xref: /kernel/linux/linux-5.10/fs/jbd2/transaction.c (revision 8c2ecf20)
1// SPDX-License-Identifier: GPL-2.0+
2/*
3 * linux/fs/jbd2/transaction.c
4 *
5 * Written by Stephen C. Tweedie <sct@redhat.com>, 1998
6 *
7 * Copyright 1998 Red Hat corp --- All Rights Reserved
8 *
9 * Generic filesystem transaction handling code; part of the ext2fs
10 * journaling system.
11 *
12 * This file manages transactions (compound commits managed by the
13 * journaling code) and handles (individual atomic operations by the
14 * filesystem).
15 */
16
17#include <linux/time.h>
18#include <linux/fs.h>
19#include <linux/jbd2.h>
20#include <linux/errno.h>
21#include <linux/slab.h>
22#include <linux/timer.h>
23#include <linux/mm.h>
24#include <linux/highmem.h>
25#include <linux/hrtimer.h>
26#include <linux/backing-dev.h>
27#include <linux/bug.h>
28#include <linux/module.h>
29#include <linux/sched/mm.h>
30
31#include <trace/events/jbd2.h>
32
33static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh);
34static void __jbd2_journal_unfile_buffer(struct journal_head *jh);
35
36static struct kmem_cache *transaction_cache;
37int __init jbd2_journal_init_transaction_cache(void)
38{
39	J_ASSERT(!transaction_cache);
40	transaction_cache = kmem_cache_create("jbd2_transaction_s",
41					sizeof(transaction_t),
42					0,
43					SLAB_HWCACHE_ALIGN|SLAB_TEMPORARY,
44					NULL);
45	if (!transaction_cache) {
46		pr_emerg("JBD2: failed to create transaction cache\n");
47		return -ENOMEM;
48	}
49	return 0;
50}
51
52void jbd2_journal_destroy_transaction_cache(void)
53{
54	kmem_cache_destroy(transaction_cache);
55	transaction_cache = NULL;
56}
57
58void jbd2_journal_free_transaction(transaction_t *transaction)
59{
60	if (unlikely(ZERO_OR_NULL_PTR(transaction)))
61		return;
62	kmem_cache_free(transaction_cache, transaction);
63}
64
65/*
66 * Base amount of descriptor blocks we reserve for each transaction.
67 */
68static int jbd2_descriptor_blocks_per_trans(journal_t *journal)
69{
70	int tag_space = journal->j_blocksize - sizeof(journal_header_t);
71	int tags_per_block;
72
73	/* Subtract UUID */
74	tag_space -= 16;
75	if (jbd2_journal_has_csum_v2or3(journal))
76		tag_space -= sizeof(struct jbd2_journal_block_tail);
77	/* Commit code leaves a slack space of 16 bytes at the end of block */
78	tags_per_block = (tag_space - 16) / journal_tag_bytes(journal);
79	/*
80	 * Revoke descriptors are accounted separately so we need to reserve
81	 * space for commit block and normal transaction descriptor blocks.
82	 */
83	return 1 + DIV_ROUND_UP(journal->j_max_transaction_buffers,
84				tags_per_block);
85}
86
87/*
88 * jbd2_get_transaction: obtain a new transaction_t object.
89 *
90 * Simply initialise a new transaction. Initialize it in
91 * RUNNING state and add it to the current journal (which should not
92 * have an existing running transaction: we only make a new transaction
93 * once we have started to commit the old one).
94 *
95 * Preconditions:
96 *	The journal MUST be locked.  We don't perform atomic mallocs on the
97 *	new transaction	and we can't block without protecting against other
98 *	processes trying to touch the journal while it is in transition.
99 *
100 */
101
102static void jbd2_get_transaction(journal_t *journal,
103				transaction_t *transaction)
104{
105	transaction->t_journal = journal;
106	transaction->t_state = T_RUNNING;
107	transaction->t_start_time = ktime_get();
108	transaction->t_tid = journal->j_transaction_sequence++;
109	transaction->t_expires = jiffies + journal->j_commit_interval;
110	spin_lock_init(&transaction->t_handle_lock);
111	atomic_set(&transaction->t_updates, 0);
112	atomic_set(&transaction->t_outstanding_credits,
113		   jbd2_descriptor_blocks_per_trans(journal) +
114		   atomic_read(&journal->j_reserved_credits));
115	atomic_set(&transaction->t_outstanding_revokes, 0);
116	atomic_set(&transaction->t_handle_count, 0);
117	INIT_LIST_HEAD(&transaction->t_inode_list);
118	INIT_LIST_HEAD(&transaction->t_private_list);
119
120	/* Set up the commit timer for the new transaction. */
121	journal->j_commit_timer.expires = round_jiffies_up(transaction->t_expires);
122	add_timer(&journal->j_commit_timer);
123
124	J_ASSERT(journal->j_running_transaction == NULL);
125	journal->j_running_transaction = transaction;
126	transaction->t_max_wait = 0;
127	transaction->t_start = jiffies;
128	transaction->t_requested = 0;
129}
130
131/*
132 * Handle management.
133 *
134 * A handle_t is an object which represents a single atomic update to a
135 * filesystem, and which tracks all of the modifications which form part
136 * of that one update.
137 */
138
139/*
140 * Update transaction's maximum wait time, if debugging is enabled.
141 *
142 * In order for t_max_wait to be reliable, it must be protected by a
143 * lock.  But doing so will mean that start_this_handle() can not be
144 * run in parallel on SMP systems, which limits our scalability.  So
145 * unless debugging is enabled, we no longer update t_max_wait, which
146 * means that maximum wait time reported by the jbd2_run_stats
147 * tracepoint will always be zero.
148 */
149static inline void update_t_max_wait(transaction_t *transaction,
150				     unsigned long ts)
151{
152#ifdef CONFIG_JBD2_DEBUG
153	if (jbd2_journal_enable_debug &&
154	    time_after(transaction->t_start, ts)) {
155		ts = jbd2_time_diff(ts, transaction->t_start);
156		spin_lock(&transaction->t_handle_lock);
157		if (ts > transaction->t_max_wait)
158			transaction->t_max_wait = ts;
159		spin_unlock(&transaction->t_handle_lock);
160	}
161#endif
162}
163
164/*
165 * Wait until running transaction passes to T_FLUSH state and new transaction
166 * can thus be started. Also starts the commit if needed. The function expects
167 * running transaction to exist and releases j_state_lock.
168 */
169static void wait_transaction_locked(journal_t *journal)
170	__releases(journal->j_state_lock)
171{
172	DEFINE_WAIT(wait);
173	int need_to_start;
174	tid_t tid = journal->j_running_transaction->t_tid;
175
176	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
177			TASK_UNINTERRUPTIBLE);
178	need_to_start = !tid_geq(journal->j_commit_request, tid);
179	read_unlock(&journal->j_state_lock);
180	if (need_to_start)
181		jbd2_log_start_commit(journal, tid);
182	jbd2_might_wait_for_commit(journal);
183	schedule();
184	finish_wait(&journal->j_wait_transaction_locked, &wait);
185}
186
187/*
188 * Wait until running transaction transitions from T_SWITCH to T_FLUSH
189 * state and new transaction can thus be started. The function releases
190 * j_state_lock.
191 */
192static void wait_transaction_switching(journal_t *journal)
193	__releases(journal->j_state_lock)
194{
195	DEFINE_WAIT(wait);
196
197	if (WARN_ON(!journal->j_running_transaction ||
198		    journal->j_running_transaction->t_state != T_SWITCH)) {
199		read_unlock(&journal->j_state_lock);
200		return;
201	}
202	prepare_to_wait_exclusive(&journal->j_wait_transaction_locked, &wait,
203			TASK_UNINTERRUPTIBLE);
204	read_unlock(&journal->j_state_lock);
205	/*
206	 * We don't call jbd2_might_wait_for_commit() here as there's no
207	 * waiting for outstanding handles happening anymore in T_SWITCH state
208	 * and handling of reserved handles actually relies on that for
209	 * correctness.
210	 */
211	schedule();
212	finish_wait(&journal->j_wait_transaction_locked, &wait);
213}
214
215static void sub_reserved_credits(journal_t *journal, int blocks)
216{
217	atomic_sub(blocks, &journal->j_reserved_credits);
218	wake_up(&journal->j_wait_reserved);
219}
220
221/*
222 * Wait until we can add credits for handle to the running transaction.  Called
223 * with j_state_lock held for reading. Returns 0 if handle joined the running
224 * transaction. Returns 1 if we had to wait, j_state_lock is dropped, and
225 * caller must retry.
226 */
227static int add_transaction_credits(journal_t *journal, int blocks,
228				   int rsv_blocks)
229{
230	transaction_t *t = journal->j_running_transaction;
231	int needed;
232	int total = blocks + rsv_blocks;
233
234	/*
235	 * If the current transaction is locked down for commit, wait
236	 * for the lock to be released.
237	 */
238	if (t->t_state != T_RUNNING) {
239		WARN_ON_ONCE(t->t_state >= T_FLUSH);
240		wait_transaction_locked(journal);
241		return 1;
242	}
243
244	/*
245	 * If there is not enough space left in the log to write all
246	 * potential buffers requested by this operation, we need to
247	 * stall pending a log checkpoint to free some more log space.
248	 */
249	needed = atomic_add_return(total, &t->t_outstanding_credits);
250	if (needed > journal->j_max_transaction_buffers) {
251		/*
252		 * If the current transaction is already too large,
253		 * then start to commit it: we can then go back and
254		 * attach this handle to a new transaction.
255		 */
256		atomic_sub(total, &t->t_outstanding_credits);
257
258		/*
259		 * Is the number of reserved credits in the current transaction too
260		 * big to fit this handle? Wait until reserved credits are freed.
261		 */
262		if (atomic_read(&journal->j_reserved_credits) + total >
263		    journal->j_max_transaction_buffers) {
264			read_unlock(&journal->j_state_lock);
265			jbd2_might_wait_for_commit(journal);
266			wait_event(journal->j_wait_reserved,
267				   atomic_read(&journal->j_reserved_credits) + total <=
268				   journal->j_max_transaction_buffers);
269			return 1;
270		}
271
272		wait_transaction_locked(journal);
273		return 1;
274	}
275
276	/*
277	 * The commit code assumes that it can get enough log space
278	 * without forcing a checkpoint.  This is *critical* for
279	 * correctness: a checkpoint of a buffer which is also
280	 * associated with a committing transaction creates a deadlock,
281	 * so commit simply cannot force through checkpoints.
282	 *
283	 * We must therefore ensure the necessary space in the journal
284	 * *before* starting to dirty potentially checkpointed buffers
285	 * in the new transaction.
286	 */
287	if (jbd2_log_space_left(journal) < journal->j_max_transaction_buffers) {
288		atomic_sub(total, &t->t_outstanding_credits);
289		read_unlock(&journal->j_state_lock);
290		jbd2_might_wait_for_commit(journal);
291		write_lock(&journal->j_state_lock);
292		if (jbd2_log_space_left(journal) <
293					journal->j_max_transaction_buffers)
294			__jbd2_log_wait_for_space(journal);
295		write_unlock(&journal->j_state_lock);
296		return 1;
297	}
298
299	/* No reservation? We are done... */
300	if (!rsv_blocks)
301		return 0;
302
303	needed = atomic_add_return(rsv_blocks, &journal->j_reserved_credits);
304	/* We allow at most half of a transaction to be reserved */
305	if (needed > journal->j_max_transaction_buffers / 2) {
306		sub_reserved_credits(journal, rsv_blocks);
307		atomic_sub(total, &t->t_outstanding_credits);
308		read_unlock(&journal->j_state_lock);
309		jbd2_might_wait_for_commit(journal);
310		wait_event(journal->j_wait_reserved,
311			 atomic_read(&journal->j_reserved_credits) + rsv_blocks
312			 <= journal->j_max_transaction_buffers / 2);
313		return 1;
314	}
315	return 0;
316}
317
318/*
319 * start_this_handle: Given a handle, deal with any locking or stalling
320 * needed to make sure that there is enough journal space for the handle
321 * to begin.  Attach the handle to a transaction and set up the
322 * transaction's buffer credits.
