1// SPDX-License-Identifier: GPL-2.0+ 2/* 3 * linux/fs/jbd2/transaction.c 4 * 5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998 6 * 7 * Copyright 1998 Red Hat corp --- All Rights Reserved 8 * 9 * Generic filesystem transaction handling code; part of the ext2fs 10 * journaling system. 11 * 12 * This file manages transactions (compound commits managed by the 13 * journaling code) and handles (individual atomic operations by the 14 * filesystem). 15 */ 16 17#include <linux/time.h> 18#include <linux/fs.h> 19#include <linux/jbd2.h> 20#include <linux/errno.h> 21#include <linux/slab.h> 22#include <linux/timer.h> 23#include <linux/mm.h> 24#include <linux/highmem.h> 25#include <linux/hrtimer.h> 26#include <linux/backing-dev.h> 27#include <linux/bug.h> 28#include <linux/module.h> 29#include <linux/sched/mm.h> 30 31#include <trace/events/jbd2.h> 32 33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh); 34static void __jbd2_journal_unfile_buffer(struct journal_head *jh); 35 36static struct kmem_cache *transaction_cache; 37int __init jbd2_journal_init_transaction_cache(void) 38{ 39 J_ASSERT(!transaction_cache); 40 transaction_cache = kmem_cache_create("jbd2_transaction_s", 41 sizeof(transaction_t), 42 0, 43 SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY, 44 NULL); 45 if (!transaction_cache) { 46 pr_emerg("JBD2: failed to create transaction cache\n"); 47 return -ENOMEM; 48 } 49 return 0; 50} 51 52void jbd2_journal_destroy_transaction_cache(void) 53{ 54 kmem_cache_destroy(transaction_cache); 55 transaction_cache = NULL; 56} 57 58void jbd2_journal_free_transaction(transaction_t *transaction) 59{ 60 if (unlikely(ZERO_OR_NULL_PTR(transaction))) 61 return; 62 kmem_cache_free(transaction_cache, transaction); 63} 64 65/* 66 * Base amount of descriptor blocks we reserve for each transaction. 67 */ 68static int jbd2_descriptor_blocks_per_trans(journal_t *journal) 69{ 70 int tag_space = journal->j_blocksize - sizeof(journal_header_t); 71 int tags_per_block; 72 73 /* Subtract UUID */ 74 tag_space -= 16; 75 if (jbd2_journal_has_csum_v2or3(journal)) 76 tag_space -= sizeof(struct jbd2_journal_block_tail); 77 /* Commit code leaves a slack space of 16 bytes at the end of block */ 78 tags_per_block = (tag_space - 16) / journal_tag_bytes(journal); 79 /* 80 * Revoke descriptors are accounted separately so we need to reserve 81 * space for commit block and normal transaction descriptor blocks. 82 */ 83 return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers, 84 tags_per_block); 85} 86 87/* 88 * jbd2_get_transaction: obtain a new transaction_t object. 89 * 90 * Simply initialise a new transaction. Initialize it in 91 * RUNNING state and add it to the current journal (which should not 92 * have an existing running transaction: we only make a new transaction 93 * once we have started to commit the old one). 94 * 95 * Preconditions: 96 * The journal MUST be locked. We don't perform atomic mallocs on the 97 * new transaction and we can't block without protecting against other 98 * processes trying to touch the journal while it is in transition. 99 * 100 */ 101 102static void jbd2_get_transaction(journal_t *journal, 103 transaction_t *transaction) 104{ 105 transaction->t_journal = journal; 106 transaction->t_state = T_RUNNING; 107 transaction->t_start_time = ktime_get(); 108 transaction->t_tid = journal->j_transaction_sequence++; 109 transaction->t_expires = jiffies + journal->j_commit_interval; 110 spin_lock_init(&transaction->t_handle_lock); 111 atomic_set(&transaction->t_updates, 0); 112 atomic_set(&transaction->t_outstanding_credits, 113 jbd2_descriptor_blocks_per_trans(journal) + 114 atomic_read(&journal->j_reserved_credits)); 115 atomic_set(&transaction->t_outstanding_revokes, 0); 116 atomic_set(&transaction->t_handle_count, 0); 117 INIT_LIST_HEAD(&transaction->t_inode_list); 118 INIT_LIST_HEAD(&transaction->t_private_list); 119 120 /* Set up the commit timer for the new transaction. */ 121 journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires); 122 add_timer(&journal->j_commit_timer); 123 124 J_ASSERT(journal->j_running_transaction == NULL); 125 journal->j_running_transaction = transaction; 126 transaction->t_max_wait = 0; 127 transaction->t_start = jiffies; 128 transaction->t_requested = 0; 129} 130 131/* 132 * Handle management. 133 * 134 * A handle_t is an object which represents a single atomic update to a 135 * filesystem, and which tracks all of the modifications which form part 136 * of that one update. 137 */ 138 139/* 140 * Update transaction's maximum wait time, if debugging is enabled. 141 * 142 * In order for t_max_wait to be reliable, it must be protected by a 143 * lock. But doing so will mean that start_this_handle() can not be 144 * run in parallel on SMP systems, which limits our scalability. So 145 * unless debugging is enabled, we no longer update t_max_wait, which 146 * means that maximum wait time reported by the jbd2_run_stats 147 * tracepoint will always be zero. 148 */ 149static inline void update_t_max_wait(transaction_t *transaction, 150 unsigned long ts) 151{ 152#ifdef CONFIG_JBD2_DEBUG 153 if (jbd2_journal_enable_debug && 154 time_after(transaction->t_start, ts)) { 155 ts = jbd2_time_diff(ts, transaction->t_start); 156 spin_lock(&transaction->t_handle_lock); 157 if (ts > transaction->t_max_wait) 158 transaction->t_max_wait = ts; 159 spin_unlock(&transaction->t_handle_lock); 160 } 161#endif 162} 163 164/* 165 * Wait until running transaction passes to T_FLUSH state and new transaction 166 * can thus be started. Also starts the commit if needed. The function expects 167 * running transaction to exist and releases j_state_lock. 168 */ 169static void wait_transaction_locked(journal_t *journal) 170 __releases(journal->j_state_lock) 171{ 172 DEFINE_WAIT(wait); 173 int need_to_start; 174 tid_t tid = journal->j_running_transaction->t_tid; 175 176 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 177 TASK_UNINTERRUPTIBLE); 178 need_to_start = !tid_geq(journal->j_commit_request, tid); 179 read_unlock(&journal->j_state_lock); 180 if (need_to_start) 181 jbd2_log_start_commit(journal, tid); 182 jbd2_might_wait_for_commit(journal); 183 schedule(); 184 finish_wait(&journal->j_wait_transaction_locked, &wait); 185} 186 187/* 188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH 189 * state and new transaction can thus be started. The function releases 190 * j_state_lock. 191 */ 192static void wait_transaction_switching(journal_t *journal) 193 __releases(journal->j_state_lock) 194{ 195 DEFINE_WAIT(wait); 196 197 if (WARN_ON(!journal->j_running_transaction || 198 journal->j_running_transaction->t_state != T_SWITCH)) { 199 read_unlock(&journal->j_state_lock); 200 return; 201 } 202 prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait, 203 TASK_UNINTERRUPTIBLE); 204 read_unlock(&journal->j_state_lock); 205 /* 206 * We don't call jbd2_might_wait_for_commit() here as there's no 207 * waiting for outstanding handles happening anymore in T_SWITCH state 208 * and handling of reserved handles actually relies on that for 209 * correctness. 210 */ 211 schedule(); 212 finish_wait(&journal->j_wait_transaction_locked, &wait); 213} 214 215static void sub_reserved_credits(journal_t *journal, int blocks) 216{ 217 atomic_sub(blocks, &journal->j_reserved_credits); 218 wake_up(&journal->j_wait_reserved); 219} 220 221/* 222 * Wait until we can add credits for handle to the running transaction. Called 223 * with j_state_lock held for reading. Returns 0 if handle joined the running 224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and 225 * caller must retry. 226 */ 227static int add_transaction_credits(journal_t *journal, int blocks, 228 int rsv_blocks) 229{ 230 transaction_t *t = journal->j_running_transaction; 231 int needed; 232 int total = blocks + rsv_blocks; 233 234 /* 235 * If the current transaction is locked down for commit, wait 236 * for the lock to be released. 237 */ 238 if (t->t_state != T_RUNNING) { 239 WARN_ON_ONCE(t->t_state >= T_FLUSH); 240 wait_transaction_locked(journal); 241 return 1; 242 } 243 244 /* 245 * If there is not enough space left in the log to write all 246 * potential buffers requested by this operation, we need to 247 * stall pending a log checkpoint to free some more log space. 248 */ 249 needed = atomic_add_return(total, &t->t_outstanding_credits); 250 if (needed > journal->j_max_transaction_buffers) { 251 /* 252 * If the current transaction is already too large, 253 * then start to commit it: we can then go back and 254 * attach this handle to a new transaction. 255 */ 256 atomic_sub(total, &t->t_outstanding_credits); 257 258 /* 259 * Is the number of reserved credits in the current transaction too 260 * big to fit this handle? Wait until reserved credits are freed. 261 */ 262 if (atomic_read(&journal->j_reserved_credits) + total > 263 journal->j_max_transaction_buffers) { 264 read_unlock(&journal->j_state_lock); 265 jbd2_might_wait_for_commit(journal); 266 wait_event(journal->j_wait_reserved, 267 atomic_read(&journal->j_reserved_credits) + total <= 268 journal->j_max_transaction_buffers); 269 return 1; 270 } 271 272 wait_transaction_locked(journal); 273 return 1; 274 } 275 276 /* 277 * The commit code assumes that it can get enough log space 278 * without forcing a checkpoint. This is *critical* for 279 * correctness: a checkpoint of a buffer which is also 280 * associated with a committing transaction creates a deadlock, 281 * so commit simply cannot force through checkpoints. 282 * 283 * We must therefore ensure the necessary space in the journal 284 * *before* starting to dirty potentially checkpointed buffers 285 * in the new transaction. 286 */ 287 if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) { 288 atomic_sub(total, &t->t_outstanding_credits); 289 read_unlock(&journal->j_state_lock); 290 jbd2_might_wait_for_commit(journal); 291 write_lock(&journal->j_state_lock); 292 if (jbd2_log_space_left(journal) < 293 journal->j_max_transaction_buffers) 294 __jbd2_log_wait_for_space(journal); 295 write_unlock(&journal->j_state_lock); 296 return 1; 297 } 298 299 /* No reservation? We are done... */ 300 if (!rsv_blocks) 301 return 0; 302 303 needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits); 304 /* We allow at most half of a transaction to be reserved */ 305 if (needed > journal->j_max_transaction_buffers / 2) { 306 sub_reserved_credits(journal, rsv_blocks); 307 atomic_sub(total, &t->t_outstanding_credits); 308 read_unlock(&journal->j_state_lock); 309 jbd2_might_wait_for_commit(journal); 310 wait_event(journal->j_wait_reserved, 311 atomic_read(&journal->j_reserved_credits) + rsv_blocks 312 <= journal->j_max_transaction_buffers / 2); 313 return 1; 314 } 315 return 0; 316} 317 318/* 319 * start_this_handle: Given a handle, deal with any locking or stalling 320 * needed to make sure that there is enough journal space for the handle 321 * to begin. Attach the handle to a transaction and set up the 322 * transaction's buffer credits. 323 */ 324 325static int start_this_handle(journal_t *journal, handle_t *handle, 326 gfp_t gfp_mask) 327{ 328 transaction_t *transaction, *new_transaction = NULL; 329 int blocks = handle->h_total_credits; 330 int rsv_blocks = 0; 331 unsigned long ts = jiffies; 332 333 if (handle->h_rsv_handle) 334 rsv_blocks = handle->h_rsv_handle->h_total_credits; 335 336 /* 337 * Limit the number of reserved credits to 1/2 of maximum transaction 338 * size and limit the number of total credits to not exceed maximum 339 * transaction size per operation. 