 klen -= len; 3997 } 3998 3999 /* close current linelock */ 4000 lv->length = n; 4001 dtlck->index++; 4002 4003 *dtlock = dtlck; 4004 4005 /* terminate last/only segment */ 4006 if (h == t) { 4007 /* single segment entry */ 4008 if (p->header.flag & BT_LEAF) 4009 lh->next = -1; 4010 else 4011 ih->next = -1; 4012 } else 4013 /* multi-segment entry */ 4014 t->next = -1; 4015 4016 /* if insert into middle, shift right succeeding entries in stbl */ 4017 stbl = DT_GETSTBL(p); 4018 nextindex = p->header.nextindex; 4019 if (index < nextindex) { 4020 memmove(stbl + index + 1, stbl + index, nextindex - index); 4021 4022 if ((p->header.flag & BT_LEAF) && data->leaf.ip) { 4023 s64 lblock; 4024 4025 /* 4026 * Need to update slot number for entries that moved 4027 * in the stbl 4028 */ 4029 mp = NULL; 4030 for (n = index + 1; n <= nextindex; n++) { 4031 lh = (struct ldtentry *) & (p->slot[stbl[n]]); 4032 modify_index(data->leaf.tid, data->leaf.ip, 4033 le32_to_cpu(lh->index), bn, n, 4034 &mp, &lblock); 4035 } 4036 if (mp) 4037 release_metapage(mp); 4038 } 4039 } 4040 4041 stbl[index] = hsi; 4042 4043 /* advance next available entry index of stbl */ 4044 ++p->header.nextindex; 4045} 4046 4047 4048/* 4049 * dtMoveEntry() 4050 * 4051 * function: move entries from split/left page to new/right page 4052 * 4053 * nextindex of dst page and freelist/freecnt of both pages 4054 * are updated. 4055 */ 4056static void dtMoveEntry(dtpage_t * sp, int si, dtpage_t * dp, 4057 struct dt_lock ** sdtlock, struct dt_lock ** ddtlock, 4058 int do_index) 4059{ 4060 int ssi, next; /* src slot index */ 4061 int di; /* dst entry index */ 4062 int dsi; /* dst slot index */ 4063 s8 *sstbl, *dstbl; /* sorted entry table */ 4064 int snamlen, len; 4065 struct ldtentry *slh, *dlh = NULL; 4066 struct idtentry *sih, *dih = NULL; 4067 struct dtslot *h, *s, *d; 4068 struct dt_lock *sdtlck = *sdtlock, *ddtlck = *ddtlock; 4069 struct lv *slv, *dlv; 4070 int xssi, ns, nd; 4071 int sfsi; 4072 4073 sstbl = (s8 *) & sp->slot[sp->header.stblindex]; 4074 dstbl = (s8 *) & dp->slot[dp->header.stblindex]; 4075 4076 dsi = dp->header.freelist; /* first (whole page) free slot */ 4077 sfsi = sp->header.freelist; 4078 4079 /* linelock destination entry slot */ 4080 dlv = & ddtlck->lv[ddtlck->index]; 4081 dlv->offset = dsi; 4082 4083 /* linelock source entry slot */ 4084 slv = & sdtlck->lv[sdtlck->index]; 4085 slv->offset = sstbl[si]; 4086 xssi = slv->offset - 1; 4087 4088 /* 4089 * move entries 4090 */ 4091 ns = nd = 0; 4092 for (di = 0; si < sp->header.nextindex; si++, di++) { 4093 ssi = sstbl[si]; 4094 dstbl[di] = dsi; 4095 4096 /* is next slot contiguous ? */ 4097 if (ssi != xssi + 1) { 4098 /* close current linelock */ 4099 slv->length = ns; 4100 sdtlck->index++; 4101 4102 /* open new linelock */ 4103 if (sdtlck->index < sdtlck->maxcnt) 4104 slv++; 4105 else { 4106 sdtlck = (struct dt_lock *) txLinelock(sdtlck); 4107 slv = & sdtlck->lv[0]; 4108 } 4109 4110 slv->offset = ssi; 4111 ns = 0; 4112 } 4113 4114 /* 4115 * move head/only segment of an entry 4116 */ 4117 /* get dst slot */ 4118 h = d = &dp->slot[dsi]; 4119 4120 /* get src slot and move */ 4121 s = &sp->slot[ssi]; 4122 if (sp->header.flag & BT_LEAF) { 4123 /* get source entry */ 4124 slh = (struct ldtentry *) s; 4125 dlh = (struct ldtentry *) h; 4126 snamlen = slh->namlen; 4127 4128 if (do_index) { 