323 */
324
325static int start_this_handle(journal_t *journal, handle_t *handle,
326			     gfp_t gfp_mask)
327{
328	transaction_t	*transaction, *new_transaction = NULL;
329	int		blocks = handle->h_total_credits;
330	int		rsv_blocks = 0;
331	unsigned long ts = jiffies;
332
333	if (handle->h_rsv_handle)
334		rsv_blocks = handle->h_rsv_handle->h_total_credits;
335
336	/*
337	 * Limit the number of reserved credits to 1/2 of maximum transaction
338	 * size and limit the number of total credits to not exceed maximum
339	 * transaction size per operation.
340	 */
341	if ((rsv_blocks > journal->j_max_transaction_buffers / 2) ||
342	    (rsv_blocks + blocks > journal->j_max_transaction_buffers)) {
343		printk(KERN_ERR "JBD2: %s wants too many credits "
344		       "credits:%d rsv_credits:%d max:%d\n",
345		       current->comm, blocks, rsv_blocks,
346		       journal->j_max_transaction_buffers);
347		WARN_ON(1);
348		return -ENOSPC;
349	}
350
351alloc_transaction:
352	/*
353	 * This check is racy but it is just an optimization of allocating new
354	 * transaction early if there are high chances we'll need it. If we
355	 * guess wrong, we'll retry or free unused transaction.
356	 */
357	if (!data_race(journal->j_running_transaction)) {
358		/*
359		 * If __GFP_FS is not present, then we may be being called from
360		 * inside the fs writeback layer, so we MUST NOT fail.
361		 */
362		if ((gfp_mask & __GFP_FS) == 0)
363			gfp_mask |= __GFP_NOFAIL;
364		new_transaction = kmem_cache_zalloc(transaction_cache,
365						    gfp_mask);
366		if (!new_transaction)
367			return -ENOMEM;
368	}
369
370	jbd_debug(3, "New handle %p going live.\n", handle);
371
372	/*
373	 * We need to hold j_state_lock until t_updates has been incremented,
374	 * for proper journal barrier handling
375	 */
376repeat:
377	read_lock(&journal->j_state_lock);
378	BUG_ON(journal->j_flags & JBD2_UNMOUNT);
379	if (is_journal_aborted(journal) ||
380	    (journal->j_errno != 0 && !(journal->j_flags & JBD2_ACK_ERR))) {
381		read_unlock(&journal->j_state_lock);
382		jbd2_journal_free_transaction(new_transaction);
383		return -EROFS;
384	}
385
386	/*
387	 * Wait on the journal's transaction barrier if necessary. Specifically
388	 * we allow reserved handles to proceed because otherwise commit could
389	 * deadlock on page writeback not being able to complete.
390	 */
391	if (!handle->h_reserved && journal->j_barrier_count) {
392		read_unlock(&journal->j_state_lock);
393		wait_event(journal->j_wait_transaction_locked,
394				journal->j_barrier_count == 0);
395		goto repeat;
396	}
397
398	if (!journal->j_running_transaction) {
399		read_unlock(&journal->j_state_lock);
400		if (!new_transaction)
401			goto alloc_transaction;
402		write_lock(&journal->j_state_lock);
403		if (!journal->j_running_transaction &&
404		    (handle->h_reserved || !journal->j_barrier_count)) {
405			jbd2_get_transaction(journal, new_transaction);
406			new_transaction = NULL;
407		}
408		write_unlock(&journal->j_state_lock);
409		goto repeat;
410	}
411
412	transaction = journal->j_running_transaction;
413
414	if (!handle->h_reserved) {
415		/* We may have dropped j_state_lock - restart in that case */
416		if (add_transaction_credits(journal, blocks, rsv_blocks))
417			goto repeat;
418	} else {
419		/*
420		 * We have handle reserved so we are allowed to join T_LOCKED
421		 * transaction and we don't have to check for transaction size
422		 * and journal space. But we still have to wait while running
423		 * transaction is being switched to a committing one as it
424		 * won't wait for any handles anymore.
425		 */
426		if (transaction->t_state == T_SWITCH) {
427			wait_transaction_switching(journal);
428			goto repeat;
429		}
430		sub_reserved_credits(journal, blocks);
431		handle->h_reserved = 0;
432	}
433
434	/* OK, account for the buffers that this operation expects to
435	 * use and add the handle to the running transaction.
436	 */
437	update_t_max_wait(transaction, ts);
438	handle->h_transaction = transaction;
439	handle->h_requested_credits = blocks;
440	handle->h_revoke_credits_requested = handle->h_revoke_credits;
441	handle->h_start_jiffies = jiffies;
442	atomic_inc(&transaction->t_updates);
443	atomic_inc(&transaction->t_handle_count);
444	jbd_debug(4, "Handle %p given %d credits (total %d, free %lu)\n",
445		  handle, blocks,
446		  atomic_read(&transaction->t_outstanding_credits),
447		  jbd2_log_space_left(journal));
448	read_unlock(&journal->j_state_lock);
449	current->journal_info = handle;
450
451	rwsem_acquire_read(&journal->j_trans_commit_map, 0, 0, _THIS_IP_);
452	jbd2_journal_free_transaction(new_transaction);
453	/*
454	 * Ensure that no allocations done while the transaction is open are
455	 * going to recurse back to the fs layer.
456	 */
457	handle->saved_alloc_context = memalloc_nofs_save();
458	return 0;
459}
460
461/* Allocate a new handle.  This should probably be in a slab... */
462static handle_t *new_handle(int nblocks)
463{
464	handle_t *handle = jbd2_alloc_handle(GFP_NOFS);
465	if (!handle)
466		return NULL;
467	handle->h_total_credits = nblocks;
468	handle->h_ref = 1;
469
470	return handle;
471}
472
473handle_t *jbd2__journal_start(journal_t *journal, int nblocks, int rsv_blocks,
474			      int revoke_records, gfp_t gfp_mask,
475			      unsigned int type, unsigned int line_no)
476{
477	handle_t *handle = journal_current_handle();
478	int err;
479
480	if (!journal)
481		return ERR_PTR(-EROFS);
482
483	if (handle) {
484		J_ASSERT(handle->h_transaction->t_journal == journal);
485		handle->h_ref++;
486		return handle;
487	}
488
489	nblocks += DIV_ROUND_UP(revoke_records,
490				journal->j_revoke_records_per_block);
491	handle = new_handle(nblocks);
492	if (!handle)
493		return ERR_PTR(-ENOMEM);
494	if (rsv_blocks) {
495		handle_t *rsv_handle;
496
497		rsv_handle = new_handle(rsv_blocks);
498		if (!rsv_handle) {
499			jbd2_free_handle(handle);
500			return ERR_PTR(-ENOMEM);
501		}
502		rsv_handle->h_reserved = 1;
503		rsv_handle->h_journal = journal;
504		handle->h_rsv_handle = rsv_handle;
505	}
506	handle->h_revoke_credits = revoke_records;
507
508	err = start_this_handle(journal, handle, gfp_mask);
509	if (err < 0) {
510		if (handle->h_rsv_handle)
511			jbd2_free_handle(handle->h_rsv_handle);
512		jbd2_free_handle(handle);
513		return ERR_PTR(err);
514	}
515	handle->h_type = type;
516	handle->h_line_no = line_no;
517	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
518				handle->h_transaction->t_tid, type,
519				line_no, nblocks);
520
521	return handle;
522}
523EXPORT_SYMBOL(jbd2__journal_start);
524
525
526/**
527 * jbd2_journal_start() - Obtain a new handle.
528 * @journal: Journal to start transaction on.
529 * @nblocks: number of block buffer we might modify
530 *
531 * We make sure that the transaction can guarantee at least nblocks of
532 * modified buffers in the log.  We block until the log can guarantee
533 * that much space. Additionally, if rsv_blocks > 0, we also create another
534 * handle with rsv_blocks reserved blocks in the journal. This handle is
535 * stored in h_rsv_handle. It is not attached to any particular transaction
536 * and thus doesn't block transaction commit. If the caller uses this reserved
537 * handle, it has to set h_rsv_handle to NULL as otherwise jbd2_journal_stop()
538 * on the parent handle will dispose the reserved one. Reserved handle has to
539 * be converted to a normal handle using jbd2_journal_start_reserved() before
540 * it can be used.
541 *
542 * Return a pointer to a newly allocated handle, or an ERR_PTR() value
543 * on failure.
544 */
545handle_t *jbd2_journal_start(journal_t *journal, int nblocks)
546{
547	return jbd2__journal_start(journal, nblocks, 0, 0, GFP_NOFS, 0, 0);
548}
549EXPORT_SYMBOL(jbd2_journal_start);
550
551static void __jbd2_journal_unreserve_handle(handle_t *handle, transaction_t *t)
552{
553	journal_t *journal = handle->h_journal;
554
555	WARN_ON(!handle->h_reserved);
556	sub_reserved_credits(journal, handle->h_total_credits);
557	if (t)
558		atomic_sub(handle->h_total_credits, &t->t_outstanding_credits);
559}
560
561void jbd2_journal_free_reserved(handle_t *handle)
562{
563	journal_t *journal = handle->h_journal;
564
565	/* Get j_state_lock to pin running transaction if it exists */
566	read_lock(&journal->j_state_lock);
567	__jbd2_journal_unreserve_handle(handle, journal->j_running_transaction);
568	read_unlock(&journal->j_state_lock);
569	jbd2_free_handle(handle);
570}
571EXPORT_SYMBOL(jbd2_journal_free_reserved);
572
573/**
574 * jbd2_journal_start_reserved() - start reserved handle
575 * @handle: handle to start
576 * @type: for handle statistics
577 * @line_no: for handle statistics
578 *
579 * Start handle that has been previously reserved with jbd2_journal_reserve().
580 * This attaches @handle to the running transaction (or creates one if there's
581 * not transaction running). Unlike jbd2_journal_start() this function cannot
582 * block on journal commit, checkpointing, or similar stuff. It can block on
583 * memory allocation or frozen journal though.
584 *
585 * Return 0 on success, non-zero on error - handle is freed in that case.
586 */
587int jbd2_journal_start_reserved(handle_t *handle, unsigned int type,
588				unsigned int line_no)
589{
590	journal_t *journal = handle->h_journal;
591	int ret = -EIO;
592
593	if (WARN_ON(!handle->h_reserved)) {
594		/* Someone passed in normal handle? Just stop it. */
595		jbd2_journal_stop(handle);
596		return ret;
597	}
598	/*
599	 * Usefulness of mixing of reserved and unreserved handles is
600	 * questionable. So far nobody seems to need it so just error out.
601	 */
602	if (WARN_ON(current->journal_info)) {
603		jbd2_journal_free_reserved(handle);
604		return ret;
605	}
606
607	handle->h_journal = NULL;
608	/*
609	 * GFP_NOFS is here because callers are likely from writeback or
610	 * similarly constrained call sites
611	 */
612	ret = start_this_handle(journal, handle, GFP_NOFS);
613	if (ret < 0) {
614		handle->h_journal = journal;
615		jbd2_journal_free_reserved(handle);
616		return ret;
617	}
618	handle->h_type = type;
619	handle->h_line_no = line_no;
620	trace_jbd2_handle_start(journal->j_fs_dev->bd_dev,
621				handle->h_transaction->t_tid, type,
622				line_no, handle->h_total_credits);
623	return 0;
624}
625EXPORT_SYMBOL(jbd2_journal_start_reserved);
626
627/**
628 * jbd2_journal_extend() - extend buffer credits.
629 * @handle:  handle to 'extend'
630 * @nblocks: nr blocks to try to extend by.
631 * @revoke_records: number of revoke records to try to extend by.
632 *
633 * Some transactions, such as large extends and truncates, can be done
634 * atomically all at once or in several stages.  The operation requests
635 * a credit for a number of buffer modifications in advance, but can
636 * extend its credit if it needs more.