340 */ 341 if ((rsv_blocks > journal->j_max_transaction_buffers / 2) || 342 (rsv_blocks + blocks > journal->j_max_transaction_buffers)) { 343 printk(KERN_ERR "JBD2: %s wants too many credits " 344 "credits:%d rsv_credits:%d max:%d\n", 345 current->comm, blocks, rsv_blocks, 346 journal->j_max_transaction_buffers); 347 WARN_ON(1); 348 return -ENOSPC; 349 } 350 351alloc_transaction: 352 /* 353 * This check is racy but it is just an optimization of allocating new 354 * transaction early if there are high chances we'll need it. If we 355 * guess wrong, we'll retry or free unused transaction. 356 */ 357 if (!data_race(journal->j_running_transaction)) { 358 /* 359 * If __GFP_FS is not present, then we may be being called from 360 * inside the fs writeback layer, so we MUST NOT fail. 361 */ 362 if ((gfp_mask & __GFP_FS) == 0) 363 gfp_mask |= __GFP_NOFAIL; 364 new_transaction = kmem_cache_zalloc(transaction_cache, 365 gfp_mask); 366 if (!new_transaction) 367 return -ENOMEM; 368 } 369 370 jbd_debug(3, "New handle %p going live.\n", handle); 371 372 /* 373 * We need to hold j_state_lock until t_updates has been incremented, 374 * for proper journal barrier handling 375 */ 376repeat: 377 read_lock(&journal->j_state_lock); 378 BUG_ON(journal->j_flags & JBD2_UNMOUNT); 379 if (is_journal_aborted(journal) || 380 (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) { 381 read_unlock(&journal->j_state_lock); 382 jbd2_journal_free_transaction(new_transaction); 383 return -EROFS; 384 } 385 386 /* 387 * Wait on the journal's transaction barrier if necessary. Specifically 388 * we allow reserved handles to proceed because otherwise commit could 389 * deadlock on page writeback not being able to complete. 390 */ 391 if (!handle->h_reserved && journal->j_barrier_count) { 392 read_unlock(&journal->j_state_lock); 393 wait_event(journal->j_wait_transaction_locked, 394 journal->j_barrier_count == 0); 395 goto repeat; 396 } 397 398 if (!journal->j_running_transaction) { 399 read_unlock(&journal->j_state_lock); 400 if (!new_transaction) 401 goto alloc_transaction; 402 write_lock(&journal->j_state_lock); 403 if (!journal->j_running_transaction && 404 (handle->h_reserved || !journal->j_barrier_count)) { 405 jbd2_get_transaction(journal, new_transaction); 406 new_transaction = NULL; 407 } 408 write_unlock(&journal->j_state_lock); 409 goto repeat; 410 } 411 412 transaction = journal->j_running_transaction; 413 414 if (!handle->h_reserved) { 415 /* We may have dropped j_state_lock - restart in that case */ 416 if (add_transaction_credits(journal, blocks, rsv_blocks)) 417 goto repeat; 418 } else { 419 /* 420 * We have handle reserved so we are allowed to join T_LOCKED 421 * transaction and we don't have to check for transaction size 422 * and journal space. But we still have to wait while running 423 * transaction is being switched to a committing one as it 424 * won't wait for any handles anymore. 425 */ 426 if (transaction->t_state == T_SWITCH) { 427 wait_transaction_switching(journal); 428 goto repeat; 429 } 430 sub_reserved_credits(journal, blocks); 431 handle->h_reserved = 0; 432 } 433 434 /* OK, account for the buffers that this operation expects to 435 * use and add the handle to the running transaction. 436 */ 437 update_t_max_wait(transaction, ts); 438 handle->h_transaction = transaction; 439 handle->h_requested_credits = blocks; 440 handle->h_revoke_credits_requested = handle->h_revoke_credits; 441 handle->h_start_jiffies = jiffies; 442 atomic_inc(&transaction->t_updates); 443 atomic_inc(&transaction->t_handle_count); 444 jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n", 445 handle, blocks, 446 atomic_read(&transaction->t_outstanding_credits), 447 jbd2_log_space_left(journal)); 448 read_unlock(&journal->j_state_lock); 449 current->journal_info = handle; 450 451 rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_); 452 jbd2_journal_free_transaction(new_transaction); 453 /* 454 * Ensure that no allocations done while the transaction is open are 455 * going to recurse back to the fs layer. 456 */ 457 handle->saved_alloc_context = memalloc_nofs_save(); 458 return 0; 459} 460 461/* Allocate a new handle. This should probably be in a slab... */ 462static handle_t *new_handle(int nblocks) 463{ 464 handle_t *handle = jbd2_alloc_handle(GFP_NOFS); 465 if (!handle) 466 return NULL; 467 handle->h_total_credits = nblocks; 468 handle->h_ref = 1; 469 470 return handle; 471} 472 473handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks, 474 int revoke_records, gfp_t gfp_mask, 475 unsigned int type, unsigned int line_no) 476{ 477 handle_t *handle = journal_current_handle(); 478 int err; 479 480 if (!journal) 481 return ERR_PTR(-EROFS); 482 483 if (handle) { 484 J_ASSERT(handle->h_transaction->t_journal == journal); 485 handle->h_ref++; 486 return handle; 487 } 488 489 nblocks += DIV_ROUND_UP(revoke_records, 490 journal->j_revoke_records_per_block); 491 handle = new_handle(nblocks); 492 if (!handle) 493 return ERR_PTR(-ENOMEM); 494 if (rsv_blocks) { 495 handle_t *rsv_handle; 496 497 rsv_handle = new_handle(rsv_blocks); 498 if (!rsv_handle) { 499 jbd2_free_handle(handle); 500 return ERR_PTR(-ENOMEM); 501 } 502 rsv_handle->h_reserved = 1; 503 rsv_handle->h_journal = journal; 504 handle->h_rsv_handle = rsv_handle; 505 } 506 handle->h_revoke_credits = revoke_records; 507 508 err = start_this_handle(journal, handle, gfp_mask); 509 if (err < 0) { 510 if (handle->h_rsv_handle) 511 jbd2_free_handle(handle->h_rsv_handle); 512 jbd2_free_handle(handle); 513 return ERR_PTR(err); 514 } 515 handle->h_type = type; 516 handle->h_line_no = line_no; 517 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 518 handle->h_transaction->t_tid, type, 519 line_no, nblocks); 520 521 return handle; 522} 523EXPORT_SYMBOL(jbd2__journal_start); 524 525 526/** 527 * jbd2_journal_start() - Obtain a new handle. 528 * @journal: Journal to start transaction on. 529 * @nblocks: number of block buffer we might modify 530 * 531 * We make sure that the transaction can guarantee at least nblocks of 532 * modified buffers in the log. We block until the log can guarantee 533 * that much space. Additionally, if rsv_blocks > 0, we also create another 534 * handle with rsv_blocks reserved blocks in the journal. This handle is 535 * stored in h_rsv_handle. It is not attached to any particular transaction 536 * and thus doesn't block transaction commit. If the caller uses this reserved 537 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop() 538 * on the parent handle will dispose the reserved one. Reserved handle has to 539 * be converted to a normal handle using jbd2_journal_start_reserved() before 540 * it can be used. 541 * 542 * Return a pointer to a newly allocated handle, or an ERR_PTR() value 543 * on failure. 544 */ 545handle_t *jbd2_journal_start(journal_t *journal, int nblocks) 546{ 547 return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0); 548} 549EXPORT_SYMBOL(jbd2_journal_start); 550 551static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t) 552{ 553 journal_t *journal = handle->h_journal; 554 555 WARN_ON(!handle->h_reserved); 556 sub_reserved_credits(journal, handle->h_total_credits); 557 if (t) 558 atomic_sub(handle->h_total_credits, &t->t_outstanding_credits); 559} 560 561void jbd2_journal_free_reserved(handle_t *handle) 562{ 563 journal_t *journal = handle->h_journal; 564 565 /* Get j_state_lock to pin running transaction if it exists */ 566 read_lock(&journal->j_state_lock); 567 __jbd2_journal_unreserve_handle(handle, journal->j_running_transaction); 568 read_unlock(&journal->j_state_lock); 569 jbd2_free_handle(handle); 570} 571EXPORT_SYMBOL(jbd2_journal_free_reserved); 572 573/** 574 * jbd2_journal_start_reserved() - start reserved handle 575 * @handle: handle to start 576 * @type: for handle statistics 577 * @line_no: for handle statistics 578 * 579 * Start handle that has been previously reserved with jbd2_journal_reserve(). 580 * This attaches @handle to the running transaction (or creates one if there's 581 * not transaction running). Unlike jbd2_journal_start() this function cannot 582 * block on journal commit, checkpointing, or similar stuff. It can block on 583 * memory allocation or frozen journal though. 584 * 585 * Return 0 on success, non-zero on error - handle is freed in that case. 586 */ 587int jbd2_journal_start_reserved(handle_t *handle, unsigned int type, 588 unsigned int line_no) 589{ 590 journal_t *journal = handle->h_journal; 591 int ret = -EIO; 592 593 if (WARN_ON(!handle->h_reserved)) { 594 /* Someone passed in normal handle? Just stop it. */ 595 jbd2_journal_stop(handle); 596 return ret; 597 } 598 /* 599 * Usefulness of mixing of reserved and unreserved handles is 600 * questionable. So far nobody seems to need it so just error out. 601 */ 602 if (WARN_ON(current->journal_info)) { 603 jbd2_journal_free_reserved(handle); 604 return ret; 605 } 606 607 handle->h_journal = NULL; 608 /* 609 * GFP_NOFS is here because callers are likely from writeback or 610 * similarly constrained call sites 611 */ 612 ret = start_this_handle(journal, handle, GFP_NOFS); 613 if (ret < 0) { 614 handle->h_journal = journal; 615 jbd2_journal_free_reserved(handle); 616 return ret; 617 } 618 handle->h_type = type; 619 handle->h_line_no = line_no; 620 trace_jbd2_handle_start(journal->j_fs_dev->bd_dev, 621 handle->h_transaction->t_tid, type, 622 line_no, handle->h_total_credits); 623 return 0; 624} 625EXPORT_SYMBOL(jbd2_journal_start_reserved); 626 627/** 628 * jbd2_journal_extend() - extend buffer credits. 629 * @handle: handle to 'extend' 630 * @nblocks: nr blocks to try to extend by. 631 * @revoke_records: number of revoke records to try to extend by. 632 * 633 * Some transactions, such as large extends and truncates, can be done 634 * atomically all at once or in several stages. The operation requests 635 * a credit for a number of buffer modifications in advance, but can 636 * extend its credit if it needs more. 637 * 638 * jbd2_journal_extend tries to give the running handle more buffer credits. 639 * It does not guarantee that allocation - this is a best-effort only. 640 * The calling process MUST be able to deal cleanly with a failure to 641 * extend here. 642 * 643 * Return 0 on success, non-zero on failure. 644 * 645 * return code < 0 implies an error 646 * return code > 0 implies normal transaction-full status. 647 */ 648int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records) 649{ 650 transaction_t *transaction = handle->h_transaction; 651 journal_t *journal; 652 int result; 653 int wanted; 654 655 if (is_handle_aborted(handle)) 656 return -EROFS; 657 journal = transaction->t_journal; 658 659 result = 1; 660 661 read_lock(&journal->j_state_lock); 662 663 /* Don't extend a locked-down transaction! */ 664 if (transaction->t_state != T_RUNNING) { 665 jbd_debug(3, "denied handle %p %d blocks: " 666 "transaction not running\n", handle, nblocks); 667 goto error_out; 668 } 669 670 nblocks += DIV_ROUND_UP( 671 handle->h_revoke_credits_requested + revoke_records, 672 journal->j_revoke_records_per_block) - 673 DIV_ROUND_UP( 674 handle->h_revoke_credits_requested, 675 journal->j_revoke_records_per_block); 676 spin_lock(&transaction->t_handle_lock); 677 wanted = atomic_add_return(nblocks, 678 &transaction->t_outstanding_credits); 679 680 if (wanted > journal->j_max_transaction_buffers) { 681 jbd_debug(3, "denied handle %p %d blocks: " 682 "transaction too large\n", handle, nblocks); 683 atomic_sub(nblocks, &transaction->t_outstanding_credits); 684 goto unlock; 685 } 686 687 trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev, 688 transaction->t_tid, 689 handle->h_type, handle->h_line_no, 690 handle->h_total_credits, 691 nblocks); 692 693 handle->h_total_credits += nblocks; 694 handle->h_requested_credits += nblocks; 695 handle->h_revoke_credits += revoke_records; 696 handle->h_revoke_credits_requested += revoke_records; 697 result = 0; 698 699 jbd_debug(3, "extended handle %p by %d\n", handle, nblocks); 700unlock: 701 spin_unlock(&transaction->t_handle_lock); 702error_out: 703 read_unlock(&journal->j_state_lock); 704 return result; 705} 706 707static void stop_this_handle(handle_t *handle) 708{ 709 transaction_t *transaction = handle->h_transaction; 710 journal_t *journal = transaction->t_journal; 711 int revokes; 712 713 J_ASSERT(journal_current_handle() == handle); 714 J_ASSERT(atomic_read(&transaction->t_updates) > 0); 715 current->journal_info = NULL; 716 /* 717 * Subtract necessary revoke descriptor blocks from handle credits. We 718 * take care to account only for revoke descriptor blocks the 719 * transaction will really need as large sequences of transactions with 720 * small numbers of revokes are relatively common. 