4129 len = min(snamlen, DTLHDRDATALEN); 4130 dlh->index = slh->index; /* little-endian */ 4131 } else 4132 len = min(snamlen, DTLHDRDATALEN_LEGACY); 4133 4134 memcpy(dlh, slh, 6 + len * 2); 4135 4136 next = slh->next; 4137 4138 /* update dst head/only segment next field */ 4139 dsi++; 4140 dlh->next = dsi; 4141 } else { 4142 sih = (struct idtentry *) s; 4143 snamlen = sih->namlen; 4144 4145 len = min(snamlen, DTIHDRDATALEN); 4146 dih = (struct idtentry *) h; 4147 memcpy(dih, sih, 10 + len * 2); 4148 next = sih->next; 4149 4150 dsi++; 4151 dih->next = dsi; 4152 } 4153 4154 /* free src head/only segment */ 4155 s->next = sfsi; 4156 s->cnt = 1; 4157 sfsi = ssi; 4158 4159 ns++; 4160 nd++; 4161 xssi = ssi; 4162 4163 /* 4164 * move additional segment(s) of the entry 4165 */ 4166 snamlen -= len; 4167 while ((ssi = next) >= 0) { 4168 /* is next slot contiguous ? */ 4169 if (ssi != xssi + 1) { 4170 /* close current linelock */ 4171 slv->length = ns; 4172 sdtlck->index++; 4173 4174 /* open new linelock */ 4175 if (sdtlck->index < sdtlck->maxcnt) 4176 slv++; 4177 else { 4178 sdtlck = 4179 (struct dt_lock *) 4180 txLinelock(sdtlck); 4181 slv = & sdtlck->lv[0]; 4182 } 4183 4184 slv->offset = ssi; 4185 ns = 0; 4186 } 4187 4188 /* get next source segment */ 4189 s = &sp->slot[ssi]; 4190 4191 /* get next destination free slot */ 4192 d++; 4193 4194 len = min(snamlen, DTSLOTDATALEN); 4195 UniStrncpy_le(d->name, s->name, len); 4196 4197 ns++; 4198 nd++; 4199 xssi = ssi; 4200 4201 dsi++; 4202 d->next = dsi; 4203 4204 /* free source segment */ 4205 next = s->next; 4206 s->next = sfsi; 4207 s->cnt = 1; 4208 sfsi = ssi; 4209 4210 snamlen -= len; 4211 } /* end while */ 4212 4213 /* terminate dst last/only segment */ 4214 if (h == d) { 4215 /* single segment entry */ 4216 if (dp->header.flag & BT_LEAF) 4217 dlh->next = -1; 4218 else 4219 dih->next = -1; 4220 } else 4221 /* multi-segment entry */ 4222 d->next = -1; 4223 } /* end for */ 4224 4225 /* close current linelock */ 4226 slv->length = ns; 4227 sdtlck->index++; 4228 *sdtlock = sdtlck; 4229 4230 dlv->length = nd; 4231 ddtlck->index++; 4232 *ddtlock = ddtlck; 4233 4234 /* update source header */ 4235 sp->header.freelist = sfsi; 4236 sp->header.freecnt += nd; 4237 4238 /* update destination header */ 4239 dp->header.nextindex = di; 4240 4241 dp->header.freelist = dsi; 4242 dp->header.freecnt -= nd; 4243} 4244 4245 4246/* 4247 * dtDeleteEntry() 4248 * 4249 * function: free a (leaf/internal) entry 4250 * 4251 * log freelist header, stbl, and each segment slot of entry 4252 * (even though last/only segment next field is modified, 4253 * physical image logging requires all segment slots of 4254 * the entry logged to avoid applying previous updates 4255 * to the same slots) 4256 */ 4257static void dtDeleteEntry(dtpage_t * p, int fi, struct dt_lock ** dtlock) 4258{ 4259 int fsi; /* free entry slot index */ 4260 s8 *stbl; 4261 struct dtslot *t; 4262 int si, freecnt; 4263 struct dt_lock *dtlck = *dtlock; 4264 struct lv *lv; 4265 int xsi, n; 4266 4267 /* get free entry slot index */ 4268 stbl = DT_GETSTBL(p); 4269 fsi = stbl[fi]; 4270 4271 /* open new linelock */ 4272 if (dtlck->index >= dtlck->maxcnt) 4273 dtlck = (struct dt_lock *) txLinelock(dtlck); 4274 lv = & dtlck->lv[dtlck->index]; 4275 4276 lv->offset = fsi; 4277 4278 /* get the head/only segment */ 4279 