637 *
638 * jbd2_journal_extend tries to give the running handle more buffer credits.
639 * It does not guarantee that allocation - this is a best-effort only.
640 * The calling process MUST be able to deal cleanly with a failure to
641 * extend here.
642 *
643 * Return 0 on success, non-zero on failure.
644 *
645 * return code < 0 implies an error
646 * return code > 0 implies normal transaction-full status.
647 */
648int jbd2_journal_extend(handle_t *handle, int nblocks, int revoke_records)
649{
650	transaction_t *transaction = handle->h_transaction;
651	journal_t *journal;
652	int result;
653	int wanted;
654
655	if (is_handle_aborted(handle))
656		return -EROFS;
657	journal = transaction->t_journal;
658
659	result = 1;
660
661	read_lock(&journal->j_state_lock);
662
663	/* Don't extend a locked-down transaction! */
664	if (transaction->t_state != T_RUNNING) {
665		jbd_debug(3, "denied handle %p %d blocks: "
666			  "transaction not running\n", handle, nblocks);
667		goto error_out;
668	}
669
670	nblocks += DIV_ROUND_UP(
671			handle->h_revoke_credits_requested + revoke_records,
672			journal->j_revoke_records_per_block) -
673		DIV_ROUND_UP(
674			handle->h_revoke_credits_requested,
675			journal->j_revoke_records_per_block);
676	spin_lock(&transaction->t_handle_lock);
677	wanted = atomic_add_return(nblocks,
678				   &transaction->t_outstanding_credits);
679
680	if (wanted > journal->j_max_transaction_buffers) {
681		jbd_debug(3, "denied handle %p %d blocks: "
682			  "transaction too large\n", handle, nblocks);
683		atomic_sub(nblocks, &transaction->t_outstanding_credits);
684		goto unlock;
685	}
686
687	trace_jbd2_handle_extend(journal->j_fs_dev->bd_dev,
688				 transaction->t_tid,
689				 handle->h_type, handle->h_line_no,
690				 handle->h_total_credits,
691				 nblocks);
692
693	handle->h_total_credits += nblocks;
694	handle->h_requested_credits += nblocks;
695	handle->h_revoke_credits += revoke_records;
696	handle->h_revoke_credits_requested += revoke_records;
697	result = 0;
698
699	jbd_debug(3, "extended handle %p by %d\n", handle, nblocks);
700unlock:
701	spin_unlock(&transaction->t_handle_lock);
702error_out:
703	read_unlock(&journal->j_state_lock);
704	return result;
705}
706
707static void stop_this_handle(handle_t *handle)
708{
709	transaction_t *transaction = handle->h_transaction;
710	journal_t *journal = transaction->t_journal;
711	int revokes;
712
713	J_ASSERT(journal_current_handle() == handle);
714	J_ASSERT(atomic_read(&transaction->t_updates) > 0);
715	current->journal_info = NULL;
716	/*
717	 * Subtract necessary revoke descriptor blocks from handle credits. We
718	 * take care to account only for revoke descriptor blocks the
719	 * transaction will really need as large sequences of transactions with
720	 * small numbers of revokes are relatively common.
721	 */
722	revokes = handle->h_revoke_credits_requested - handle->h_revoke_credits;
723	if (revokes) {
724		int t_revokes, revoke_descriptors;
725		int rr_per_blk = journal->j_revoke_records_per_block;
726
727		WARN_ON_ONCE(DIV_ROUND_UP(revokes, rr_per_blk)
728				> handle->h_total_credits);
729		t_revokes = atomic_add_return(revokes,
730				&transaction->t_outstanding_revokes);
731		revoke_descriptors =
732			DIV_ROUND_UP(t_revokes, rr_per_blk) -
733			DIV_ROUND_UP(t_revokes - revokes, rr_per_blk);
734		handle->h_total_credits -= revoke_descriptors;
735	}
736	atomic_sub(handle->h_total_credits,
737		   &transaction->t_outstanding_credits);
738	if (handle->h_rsv_handle)
739		__jbd2_journal_unreserve_handle(handle->h_rsv_handle,
740						transaction);
741	if (atomic_dec_and_test(&transaction->t_updates))
742		wake_up(&journal->j_wait_updates);
743
744	rwsem_release(&journal->j_trans_commit_map, _THIS_IP_);
745	/*
746	 * Scope of the GFP_NOFS context is over here and so we can restore the
747	 * original alloc context.
748	 */
749	memalloc_nofs_restore(handle->saved_alloc_context);
750}
751
752/**
753 * jbd2__journal_restart() - restart a handle .
754 * @handle:  handle to restart
755 * @nblocks: nr credits requested
756 * @revoke_records: number of revoke record credits requested
757 * @gfp_mask: memory allocation flags (for start_this_handle)
758 *
759 * Restart a handle for a multi-transaction filesystem
760 * operation.
761 *
762 * If the jbd2_journal_extend() call above fails to grant new buffer credits
763 * to a running handle, a call to jbd2_journal_restart will commit the
764 * handle's transaction so far and reattach the handle to a new
765 * transaction capable of guaranteeing the requested number of
766 * credits. We preserve reserved handle if there's any attached to the
767 * passed in handle.
768 */
769int jbd2__journal_restart(handle_t *handle, int nblocks, int revoke_records,
770			  gfp_t gfp_mask)
771{
772	transaction_t *transaction = handle->h_transaction;
773	journal_t *journal;
774	tid_t		tid;
775	int		need_to_start;
776	int		ret;
777
778	/* If we've had an abort of any type, don't even think about
779	 * actually doing the restart! */
780	if (is_handle_aborted(handle))
781		return 0;
782	journal = transaction->t_journal;
783	tid = transaction->t_tid;
784
785	/*
786	 * First unlink the handle from its current transaction, and start the
787	 * commit on that.
788	 */
789	jbd_debug(2, "restarting handle %p\n", handle);
790	stop_this_handle(handle);
791	handle->h_transaction = NULL;
792
793	/*
794	 * TODO: If we use READ_ONCE / WRITE_ONCE for j_commit_request we can
795 	 * get rid of pointless j_state_lock traffic like this.
796	 */
797	read_lock(&journal->j_state_lock);
798	need_to_start = !tid_geq(journal->j_commit_request, tid);
799	read_unlock(&journal->j_state_lock);
800	if (need_to_start)
801		jbd2_log_start_commit(journal, tid);
802	handle->h_total_credits = nblocks +
803		DIV_ROUND_UP(revoke_records,
804			     journal->j_revoke_records_per_block);
805	handle->h_revoke_credits = revoke_records;
806	ret = start_this_handle(journal, handle, gfp_mask);
807	trace_jbd2_handle_restart(journal->j_fs_dev->bd_dev,
808				 ret ? 0 : handle->h_transaction->t_tid,
809				 handle->h_type, handle->h_line_no,
810				 handle->h_total_credits);
811	return ret;
812}
813EXPORT_SYMBOL(jbd2__journal_restart);
814
815
816int jbd2_journal_restart(handle_t *handle, int nblocks)
817{
818	return jbd2__journal_restart(handle, nblocks, 0, GFP_NOFS);
819}
820EXPORT_SYMBOL(jbd2_journal_restart);
821
822/**
823 * jbd2_journal_lock_updates () - establish a transaction barrier.
824 * @journal:  Journal to establish a barrier on.
825 *
826 * This locks out any further updates from being started, and blocks
827 * until all existing updates have completed, returning only once the
828 * journal is in a quiescent state with no updates running.
829 *
830 * The journal lock should not be held on entry.
831 */
832void jbd2_journal_lock_updates(journal_t *journal)
833{
834	DEFINE_WAIT(wait);
835
836	jbd2_might_wait_for_commit(journal);
837
838	write_lock(&journal->j_state_lock);
839	++journal->j_barrier_count;
840
841	/* Wait until there are no reserved handles */
842	if (atomic_read(&journal->j_reserved_credits)) {
843		write_unlock(&journal->j_state_lock);
844		wait_event(journal->j_wait_reserved,
845			   atomic_read(&journal->j_reserved_credits) == 0);
846		write_lock(&journal->j_state_lock);
847	}
848
849	/* Wait until there are no running updates */
850	while (1) {
851		transaction_t *transaction = journal->j_running_transaction;
852
853		if (!transaction)
854			break;
855
856		spin_lock(&transaction->t_handle_lock);
857		prepare_to_wait(&journal->j_wait_updates, &wait,
858				TASK_UNINTERRUPTIBLE);
859		if (!atomic_read(&transaction->t_updates)) {
860			spin_unlock(&transaction->t_handle_lock);
861			finish_wait(&journal->j_wait_updates, &wait);
862			break;
863		}
864		spin_unlock(&transaction->t_handle_lock);
865		write_unlock(&journal->j_state_lock);
866		schedule();
867		finish_wait(&journal->j_wait_updates, &wait);
868		write_lock(&journal->j_state_lock);
869	}
870	write_unlock(&journal->j_state_lock);
871
872	/*
873	 * We have now established a barrier against other normal updates, but
874	 * we also need to barrier against other jbd2_journal_lock_updates() calls
875	 * to make sure that we serialise special journal-locked operations
876	 * too.
877	 */
878	mutex_lock(&journal->j_barrier);
879}
880
881/**
882 * jbd2_journal_unlock_updates () - release barrier
883 * @journal:  Journal to release the barrier on.
884 *
885 * Release a transaction barrier obtained with jbd2_journal_lock_updates().
886 *
887 * Should be called without the journal lock held.
888 */
889void jbd2_journal_unlock_updates (journal_t *journal)
890{
891	J_ASSERT(journal->j_barrier_count != 0);
892
893	mutex_unlock(&journal->j_barrier);
894	write_lock(&journal->j_state_lock);
895	--journal->j_barrier_count;
896	write_unlock(&journal->j_state_lock);
897	wake_up_all(&journal->j_wait_transaction_locked);
898}
899
900static void warn_dirty_buffer(struct buffer_head *bh)
901{
902	printk(KERN_WARNING
903	       "JBD2: Spotted dirty metadata buffer (dev = %pg, blocknr = %llu). "
904	       "There's a risk of filesystem corruption in case of system "
905	       "crash.\n",
906	       bh->b_bdev, (unsigned long long)bh->b_blocknr);
907}
908
909/* Call t_frozen trigger and copy buffer data into jh->b_frozen_data. */
910static void jbd2_freeze_jh_data(struct journal_head *jh)
911{
912	struct page *page;
913	int offset;
914	char *source;
915	struct buffer_head *bh = jh2bh(jh);
916
917	J_EXPECT_JH(jh, buffer_uptodate(bh), "Possible IO failure.\n");
918	page = bh->b_page;
919	offset = offset_in_page(bh->b_data);
920	source = kmap_atomic(page);
921	/* Fire data frozen trigger just before we copy the data */
922	jbd2_buffer_frozen_trigger(jh, source + offset, jh->b_triggers);
923	memcpy(jh->b_frozen_data, source + offset, bh->b_size);
924	kunmap_atomic(source);
925
926	/*
927	 * Now that the frozen data is saved off, we need to store any matching
928	 * triggers.
929	 */
930	jh->b_frozen_triggers = jh->b_triggers;
931}
932
933/*
934 * If the buffer is already part of the current transaction, then there
935 * is nothing we need to do.  If it is already part of a prior
936 * transaction which we are still committing to disk, then we need to
937 * make sure that we do not overwrite the old copy: we do copy-out to
938 * preserve the copy going to disk.  We also account the buffer against
939 * the handle's metadata buffer credits (unless the buffer is already
940 * part of the transaction, that is).