721 */ 722 revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits; 723 if (revokes) { 724 int t_revokes, revoke_descriptors; 725 int rr_per_blk = journal->j_revoke_records_per_block; 726 727 WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk) 728 > handle->h_total_credits); 729 t_revokes = atomic_add_return(revokes, 730 &transaction->t_outstanding_revokes); 731 revoke_descriptors = 732 DIV_ROUND_UP(t_revokes, rr_per_blk) - 733 DIV_ROUND_UP(t_revokes - revokes, rr_per_blk); 734 handle->h_total_credits -= revoke_descriptors; 735 } 736 atomic_sub(handle->h_total_credits, 737 &transaction->t_outstanding_credits); 738 if (handle->h_rsv_handle) 739 __jbd2_journal_unreserve_handle(handle->h_rsv_handle, 740 transaction); 741 if (atomic_dec_and_test(&transaction->t_updates)) 742 wake_up(&journal->j_wait_updates); 743 744 rwsem_release(&journal->j_trans_commit_map, _THIS_IP_); 745 /* 746 * Scope of the GFP_NOFS context is over here and so we can restore the 747 * original alloc context. 748 */ 749 memalloc_nofs_restore(handle->saved_alloc_context); 750} 751 752/** 753 * jbd2__journal_restart() - restart a handle . 754 * @handle: handle to restart 755 * @nblocks: nr credits requested 756 * @revoke_records: number of revoke record credits requested 757 * @gfp_mask: memory allocation flags (for start_this_handle) 758 * 759 * Restart a handle for a multi-transaction filesystem 760 * operation. 761 * 762 * If the jbd2_journal_extend() call above fails to grant new buffer credits 763 * to a running handle, a call to jbd2_journal_restart will commit the 764 * handle's transaction so far and reattach the handle to a new 765 * transaction capable of guaranteeing the requested number of 766 * credits. We preserve reserved handle if there's any attached to the 767 * passed in handle. 768 */ 769int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records, 770 gfp_t gfp_mask) 771{ 772 transaction_t *transaction = handle->h_transaction; 773 journal_t *journal; 774 tid_t tid; 775 int need_to_start; 776 int ret; 777 778 /* If we've had an abort of any type, don't even think about 779 * actually doing the restart! */ 780 if (is_handle_aborted(handle)) 781 return 0; 782 journal = transaction->t_journal; 783 tid = transaction->t_tid; 784 785 /* 786 * First unlink the handle from its current transaction, and start the 787 * commit on that. 788 */ 789 jbd_debug(2, "restarting handle %p\n", handle); 790 stop_this_handle(handle); 791 handle->h_transaction = NULL; 792 793 /* 794 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can 795 * get rid of pointless j_state_lock traffic like this. 796 */ 797 read_lock(&journal->j_state_lock); 798 need_to_start = !tid_geq(journal->j_commit_request, tid); 799 read_unlock(&journal->j_state_lock); 800 if (need_to_start) 801 jbd2_log_start_commit(journal, tid); 802 handle->h_total_credits = nblocks + 803 DIV_ROUND_UP(revoke_records, 804 journal->j_revoke_records_per_block); 805 handle->h_revoke_credits = revoke_records; 806 ret = start_this_handle(journal, handle, gfp_mask); 807 trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev, 808 ret ? 0 : handle->h_transaction->t_tid, 809 handle->h_type, handle->h_line_no, 810 handle->h_total_credits); 811 return ret; 812} 813EXPORT_SYMBOL(jbd2__journal_restart); 814 815 816int jbd2_journal_restart(handle_t *handle, int nblocks) 817{ 818 return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS); 819} 820EXPORT_SYMBOL(jbd2_journal_restart); 821 822/** 823 * jbd2_journal_lock_updates () - establish a transaction barrier. 824 * @journal: Journal to establish a barrier on. 825 * 826 * This locks out any further updates from being started, and blocks 827 * until all existing updates have completed, returning only once the 828 * journal is in a quiescent state with no updates running. 829 * 830 * The journal lock should not be held on entry. 831 */ 832void jbd2_journal_lock_updates(journal_t *journal) 833{ 834 DEFINE_WAIT(wait); 835 836 jbd2_might_wait_for_commit(journal); 837 838 write_lock(&journal->j_state_lock); 839 ++journal->j_barrier_count; 840 841 /* Wait until there are no reserved handles */ 842 if (atomic_read(&journal->j_reserved_credits)) { 843 write_unlock(&journal->j_state_lock); 844 wait_event(journal->j_wait_reserved, 845 atomic_read(&journal->j_reserved_credits) == 0); 846 write_lock(&journal->j_state_lock); 847 } 848 849 /* Wait until there are no running updates */ 850 while (1) { 851 transaction_t *transaction = journal->j_running_transaction; 852 853 if (!transaction) 854 break; 855 856 spin_lock(&transaction->t_handle_lock); 857 prepare_to_wait(&journal->j_wait_updates, &wait, 858 TASK_UNINTERRUPTIBLE); 859 if (!atomic_read(&transaction->t_updates)) { 860 spin_unlock(&transaction->t_handle_lock); 861 finish_wait(&journal->j_wait_updates, &wait); 862 break; 863 } 864 spin_unlock(&transaction->t_handle_lock); 865 write_unlock(&journal->j_state_lock); 866 schedule(); 867 finish_wait(&journal->j_wait_updates, &wait); 868 write_lock(&journal->j_state_lock); 869 } 870 write_unlock(&journal->j_state_lock); 871 872 /* 873 * We have now established a barrier against other normal updates, but 874 * we also need to barrier against other jbd2_journal_lock_updates() calls 875 * to make sure that we serialise special journal-locked operations 876 * too. 877 */ 878 mutex_lock(&journal->j_barrier); 879} 880 881/** 882 * jbd2_journal_unlock_updates () - release barrier 883 * @journal: Journal to release the barrier on. 884 * 885 * Release a transaction barrier obtained with jbd2_journal_lock_updates(). 886 * 887 * Should be called without the journal lock held. 888 */ 889void jbd2_journal_unlock_updates (journal_t *journal) 890{ 891 J_ASSERT(journal->j_barrier_count != 0); 892 893 mutex_unlock(&journal->j_barrier); 894 write_lock(&journal->j_state_lock); 895 --journal->j_barrier_count; 896 write_unlock(&journal->j_state_lock); 897 wake_up_all(&journal->j_wait_transaction_locked); 898} 899 900static void warn_dirty_buffer(struct buffer_head *bh) 901{ 902 printk(KERN_WARNING 903 "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). " 904 "There's a risk of filesystem corruption in case of system " 905 "crash.\n", 906 bh->b_bdev, (unsigned long long)bh->b_blocknr); 907} 908 909/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */ 910static void jbd2_freeze_jh_data(struct journal_head *jh) 911{ 912 struct page *page; 913 int offset; 914 char *source; 915 struct buffer_head *bh = jh2bh(jh); 916 917 J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n"); 918 page = bh->b_page; 919 offset = offset_in_page(bh->b_data); 920 source = kmap_atomic(page); 921 /* Fire data frozen trigger just before we copy the data */ 922 jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers); 923 memcpy(jh->b_frozen_data, source + offset, bh->b_size); 924 kunmap_atomic(source); 925 926 /* 927 * Now that the frozen data is saved off, we need to store any matching 928 * triggers. 929 */ 930 jh->b_frozen_triggers = jh->b_triggers; 931} 932 933/* 934 * If the buffer is already part of the current transaction, then there 935 * is nothing we need to do. If it is already part of a prior 936 * transaction which we are still committing to disk, then we need to 937 * make sure that we do not overwrite the old copy: we do copy-out to 938 * preserve the copy going to disk. We also account the buffer against 939 * the handle's metadata buffer credits (unless the buffer is already 940 * part of the transaction, that is). 941 * 942 */ 943static int 944do_get_write_access(handle_t *handle, struct journal_head *jh, 945 int force_copy) 946{ 947 struct buffer_head *bh; 948 transaction_t *transaction = handle->h_transaction; 949 journal_t *journal; 950 int error; 951 char *frozen_buffer = NULL; 952 unsigned long start_lock, time_lock; 953 954 journal = transaction->t_journal; 955 956 jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy); 957 958 JBUFFER_TRACE(jh, "entry"); 959repeat: 960 bh = jh2bh(jh); 961 962 /* @@@ Need to check for errors here at some point. */ 963 964 start_lock = jiffies; 965 lock_buffer(bh); 966 spin_lock(&jh->b_state_lock); 967 968 /* If it takes too long to lock the buffer, trace it */ 969 time_lock = jbd2_time_diff(start_lock, jiffies); 970 if (time_lock > HZ/10) 971 trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev, 972 jiffies_to_msecs(time_lock)); 973 974 /* We now hold the buffer lock so it is safe to query the buffer 975 * state. Is the buffer dirty? 976 * 977 * If so, there are two possibilities. The buffer may be 978 * non-journaled, and undergoing a quite legitimate writeback. 979 * Otherwise, it is journaled, and we don't expect dirty buffers 980 * in that state (the buffers should be marked JBD_Dirty 981 * instead.) So either the IO is being done under our own 982 * control and this is a bug, or it's a third party IO such as 983 * dump(8) (which may leave the buffer scheduled for read --- 984 * ie. locked but not dirty) or tune2fs (which may actually have 985 * the buffer dirtied, ugh.) */ 986 987 if (buffer_dirty(bh) && jh->b_transaction) { 988 warn_dirty_buffer(bh); 989 /* 990 * We need to clean the dirty flag and we must do it under the 991 * buffer lock to be sure we don't race with running write-out. 992 */ 993 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 994 clear_buffer_dirty(bh); 995 /* 996 * The buffer is going to be added to BJ_Reserved list now and 997 * nothing guarantees jbd2_journal_dirty_metadata() will be 998 * ever called for it. So we need to set jbddirty bit here to 999 * make sure the buffer is dirtied and written out when the 1000 * journaling machinery is done with it. 1001 */ 1002 set_buffer_jbddirty(bh); 1003 } 1004 1005 error = -EROFS; 1006 if (is_handle_aborted(handle)) { 1007 spin_unlock(&jh->b_state_lock); 1008 unlock_buffer(bh); 1009 goto out; 1010 } 1011 error = 0; 1012 1013 /* 1014 * The buffer is already part of this transaction if b_transaction or 1015 * b_next_transaction points to it 1016 */ 1017 if (jh->b_transaction == transaction || 1018 jh->b_next_transaction == transaction) { 1019 unlock_buffer(bh); 1020 goto done; 1021 } 1022 1023 /* 1024 * this is the first time this transaction is touching this buffer, 1025 * reset the modified flag 1026 */ 1027 jh->b_modified = 0; 1028 1029 /* 1030 * If the buffer is not journaled right now, we need to make sure it 1031 * doesn't get written to disk before the caller actually commits the 1032 * new data 1033 */ 1034 if (!jh->b_transaction) { 1035 JBUFFER_TRACE(jh, "no transaction"); 1036 J_ASSERT_JH(jh, !jh->b_next_transaction); 1037 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1038 /* 1039 * Make sure all stores to jh (b_modified, b_frozen_data) are 1040 * visible before attaching it to the running transaction. 1041 * Paired with barrier in jbd2_write_access_granted() 1042 */ 1043 smp_wmb(); 1044 spin_lock(&journal->j_list_lock); 1045 if (test_clear_buffer_dirty(bh)) { 1046 /* 1047 * Execute buffer dirty clearing and jh->b_transaction 1048 * assignment under journal->j_list_lock locked to 1049 * prevent bh being removed from checkpoint list if 1050 * the buffer is in an intermediate state (not dirty 1051 * and jh->b_transaction is NULL). 