t = &p->slot[fsi]; 4280 if (p->header.flag & BT_LEAF) 4281 si = ((struct ldtentry *) t)->next; 4282 else 4283 si = ((struct idtentry *) t)->next; 4284 t->next = si; 4285 t->cnt = 1; 4286 4287 n = freecnt = 1; 4288 xsi = fsi; 4289 4290 /* find the last/only segment */ 4291 while (si >= 0) { 4292 /* is next slot contiguous ? */ 4293 if (si != xsi + 1) { 4294 /* close current linelock */ 4295 lv->length = n; 4296 dtlck->index++; 4297 4298 /* open new linelock */ 4299 if (dtlck->index < dtlck->maxcnt) 4300 lv++; 4301 else { 4302 dtlck = (struct dt_lock *) txLinelock(dtlck); 4303 lv = & dtlck->lv[0]; 4304 } 4305 4306 lv->offset = si; 4307 n = 0; 4308 } 4309 4310 n++; 4311 xsi = si; 4312 freecnt++; 4313 4314 t = &p->slot[si]; 4315 t->cnt = 1; 4316 si = t->next; 4317 } 4318 4319 /* close current linelock */ 4320 lv->length = n; 4321 dtlck->index++; 4322 4323 *dtlock = dtlck; 4324 4325 /* update freelist */ 4326 t->next = p->header.freelist; 4327 p->header.freelist = fsi; 4328 p->header.freecnt += freecnt; 4329 4330 /* if delete from middle, 4331 * shift left the succedding entries in the stbl 4332 */ 4333 si = p->header.nextindex; 4334 if (fi < si - 1) 4335 memmove(&stbl[fi], &stbl[fi + 1], si - fi - 1); 4336 4337 p->header.nextindex--; 4338} 4339 4340 4341/* 4342 * dtTruncateEntry() 4343 * 4344 * function: truncate a (leaf/internal) entry 4345 * 4346 * log freelist header, stbl, and each segment slot of entry 4347 * (even though last/only segment next field is modified, 4348 * physical image logging requires all segment slots of 4349 * the entry logged to avoid applying previous updates 4350 * to the same slots) 4351 */ 4352static void dtTruncateEntry(dtpage_t * p, int ti, struct dt_lock ** dtlock) 4353{ 4354 int tsi; /* truncate entry slot index */ 4355 s8 *stbl; 4356 struct dtslot *t; 4357 int si, freecnt; 4358 struct dt_lock *dtlck = *dtlock; 4359 struct lv *lv; 4360 int fsi, xsi, n; 4361 4362 /* get free entry slot index */ 4363 stbl = DT_GETSTBL(p); 4364 tsi = stbl[ti]; 4365 4366 /* open new linelock */ 4367 if (dtlck->index >= dtlck->maxcnt) 4368 dtlck = (struct dt_lock *) txLinelock(dtlck); 4369 lv = & dtlck->lv[dtlck->index]; 4370 4371 lv->offset = tsi; 4372 4373 /* get the head/only segment */ 4374 t = &p->slot[tsi]; 4375 ASSERT(p->header.flag & BT_INTERNAL); 4376 ((struct idtentry *) t)->namlen = 0; 4377 si = ((struct idtentry *) t)->next; 4378 ((struct idtentry *) t)->next = -1; 4379 4380 n = 1; 4381 freecnt = 0; 4382 fsi = si; 4383 xsi = tsi; 4384 4385 /* find the last/only segment */ 4386 while (si >= 0) { 4387 /* is next slot contiguous ? */ 4388 if (si != xsi + 1) { 4389 /* close current linelock */ 4390 lv->length = n; 4391 dtlck->index++; 4392 4393 /* open new linelock */ 4394 if (dtlck->index < dtlck->maxcnt) 4395 lv++; 4396 else { 4397 dtlck = (struct dt_lock *) txLinelock(dtlck); 4398 lv = & dtlck->lv[0]; 4399 } 4400 4401 lv->offset = si; 4402 n = 0; 4403 } 4404 4405 n++; 4406 xsi = si; 4407 freecnt++; 4408 4409 t = &p->slot[si]; 4410 t->cnt = 1; 4411 si = t->next; 4412 } 4413 4414 /* close current linelock */ 4415 lv->length = n; 4416 dtlck->index++; 4417 4418 *dtlock = dtlck; 4419 4420 /* update freelist */ 4421 if (freecnt == 0) 4422 return; 4423 t->next = p->header.freelist; 4424 p->header.freelist = fsi; 4425 p->header.freecnt += freecnt; 4426} 4427 4428 4429/* 4430 * dtLinelockFreelist() 4431 */ 4432static void dtLinelockFreelist(dtpage_t * p, /* directory page */ 4433 int m, /* max slot index */ 4434 struct dt_lock ** dtlock) 4435{ 4436 int fsi; /* free entry slot index */ 4437 struct dtslot *t; 4438 int si; 4439 struct dt_lock *dtlck = *dtlock; 4440 struct lv *lv; 4441 int xsi, n; 4442 4443 /* get free entry slot index */ 4444 fsi = p->header.freelist; 4445 4446 /* open new linelock */ 4447 if (dtlck->index >= dtlck->maxcnt) 4448 dtlck = (struct dt_lock *) txLinelock(dtlck); 4449 lv = & dtlck->lv[dtlck->index]; 4450 4451 lv->offset = fsi; 4452 4453 n = 1; 4454 xsi = fsi; 4455 4456 t = &p->slot[fsi]; 4457 si = t->next; 4458 4459 /* find the last/only segment */ 4460 while (si < m && si >= 0) { 4461 /* is next slot contiguous ? */ 4462 if (si != xsi + 1) { 4463 /* close current linelock */ 4464 lv->length = n; 4465 dtlck->index++; 4466 4467 /* open new linelock */ 4468 if (dtlck->index < dtlck->maxcnt) 4469 lv++; 4470 else { 4471 dtlck = (struct dt_lock *) txLinelock(dtlck); 4472 lv = & dtlck->lv[0]; 4473 } 4474 4475 lv->offset = si; 4476 n = 0; 4477 } 4478 4479 n++; 4480 xsi = si; 4481 4482 t = &p->slot[si]; 4483 si = t->next; 4484 } 4485 4486 /* close current linelock */ 4487 lv->length = n; 4488 dtlck->index++; 4489 4490 *dtlock = dtlck; 4491} 4492 4493 4494/* 4495 * NAME: dtModify 4496 * 4497 * FUNCTION: Modify the inode number part of a directory entry 4498 * 4499 * PARAMETERS: 4500 * tid - Transaction id 4501 * ip - Inode of parent directory 4502 * key - Name of entry to be modified 4503 * orig_ino - Original inode number expected in entry 4504 * new_ino - New inode number to put into entry 4505 * flag - JFS_RENAME 4506 * 4507 * RETURNS: 4508 * -ESTALE - If entry found does not match orig_ino passed in 4509 * -ENOENT - If no entry can be found to match key 4510 * 0 - If successfully modified entry 4511 */ 4512int dtModify(tid_t tid, struct inode *ip, 4513 struct component_name * key, ino_t * orig_ino, ino_t new_ino, int flag) 4514{ 4515 int rc; 4516 s64 bn; 4517 struct metapage *mp; 4518 dtpage_t *p; 4519 int index; 4520 struct btstack btstack; 4521 struct tlock *tlck; 4522 struct dt_lock *dtlck; 4523 struct lv *lv; 4524 s8 *stbl; 4525 int entry_si; /* entry slot index */ 4526 struct ldtentry *entry; 4527 4528 /* 4529 * search for the entry to modify: 4530 * 4531 * dtSearch() returns (leaf page pinned, index at which to modify). 4532 */ 4533 if ((rc = dtSearch(ip, key, orig_ino, &btstack, flag))) 4534 return rc; 4535 4536 /* retrieve search result */ 4537 DT_GETSEARCH(ip, btstack.top, bn, mp, p, index); 4538 4539 BT_MARK_DIRTY(mp, ip); 4540 /* 4541 * acquire a transaction lock on the leaf page of named entry 4542 */ 4543 tlck = txLock(tid, ip, mp, tlckDTREE | tlckENTRY); 4544 dtlck = (struct dt_lock *) & tlck->lock; 4545 4546 /* get slot index of the entry */ 4547 stbl = DT_GETSTBL(p); 4548 entry_si = stbl[index]; 4549 4550 /* linelock entry */ 4551 ASSERT(dtlck->index == 0); 4552 lv = & dtlck->lv[0]; 4553 lv->offset = entry_si; 4554 lv->length = 1; 4555 dtlck->index++; 4556 4557 /* get the head/only segment */ 4558 entry = (struct ldtentry *) & p->slot[entry_si]; 4559 4560 /* substitute the inode number of the entry */ 4561 entry->inumber = cpu_to_le32(new_ino); 4562 4563 /* unpin the leaf page */ 4564 DT_PUTPAGE(mp); 4565 4566 return 0; 4567} 4568