941 *
942 */
943static int
944do_get_write_access(handle_t *handle, struct journal_head *jh,
945			int force_copy)
946{
947	struct buffer_head *bh;
948	transaction_t *transaction = handle->h_transaction;
949	journal_t *journal;
950	int error;
951	char *frozen_buffer = NULL;
952	unsigned long start_lock, time_lock;
953
954	journal = transaction->t_journal;
955
956	jbd_debug(5, "journal_head %p, force_copy %d\n", jh, force_copy);
957
958	JBUFFER_TRACE(jh, "entry");
959repeat:
960	bh = jh2bh(jh);
961
962	/* @@@ Need to check for errors here at some point. */
963
964 	start_lock = jiffies;
965	lock_buffer(bh);
966	spin_lock(&jh->b_state_lock);
967
968	/* If it takes too long to lock the buffer, trace it */
969	time_lock = jbd2_time_diff(start_lock, jiffies);
970	if (time_lock > HZ/10)
971		trace_jbd2_lock_buffer_stall(bh->b_bdev->bd_dev,
972			jiffies_to_msecs(time_lock));
973
974	/* We now hold the buffer lock so it is safe to query the buffer
975	 * state.  Is the buffer dirty?
976	 *
977	 * If so, there are two possibilities.  The buffer may be
978	 * non-journaled, and undergoing a quite legitimate writeback.
979	 * Otherwise, it is journaled, and we don't expect dirty buffers
980	 * in that state (the buffers should be marked JBD_Dirty
981	 * instead.)  So either the IO is being done under our own
982	 * control and this is a bug, or it's a third party IO such as
983	 * dump(8) (which may leave the buffer scheduled for read ---
984	 * ie. locked but not dirty) or tune2fs (which may actually have
985	 * the buffer dirtied, ugh.)  */
986
987	if (buffer_dirty(bh) && jh->b_transaction) {
988		warn_dirty_buffer(bh);
989		/*
990		 * We need to clean the dirty flag and we must do it under the
991		 * buffer lock to be sure we don't race with running write-out.
992		 */
993		JBUFFER_TRACE(jh, "Journalling dirty buffer");
994		clear_buffer_dirty(bh);
995		/*
996		 * The buffer is going to be added to BJ_Reserved list now and
997		 * nothing guarantees jbd2_journal_dirty_metadata() will be
998		 * ever called for it. So we need to set jbddirty bit here to
999		 * make sure the buffer is dirtied and written out when the
1000		 * journaling machinery is done with it.
1001		 */
1002		set_buffer_jbddirty(bh);
1003	}
1004
1005	error = -EROFS;
1006	if (is_handle_aborted(handle)) {
1007		spin_unlock(&jh->b_state_lock);
1008		unlock_buffer(bh);
1009		goto out;
1010	}
1011	error = 0;
1012
1013	/*
1014	 * The buffer is already part of this transaction if b_transaction or
1015	 * b_next_transaction points to it
1016	 */
1017	if (jh->b_transaction == transaction ||
1018	    jh->b_next_transaction == transaction) {
1019		unlock_buffer(bh);
1020		goto done;
1021	}
1022
1023	/*
1024	 * this is the first time this transaction is touching this buffer,
1025	 * reset the modified flag
1026	 */
1027	jh->b_modified = 0;
1028
1029	/*
1030	 * If the buffer is not journaled right now, we need to make sure it
1031	 * doesn't get written to disk before the caller actually commits the
1032	 * new data
1033	 */
1034	if (!jh->b_transaction) {
1035		JBUFFER_TRACE(jh, "no transaction");
1036		J_ASSERT_JH(jh, !jh->b_next_transaction);
1037		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1038		/*
1039		 * Make sure all stores to jh (b_modified, b_frozen_data) are
1040		 * visible before attaching it to the running transaction.
1041		 * Paired with barrier in jbd2_write_access_granted()
1042		 */
1043		smp_wmb();
1044		spin_lock(&journal->j_list_lock);
1045		if (test_clear_buffer_dirty(bh)) {
1046			/*
1047			 * Execute buffer dirty clearing and jh->b_transaction
1048			 * assignment under journal->j_list_lock locked to
1049			 * prevent bh being removed from checkpoint list if
1050			 * the buffer is in an intermediate state (not dirty
1051			 * and jh->b_transaction is NULL).
1052			 */
1053			JBUFFER_TRACE(jh, "Journalling dirty buffer");
1054			set_buffer_jbddirty(bh);
1055		}
1056		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1057		spin_unlock(&journal->j_list_lock);
1058		unlock_buffer(bh);
1059		goto done;
1060	}
1061	unlock_buffer(bh);
1062
1063	/*
1064	 * If there is already a copy-out version of this buffer, then we don't
1065	 * need to make another one
1066	 */
1067	if (jh->b_frozen_data) {
1068		JBUFFER_TRACE(jh, "has frozen data");
1069		J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1070		goto attach_next;
1071	}
1072
1073	JBUFFER_TRACE(jh, "owned by older transaction");
1074	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1075	J_ASSERT_JH(jh, jh->b_transaction == journal->j_committing_transaction);
1076
1077	/*
1078	 * There is one case we have to be very careful about.  If the
1079	 * committing transaction is currently writing this buffer out to disk
1080	 * and has NOT made a copy-out, then we cannot modify the buffer
1081	 * contents at all right now.  The essence of copy-out is that it is
1082	 * the extra copy, not the primary copy, which gets journaled.  If the
1083	 * primary copy is already going to disk then we cannot do copy-out
1084	 * here.
1085	 */
1086	if (buffer_shadow(bh)) {
1087		JBUFFER_TRACE(jh, "on shadow: sleep");
1088		spin_unlock(&jh->b_state_lock);
1089		wait_on_bit_io(&bh->b_state, BH_Shadow, TASK_UNINTERRUPTIBLE);
1090		goto repeat;
1091	}
1092
1093	/*
1094	 * Only do the copy if the currently-owning transaction still needs it.
1095	 * If buffer isn't on BJ_Metadata list, the committing transaction is
1096	 * past that stage (here we use the fact that BH_Shadow is set under
1097	 * bh_state lock together with refiling to BJ_Shadow list and at this
1098	 * point we know the buffer doesn't have BH_Shadow set).
1099	 *
1100	 * Subtle point, though: if this is a get_undo_access, then we will be
1101	 * relying on the frozen_data to contain the new value of the
1102	 * committed_data record after the transaction, so we HAVE to force the
1103	 * frozen_data copy in that case.
1104	 */
1105	if (jh->b_jlist == BJ_Metadata || force_copy) {
1106		JBUFFER_TRACE(jh, "generate frozen data");
1107		if (!frozen_buffer) {
1108			JBUFFER_TRACE(jh, "allocate memory for buffer");
1109			spin_unlock(&jh->b_state_lock);
1110			frozen_buffer = jbd2_alloc(jh2bh(jh)->b_size,
1111						   GFP_NOFS | __GFP_NOFAIL);
1112			goto repeat;
1113		}
1114		jh->b_frozen_data = frozen_buffer;
1115		frozen_buffer = NULL;
1116		jbd2_freeze_jh_data(jh);
1117	}
1118attach_next:
1119	/*
1120	 * Make sure all stores to jh (b_modified, b_frozen_data) are visible
1121	 * before attaching it to the running transaction. Paired with barrier
1122	 * in jbd2_write_access_granted()
1123	 */
1124	smp_wmb();
1125	jh->b_next_transaction = transaction;
1126
1127done:
1128	spin_unlock(&jh->b_state_lock);
1129
1130	/*
1131	 * If we are about to journal a buffer, then any revoke pending on it is
1132	 * no longer valid
1133	 */
1134	jbd2_journal_cancel_revoke(handle, jh);
1135
1136out:
1137	if (unlikely(frozen_buffer))	/* It's usually NULL */
1138		jbd2_free(frozen_buffer, bh->b_size);
1139
1140	JBUFFER_TRACE(jh, "exit");
1141	return error;
1142}
1143
1144/* Fast check whether buffer is already attached to the required transaction */
1145static bool jbd2_write_access_granted(handle_t *handle, struct buffer_head *bh,
1146							bool undo)
1147{
1148	struct journal_head *jh;
1149	bool ret = false;
1150
1151	/* Dirty buffers require special handling... */
1152	if (buffer_dirty(bh))
1153		return false;
1154
1155	/*
1156	 * RCU protects us from dereferencing freed pages. So the checks we do
1157	 * are guaranteed not to oops. However the jh slab object can get freed
1158	 * & reallocated while we work with it. So we have to be careful. When
1159	 * we see jh attached to the running transaction, we know it must stay
1160	 * so until the transaction is committed. Thus jh won't be freed and
1161	 * will be attached to the same bh while we run.  However it can
1162	 * happen jh gets freed, reallocated, and attached to the transaction
1163	 * just after we get pointer to it from bh. So we have to be careful
1164	 * and recheck jh still belongs to our bh before we return success.
1165	 */
1166	rcu_read_lock();
1167	if (!buffer_jbd(bh))
1168		goto out;
1169	/* This should be bh2jh() but that doesn't work with inline functions */
1170	jh = READ_ONCE(bh->b_private);
1171	if (!jh)
1172		goto out;
1173	/* For undo access buffer must have data copied */
1174	if (undo && !jh->b_committed_data)
1175		goto out;
1176	if (READ_ONCE(jh->b_transaction) != handle->h_transaction &&
1177	    READ_ONCE(jh->b_next_transaction) != handle->h_transaction)
1178		goto out;
1179	/*
1180	 * There are two reasons for the barrier here:
1181	 * 1) Make sure to fetch b_bh after we did previous checks so that we
1182	 * detect when jh went through free, realloc, attach to transaction
1183	 * while we were checking. Paired with implicit barrier in that path.
1184	 * 2) So that access to bh done after jbd2_write_access_granted()
1185	 * doesn't get reordered and see inconsistent state of concurrent
1186	 * do_get_write_access().
1187	 */
1188	smp_mb();
1189	if (unlikely(jh->b_bh != bh))
1190		goto out;
1191	ret = true;
1192out:
1193	rcu_read_unlock();
1194	return ret;
1195}
1196
1197/**
1198 * jbd2_journal_get_write_access() - notify intent to modify a buffer
1199 *				     for metadata (not data) update.
1200 * @handle: transaction to add buffer modifications to
1201 * @bh:     bh to be used for metadata writes
1202 *
1203 * Returns: error code or 0 on success.
1204 *
1205 * In full data journalling mode the buffer may be of type BJ_AsyncData,
1206 * because we're ``write()ing`` a buffer which is also part of a shared mapping.
1207 */
1208
1209int jbd2_journal_get_write_access(handle_t *handle, struct buffer_head *bh)
1210{
1211	struct journal_head *jh;
1212	int rc;
1213
1214	if (is_handle_aborted(handle))
1215		return -EROFS;
1216
1217	if (jbd2_write_access_granted(handle, bh, false))
1218		return 0;
1219
1220	jh = jbd2_journal_add_journal_head(bh);
1221	/* We do not want to get caught playing with fields which the
1222	 * log thread also manipulates.  Make sure that the buffer
1223	 * completes any outstanding IO before proceeding. */
1224	rc = do_get_write_access(handle, jh, 0);
1225	jbd2_journal_put_journal_head(jh);
1226	return rc;
1227}
1228
1229
1230/*
1231 * When the user wants to journal a newly created buffer_head
1232 * (ie. getblk() returned a new buffer and we are going to populate it
1233 * manually rather than reading off disk), then we need to keep the
1234 * buffer_head locked until it has been completely filled with new
1235 * data.  In this case, we should be able to make the assertion that
1236 * the bh is not already part of an existing transaction.
1237 *
1238 * The buffer should already be locked by the caller by this point.
1239 * There is no lock ranking violation: it was a newly created,
1240 * unlocked buffer beforehand. */
1241
1242/**
1243 * jbd2_journal_get_create_access () - notify intent to use newly created bh
1244 * @handle: transaction to new buffer to
1245 * @bh: new buffer.
1246 *
1247 * Call this if you create a new bh.