1052 */ 1053 JBUFFER_TRACE(jh, "Journalling dirty buffer"); 1054 set_buffer_jbddirty(bh); 1055 } 1056 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1057 spin_unlock(&journal->j_list_lock); 1058 unlock_buffer(bh); 1059 goto done; 1060 } 1061 unlock_buffer(bh); 1062 1063 /* 1064 * If there is already a copy-out version of this buffer, then we don't 1065 * need to make another one 1066 */ 1067 if (jh->b_frozen_data) { 1068 JBUFFER_TRACE(jh, "has frozen data"); 1069 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1070 goto attach_next; 1071 } 1072 1073 JBUFFER_TRACE(jh, "owned by older transaction"); 1074 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1075 J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction); 1076 1077 /* 1078 * There is one case we have to be very careful about. If the 1079 * committing transaction is currently writing this buffer out to disk 1080 * and has NOT made a copy-out, then we cannot modify the buffer 1081 * contents at all right now. The essence of copy-out is that it is 1082 * the extra copy, not the primary copy, which gets journaled. If the 1083 * primary copy is already going to disk then we cannot do copy-out 1084 * here. 1085 */ 1086 if (buffer_shadow(bh)) { 1087 JBUFFER_TRACE(jh, "on shadow: sleep"); 1088 spin_unlock(&jh->b_state_lock); 1089 wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE); 1090 goto repeat; 1091 } 1092 1093 /* 1094 * Only do the copy if the currently-owning transaction still needs it. 1095 * If buffer isn't on BJ_Metadata list, the committing transaction is 1096 * past that stage (here we use the fact that BH_Shadow is set under 1097 * bh_state lock together with refiling to BJ_Shadow list and at this 1098 * point we know the buffer doesn't have BH_Shadow set). 1099 * 1100 * Subtle point, though: if this is a get_undo_access, then we will be 1101 * relying on the frozen_data to contain the new value of the 1102 * committed_data record after the transaction, so we HAVE to force the 1103 * frozen_data copy in that case. 1104 */ 1105 if (jh->b_jlist == BJ_Metadata || force_copy) { 1106 JBUFFER_TRACE(jh, "generate frozen data"); 1107 if (!frozen_buffer) { 1108 JBUFFER_TRACE(jh, "allocate memory for buffer"); 1109 spin_unlock(&jh->b_state_lock); 1110 frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size, 1111 GFP_NOFS | __GFP_NOFAIL); 1112 goto repeat; 1113 } 1114 jh->b_frozen_data = frozen_buffer; 1115 frozen_buffer = NULL; 1116 jbd2_freeze_jh_data(jh); 1117 } 1118attach_next: 1119 /* 1120 * Make sure all stores to jh (b_modified, b_frozen_data) are visible 1121 * before attaching it to the running transaction. Paired with barrier 1122 * in jbd2_write_access_granted() 1123 */ 1124 smp_wmb(); 1125 jh->b_next_transaction = transaction; 1126 1127done: 1128 spin_unlock(&jh->b_state_lock); 1129 1130 /* 1131 * If we are about to journal a buffer, then any revoke pending on it is 1132 * no longer valid 1133 */ 1134 jbd2_journal_cancel_revoke(handle, jh); 1135 1136out: 1137 if (unlikely(frozen_buffer)) /* It's usually NULL */ 1138 jbd2_free(frozen_buffer, bh->b_size); 1139 1140 JBUFFER_TRACE(jh, "exit"); 1141 return error; 1142} 1143 1144/* Fast check whether buffer is already attached to the required transaction */ 1145static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh, 1146 bool undo) 1147{ 1148 struct journal_head *jh; 1149 bool ret = false; 1150 1151 /* Dirty buffers require special handling... */ 1152 if (buffer_dirty(bh)) 1153 return false; 1154 1155 /* 1156 * RCU protects us from dereferencing freed pages. So the checks we do 1157 * are guaranteed not to oops. However the jh slab object can get freed 1158 * & reallocated while we work with it. So we have to be careful. When 1159 * we see jh attached to the running transaction, we know it must stay 1160 * so until the transaction is committed. Thus jh won't be freed and 1161 * will be attached to the same bh while we run. However it can 1162 * happen jh gets freed, reallocated, and attached to the transaction 1163 * just after we get pointer to it from bh. So we have to be careful 1164 * and recheck jh still belongs to our bh before we return success. 1165 */ 1166 rcu_read_lock(); 1167 if (!buffer_jbd(bh)) 1168 goto out; 1169 /* This should be bh2jh() but that doesn't work with inline functions */ 1170 jh = READ_ONCE(bh->b_private); 1171 if (!jh) 1172 goto out; 1173 /* For undo access buffer must have data copied */ 1174 if (undo && !jh->b_committed_data) 1175 goto out; 1176 if (READ_ONCE(jh->b_transaction) != handle->h_transaction && 1177 READ_ONCE(jh->b_next_transaction) != handle->h_transaction) 1178 goto out; 1179 /* 1180 * There are two reasons for the barrier here: 1181 * 1) Make sure to fetch b_bh after we did previous checks so that we 1182 * detect when jh went through free, realloc, attach to transaction 1183 * while we were checking. Paired with implicit barrier in that path. 1184 * 2) So that access to bh done after jbd2_write_access_granted() 1185 * doesn't get reordered and see inconsistent state of concurrent 1186 * do_get_write_access(). 1187 */ 1188 smp_mb(); 1189 if (unlikely(jh->b_bh != bh)) 1190 goto out; 1191 ret = true; 1192out: 1193 rcu_read_unlock(); 1194 return ret; 1195} 1196 1197/** 1198 * jbd2_journal_get_write_access() - notify intent to modify a buffer 1199 * for metadata (not data) update. 1200 * @handle: transaction to add buffer modifications to 1201 * @bh: bh to be used for metadata writes 1202 * 1203 * Returns: error code or 0 on success. 1204 * 1205 * In full data journalling mode the buffer may be of type BJ_AsyncData, 1206 * because we're ``write()ing`` a buffer which is also part of a shared mapping. 1207 */ 1208 1209int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh) 1210{ 1211 struct journal_head *jh; 1212 int rc; 1213 1214 if (is_handle_aborted(handle)) 1215 return -EROFS; 1216 1217 if (jbd2_write_access_granted(handle, bh, false)) 1218 return 0; 1219 1220 jh = jbd2_journal_add_journal_head(bh); 1221 /* We do not want to get caught playing with fields which the 1222 * log thread also manipulates. Make sure that the buffer 1223 * completes any outstanding IO before proceeding. */ 1224 rc = do_get_write_access(handle, jh, 0); 1225 jbd2_journal_put_journal_head(jh); 1226 return rc; 1227} 1228 1229 1230/* 1231 * When the user wants to journal a newly created buffer_head 1232 * (ie. getblk() returned a new buffer and we are going to populate it 1233 * manually rather than reading off disk), then we need to keep the 1234 * buffer_head locked until it has been completely filled with new 1235 * data. In this case, we should be able to make the assertion that 1236 * the bh is not already part of an existing transaction. 1237 * 1238 * The buffer should already be locked by the caller by this point. 1239 * There is no lock ranking violation: it was a newly created, 1240 * unlocked buffer beforehand. */ 1241 1242/** 1243 * jbd2_journal_get_create_access () - notify intent to use newly created bh 1244 * @handle: transaction to new buffer to 1245 * @bh: new buffer. 1246 * 1247 * Call this if you create a new bh. 1248 */ 1249int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh) 1250{ 1251 transaction_t *transaction = handle->h_transaction; 1252 journal_t *journal; 1253 struct journal_head *jh = jbd2_journal_add_journal_head(bh); 1254 int err; 1255 1256 jbd_debug(5, "journal_head %p\n", jh); 1257 err = -EROFS; 1258 if (is_handle_aborted(handle)) 1259 goto out; 1260 journal = transaction->t_journal; 1261 err = 0; 1262 1263 JBUFFER_TRACE(jh, "entry"); 1264 /* 1265 * The buffer may already belong to this transaction due to pre-zeroing 1266 * in the filesystem's new_block code. It may also be on the previous, 1267 * committing transaction's lists, but it HAS to be in Forget state in 1268 * that case: the transaction must have deleted the buffer for it to be 1269 * reused here. 1270 */ 1271 spin_lock(&jh->b_state_lock); 1272 J_ASSERT_JH(jh, (jh->b_transaction == transaction || 1273 jh->b_transaction == NULL || 1274 (jh->b_transaction == journal->j_committing_transaction && 1275 jh->b_jlist == BJ_Forget))); 1276 1277 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 1278 J_ASSERT_JH(jh, buffer_locked(jh2bh(jh))); 1279 1280 if (jh->b_transaction == NULL) { 1281 /* 1282 * Previous jbd2_journal_forget() could have left the buffer 1283 * with jbddirty bit set because it was being committed. When 1284 * the commit finished, we've filed the buffer for 1285 * checkpointing and marked it dirty. Now we are reallocating 1286 * the buffer so the transaction freeing it must have 1287 * committed and so it's safe to clear the dirty bit. 1288 */ 1289 clear_buffer_dirty(jh2bh(jh)); 1290 /* first access by this transaction */ 1291 jh->b_modified = 0; 1292 1293 JBUFFER_TRACE(jh, "file as BJ_Reserved"); 1294 spin_lock(&journal->j_list_lock); 1295 __jbd2_journal_file_buffer(jh, transaction, BJ_Reserved); 1296 spin_unlock(&journal->j_list_lock); 1297 } else if (jh->b_transaction == journal->j_committing_transaction) { 1298 /* first access by this transaction */ 1299 jh->b_modified = 0; 1300 1301 JBUFFER_TRACE(jh, "set next transaction"); 1302 spin_lock(&journal->j_list_lock); 1303 jh->b_next_transaction = transaction; 1304 spin_unlock(&journal->j_list_lock); 1305 } 1306 spin_unlock(&jh->b_state_lock); 1307 1308 /* 1309 * akpm: I added this. ext3_alloc_branch can pick up new indirect 1310 * blocks which contain freed but then revoked metadata. We need 1311 * to cancel the revoke in case we end up freeing it yet again 1312 * and the reallocating as data - this would cause a second revoke, 1313 * which hits an assertion error. 1314 */ 1315 JBUFFER_TRACE(jh, "cancelling revoke"); 1316 jbd2_journal_cancel_revoke(handle, jh); 1317out: 1318 jbd2_journal_put_journal_head(jh); 1319 return err; 1320} 1321 1322/** 1323 * jbd2_journal_get_undo_access() - Notify intent to modify metadata with 1324 * non-rewindable consequences 1325 * @handle: transaction 1326 * @bh: buffer to undo 1327 * 1328 * Sometimes there is a need to distinguish between metadata which has 1329 * been committed to disk and that which has not. The ext3fs code uses 1330 * this for freeing and allocating space, we have to make sure that we 1331 * do not reuse freed space until the deallocation has been committed, 1332 * since if we overwrote that space we would make the delete 1333 * un-rewindable in case of a crash. 1334 * 1335 * To deal with that, jbd2_journal_get_undo_access requests write access to a 1336 * buffer for parts of non-rewindable operations such as delete 1337 * operations on the bitmaps. The journaling code must keep a copy of 1338 * the buffer's contents prior to the undo_access call until such time 1339 * as we know that the buffer has definitely been committed to disk. 1340 * 1341 * We never need to know which transaction the committed data is part 1342 * of, buffers touched here are guaranteed to be dirtied later and so 1343 * will be committed to a new transaction in due course, at which point 1344 * we can discard the old committed data pointer. 1345 * 1346 * Returns error number or 0 on success. 1347 */ 1348int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh) 1349{ 1350 int err; 1351 struct journal_head *jh; 1352 char *committed_data = NULL; 1353 1354 if (is_handle_aborted(handle)) 1355 return -EROFS; 1356 1357 if (jbd2_write_access_granted(handle, bh, true)) 1358 return 0; 1359 1360 jh = jbd2_journal_add_journal_head(bh); 1361 JBUFFER_TRACE(jh, "entry"); 1362 1363 /* 1364 * Do this first --- it can drop the journal lock, so we want to 1365 * make sure that obtaining the committed_data is done 1366 * atomically wrt. completion of any outstanding commits. 