1248 */
1249int jbd2_journal_get_create_access(handle_t *handle, struct buffer_head *bh)
1250{
1251	transaction_t *transaction = handle->h_transaction;
1252	journal_t *journal;
1253	struct journal_head *jh = jbd2_journal_add_journal_head(bh);
1254	int err;
1255
1256	jbd_debug(5, "journal_head %p\n", jh);
1257	err = -EROFS;
1258	if (is_handle_aborted(handle))
1259		goto out;
1260	journal = transaction->t_journal;
1261	err = 0;
1262
1263	JBUFFER_TRACE(jh, "entry");
1264	/*
1265	 * The buffer may already belong to this transaction due to pre-zeroing
1266	 * in the filesystem's new_block code.  It may also be on the previous,
1267	 * committing transaction's lists, but it HAS to be in Forget state in
1268	 * that case: the transaction must have deleted the buffer for it to be
1269	 * reused here.
1270	 */
1271	spin_lock(&jh->b_state_lock);
1272	J_ASSERT_JH(jh, (jh->b_transaction == transaction ||
1273		jh->b_transaction == NULL ||
1274		(jh->b_transaction == journal->j_committing_transaction &&
1275			  jh->b_jlist == BJ_Forget)));
1276
1277	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
1278	J_ASSERT_JH(jh, buffer_locked(jh2bh(jh)));
1279
1280	if (jh->b_transaction == NULL) {
1281		/*
1282		 * Previous jbd2_journal_forget() could have left the buffer
1283		 * with jbddirty bit set because it was being committed. When
1284		 * the commit finished, we've filed the buffer for
1285		 * checkpointing and marked it dirty. Now we are reallocating
1286		 * the buffer so the transaction freeing it must have
1287		 * committed and so it's safe to clear the dirty bit.
1288		 */
1289		clear_buffer_dirty(jh2bh(jh));
1290		/* first access by this transaction */
1291		jh->b_modified = 0;
1292
1293		JBUFFER_TRACE(jh, "file as BJ_Reserved");
1294		spin_lock(&journal->j_list_lock);
1295		__jbd2_journal_file_buffer(jh, transaction, BJ_Reserved);
1296		spin_unlock(&journal->j_list_lock);
1297	} else if (jh->b_transaction == journal->j_committing_transaction) {
1298		/* first access by this transaction */
1299		jh->b_modified = 0;
1300
1301		JBUFFER_TRACE(jh, "set next transaction");
1302		spin_lock(&journal->j_list_lock);
1303		jh->b_next_transaction = transaction;
1304		spin_unlock(&journal->j_list_lock);
1305	}
1306	spin_unlock(&jh->b_state_lock);
1307
1308	/*
1309	 * akpm: I added this.  ext3_alloc_branch can pick up new indirect
1310	 * blocks which contain freed but then revoked metadata.  We need
1311	 * to cancel the revoke in case we end up freeing it yet again
1312	 * and the reallocating as data - this would cause a second revoke,
1313	 * which hits an assertion error.
1314	 */
1315	JBUFFER_TRACE(jh, "cancelling revoke");
1316	jbd2_journal_cancel_revoke(handle, jh);
1317out:
1318	jbd2_journal_put_journal_head(jh);
1319	return err;
1320}
1321
1322/**
1323 * jbd2_journal_get_undo_access() -  Notify intent to modify metadata with
1324 *     non-rewindable consequences
1325 * @handle: transaction
1326 * @bh: buffer to undo
1327 *
1328 * Sometimes there is a need to distinguish between metadata which has
1329 * been committed to disk and that which has not.  The ext3fs code uses
1330 * this for freeing and allocating space, we have to make sure that we
1331 * do not reuse freed space until the deallocation has been committed,
1332 * since if we overwrote that space we would make the delete
1333 * un-rewindable in case of a crash.
1334 *
1335 * To deal with that, jbd2_journal_get_undo_access requests write access to a
1336 * buffer for parts of non-rewindable operations such as delete
1337 * operations on the bitmaps.  The journaling code must keep a copy of
1338 * the buffer's contents prior to the undo_access call until such time
1339 * as we know that the buffer has definitely been committed to disk.
1340 *
1341 * We never need to know which transaction the committed data is part
1342 * of, buffers touched here are guaranteed to be dirtied later and so
1343 * will be committed to a new transaction in due course, at which point
1344 * we can discard the old committed data pointer.
1345 *
1346 * Returns error number or 0 on success.
1347 */
1348int jbd2_journal_get_undo_access(handle_t *handle, struct buffer_head *bh)
1349{
1350	int err;
1351	struct journal_head *jh;
1352	char *committed_data = NULL;
1353
1354	if (is_handle_aborted(handle))
1355		return -EROFS;
1356
1357	if (jbd2_write_access_granted(handle, bh, true))
1358		return 0;
1359
1360	jh = jbd2_journal_add_journal_head(bh);
1361	JBUFFER_TRACE(jh, "entry");
1362
1363	/*
1364	 * Do this first --- it can drop the journal lock, so we want to
1365	 * make sure that obtaining the committed_data is done
1366	 * atomically wrt. completion of any outstanding commits.
1367	 */
1368	err = do_get_write_access(handle, jh, 1);
1369	if (err)
1370		goto out;
1371
1372repeat:
1373	if (!jh->b_committed_data)
1374		committed_data = jbd2_alloc(jh2bh(jh)->b_size,
1375					    GFP_NOFS|__GFP_NOFAIL);
1376
1377	spin_lock(&jh->b_state_lock);
1378	if (!jh->b_committed_data) {
1379		/* Copy out the current buffer contents into the
1380		 * preserved, committed copy. */
1381		JBUFFER_TRACE(jh, "generate b_committed data");
1382		if (!committed_data) {
1383			spin_unlock(&jh->b_state_lock);
1384			goto repeat;
1385		}
1386
1387		jh->b_committed_data = committed_data;
1388		committed_data = NULL;
1389		memcpy(jh->b_committed_data, bh->b_data, bh->b_size);
1390	}
1391	spin_unlock(&jh->b_state_lock);
1392out:
1393	jbd2_journal_put_journal_head(jh);
1394	if (unlikely(committed_data))
1395		jbd2_free(committed_data, bh->b_size);
1396	return err;
1397}
1398
1399/**
1400 * jbd2_journal_set_triggers() - Add triggers for commit writeout
1401 * @bh: buffer to trigger on
1402 * @type: struct jbd2_buffer_trigger_type containing the trigger(s).
1403 *
1404 * Set any triggers on this journal_head.  This is always safe, because
1405 * triggers for a committing buffer will be saved off, and triggers for
1406 * a running transaction will match the buffer in that transaction.
1407 *
1408 * Call with NULL to clear the triggers.
1409 */
1410void jbd2_journal_set_triggers(struct buffer_head *bh,
1411			       struct jbd2_buffer_trigger_type *type)
1412{
1413	struct journal_head *jh = jbd2_journal_grab_journal_head(bh);
1414
1415	if (WARN_ON(!jh))
1416		return;
1417	jh->b_triggers = type;
1418	jbd2_journal_put_journal_head(jh);
1419}
1420
1421void jbd2_buffer_frozen_trigger(struct journal_head *jh, void *mapped_data,
1422				struct jbd2_buffer_trigger_type *triggers)
1423{
1424	struct buffer_head *bh = jh2bh(jh);
1425
1426	if (!triggers || !triggers->t_frozen)
1427		return;
1428
1429	triggers->t_frozen(triggers, bh, mapped_data, bh->b_size);
1430}
1431
1432void jbd2_buffer_abort_trigger(struct journal_head *jh,
1433			       struct jbd2_buffer_trigger_type *triggers)
1434{
1435	if (!triggers || !triggers->t_abort)
1436		return;
1437
1438	triggers->t_abort(triggers, jh2bh(jh));
1439}
1440
1441/**
1442 * jbd2_journal_dirty_metadata() -  mark a buffer as containing dirty metadata
1443 * @handle: transaction to add buffer to.
1444 * @bh: buffer to mark
1445 *
1446 * mark dirty metadata which needs to be journaled as part of the current
1447 * transaction.
1448 *
1449 * The buffer must have previously had jbd2_journal_get_write_access()
1450 * called so that it has a valid journal_head attached to the buffer
1451 * head.
1452 *
1453 * The buffer is placed on the transaction's metadata list and is marked
1454 * as belonging to the transaction.
1455 *
1456 * Returns error number or 0 on success.
1457 *
1458 * Special care needs to be taken if the buffer already belongs to the
1459 * current committing transaction (in which case we should have frozen
1460 * data present for that commit).  In that case, we don't relink the
1461 * buffer: that only gets done when the old transaction finally
1462 * completes its commit.
1463 */
1464int jbd2_journal_dirty_metadata(handle_t *handle, struct buffer_head *bh)
1465{
1466	transaction_t *transaction = handle->h_transaction;
1467	journal_t *journal;
1468	struct journal_head *jh;
1469	int ret = 0;
1470
1471	if (!buffer_jbd(bh))
1472		return -EUCLEAN;
1473
1474	/*
1475	 * We don't grab jh reference here since the buffer must be part
1476	 * of the running transaction.
1477	 */
1478	jh = bh2jh(bh);
1479	jbd_debug(5, "journal_head %p\n", jh);
1480	JBUFFER_TRACE(jh, "entry");
1481
1482	/*
1483	 * This and the following assertions are unreliable since we may see jh
1484	 * in inconsistent state unless we grab bh_state lock. But this is
1485	 * crucial to catch bugs so let's do a reliable check until the
1486	 * lockless handling is fully proven.
1487	 */
1488	if (data_race(jh->b_transaction != transaction &&
1489	    jh->b_next_transaction != transaction)) {
1490		spin_lock(&jh->b_state_lock);
1491		J_ASSERT_JH(jh, jh->b_transaction == transaction ||
1492				jh->b_next_transaction == transaction);
1493		spin_unlock(&jh->b_state_lock);
1494	}
1495	if (jh->b_modified == 1) {
1496		/* If it's in our transaction it must be in BJ_Metadata list. */
1497		if (data_race(jh->b_transaction == transaction &&
1498		    jh->b_jlist != BJ_Metadata)) {
1499			spin_lock(&jh->b_state_lock);
1500			if (jh->b_transaction == transaction &&
1501			    jh->b_jlist != BJ_Metadata)
1502				pr_err("JBD2: assertion failure: h_type=%u "
1503				       "h_line_no=%u block_no=%llu jlist=%u\n",
1504				       handle->h_type, handle->h_line_no,
1505				       (unsigned long long) bh->b_blocknr,
1506				       jh->b_jlist);
1507			J_ASSERT_JH(jh, jh->b_transaction != transaction ||
1508					jh->b_jlist == BJ_Metadata);
1509			spin_unlock(&jh->b_state_lock);
1510		}
1511		goto out;
1512	}
1513
1514	journal = transaction->t_journal;
1515	spin_lock(&jh->b_state_lock);
1516
1517	if (is_handle_aborted(handle)) {
1518		/*
1519		 * Check journal aborting with @jh->b_state_lock locked,
1520		 * since 'jh->b_transaction' could be replaced with
1521		 * 'jh->b_next_transaction' during old transaction
1522		 * committing if journal aborted, which may fail
1523		 * assertion on 'jh->b_frozen_data == NULL'.
1524		 */
1525		ret = -EROFS;
1526		goto out_unlock_bh;
1527	}
1528
1529	if (jh->b_modified == 0) {
1530		/*
1531		 * This buffer's got modified and becoming part
1532		 * of the transaction. This needs to be done
1533		 * once a transaction -bzzz
1534		 */
1535		if (WARN_ON_ONCE(jbd2_handle_buffer_credits(handle) <= 0)) {
1536			ret = -ENOSPC;
1537			goto out_unlock_bh;
1538		}
1539		jh->b_modified = 1;
1540		handle->h_total_credits--;
1541	}
1542
1543	/*
1544	 * fastpath, to avoid expensive locking.  If this buffer is already
1545	 * on the running transaction's metadata list there is nothing to do.
1546	 * Nobody can take it off again because there is a handle open.
1547	 * I _think_ we're OK here with SMP barriers - a mistaken decision will
1548	 * result in this test being false, so we go in and take the locks.
1549	 */
1550	if (jh->b_transaction == transaction && jh->b_jlist == BJ_Metadata) {
1551		JBUFFER_TRACE(jh, "fastpath");
1552		if (unlikely(jh->b_transaction !=
1553			     journal->j_running_transaction)) {
1554			printk(KERN_ERR "JBD2: %s: "
1555			       "jh->b_transaction (%llu, %p, %u) != "
1556			       "journal->j_running_transaction (%p, %u)\n",
1557			       journal->j_devname,
1558			       (unsigned long long) bh->b_blocknr,
1559			       jh->b_transaction,
1560			       jh->b_transaction ? jh->b_transaction->t_tid : 0,
1561			       journal->j_running_transaction,
1562			       journal->j_running_transaction ?
1563			       journal->j_running_transaction->t_tid : 0);
1564			ret = -EINVAL;
1565		}
1566		goto out_unlock_bh;
1567	}
1568
1569	set_buffer_jbddirty(bh);
1570
1571	/*
1572	 * Metadata already on the current transaction list doesn't
1573	 * need to be filed.  Metadata on another transaction's list must
1574	 * be committing, and will be refiled once the commit completes:
1575	 * leave it alone for now.
1576	 */
1577	if (jh->b_transaction != transaction) {
1578		JBUFFER_TRACE(jh, "already on other transaction");
1579		if (unlikely(((jh->b_transaction !=
1580			       journal->j_committing_transaction)) ||
1581			     (jh->b_next_transaction != transaction))) {
1582			printk(KERN_ERR "jbd2_journal_dirty_metadata: %s: "
1583			       "bad jh for block %llu: "
1584			       "transaction (%p, %u), "
1585			       "jh->b_transaction (%p, %u), "
1586			       "jh->b_next_transaction (%p, %u), jlist %u\n",
1587			       journal->j_devname,
1588			       (unsigned long long) bh->b_blocknr,
1589			       transaction, transaction->t_tid,
1590			       jh->b_transaction,
1591			       jh->b_transaction ?
1592			       jh->b_transaction->t_tid : 0,
1593			       jh->b_next_transaction,
1594			       jh->b_next_transaction ?
1595			       jh->b_next_transaction->t_tid : 0,
1596			       jh->b_jlist);
1597			WARN_ON(1);
1598			ret = -EINVAL;
1599		}
1600		/* And this case is illegal: we can't reuse another
1601		 * transaction's data buffer, ever. */
1602		goto out_unlock_bh;
1603	}
1604
1605	/* That test should have eliminated the following case: */
1606	J_ASSERT_JH(jh, jh->b_frozen_data == NULL);
1607
1608	JBUFFER_TRACE(jh, "file as BJ_Metadata");
1609	spin_lock(&journal->j_list_lock);
1610	__jbd2_journal_file_buffer(jh, transaction, BJ_Metadata);
1611	spin_unlock(&journal->j_list_lock);
1612out_unlock_bh:
1613	spin_unlock(&jh->b_state_lock);
1614out:
1615	JBUFFER_TRACE(jh, "exit");
1616	return ret;
1617}
1618
1619/**
1620 * jbd2_journal_forget() - bforget() for potentially-journaled buffers.
1621 * @handle: transaction handle
1622 * @bh:     bh to 'forget'
1623 *
1624 * We can only do the bforget if there are no commits pending against the
1625 * buffer.  If the buffer is dirty in the current running transaction we
1626 * can safely unlink it.
1627 *
1628 * bh may not be a journalled buffer at all - it may be a non-JBD
1629 * buffer which came off the hashtable.  Check for this.
1630 *
1631 * Decrements bh->b_count by one.
1632 *
1633 * Allow this call even if the handle has aborted --- it may be part of
1634 * the caller's cleanup after an abort.
1635 */
1636int jbd2_journal_forget(handle_t *handle, struct buffer_head *bh)
1637{
1638	transaction_t *transaction = handle->h_transaction;
1639	journal_t *journal;
1640	struct journal_head *jh;
1641	int drop_reserve = 0;
1642	int err = 0;
1643	int was_modified = 0;
1644
1645	if (is_handle_aborted(handle))
1646		return -EROFS;
1647	journal = transaction->t_journal;
1648
1649	BUFFER_TRACE(bh, "entry");
1650
1651	jh = jbd2_journal_grab_journal_head(bh);
1652	if (!jh) {
1653		__bforget(bh);
1654		return 0;
1655	}
1656
1657	spin_lock(&jh->b_state_lock);
1658
1659	/* Critical error: attempting to delete a bitmap buffer, maybe?
1660	 * Don't do any jbd operations, and return an error. */
1661	if (!J_EXPECT_JH(jh, !jh->b_committed_data,
1662			 "inconsistent data on disk")) {
1663		err = -EIO;
1664		goto drop;
1665	}
1666
1667	/* keep track of whether or not this transaction modified us */
1668	was_modified = jh->b_modified;
1669
1670	/*
1671	 * The buffer's going from the transaction, we must drop
1672	 * all references -bzzz
1673	 */
1674	jh->b_modified = 0;
1675
1676	if (jh->b_transaction == transaction) {
1677		J_ASSERT_JH(jh, !jh->b_frozen_data);
1678
1679		/* If we are forgetting a buffer which is already part
1680		 * of this transaction, then we can just drop it from
1681		 * the transaction immediately. */
1682		clear_buffer_dirty(bh);
1683		clear_buffer_jbddirty(bh);
1684
1685		JBUFFER_TRACE(jh, "belongs to current transaction: unfile");
1686
1687		/*
1688		 * we only want to drop a reference if this transaction
1689		 * modified the buffer
1690		 */
1691		if (was_modified)
1692			drop_reserve = 1;
1693
1694		/*
1695		 * We are no longer going to journal this buffer.
1696		 * However, the commit of this transaction is still
1697		 * important to the buffer: the delete that we are now
1698		 * processing might obsolete an old log entry, so by
1699		 * committing, we can satisfy the buffer's checkpoint.
1700		 *
1701		 * So, if we have a checkpoint on the buffer, we should
1702		 * now refile the buffer on our BJ_Forget list so that
1703		 * we know to remove the checkpoint after we commit.
1704		 */
1705
1706		spin_lock(&journal->j_list_lock);
1707		if (jh->b_cp_transaction) {
1708			__jbd2_journal_temp_unlink_buffer(jh);
1709			__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1710		} else {
1711			__jbd2_journal_unfile_buffer(jh);
1712			jbd2_journal_put_journal_head(jh);
1713		}
1714		spin_unlock(&journal->j_list_lock);
1715	} else if (jh->b_transaction) {
1716		J_ASSERT_JH(jh, (jh->b_transaction ==
1717				 journal->j_committing_transaction));
1718		/* However, if the buffer is still owned by a prior
1719		 * (committing) transaction, we can't drop it yet... */
1720		JBUFFER_TRACE(jh, "belongs to older transaction");
1721		/* ... but we CAN drop it from the new transaction through
1722		 * marking the buffer as freed and set j_next_transaction to
1723		 * the new transaction, so that not only the commit code
1724		 * knows it should clear dirty bits when it is done with the
1725		 * buffer, but also the buffer can be checkpointed only
1726		 * after the new transaction commits. */
1727
1728		set_buffer_freed(bh);
1729
1730		if (!jh->b_next_transaction) {
1731			spin_lock(&journal->j_list_lock);
1732			jh->b_next_transaction = transaction;
1733			spin_unlock(&journal->j_list_lock);
1734		} else {
1735			J_ASSERT(jh->b_next_transaction == transaction);
1736
1737			/*
1738			 * only drop a reference if this transaction modified
1739			 * the buffer
1740			 */
1741			if (was_modified)
1742				drop_reserve = 1;
1743		}
1744	} else {
1745		/*
1746		 * Finally, if the buffer is not belongs to any
1747		 * transaction, we can just drop it now if it has no
1748		 * checkpoint.
1749		 */
1750		spin_lock(&journal->j_list_lock);
1751		if (!jh->b_cp_transaction) {
1752			JBUFFER_TRACE(jh, "belongs to none transaction");
1753			spin_unlock(&journal->j_list_lock);
1754			goto drop;
1755		}
1756
1757		/*
1758		 * Otherwise, if the buffer has been written to disk,
1759		 * it is safe to remove the checkpoint and drop it.
1760		 */
1761		if (!buffer_dirty(bh)) {
1762			__jbd2_journal_remove_checkpoint(jh);
1763			spin_unlock(&journal->j_list_lock);
1764			goto drop;
1765		}
1766
1767		/*
1768		 * The buffer is still not written to disk, we should
1769		 * attach this buffer to current transaction so that the
1770		 * buffer can be checkpointed only after the current
1771		 * transaction commits.
1772		 */
1773		clear_buffer_dirty(bh);
1774		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
1775		spin_unlock(&journal->j_list_lock);
1776	}
1777drop:
1778	__brelse(bh);
1779	spin_unlock(&jh->b_state_lock);
1780	jbd2_journal_put_journal_head(jh);
1781	if (drop_reserve) {
1782		/* no need to reserve log space for this block -bzzz */
1783		handle->h_total_credits++;
1784	}
1785	return err;
1786}
1787
1788/**
1789 * jbd2_journal_stop() - complete a transaction
1790 * @handle: transaction to complete.
1791 *
1792 * All done for a particular handle.
1793 *
1794 * There is not much action needed here.  We just return any remaining
1795 * buffer credits to the transaction and remove the handle.  The only
1796 * complication is that we need to start a commit operation if the
1797 * filesystem is marked for synchronous update.
1798 *
1799 * jbd2_journal_stop itself will not usually return an error, but it may
1800 * do so in unusual circumstances.  In particular, expect it to
1801 * return -EIO if a jbd2_journal_abort has been executed since the
1802 * transaction began.
1803 */
1804int jbd2_journal_stop(handle_t *handle)
1805{
1806	transaction_t *transaction = handle->h_transaction;
1807	journal_t *journal;
1808	int err = 0, wait_for_commit = 0;
1809	tid_t tid;
1810	pid_t pid;
1811
1812	if (--handle->h_ref > 0) {
1813		jbd_debug(4, "h_ref %d -> %d\n", handle->h_ref + 1,
1814						 handle->h_ref);
1815		if (is_handle_aborted(handle))
1816			return -EIO;
1817		return 0;
1818	}
1819	if (!transaction) {
1820		/*
1821		 * Handle is already detached from the transaction so there is
1822		 * nothing to do other than free the handle.
1823		 */
1824		memalloc_nofs_restore(handle->saved_alloc_context);
1825		goto free_and_exit;
1826	}
1827	journal = transaction->t_journal;
1828	tid = transaction->t_tid;
1829
1830	if (is_handle_aborted(handle))
1831		err = -EIO;
1832
1833	jbd_debug(4, "Handle %p going down\n", handle);
1834	trace_jbd2_handle_stats(journal->j_fs_dev->bd_dev,
1835				tid, handle->h_type, handle->h_line_no,
1836				jiffies - handle->h_start_jiffies,
1837				handle->h_sync, handle->h_requested_credits,
1838				(handle->h_requested_credits -
1839				 handle->h_total_credits));
1840
1841	/*
1842	 * Implement synchronous transaction batching.  If the handle
1843	 * was synchronous, don't force a commit immediately.  Let's
1844	 * yield and let another thread piggyback onto this
1845	 * transaction.  Keep doing that while new threads continue to
1846	 * arrive.  It doesn't cost much - we're about to run a commit
1847	 * and sleep on IO anyway.  Speeds up many-threaded, many-dir
1848	 * operations by 30x or more...
1849	 *
1850	 * We try and optimize the sleep time against what the
1851	 * underlying disk can do, instead of having a static sleep
1852	 * time.  This is useful for the case where our storage is so
1853	 * fast that it is more optimal to go ahead and force a flush
1854	 * and wait for the transaction to be committed than it is to
1855	 * wait for an arbitrary amount of time for new writers to
1856	 * join the transaction.  We achieve this by measuring how
1857	 * long it takes to commit a transaction, and compare it with
1858	 * how long this transaction has been running, and if run time
1859	 * < commit time then we sleep for the delta and commit.  This
1860	 * greatly helps super fast disks that would see slowdowns as
1861	 * more threads started doing fsyncs.