1367 */ 1368 err = do_get_write_access(handle, jh, 1); 1369 if (err) 1370 goto out; 1371 1372repeat: 1373 if (!jh->b_committed_data) 1374 committed_data = jbd2_alloc(jh2bh(jh)->b_size, 1375 GFP_NOFS|__GFP_NOFAIL); 1376 1377 spin_lock(&jh->b_state_lock); 1378 if (!jh->b_committed_data) { 1379 /* Copy out the current buffer contents into the 1380 * preserved, committed copy. */ 1381 JBUFFER_TRACE(jh, "generate b_committed data"); 1382 if (!committed_data) { 1383 spin_unlock(&jh->b_state_lock); 1384 goto repeat; 1385 } 1386 1387 jh->b_committed_data = committed_data; 1388 committed_data = NULL; 1389 memcpy(jh->b_committed_data, bh->b_data, bh->b_size); 1390 } 1391 spin_unlock(&jh->b_state_lock); 1392out: 1393 jbd2_journal_put_journal_head(jh); 1394 if (unlikely(committed_data)) 1395 jbd2_free(committed_data, bh->b_size); 1396 return err; 1397} 1398 1399/** 1400 * jbd2_journal_set_triggers() - Add triggers for commit writeout 1401 * @bh: buffer to trigger on 1402 * @type: struct jbd2_buffer_trigger_type containing the trigger(s). 1403 * 1404 * Set any triggers on this journal_head. This is always safe, because 1405 * triggers for a committing buffer will be saved off, and triggers for 1406 * a running transaction will match the buffer in that transaction. 1407 * 1408 * Call with NULL to clear the triggers. 1409 */ 1410void jbd2_journal_set_triggers(struct buffer_head *bh, 1411 struct jbd2_buffer_trigger_type *type) 1412{ 1413 struct journal_head *jh = jbd2_journal_grab_journal_head(bh); 1414 1415 if (WARN_ON(!jh)) 1416 return; 1417 jh->b_triggers = type; 1418 jbd2_journal_put_journal_head(jh); 1419} 1420 1421void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data, 1422 struct jbd2_buffer_trigger_type *triggers) 1423{ 1424 struct buffer_head *bh = jh2bh(jh); 1425 1426 if (!triggers || !triggers->t_frozen) 1427 return; 1428 1429 triggers->t_frozen(triggers, bh, mapped_data, bh->b_size); 1430} 1431 1432void jbd2_buffer_abort_trigger(struct journal_head *jh, 1433 struct jbd2_buffer_trigger_type *triggers) 1434{ 1435 if (!triggers || !triggers->t_abort) 1436 return; 1437 1438 triggers->t_abort(triggers, jh2bh(jh)); 1439} 1440 1441/** 1442 * jbd2_journal_dirty_metadata() - mark a buffer as containing dirty metadata 1443 * @handle: transaction to add buffer to. 1444 * @bh: buffer to mark 1445 * 1446 * mark dirty metadata which needs to be journaled as part of the current 1447 * transaction. 1448 * 1449 * The buffer must have previously had jbd2_journal_get_write_access() 1450 * called so that it has a valid journal_head attached to the buffer 1451 * head. 1452 * 1453 * The buffer is placed on the transaction's metadata list and is marked 1454 * as belonging to the transaction. 1455 * 1456 * Returns error number or 0 on success. 1457 * 1458 * Special care needs to be taken if the buffer already belongs to the 1459 * current committing transaction (in which case we should have frozen 1460 * data present for that commit). In that case, we don't relink the 1461 * buffer: that only gets done when the old transaction finally 1462 * completes its commit. 1463 */ 1464int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh) 1465{ 1466 transaction_t *transaction = handle->h_transaction; 1467 journal_t *journal; 1468 struct journal_head *jh; 1469 int ret = 0; 1470 1471 if (!buffer_jbd(bh)) 1472 return -EUCLEAN; 1473 1474 /* 1475 * We don't grab jh reference here since the buffer must be part 1476 * of the running transaction. 1477 */ 1478 jh = bh2jh(bh); 1479 jbd_debug(5, "journal_head %p\n", jh); 1480 JBUFFER_TRACE(jh, "entry"); 1481 1482 /* 1483 * This and the following assertions are unreliable since we may see jh 1484 * in inconsistent state unless we grab bh_state lock. But this is 1485 * crucial to catch bugs so let's do a reliable check until the 1486 * lockless handling is fully proven. 1487 */ 1488 if (data_race(jh->b_transaction != transaction && 1489 jh->b_next_transaction != transaction)) { 1490 spin_lock(&jh->b_state_lock); 1491 J_ASSERT_JH(jh, jh->b_transaction == transaction || 1492 jh->b_next_transaction == transaction); 1493 spin_unlock(&jh->b_state_lock); 1494 } 1495 if (jh->b_modified == 1) { 1496 /* If it's in our transaction it must be in BJ_Metadata list. */ 1497 if (data_race(jh->b_transaction == transaction && 1498 jh->b_jlist != BJ_Metadata)) { 1499 spin_lock(&jh->b_state_lock); 1500 if (jh->b_transaction == transaction && 1501 jh->b_jlist != BJ_Metadata) 1502 pr_err("JBD2: assertion failure: h_type=%u " 1503 "h_line_no=%u block_no=%llu jlist=%u\n", 1504 handle->h_type, handle->h_line_no, 1505 (unsigned long long) bh->b_blocknr, 1506 jh->b_jlist); 1507 J_ASSERT_JH(jh, jh->b_transaction != transaction || 1508 jh->b_jlist == BJ_Metadata); 1509 spin_unlock(&jh->b_state_lock); 1510 } 1511 goto out; 1512 } 1513 1514 journal = transaction->t_journal; 1515 spin_lock(&jh->b_state_lock); 1516 1517 if (is_handle_aborted(handle)) { 1518 /* 1519 * Check journal aborting with @jh->b_state_lock locked, 1520 * since 'jh->b_transaction' could be replaced with 1521 * 'jh->b_next_transaction' during old transaction 1522 * committing if journal aborted, which may fail 1523 * assertion on 'jh->b_frozen_data == NULL'. 1524 */ 1525 ret = -EROFS; 1526 goto out_unlock_bh; 1527 } 1528 1529 if (jh->b_modified == 0) { 1530 /* 1531 * This buffer's got modified and becoming part 1532 * of the transaction. This needs to be done 1533 * once a transaction -bzzz 1534 */ 1535 if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) { 1536 ret = -ENOSPC; 1537 goto out_unlock_bh; 1538 } 1539 jh->b_modified = 1; 1540 handle->h_total_credits--; 1541 } 1542 1543 /* 1544 * fastpath, to avoid expensive locking. If this buffer is already 1545 * on the running transaction's metadata list there is nothing to do. 1546 * Nobody can take it off again because there is a handle open. 1547 * I _think_ we're OK here with SMP barriers - a mistaken decision will 1548 * result in this test being false, so we go in and take the locks. 1549 */ 1550 if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) { 1551 JBUFFER_TRACE(jh, "fastpath"); 1552 if (unlikely(jh->b_transaction != 1553 journal->j_running_transaction)) { 1554 printk(KERN_ERR "JBD2: %s: " 1555 "jh->b_transaction (%llu, %p, %u) != " 1556 "journal->j_running_transaction (%p, %u)\n", 1557 journal->j_devname, 1558 (unsigned long long) bh->b_blocknr, 1559 jh->b_transaction, 1560 jh->b_transaction ? jh->b_transaction->t_tid : 0, 1561 journal->j_running_transaction, 1562 journal->j_running_transaction ? 1563 journal->j_running_transaction->t_tid : 0); 1564 ret = -EINVAL; 1565 } 1566 goto out_unlock_bh; 1567 } 1568 1569 set_buffer_jbddirty(bh); 1570 1571 /* 1572 * Metadata already on the current transaction list doesn't 1573 * need to be filed. Metadata on another transaction's list must 1574 * be committing, and will be refiled once the commit completes: 1575 * leave it alone for now. 1576 */ 1577 if (jh->b_transaction != transaction) { 1578 JBUFFER_TRACE(jh, "already on other transaction"); 1579 if (unlikely(((jh->b_transaction != 1580 journal->j_committing_transaction)) || 1581 (jh->b_next_transaction != transaction))) { 1582 printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: " 1583 "bad jh for block %llu: " 1584 "transaction (%p, %u), " 1585 "jh->b_transaction (%p, %u), " 1586 "jh->b_next_transaction (%p, %u), jlist %u\n", 1587 journal->j_devname, 1588 (unsigned long long) bh->b_blocknr, 1589 transaction, transaction->t_tid, 1590 jh->b_transaction, 1591 jh->b_transaction ? 1592 jh->b_transaction->t_tid : 0, 1593 jh->b_next_transaction, 1594 jh->b_next_transaction ? 1595 jh->b_next_transaction->t_tid : 0, 1596 jh->b_jlist); 1597 WARN_ON(1); 1598 ret = -EINVAL; 1599 } 1600 /* And this case is illegal: we can't reuse another 1601 * transaction's data buffer, ever. */ 1602 goto out_unlock_bh; 1603 } 1604 1605 /* That test should have eliminated the following case: */ 1606 J_ASSERT_JH(jh, jh->b_frozen_data == NULL); 1607 1608 JBUFFER_TRACE(jh, "file as BJ_Metadata"); 1609 spin_lock(&journal->j_list_lock); 1610 __jbd2_journal_file_buffer(jh, transaction, BJ_Metadata); 1611 spin_unlock(&journal->j_list_lock); 1612out_unlock_bh: 1613 spin_unlock(&jh->b_state_lock); 1614out: 1615 JBUFFER_TRACE(jh, "exit"); 1616 return ret; 1617} 1618 1619/** 1620 * jbd2_journal_forget() - bforget() for potentially-journaled buffers. 1621 * @handle: transaction handle 1622 * @bh: bh to 'forget' 1623 * 1624 * We can only do the bforget if there are no commits pending against the 1625 * buffer. If the buffer is dirty in the current running transaction we 1626 * can safely unlink it. 1627 * 1628 * bh may not be a journalled buffer at all - it may be a non-JBD 1629 * buffer which came off the hashtable. Check for this. 1630 * 1631 * Decrements bh->b_count by one. 1632 * 1633 * Allow this call even if the handle has aborted --- it may be part of 1634 * the caller's cleanup after an abort. 1635 */ 1636int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh) 1637{ 1638 transaction_t *transaction = handle->h_transaction; 1639 journal_t *journal; 1640 struct journal_head *jh; 1641 int drop_reserve = 0; 1642 int err = 0; 1643 int was_modified = 0; 1644 1645 if (is_handle_aborted(handle)) 1646 return -EROFS; 1647 journal = transaction->t_journal; 1648 1649 BUFFER_TRACE(bh, "entry"); 1650 1651 jh = jbd2_journal_grab_journal_head(bh); 1652 if (!jh) { 1653 __bforget(bh); 1654 return 0; 1655 } 1656 1657 spin_lock(&jh->b_state_lock); 1658 1659 /* Critical error: attempting to delete a bitmap buffer, maybe? 1660 * Don't do any jbd operations, and return an error. */ 1661 if (!J_EXPECT_JH(jh, !jh->b_committed_data, 1662 "inconsistent data on disk")) { 1663 err = -EIO; 1664 goto drop; 1665 } 1666 1667 /* keep track of whether or not this transaction modified us */ 1668 was_modified = jh->b_modified; 1669 1670 /* 1671 * The buffer's going from the transaction, we must drop 1672 * all references -bzzz 1673 */ 1674 jh->b_modified = 0; 1675 1676 if (jh->b_transaction == transaction) { 1677 J_ASSERT_JH(jh, !jh->b_frozen_data); 1678 1679 /* If we are forgetting a buffer which is already part 1680 * of this transaction, then we can just drop it from 1681 * the transaction immediately. */ 1682 clear_buffer_dirty(bh); 1683 clear_buffer_jbddirty(bh); 1684 1685 JBUFFER_TRACE(jh, "belongs to current transaction: unfile"); 1686 1687 /* 1688 * we only want to drop a reference if this transaction 1689 * modified the buffer 1690 */ 1691 if (was_modified) 1692 drop_reserve = 1; 1693 1694 /* 1695 * We are no longer going to journal this buffer. 1696 * However, the commit of this transaction is still 1697 * important to the buffer: the delete that we are now 1698 * processing might obsolete an old log entry, so by 1699 * committing, we can satisfy the buffer's checkpoint. 1700 * 1701 * So, if we have a checkpoint on the buffer, we should 1702 * now refile the buffer on our BJ_Forget list so that 1703 * we know to remove the checkpoint after we commit. 1704 */ 1705 1706 spin_lock(&journal->j_list_lock); 1707 if (jh->b_cp_transaction) { 1708 __jbd2_journal_temp_unlink_buffer(jh); 1709 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1710 } else { 1711 __jbd2_journal_unfile_buffer(jh); 1712 jbd2_journal_put_journal_head(jh); 1713 } 1714 spin_unlock(&journal->j_list_lock); 1715 } else if (jh->b_transaction) { 1716 J_ASSERT_JH(jh, (jh->b_transaction == 1717 journal->j_committing_transaction)); 1718 /* However, if the buffer is still owned by a prior 1719 * (committing) transaction, we can't drop it yet... */ 1720 JBUFFER_TRACE(jh, "belongs to older transaction"); 1721 /* ... but we CAN drop it from the new transaction through 1722 * marking the buffer as freed and set j_next_transaction to 1723 * the new transaction, so that not only the commit code 1724 * knows it should clear dirty bits when it is done with the 1725 * buffer, but also the buffer can be checkpointed only 1726 * after the new transaction commits. */ 1727 1728 set_buffer_freed(bh); 1729 1730 if (!jh->b_next_transaction) { 1731 spin_lock(&journal->j_list_lock); 1732 jh->b_next_transaction = transaction; 1733 spin_unlock(&journal->j_list_lock); 1734 } else { 1735 J_ASSERT(jh->b_next_transaction == transaction); 1736 1737 /* 1738 * only drop a reference if this transaction modified 1739 * the buffer 1740 */ 1741 if (was_modified) 1742 drop_reserve = 1; 1743 } 1744 } else { 1745 /* 1746 * Finally, if the buffer is not belongs to any 1747 * transaction, we can just drop it now if it has no 1748 * checkpoint. 