1862	 *
1863	 * But don't do this if this process was the most recent one
1864	 * to perform a synchronous write.  We do this to detect the
1865	 * case where a single process is doing a stream of sync
1866	 * writes.  No point in waiting for joiners in that case.
1867	 *
1868	 * Setting max_batch_time to 0 disables this completely.
1869	 */
1870	pid = current->pid;
1871	if (handle->h_sync && journal->j_last_sync_writer != pid &&
1872	    journal->j_max_batch_time) {
1873		u64 commit_time, trans_time;
1874
1875		journal->j_last_sync_writer = pid;
1876
1877		read_lock(&journal->j_state_lock);
1878		commit_time = journal->j_average_commit_time;
1879		read_unlock(&journal->j_state_lock);
1880
1881		trans_time = ktime_to_ns(ktime_sub(ktime_get(),
1882						   transaction->t_start_time));
1883
1884		commit_time = max_t(u64, commit_time,
1885				    1000*journal->j_min_batch_time);
1886		commit_time = min_t(u64, commit_time,
1887				    1000*journal->j_max_batch_time);
1888
1889		if (trans_time < commit_time) {
1890			ktime_t expires = ktime_add_ns(ktime_get(),
1891						       commit_time);
1892			set_current_state(TASK_UNINTERRUPTIBLE);
1893			schedule_hrtimeout(&expires, HRTIMER_MODE_ABS);
1894		}
1895	}
1896
1897	if (handle->h_sync)
1898		transaction->t_synchronous_commit = 1;
1899
1900	/*
1901	 * If the handle is marked SYNC, we need to set another commit
1902	 * going!  We also want to force a commit if the transaction is too
1903	 * old now.
1904	 */
1905	if (handle->h_sync ||
1906	    time_after_eq(jiffies, transaction->t_expires)) {
1907		/* Do this even for aborted journals: an abort still
1908		 * completes the commit thread, it just doesn't write
1909		 * anything to disk. */
1910
1911		jbd_debug(2, "transaction too old, requesting commit for "
1912					"handle %p\n", handle);
1913		/* This is non-blocking */
1914		jbd2_log_start_commit(journal, tid);
1915
1916		/*
1917		 * Special case: JBD2_SYNC synchronous updates require us
1918		 * to wait for the commit to complete.
1919		 */
1920		if (handle->h_sync && !(current->flags & PF_MEMALLOC))
1921			wait_for_commit = 1;
1922	}
1923
1924	/*
1925	 * Once stop_this_handle() drops t_updates, the transaction could start
1926	 * committing on us and eventually disappear.  So we must not
1927	 * dereference transaction pointer again after calling
1928	 * stop_this_handle().
1929	 */
1930	stop_this_handle(handle);
1931
1932	if (wait_for_commit)
1933		err = jbd2_log_wait_commit(journal, tid);
1934
1935free_and_exit:
1936	if (handle->h_rsv_handle)
1937		jbd2_free_handle(handle->h_rsv_handle);
1938	jbd2_free_handle(handle);
1939	return err;
1940}
1941
1942/*
1943 *
1944 * List management code snippets: various functions for manipulating the
1945 * transaction buffer lists.
1946 *
1947 */
1948
1949/*
1950 * Append a buffer to a transaction list, given the transaction's list head
1951 * pointer.
1952 *
1953 * j_list_lock is held.
1954 *
1955 * jh->b_state_lock is held.
1956 */
1957
1958static inline void
1959__blist_add_buffer(struct journal_head **list, struct journal_head *jh)
1960{
1961	if (!*list) {
1962		jh->b_tnext = jh->b_tprev = jh;
1963		*list = jh;
1964	} else {
1965		/* Insert at the tail of the list to preserve order */
1966		struct journal_head *first = *list, *last = first->b_tprev;
1967		jh->b_tprev = last;
1968		jh->b_tnext = first;
1969		last->b_tnext = first->b_tprev = jh;
1970	}
1971}
1972
1973/*
1974 * Remove a buffer from a transaction list, given the transaction's list
1975 * head pointer.
1976 *
1977 * Called with j_list_lock held, and the journal may not be locked.
1978 *
1979 * jh->b_state_lock is held.
1980 */
1981
1982static inline void
1983__blist_del_buffer(struct journal_head **list, struct journal_head *jh)
1984{
1985	if (*list == jh) {
1986		*list = jh->b_tnext;
1987		if (*list == jh)
1988			*list = NULL;
1989	}
1990	jh->b_tprev->b_tnext = jh->b_tnext;
1991	jh->b_tnext->b_tprev = jh->b_tprev;
1992}
1993
1994/*
1995 * Remove a buffer from the appropriate transaction list.
1996 *
1997 * Note that this function can *change* the value of
1998 * bh->b_transaction->t_buffers, t_forget, t_shadow_list, t_log_list or
1999 * t_reserved_list.  If the caller is holding onto a copy of one of these
2000 * pointers, it could go bad.  Generally the caller needs to re-read the
2001 * pointer from the transaction_t.
2002 *
2003 * Called under j_list_lock.
2004 */
2005static void __jbd2_journal_temp_unlink_buffer(struct journal_head *jh)
2006{
2007	struct journal_head **list = NULL;
2008	transaction_t *transaction;
2009	struct buffer_head *bh = jh2bh(jh);
2010
2011	lockdep_assert_held(&jh->b_state_lock);
2012	transaction = jh->b_transaction;
2013	if (transaction)
2014		assert_spin_locked(&transaction->t_journal->j_list_lock);
2015
2016	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2017	if (jh->b_jlist != BJ_None)
2018		J_ASSERT_JH(jh, transaction != NULL);
2019
2020	switch (jh->b_jlist) {
2021	case BJ_None:
2022		return;
2023	case BJ_Metadata:
2024		transaction->t_nr_buffers--;
2025		J_ASSERT_JH(jh, transaction->t_nr_buffers >= 0);
2026		list = &transaction->t_buffers;
2027		break;
2028	case BJ_Forget:
2029		list = &transaction->t_forget;
2030		break;
2031	case BJ_Shadow:
2032		list = &transaction->t_shadow_list;
2033		break;
2034	case BJ_Reserved:
2035		list = &transaction->t_reserved_list;
2036		break;
2037	}
2038
2039	__blist_del_buffer(list, jh);
2040	jh->b_jlist = BJ_None;
2041	if (transaction && is_journal_aborted(transaction->t_journal))
2042		clear_buffer_jbddirty(bh);
2043	else if (test_clear_buffer_jbddirty(bh))
2044		mark_buffer_dirty(bh);	/* Expose it to the VM */
2045}
2046
2047/*
2048 * Remove buffer from all transactions. The caller is responsible for dropping
2049 * the jh reference that belonged to the transaction.
2050 *
2051 * Called with bh_state lock and j_list_lock
2052 */
2053static void __jbd2_journal_unfile_buffer(struct journal_head *jh)
2054{
2055	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2056	J_ASSERT_JH(jh, jh->b_next_transaction == NULL);
2057
2058	__jbd2_journal_temp_unlink_buffer(jh);
2059	jh->b_transaction = NULL;
2060}
2061
2062void jbd2_journal_unfile_buffer(journal_t *journal, struct journal_head *jh)
2063{
2064	struct buffer_head *bh = jh2bh(jh);
2065
2066	/* Get reference so that buffer cannot be freed before we unlock it */
2067	get_bh(bh);
2068	spin_lock(&jh->b_state_lock);
2069	spin_lock(&journal->j_list_lock);
2070	__jbd2_journal_unfile_buffer(jh);
2071	spin_unlock(&journal->j_list_lock);
2072	spin_unlock(&jh->b_state_lock);
2073	jbd2_journal_put_journal_head(jh);
2074	__brelse(bh);
2075}
2076
2077/*
2078 * Called from jbd2_journal_try_to_free_buffers().
2079 *
2080 * Called under jh->b_state_lock
2081 */
2082static void
2083__journal_try_to_free_buffer(journal_t *journal, struct buffer_head *bh)
2084{
2085	struct journal_head *jh;
2086
2087	jh = bh2jh(bh);
2088
2089	if (buffer_locked(bh) || buffer_dirty(bh))
2090		goto out;
2091
2092	if (jh->b_next_transaction != NULL || jh->b_transaction != NULL)
2093		goto out;
2094
2095	spin_lock(&journal->j_list_lock);
2096	if (jh->b_cp_transaction != NULL) {
2097		/* written-back checkpointed metadata buffer */
2098		JBUFFER_TRACE(jh, "remove from checkpoint list");
2099		__jbd2_journal_remove_checkpoint(jh);
2100	}
2101	spin_unlock(&journal->j_list_lock);
2102out:
2103	return;
2104}
2105
2106/**
2107 * jbd2_journal_try_to_free_buffers() - try to free page buffers.
2108 * @journal: journal for operation
2109 * @page: to try and free
2110 *
2111 * For all the buffers on this page,
2112 * if they are fully written out ordered data, move them onto BUF_CLEAN
2113 * so try_to_free_buffers() can reap them.
2114 *
2115 * This function returns non-zero if we wish try_to_free_buffers()
2116 * to be called. We do this if the page is releasable by try_to_free_buffers().
2117 * We also do it if the page has locked or dirty buffers and the caller wants
2118 * us to perform sync or async writeout.
2119 *
2120 * This complicates JBD locking somewhat.  We aren't protected by the
2121 * BKL here.  We wish to remove the buffer from its committing or
2122 * running transaction's ->t_datalist via __jbd2_journal_unfile_buffer.
2123 *
2124 * This may *change* the value of transaction_t->t_datalist, so anyone
2125 * who looks at t_datalist needs to lock against this function.
2126 *
2127 * Even worse, someone may be doing a jbd2_journal_dirty_data on this
2128 * buffer.  So we need to lock against that.  jbd2_journal_dirty_data()
2129 * will come out of the lock with the buffer dirty, which makes it
2130 * ineligible for release here.
2131 *
2132 * Who else is affected by this?  hmm...  Really the only contender
2133 * is do_get_write_access() - it could be looking at the buffer while
2134 * journal_try_to_free_buffer() is changing its state.  But that
2135 * cannot happen because we never reallocate freed data as metadata
2136 * while the data is part of a transaction.  Yes?
2137 *
2138 * Return 0 on failure, 1 on success
2139 */
2140int jbd2_journal_try_to_free_buffers(journal_t *journal, struct page *page)
2141{
2142	struct buffer_head *head;
2143	struct buffer_head *bh;
2144	int ret = 0;
2145
2146	J_ASSERT(PageLocked(page));
2147
2148	head = page_buffers(page);
2149	bh = head;
2150	do {
2151		struct journal_head *jh;
2152
2153		/*
2154		 * We take our own ref against the journal_head here to avoid
2155		 * having to add tons of locking around each instance of
2156		 * jbd2_journal_put_journal_head().
2157		 */
2158		jh = jbd2_journal_grab_journal_head(bh);
2159		if (!jh)
2160			continue;
2161
2162		spin_lock(&jh->b_state_lock);
2163		__journal_try_to_free_buffer(journal, bh);
2164		spin_unlock(&jh->b_state_lock);
2165		jbd2_journal_put_journal_head(jh);
2166		if (buffer_jbd(bh))
2167			goto busy;
2168	} while ((bh = bh->b_this_page) != head);
2169
2170	ret = try_to_free_buffers(page);
2171busy:
2172	return ret;
2173}
2174
2175/*
2176 * This buffer is no longer needed.  If it is on an older transaction's
2177 * checkpoint list we need to record it on this transaction's forget list
2178 * to pin this buffer (and hence its checkpointing transaction) down until
2179 * this transaction commits.  If the buffer isn't on a checkpoint list, we
2180 * release it.
2181 * Returns non-zero if JBD no longer has an interest in the buffer.