1749 */ 1750 spin_lock(&journal->j_list_lock); 1751 if (!jh->b_cp_transaction) { 1752 JBUFFER_TRACE(jh, "belongs to none transaction"); 1753 spin_unlock(&journal->j_list_lock); 1754 goto drop; 1755 } 1756 1757 /* 1758 * Otherwise, if the buffer has been written to disk, 1759 * it is safe to remove the checkpoint and drop it. 1760 */ 1761 if (!buffer_dirty(bh)) { 1762 __jbd2_journal_remove_checkpoint(jh); 1763 spin_unlock(&journal->j_list_lock); 1764 goto drop; 1765 } 1766 1767 /* 1768 * The buffer is still not written to disk, we should 1769 * attach this buffer to current transaction so that the 1770 * buffer can be checkpointed only after the current 1771 * transaction commits. 1772 */ 1773 clear_buffer_dirty(bh); 1774 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 1775 spin_unlock(&journal->j_list_lock); 1776 } 1777drop: 1778 __brelse(bh); 1779 spin_unlock(&jh->b_state_lock); 1780 jbd2_journal_put_journal_head(jh); 1781 if (drop_reserve) { 1782 /* no need to reserve log space for this block -bzzz */ 1783 handle->h_total_credits++; 1784 } 1785 return err; 1786} 1787 1788/** 1789 * jbd2_journal_stop() - complete a transaction 1790 * @handle: transaction to complete. 1791 * 1792 * All done for a particular handle. 1793 * 1794 * There is not much action needed here. We just return any remaining 1795 * buffer credits to the transaction and remove the handle. The only 1796 * complication is that we need to start a commit operation if the 1797 * filesystem is marked for synchronous update. 1798 * 1799 * jbd2_journal_stop itself will not usually return an error, but it may 1800 * do so in unusual circumstances. In particular, expect it to 1801 * return -EIO if a jbd2_journal_abort has been executed since the 1802 * transaction began. 1803 */ 1804int jbd2_journal_stop(handle_t *handle) 1805{ 1806 transaction_t *transaction = handle->h_transaction; 1807 journal_t *journal; 1808 int err = 0, wait_for_commit = 0; 1809 tid_t tid; 1810 pid_t pid; 1811 1812 if (--handle->h_ref > 0) { 1813 jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1, 1814 handle->h_ref); 1815 if (is_handle_aborted(handle)) 1816 return -EIO; 1817 return 0; 1818 } 1819 if (!transaction) { 1820 /* 1821 * Handle is already detached from the transaction so there is 1822 * nothing to do other than free the handle. 1823 */ 1824 memalloc_nofs_restore(handle->saved_alloc_context); 1825 goto free_and_exit; 1826 } 1827 journal = transaction->t_journal; 1828 tid = transaction->t_tid; 1829 1830 if (is_handle_aborted(handle)) 1831 err = -EIO; 1832 1833 jbd_debug(4, "Handle %p going down\n", handle); 1834 trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev, 1835 tid, handle->h_type, handle->h_line_no, 1836 jiffies - handle->h_start_jiffies, 1837 handle->h_sync, handle->h_requested_credits, 1838 (handle->h_requested_credits - 1839 handle->h_total_credits)); 1840 1841 /* 1842 * Implement synchronous transaction batching. If the handle 1843 * was synchronous, don't force a commit immediately. Let's 1844 * yield and let another thread piggyback onto this 1845 * transaction. Keep doing that while new threads continue to 1846 * arrive. It doesn't cost much - we're about to run a commit 1847 * and sleep on IO anyway. Speeds up many-threaded, many-dir 1848 * operations by 30x or more... 1849 * 1850 * We try and optimize the sleep time against what the 1851 * underlying disk can do, instead of having a static sleep 1852 * time. This is useful for the case where our storage is so 1853 * fast that it is more optimal to go ahead and force a flush 1854 * and wait for the transaction to be committed than it is to 1855 * wait for an arbitrary amount of time for new writers to 1856 * join the transaction. We achieve this by measuring how 1857 * long it takes to commit a transaction, and compare it with 1858 * how long this transaction has been running, and if run time 1859 * < commit time then we sleep for the delta and commit. This 1860 * greatly helps super fast disks that would see slowdowns as 1861 * more threads started doing fsyncs. 1862 * 1863 * But don't do this if this process was the most recent one 1864 * to perform a synchronous write. We do this to detect the 1865 * case where a single process is doing a stream of sync 1866 * writes. No point in waiting for joiners in that case. 1867 * 1868 * Setting max_batch_time to 0 disables this completely. 1869 */ 1870 pid = current->pid; 1871 if (handle->h_sync && journal->j_last_sync_writer != pid && 1872 journal->j_max_batch_time) { 1873 u64 commit_time, trans_time; 1874 1875 journal->j_last_sync_writer = pid; 1876 1877 read_lock(&journal->j_state_lock); 1878 commit_time = journal->j_average_commit_time; 1879 read_unlock(&journal->j_state_lock); 1880 1881 trans_time = ktime_to_ns(ktime_sub(ktime_get(), 1882 transaction->t_start_time)); 1883 1884 commit_time = max_t(u64, commit_time, 1885 1000*journal->j_min_batch_time); 1886 commit_time = min_t(u64, commit_time, 1887 1000*journal->j_max_batch_time); 1888 1889 if (trans_time < commit_time) { 1890 ktime_t expires = ktime_add_ns(ktime_get(), 1891 commit_time); 1892 set_current_state(TASK_UNINTERRUPTIBLE); 1893 schedule_hrtimeout(&expires, HRTIMER_MODE_ABS); 1894 } 1895 } 1896 1897 if (handle->h_sync) 1898 transaction->t_synchronous_commit = 1; 1899 1900 /* 1901 * If the handle is marked SYNC, we need to set another commit 1902 * going! We also want to force a commit if the transaction is too 1903 * old now. 1904 */ 1905 if (handle->h_sync || 1906 time_after_eq(jiffies, transaction->t_expires)) { 1907 /* Do this even for aborted journals: an abort still 1908 * completes the commit thread, it just doesn't write 1909 * anything to disk. */ 1910 1911 jbd_debug(2, "transaction too old, requesting commit for " 1912 "handle %p\n", handle); 1913 /* This is non-blocking */ 1914 jbd2_log_start_commit(journal, tid); 1915 1916 /* 1917 * Special case: JBD2_SYNC synchronous updates require us 1918 * to wait for the commit to complete. 1919 */ 1920 if (handle->h_sync && !(current->flags & PF_MEMALLOC)) 1921 wait_for_commit = 1; 1922 } 1923 1924 /* 1925 * Once stop_this_handle() drops t_updates, the transaction could start 1926 * committing on us and eventually disappear. So we must not 1927 * dereference transaction pointer again after calling 1928 * stop_this_handle(). 1929 */ 1930 stop_this_handle(handle); 1931 1932 if (wait_for_commit) 1933 err = jbd2_log_wait_commit(journal, tid); 1934 1935free_and_exit: 1936 if (handle->h_rsv_handle) 1937 jbd2_free_handle(handle->h_rsv_handle); 1938 jbd2_free_handle(handle); 1939 return err; 1940} 1941 1942/* 1943 * 1944 * List management code snippets: various functions for manipulating the 1945 * transaction buffer lists. 1946 * 1947 */ 1948 1949/* 1950 * Append a buffer to a transaction list, given the transaction's list head 1951 * pointer. 1952 * 1953 * j_list_lock is held. 1954 * 1955 * jh->b_state_lock is held. 1956 */ 1957 1958static inline void 1959__blist_add_buffer(struct journal_head **list, struct journal_head *jh) 1960{ 1961 if (!*list) { 1962 jh->b_tnext = jh->b_tprev = jh; 1963 *list = jh; 1964 } else { 1965 /* Insert at the tail of the list to preserve order */ 1966 struct journal_head *first = *list, *last = first->b_tprev; 1967 jh->b_tprev = last; 1968 jh->b_tnext = first; 1969 last->b_tnext = first->b_tprev = jh; 1970 } 1971} 1972 1973/* 1974 * Remove a buffer from a transaction list, given the transaction's list 1975 * head pointer. 1976 * 1977 * Called with j_list_lock held, and the journal may not be locked. 1978 * 1979 * jh->b_state_lock is held. 1980 */ 1981 1982static inline void 1983__blist_del_buffer(struct journal_head **list, struct journal_head *jh) 1984{ 1985 if (*list == jh) { 1986 *list = jh->b_tnext; 1987 if (*list == jh) 1988 *list = NULL; 1989 } 1990 jh->b_tprev->b_tnext = jh->b_tnext; 1991 jh->b_tnext->b_tprev = jh->b_tprev; 1992} 1993 1994/* 1995 * Remove a buffer from the appropriate transaction list. 1996 * 1997 * Note that this function can *change* the value of 1998 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or 1999 * t_reserved_list. If the caller is holding onto a copy of one of these 2000 * pointers, it could go bad. Generally the caller needs to re-read the 2001 * pointer from the transaction_t. 2002 * 2003 * Called under j_list_lock. 2004 */ 2005static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh) 2006{ 2007 struct journal_head **list = NULL; 2008 transaction_t *transaction; 2009 struct buffer_head *bh = jh2bh(jh); 2010 2011 lockdep_assert_held(&jh->b_state_lock); 2012 transaction = jh->b_transaction; 2013 if (transaction) 2014 assert_spin_locked(&transaction->t_journal->j_list_lock); 2015 2016 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2017 if (jh->b_jlist != BJ_None) 2018 J_ASSERT_JH(jh, transaction != NULL); 2019 2020 switch (jh->b_jlist) { 2021 case BJ_None: 2022 return; 2023 case BJ_Metadata: 2024 transaction->t_nr_buffers--; 2025 J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0); 2026 list = &transaction->t_buffers; 2027 break; 2028 case BJ_Forget: 2029 list = &transaction->t_forget; 2030 break; 2031 case BJ_Shadow: 2032 list = &transaction->t_shadow_list; 2033 break; 2034 case BJ_Reserved: 2035 list = &transaction->t_reserved_list; 2036 break; 2037 } 2038 2039 __blist_del_buffer(list, jh); 2040 jh->b_jlist = BJ_None; 2041 if (transaction && is_journal_aborted(transaction->t_journal)) 2042 clear_buffer_jbddirty(bh); 2043 else if (test_clear_buffer_jbddirty(bh)) 2044 mark_buffer_dirty(bh); /* Expose it to the VM */ 2045} 2046 2047/* 2048 * Remove buffer from all transactions. The caller is responsible for dropping 2049 * the jh reference that belonged to the transaction. 2050 * 2051 * Called with bh_state lock and j_list_lock 2052 */ 2053static void __jbd2_journal_unfile_buffer(struct journal_head *jh) 2054{ 2055 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2056 J_ASSERT_JH(jh, jh->b_next_transaction == NULL); 2057 2058 __jbd2_journal_temp_unlink_buffer(jh); 2059 jh->b_transaction = NULL; 2060} 2061 2062void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh) 2063{ 2064 struct buffer_head *bh = jh2bh(jh); 2065 2066 /* Get reference so that buffer cannot be freed before we unlock it */ 2067 get_bh(bh); 2068 spin_lock(&jh->b_state_lock); 2069 spin_lock(&journal->j_list_lock); 2070 __jbd2_journal_unfile_buffer(jh); 2071 spin_unlock(&journal->j_list_lock); 2072 spin_unlock(&jh->b_state_lock); 2073 jbd2_journal_put_journal_head(jh); 2074 __brelse(bh); 2075} 2076 2077/* 2078 * Called from jbd2_journal_try_to_free_buffers(). 2079 * 2080 * Called under jh->b_state_lock 2081 */ 2082static void 2083__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh) 2084{ 2085 struct journal_head *jh; 2086 2087 jh = bh2jh(bh); 2088 2089 if (buffer_locked(bh) || buffer_dirty(bh)) 2090 goto out; 2091 2092 if (jh->b_next_transaction != NULL || jh->b_transaction != NULL) 2093 goto out; 2094 2095 spin_lock(&journal->j_list_lock); 2096 if (jh->b_cp_transaction != NULL) { 2097 /* written-back checkpointed metadata buffer */ 2098 JBUFFER_TRACE(jh, "remove from checkpoint list"); 2099 __jbd2_journal_remove_checkpoint(jh); 2100 } 2101 spin_unlock(&journal->j_list_lock); 2102out: 2103 return; 2104} 2105 2106/** 2107 * jbd2_journal_try_to_free_buffers() - try to free page buffers. 2108 * @journal: journal for operation 2109 * @page: to try and free 2110 * 2111 * For all the buffers on this page, 2112 * if they are fully written out ordered data, move them onto BUF_CLEAN 2113 * so try_to_free_buffers() can reap them. 2114 * 2115 * This function returns non-zero if we wish try_to_free_buffers() 2116 * to be called. We do this if the page is releasable by try_to_free_buffers(). 2117 * We also do it if the page has locked or dirty buffers and the caller wants 2118 * us to perform sync or async writeout. 2119 * 2120 * This complicates JBD locking somewhat. We aren't protected by the 2121 * BKL here. We wish to remove the buffer from its committing or 2122 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer. 2123 * 2124 * This may *change* the value of transaction_t->t_datalist, so anyone 2125 * who looks at t_datalist needs to lock against this function. 2126 * 2127 * Even worse, someone may be doing a jbd2_journal_dirty_data on this 2128 * buffer. So we need to lock against that. jbd2_journal_dirty_data() 2129 * will come out of the lock with the buffer dirty, which makes it 2130 * ineligible for release here. 2131 * 2132 * Who else is affected by this? hmm... Really the only contender 2133 * is do_get_write_access() - it could be looking at the buffer while 2134 * journal_try_to_free_buffer() is changing its state. But that 2135 * cannot happen because we never reallocate freed data as metadata 2136 * while the data is part of a transaction. Yes? 2137 * 2138 * Return 0 on failure, 1 on success 2139 */ 2140int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page) 2141{ 2142 struct buffer_head *head; 2143 struct buffer_head *bh; 2144 int ret = 0; 2145 2146 J_ASSERT(PageLocked(page)); 2147 2148 head = page_buffers(page); 2149 bh = head; 2150 do { 2151 struct journal_head *jh; 2152 2153 /* 2154 * We take our own ref against the journal_head here to avoid 2155 * having to add tons of locking around each instance of 2156 * jbd2_journal_put_journal_head(). 2157 */ 2158 jh = jbd2_journal_grab_journal_head(bh); 2159 if (!jh) 2160 continue; 2161 2162 spin_lock(&jh->b_state_lock); 2163 __journal_try_to_free_buffer(journal, bh); 2164 spin_unlock(&jh->b_state_lock); 2165 jbd2_journal_put_journal_head(jh); 2166 if (buffer_jbd(bh)) 2167 goto busy; 2168 } while ((bh = bh->b_this_page) != head); 2169 2170 ret = try_to_free_buffers(page); 2171busy: 2172 return ret; 2173} 2174 2175/* 2176 * This buffer is no longer needed. If it is on an older transaction's 2177 * checkpoint list we need to record it on this transaction's forget list 2178 * to pin this buffer (and hence its checkpointing transaction) down until 2179 * this transaction commits. If the buffer isn't on a checkpoint list, we 2180 * release it. 2181 * Returns non-zero if JBD no longer has an interest in the buffer. 2182 * 2183 * Called under j_list_lock. 2184 * 2185 * Called under jh->b_state_lock. 2186 */ 2187static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction) 2188{ 2189 int may_free = 1; 2190 struct buffer_head *bh = jh2bh(jh); 2191 2192 if (jh->b_cp_transaction) { 2193 JBUFFER_TRACE(jh, "on running+cp transaction"); 2194 __jbd2_journal_temp_unlink_buffer(jh); 2195 /* 2196 * We don't want to write the buffer anymore, clear the 2197 * bit so that we don't confuse checks in 2198 * __journal_file_buffer 2199 */ 2200 clear_buffer_dirty(bh); 2201 __jbd2_journal_file_buffer(jh, transaction, BJ_Forget); 2202 may_free = 0; 2203 } else { 2204 JBUFFER_TRACE(jh, "on running transaction"); 2205 __jbd2_journal_unfile_buffer(jh); 2206 jbd2_journal_put_journal_head(jh); 2207 } 2208 return may_free; 2209} 2210 2211/* 2212 * jbd2_journal_invalidatepage 2213 * 2214 * This code is tricky. It has a number of cases to deal with. 2215 * 2216 * There are two invariants which this code relies on: 2217 * 2218 * i_size must be updated on disk before we start calling invalidatepage on the 2219 * data. 2220 * 2221 * This is done in ext3 by defining an ext3_setattr method which 2222 * updates i_size before truncate gets going. By maintaining this 2223 * invariant, we can be sure that it is safe to throw away any buffers 2224 * attached to the current transaction: once the transaction commits, 2225 * we know that the data will not be needed. 2226 * 2227 * Note however that we can *not* throw away data belonging to the 2228 * previous, committing transaction! 2229 * 2230 * Any disk blocks which *are* part of the previous, committing 2231 * transaction (and which therefore cannot be discarded immediately) are 2232 * not going to be reused in the new running transaction 2233 * 2234 * The bitmap committed_data images guarantee this: any block which is 2235 * allocated in one transaction and removed in the next will be marked 2236 * as in-use in the committed_data bitmap, so cannot be reused until 2237 * the next transaction to delete the block commits. This means that 2238 * leaving committing buffers dirty is quite safe: the disk blocks 2239 * cannot be reallocated to a different file and so buffer aliasing is 2240 * not possible. 2241 * 2242 * 2243 * The above applies mainly to ordered data mode. In writeback mode we 2244 * don't make guarantees about the order in which data hits disk --- in 2245 * particular we don't guarantee that new dirty data is flushed before 2246 * transaction commit --- so it is always safe just to discard data 2247 * immediately in that mode. --sct 2248 */ 2249 2250/* 2251 * The journal_unmap_buffer helper function returns zero if the buffer 2252 * concerned remains pinned as an anonymous buffer belonging to an older 2253 * transaction. 2254 * 2255 * We're outside-transaction here. Either or both of j_running_transaction 2256 * and j_committing_transaction may be NULL. 2257 */ 2258static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh, 2259 int partial_page) 2260{ 2261 transaction_t *transaction; 2262 struct journal_head *jh; 2263 int may_free = 1; 2264 2265 BUFFER_TRACE(bh, "entry"); 2266 2267 /* 2268 * It is safe to proceed here without the j_list_lock because the 2269 * buffers cannot be stolen by try_to_free_buffers as long as we are 2270 * holding the page lock. --sct 2271 */ 2272 2273 jh = jbd2_journal_grab_journal_head(bh); 2274 if (!jh) 2275 goto zap_buffer_unlocked; 2276 2277 /* OK, we have data buffer in journaled mode */ 2278 write_lock(&journal->j_state_lock); 2279 spin_lock(&jh->b_state_lock); 2280 spin_lock(&journal->j_list_lock); 2281 2282 /* 2283 * We cannot remove the buffer from checkpoint lists until the 2284 * transaction adding inode to orphan list (let's call it T) 2285 * is committed. Otherwise if the transaction changing the 2286 * buffer would be cleaned from the journal before T is 2287 * committed, a crash will cause that the correct contents of 2288 * the buffer will be lost. On the other hand we have to 2289 * clear the buffer dirty bit at latest at the moment when the 2290 * transaction marking the buffer as freed in the filesystem 2291 * structures is committed because from that moment on the 2292 * block can be reallocated and used by a different page. 2293 * Since the block hasn't been freed yet but the inode has 2294 * already been added to orphan list, it is safe for us to add 2295 * the buffer to BJ_Forget list of the newest transaction. 2296 * 2297 * Also we have to clear buffer_mapped flag of a truncated buffer 2298 * because the buffer_head may be attached to the page straddling 2299 * i_size (can happen only when blocksize < pagesize) and thus the 2300 * buffer_head can be reused when the file is extended again. So we end 2301 * up keeping around invalidated buffers attached to transactions' 2302 * BJ_Forget list just to stop checkpointing code from cleaning up 2303 * the transaction this buffer was modified in. 2304 */ 2305 transaction = jh->b_transaction; 2306 if (transaction == NULL) { 2307 /* First case: not on any transaction. If it 2308 * has no checkpoint link, then we can zap it: 2309 * it's a writeback-mode buffer so we don't care 2310 * if it hits disk safely. */ 2311 if (!jh->b_cp_transaction) { 2312 JBUFFER_TRACE(jh, "not on any transaction: zap"); 2313 goto zap_buffer; 2314 } 2315 2316 if (!buffer_dirty(bh)) { 2317 /* bdflush has written it. We can drop it now */ 2318 __jbd2_journal_remove_checkpoint(jh); 2319 goto zap_buffer; 2320 } 2321 2322 /* OK, it must be in the journal but still not 2323 * written fully to disk: it's metadata or 2324 * journaled data... */ 2325 2326 if (journal->j_running_transaction) { 2327 /* ... and once the current transaction has 2328 * committed, the buffer won't be needed any 2329 * longer. */ 2330 JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget"); 2331 may_free = __dispose_buffer(jh, 2332 journal->j_running_transaction); 2333 goto zap_buffer; 2334 } else { 2335 /* There is no currently-running transaction. So the 2336 * orphan record which we wrote for this file must have 2337 * passed into commit. We must attach this buffer to 2338 * the committing transaction, if it exists. */ 2339 if (journal->j_committing_transaction) { 2340 JBUFFER_TRACE(jh, "give to committing trans"); 2341 may_free = __dispose_buffer(jh, 2342 journal->j_committing_transaction); 2343 goto zap_buffer; 2344 } else { 2345 /* The orphan record's transaction has 2346 * committed. We can cleanse this buffer */ 2347 clear_buffer_jbddirty(bh); 2348 __jbd2_journal_remove_checkpoint(jh); 2349 goto zap_buffer; 2350 } 2351 } 2352 } else if (transaction == journal->j_committing_transaction) { 2353 JBUFFER_TRACE(jh, "on committing transaction"); 2354 /* 2355 * The buffer is committing, we simply cannot touch 2356 * it. If the page is straddling i_size we have to wait 2357 * for commit and try again. 2358 */ 2359 if (partial_page) { 2360 spin_unlock(&journal->j_list_lock); 2361 spin_unlock(&jh->b_state_lock); 2362 write_unlock(&journal->j_state_lock); 2363 jbd2_journal_put_journal_head(jh); 2364 /* Already zapped buffer? Nothing to do... */ 2365 if (!bh->b_bdev) 2366 return 0; 2367 return -EBUSY; 2368 } 2369 /* 2370 * OK, buffer won't be reachable after truncate. We just clear 2371 * b_modified to not confuse transaction credit accounting, and 2372 * set j_next_transaction to the running transaction (if there 2373 * is one) and mark buffer as freed so that commit code knows 2374 * it should clear dirty bits when it is done with the buffer. 2375 */ 2376 set_buffer_freed(bh); 2377 if (journal->j_running_transaction && buffer_jbddirty(bh)) 2378 jh->b_next_transaction = journal->j_running_transaction; 2379 jh->b_modified = 0; 2380 spin_unlock(&journal->j_list_lock); 2381 spin_unlock(&jh->b_state_lock); 2382 write_unlock(&journal->j_state_lock); 2383 jbd2_journal_put_journal_head(jh); 2384 return 0; 2385 } else { 2386 /* Good, the buffer belongs to the running transaction. 2387 * We are writing our own transaction's data, not any 2388 * previous one's, so it is safe to throw it away 2389 * (remember that we expect the filesystem to have set 2390 * i_size already for this truncate so recovery will not 2391 * expose the disk blocks we are discarding here.) */ 2392 J_ASSERT_JH(jh, transaction == journal->j_running_transaction); 2393 JBUFFER_TRACE(jh, "on running transaction"); 2394 may_free = __dispose_buffer(jh, transaction); 2395 } 2396 2397zap_buffer: 2398 /* 2399 * This is tricky. Although the buffer is truncated, it may be reused 2400 * if blocksize < pagesize and it is attached to the page straddling 2401 * EOF. Since the buffer might have been added to BJ_Forget list of the 2402 * running transaction, journal_get_write_access() won't clear 2403 * b_modified and credit accounting gets confused. So clear b_modified 2404 * here. 2405 */ 2406 jh->b_modified = 0; 2407 spin_unlock(&journal->j_list_lock); 2408 spin_unlock(&jh->b_state_lock); 2409 write_unlock(&journal->j_state_lock); 2410 jbd2_journal_put_journal_head(jh); 2411zap_buffer_unlocked: 2412 clear_buffer_dirty(bh); 2413 J_ASSERT_BH(bh, !buffer_jbddirty(bh)); 2414 clear_buffer_mapped(bh); 2415 clear_buffer_req(bh); 2416 clear_buffer_new(bh); 2417 clear_buffer_delay(bh); 2418 clear_buffer_unwritten(bh); 2419 bh->b_bdev = NULL; 2420 return may_free; 2421} 2422 2423/** 2424 * jbd2_journal_invalidatepage() 2425 * @journal: journal to use for flush... 2426 * @page: page to flush 2427 * @offset: start of the range to invalidate 2428 * @length: length of the range to invalidate 2429 * 2430 * Reap page buffers containing data after in the specified range in page. 2431 * Can return -EBUSY if buffers are part of the committing transaction and 2432 * the page is straddling i_size. Caller then has to wait for current commit 2433 * and try again. 2434 */ 2435int jbd2_journal_invalidatepage(journal_t *journal, 2436 struct page *page, 2437 unsigned int offset, 2438 unsigned int length) 2439{ 2440 struct buffer_head *head, *bh, *next; 2441 unsigned int stop = offset + length; 2442 unsigned int curr_off = 0; 2443 int partial_page = (offset || length < PAGE_SIZE); 2444 int may_free = 1; 2445 int ret = 0; 2446 2447 if (!PageLocked(page)) 2448 BUG(); 2449 if (!page_has_buffers(page)) 2450 return 0; 2451 2452 BUG_ON(stop > PAGE_SIZE || stop < length); 2453 2454 /* We will potentially be playing with lists other than just the 2455 * data lists (especially for journaled data mode), so be 2456 * cautious in our locking. */ 2457 2458 head = bh = page_buffers(page); 2459 do { 2460 unsigned int next_off = curr_off + bh->b_size; 2461 next = bh->b_this_page; 2462 2463 if (next_off > stop) 2464 return 0; 2465 2466 if (offset <= curr_off) { 2467 /* This block is wholly outside the truncation point */ 2468 lock_buffer(bh); 2469 ret = journal_unmap_buffer(journal, bh, partial_page); 2470 unlock_buffer(bh); 2471 if (ret < 0) 2472 return ret; 2473 may_free &= ret; 2474 } 2475 curr_off = next_off; 2476 bh = next; 2477 2478 } while (bh != head); 2479 2480 if (!partial_page) { 2481 if (may_free && try_to_free_buffers(page)) 2482 J_ASSERT(!page_has_buffers(page)); 2483 } 2484 return 0; 2485} 2486 2487/* 2488 * File a buffer on the given transaction list. 2489 */ 2490void __jbd2_journal_file_buffer(struct journal_head *jh, 2491 transaction_t *transaction, int jlist) 2492{ 2493 struct journal_head **list = NULL; 2494 int was_dirty = 0; 2495 struct buffer_head *bh = jh2bh(jh); 2496 2497 lockdep_assert_held(&jh->b_state_lock); 2498 assert_spin_locked(&transaction->t_journal->j_list_lock); 2499 2500 J_ASSERT_JH(jh, jh->b_jlist < BJ_Types); 2501 J_ASSERT_JH(jh, jh->b_transaction == transaction || 2502 jh->b_transaction == NULL); 2503 2504 if (jh->b_transaction && jh->b_jlist == jlist) 2505 return; 2506 2507 if (jlist == BJ_Metadata || jlist == BJ_Reserved || 2508 jlist == BJ_Shadow || jlist == BJ_Forget) { 2509 /* 2510 * For metadata buffers, we track dirty bit in buffer_jbddirty 2511 * instead of buffer_dirty. We should not see a dirty bit set 2512 * here because we clear it in do_get_write_access but e.g. 2513 * tune2fs can modify the sb and set the dirty bit at any time 2514 * so we try to gracefully handle that. 2515 */ 2516 if (buffer_dirty(bh)) 2517 warn_dirty_buffer(bh); 2518 if (test_clear_buffer_dirty(bh) || 2519 test_clear_buffer_jbddirty(bh)) 2520 was_dirty = 1; 2521 } 2522 2523 if (jh->b_transaction) 2524 __jbd2_journal_temp_unlink_buffer(jh); 2525 else 2526 jbd2_journal_grab_journal_head(bh); 2527 jh->b_transaction = transaction; 2528 2529 switch (jlist) { 2530 case BJ_None: 2531 J_ASSERT_JH(jh, !jh->b_committed_data); 2532 J_ASSERT_JH(jh, !jh->b_frozen_data); 2533 return; 2534 case BJ_Metadata: 2535 transaction->t_nr_buffers++; 2536 list = &transaction->t_buffers; 2537 break; 2538 case BJ_Forget: 2539 list = &transaction->t_forget; 2540 break; 2541 case BJ_Shadow: 2542 list = &transaction->t_shadow_list; 2543 break; 2544 case BJ_Reserved: 2545 list = &transaction->t_reserved_list; 2546 break; 2547 } 2548 2549 __blist_add_buffer(list, jh); 2550 jh->b_jlist = jlist; 2551 2552 if (was_dirty) 2553 set_buffer_jbddirty(bh); 2554} 2555 2556void jbd2_journal_file_buffer(struct journal_head *jh, 2557 transaction_t *transaction, int jlist) 2558{ 2559 spin_lock(&jh->b_state_lock); 2560 spin_lock(&transaction->t_journal->j_list_lock); 2561 __jbd2_journal_file_buffer(jh, transaction, jlist); 2562 spin_unlock(&transaction->t_journal->j_list_lock); 2563 spin_unlock(&jh->b_state_lock); 2564} 2565 2566/* 2567 * Remove a buffer from its current buffer list in preparation for 2568 * dropping it from its current transaction entirely. If the buffer has 2569 * already started to be used by a subsequent transaction, refile the 2570 * buffer on that transaction's metadata list. 2571 * 2572 * Called under j_list_lock 2573 * Called under jh->b_state_lock 2574 * 2575 * When this function returns true, there's no next transaction to refile to 2576 * and the caller has to drop jh reference through 2577 * jbd2_journal_put_journal_head(). 2578 */ 2579bool __jbd2_journal_refile_buffer(struct journal_head *jh) 2580{ 2581 int was_dirty, jlist; 2582 struct buffer_head *bh = jh2bh(jh); 2583 2584 lockdep_assert_held(&jh->b_state_lock); 2585 if (jh->b_transaction) 2586 assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock); 2587 2588 /* If the buffer is now unused, just drop it. */ 2589 if (jh->b_next_transaction == NULL) { 2590 __jbd2_journal_unfile_buffer(jh); 2591 return true; 2592 } 2593 2594 /* 2595 * It has been modified by a later transaction: add it to the new 2596 * transaction's metadata list. 2597 */ 2598 2599 was_dirty = test_clear_buffer_jbddirty(bh); 2600 __jbd2_journal_temp_unlink_buffer(jh); 2601 2602 /* 2603 * b_transaction must be set, otherwise the new b_transaction won't 2604 * be holding jh reference 2605 */ 2606 J_ASSERT_JH(jh, jh->b_transaction != NULL); 2607 2608 /* 2609 * We set b_transaction here because b_next_transaction will inherit 2610 * our jh reference and thus __jbd2_journal_file_buffer() must not 2611 * take a new one. 2612 */ 2613 WRITE_ONCE(jh->b_transaction, jh->b_next_transaction); 2614 WRITE_ONCE(jh->b_next_transaction, NULL); 2615 if (buffer_freed(bh)) 2616 jlist = BJ_Forget; 2617 else if (jh->b_modified) 2618 jlist = BJ_Metadata; 2619 else 2620 jlist = BJ_Reserved; 2621 __jbd2_journal_file_buffer(jh, jh->b_transaction, jlist); 2622 J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING); 2623 2624 if (was_dirty) 2625 set_buffer_jbddirty(bh); 2626 return false; 2627} 2628 2629/* 2630 * __jbd2_journal_refile_buffer() with necessary locking added. We take our 2631 * bh reference so that we can safely unlock bh. 2632 * 2633 * The jh and bh may be freed by this call. 2634 */ 2635void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh) 2636{ 2637 bool drop; 2638 2639 spin_lock(&jh->b_state_lock); 2640 spin_lock(&journal->j_list_lock); 2641 drop = __jbd2_journal_refile_buffer(jh); 2642 spin_unlock(&jh->b_state_lock); 2643 spin_unlock(&journal->j_list_lock); 2644 if (drop) 2645 jbd2_journal_put_journal_head(jh); 2646} 2647 2648/* 2649 * File inode in the inode list of the handle's transaction 2650 */ 2651static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode, 2652 unsigned long flags, loff_t start_byte, loff_t end_byte) 2653{ 2654 transaction_t *transaction = handle->h_transaction; 2655 journal_t *journal; 2656 2657 if (is_handle_aborted(handle)) 2658 return -EROFS; 2659 journal = transaction->t_journal; 2660 2661 jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino, 2662 transaction->t_tid); 2663 2664 spin_lock(&journal->j_list_lock); 2665 jinode->i_flags |= flags; 2666 2667 if (jinode->i_dirty_end) { 2668 jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte); 2669 jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte); 2670 } else { 2671 jinode->i_dirty_start = start_byte; 2672 jinode->i_dirty_end = end_byte; 2673 } 2674 2675 /* Is inode already attached where we need it? */ 2676 if (jinode->i_transaction == transaction || 2677 jinode->i_next_transaction == transaction) 2678 goto done; 2679 2680 /* 2681 * We only ever set this variable to 1 so the test is safe. Since 2682 * t_need_data_flush is likely to be set, we do the test to save some 2683 * cacheline bouncing 2684 */ 2685 if (!transaction->t_need_data_flush) 2686 transaction->t_need_data_flush = 1; 2687 /* On some different transaction's list - should be 2688 * the committing one */ 2689 if (jinode->i_transaction) { 2690 J_ASSERT(jinode->i_next_transaction == NULL); 2691 J_ASSERT(jinode->i_transaction == 2692 journal->j_committing_transaction); 2693 jinode->i_next_transaction = transaction; 2694 goto done; 2695 } 2696 /* Not on any transaction list... */ 2697 J_ASSERT(!jinode->i_next_transaction); 2698 jinode->i_transaction = transaction; 2699 list_add(&jinode->i_list, &transaction->t_inode_list); 2700done: 2701 spin_unlock(&journal->j_list_lock); 2702 2703 return 0; 2704} 2705 2706int jbd2_journal_inode_ranged_write(handle_t *handle, 2707 struct jbd2_inode *jinode, loff_t start_byte, loff_t length) 2708{ 2709 return jbd2_journal_file_inode(handle, jinode, 2710 JI_WRITE_DATA | JI_WAIT_DATA, start_byte, 2711 start_byte + length - 1); 2712} 2713 2714int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode, 2715 loff_t start_byte, loff_t length) 2716{ 2717 return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA, 2718 start_byte, start_byte + length - 1); 2719} 2720 2721/* 2722 * File truncate and transaction commit interact with each other in a 2723 * non-trivial way. If a transaction writing data block A is 2724 * committing, we cannot discard the data by truncate until we have 2725 * written them. Otherwise if we crashed after the transaction with 2726 * write has committed but before the transaction with truncate has 2727 * committed, we could see stale data in block A. This function is a 2728 * helper to solve this problem. It starts writeout of the truncated 2729 * part in case it is in the committing transaction. 2730 * 2731 * Filesystem code must call this function when inode is journaled in 2732 * ordered mode before truncation happens and after the inode has been 2733 * placed on orphan list with the new inode size. The second condition 2734 * avoids the race that someone writes new data and we start 2735 * committing the transaction after this function has been called but 2736 * before a transaction for truncate is started (and furthermore it 2737 * allows us to optimize the case where the addition to orphan list 2738 * happens in the same transaction as write --- we don't have to write 2739 * any data in such case). 2740 */ 2741int jbd2_journal_begin_ordered_truncate(journal_t *journal, 2742 struct jbd2_inode *jinode, 2743 loff_t new_size) 2744{ 2745 transaction_t *inode_trans, *commit_trans; 2746 int ret = 0; 2747 2748 /* This is a quick check to avoid locking if not necessary */ 2749 if (!jinode->i_transaction) 2750 goto out; 2751 /* Locks are here just to force reading of recent values, it is 2752 * enough that the transaction was not committing before we started 2753 * a transaction adding the inode to orphan list */ 2754 read_lock(&journal->j_state_lock); 2755 commit_trans = journal->j_committing_transaction; 2756 read_unlock(&journal->j_state_lock); 2757 spin_lock(&journal->j_list_lock); 2758 inode_trans = jinode->i_transaction; 2759 spin_unlock(&journal->j_list_lock); 2760 if (inode_trans == commit_trans) { 2761 ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping, 2762 new_size, LLONG_MAX); 2763 if (ret) 2764 jbd2_journal_abort(journal, ret); 2765 } 2766out: 2767 return ret; 2768} 2769