2182 *
2183 * Called under j_list_lock.
2184 *
2185 * Called under jh->b_state_lock.
2186 */
2187static int __dispose_buffer(struct journal_head *jh, transaction_t *transaction)
2188{
2189	int may_free = 1;
2190	struct buffer_head *bh = jh2bh(jh);
2191
2192	if (jh->b_cp_transaction) {
2193		JBUFFER_TRACE(jh, "on running+cp transaction");
2194		__jbd2_journal_temp_unlink_buffer(jh);
2195		/*
2196		 * We don't want to write the buffer anymore, clear the
2197		 * bit so that we don't confuse checks in
2198		 * __journal_file_buffer
2199		 */
2200		clear_buffer_dirty(bh);
2201		__jbd2_journal_file_buffer(jh, transaction, BJ_Forget);
2202		may_free = 0;
2203	} else {
2204		JBUFFER_TRACE(jh, "on running transaction");
2205		__jbd2_journal_unfile_buffer(jh);
2206		jbd2_journal_put_journal_head(jh);
2207	}
2208	return may_free;
2209}
2210
2211/*
2212 * jbd2_journal_invalidatepage
2213 *
2214 * This code is tricky.  It has a number of cases to deal with.
2215 *
2216 * There are two invariants which this code relies on:
2217 *
2218 * i_size must be updated on disk before we start calling invalidatepage on the
2219 * data.
2220 *
2221 *  This is done in ext3 by defining an ext3_setattr method which
2222 *  updates i_size before truncate gets going.  By maintaining this
2223 *  invariant, we can be sure that it is safe to throw away any buffers
2224 *  attached to the current transaction: once the transaction commits,
2225 *  we know that the data will not be needed.
2226 *
2227 *  Note however that we can *not* throw away data belonging to the
2228 *  previous, committing transaction!
2229 *
2230 * Any disk blocks which *are* part of the previous, committing
2231 * transaction (and which therefore cannot be discarded immediately) are
2232 * not going to be reused in the new running transaction
2233 *
2234 *  The bitmap committed_data images guarantee this: any block which is
2235 *  allocated in one transaction and removed in the next will be marked
2236 *  as in-use in the committed_data bitmap, so cannot be reused until
2237 *  the next transaction to delete the block commits.  This means that
2238 *  leaving committing buffers dirty is quite safe: the disk blocks
2239 *  cannot be reallocated to a different file and so buffer aliasing is
2240 *  not possible.
2241 *
2242 *
2243 * The above applies mainly to ordered data mode.  In writeback mode we
2244 * don't make guarantees about the order in which data hits disk --- in
2245 * particular we don't guarantee that new dirty data is flushed before
2246 * transaction commit --- so it is always safe just to discard data
2247 * immediately in that mode.  --sct
2248 */
2249
2250/*
2251 * The journal_unmap_buffer helper function returns zero if the buffer
2252 * concerned remains pinned as an anonymous buffer belonging to an older
2253 * transaction.
2254 *
2255 * We're outside-transaction here.  Either or both of j_running_transaction
2256 * and j_committing_transaction may be NULL.
2257 */
2258static int journal_unmap_buffer(journal_t *journal, struct buffer_head *bh,
2259				int partial_page)
2260{
2261	transaction_t *transaction;
2262	struct journal_head *jh;
2263	int may_free = 1;
2264
2265	BUFFER_TRACE(bh, "entry");
2266
2267	/*
2268	 * It is safe to proceed here without the j_list_lock because the
2269	 * buffers cannot be stolen by try_to_free_buffers as long as we are
2270	 * holding the page lock. --sct
2271	 */
2272
2273	jh = jbd2_journal_grab_journal_head(bh);
2274	if (!jh)
2275		goto zap_buffer_unlocked;
2276
2277	/* OK, we have data buffer in journaled mode */
2278	write_lock(&journal->j_state_lock);
2279	spin_lock(&jh->b_state_lock);
2280	spin_lock(&journal->j_list_lock);
2281
2282	/*
2283	 * We cannot remove the buffer from checkpoint lists until the
2284	 * transaction adding inode to orphan list (let's call it T)
2285	 * is committed.  Otherwise if the transaction changing the
2286	 * buffer would be cleaned from the journal before T is
2287	 * committed, a crash will cause that the correct contents of
2288	 * the buffer will be lost.  On the other hand we have to
2289	 * clear the buffer dirty bit at latest at the moment when the
2290	 * transaction marking the buffer as freed in the filesystem
2291	 * structures is committed because from that moment on the
2292	 * block can be reallocated and used by a different page.
2293	 * Since the block hasn't been freed yet but the inode has
2294	 * already been added to orphan list, it is safe for us to add
2295	 * the buffer to BJ_Forget list of the newest transaction.
2296	 *
2297	 * Also we have to clear buffer_mapped flag of a truncated buffer
2298	 * because the buffer_head may be attached to the page straddling
2299	 * i_size (can happen only when blocksize < pagesize) and thus the
2300	 * buffer_head can be reused when the file is extended again. So we end
2301	 * up keeping around invalidated buffers attached to transactions'
2302	 * BJ_Forget list just to stop checkpointing code from cleaning up
2303	 * the transaction this buffer was modified in.
2304	 */
2305	transaction = jh->b_transaction;
2306	if (transaction == NULL) {
2307		/* First case: not on any transaction.  If it
2308		 * has no checkpoint link, then we can zap it:
2309		 * it's a writeback-mode buffer so we don't care
2310		 * if it hits disk safely. */
2311		if (!jh->b_cp_transaction) {
2312			JBUFFER_TRACE(jh, "not on any transaction: zap");
2313			goto zap_buffer;
2314		}
2315
2316		if (!buffer_dirty(bh)) {
2317			/* bdflush has written it.  We can drop it now */
2318			__jbd2_journal_remove_checkpoint(jh);
2319			goto zap_buffer;
2320		}
2321
2322		/* OK, it must be in the journal but still not
2323		 * written fully to disk: it's metadata or
2324		 * journaled data... */
2325
2326		if (journal->j_running_transaction) {
2327			/* ... and once the current transaction has
2328			 * committed, the buffer won't be needed any
2329			 * longer. */
2330			JBUFFER_TRACE(jh, "checkpointed: add to BJ_Forget");
2331			may_free = __dispose_buffer(jh,
2332					journal->j_running_transaction);
2333			goto zap_buffer;
2334		} else {
2335			/* There is no currently-running transaction. So the
2336			 * orphan record which we wrote for this file must have
2337			 * passed into commit.  We must attach this buffer to
2338			 * the committing transaction, if it exists. */
2339			if (journal->j_committing_transaction) {
2340				JBUFFER_TRACE(jh, "give to committing trans");
2341				may_free = __dispose_buffer(jh,
2342					journal->j_committing_transaction);
2343				goto zap_buffer;
2344			} else {
2345				/* The orphan record's transaction has
2346				 * committed.  We can cleanse this buffer */
2347				clear_buffer_jbddirty(bh);
2348				__jbd2_journal_remove_checkpoint(jh);
2349				goto zap_buffer;
2350			}
2351		}
2352	} else if (transaction == journal->j_committing_transaction) {
2353		JBUFFER_TRACE(jh, "on committing transaction");
2354		/*
2355		 * The buffer is committing, we simply cannot touch
2356		 * it. If the page is straddling i_size we have to wait
2357		 * for commit and try again.
2358		 */
2359		if (partial_page) {
2360			spin_unlock(&journal->j_list_lock);
2361			spin_unlock(&jh->b_state_lock);
2362			write_unlock(&journal->j_state_lock);
2363			jbd2_journal_put_journal_head(jh);
2364			/* Already zapped buffer? Nothing to do... */
2365			if (!bh->b_bdev)
2366				return 0;
2367			return -EBUSY;
2368		}
2369		/*
2370		 * OK, buffer won't be reachable after truncate. We just clear
2371		 * b_modified to not confuse transaction credit accounting, and
2372		 * set j_next_transaction to the running transaction (if there
2373		 * is one) and mark buffer as freed so that commit code knows
2374		 * it should clear dirty bits when it is done with the buffer.
2375		 */
2376		set_buffer_freed(bh);
2377		if (journal->j_running_transaction && buffer_jbddirty(bh))
2378			jh->b_next_transaction = journal->j_running_transaction;
2379		jh->b_modified = 0;
2380		spin_unlock(&journal->j_list_lock);
2381		spin_unlock(&jh->b_state_lock);
2382		write_unlock(&journal->j_state_lock);
2383		jbd2_journal_put_journal_head(jh);
2384		return 0;
2385	} else {
2386		/* Good, the buffer belongs to the running transaction.
2387		 * We are writing our own transaction's data, not any
2388		 * previous one's, so it is safe to throw it away
2389		 * (remember that we expect the filesystem to have set
2390		 * i_size already for this truncate so recovery will not
2391		 * expose the disk blocks we are discarding here.) */
2392		J_ASSERT_JH(jh, transaction == journal->j_running_transaction);
2393		JBUFFER_TRACE(jh, "on running transaction");
2394		may_free = __dispose_buffer(jh, transaction);
2395	}
2396
2397zap_buffer:
2398	/*
2399	 * This is tricky. Although the buffer is truncated, it may be reused
2400	 * if blocksize < pagesize and it is attached to the page straddling
2401	 * EOF. Since the buffer might have been added to BJ_Forget list of the
2402	 * running transaction, journal_get_write_access() won't clear
2403	 * b_modified and credit accounting gets confused. So clear b_modified
2404	 * here.
2405	 */
2406	jh->b_modified = 0;
2407	spin_unlock(&journal->j_list_lock);
2408	spin_unlock(&jh->b_state_lock);
2409	write_unlock(&journal->j_state_lock);
2410	jbd2_journal_put_journal_head(jh);
2411zap_buffer_unlocked:
2412	clear_buffer_dirty(bh);
2413	J_ASSERT_BH(bh, !buffer_jbddirty(bh));
2414	clear_buffer_mapped(bh);
2415	clear_buffer_req(bh);
2416	clear_buffer_new(bh);
2417	clear_buffer_delay(bh);
2418	clear_buffer_unwritten(bh);
2419	bh->b_bdev = NULL;
2420	return may_free;
2421}
2422
2423/**
2424 * jbd2_journal_invalidatepage()
2425 * @journal: journal to use for flush...
2426 * @page:    page to flush
2427 * @offset:  start of the range to invalidate
2428 * @length:  length of the range to invalidate
2429 *
2430 * Reap page buffers containing data after in the specified range in page.
2431 * Can return -EBUSY if buffers are part of the committing transaction and
2432 * the page is straddling i_size. Caller then has to wait for current commit
2433 * and try again.
2434 */
2435int jbd2_journal_invalidatepage(journal_t *journal,
2436				struct page *page,
2437				unsigned int offset,
2438				unsigned int length)
2439{
2440	struct buffer_head *head, *bh, *next;
2441	unsigned int stop = offset + length;
2442	unsigned int curr_off = 0;
2443	int partial_page = (offset || length < PAGE_SIZE);
2444	int may_free = 1;
2445	int ret = 0;
2446
2447	if (!PageLocked(page))
2448		BUG();
2449	if (!page_has_buffers(page))
2450		return 0;
2451
2452	BUG_ON(stop > PAGE_SIZE || stop < length);
2453
2454	/* We will potentially be playing with lists other than just the
2455	 * data lists (especially for journaled data mode), so be
2456	 * cautious in our locking. */
2457
2458	head = bh = page_buffers(page);
2459	do {
2460		unsigned int next_off = curr_off + bh->b_size;
2461		next = bh->b_this_page;
2462
2463		if (next_off > stop)
2464			return 0;
2465
2466		if (offset <= curr_off) {
2467			/* This block is wholly outside the truncation point */
2468			lock_buffer(bh);
2469			ret = journal_unmap_buffer(journal, bh, partial_page);
2470			unlock_buffer(bh);
2471			if (ret < 0)
2472				return ret;
2473			may_free &= ret;
2474		}
2475		curr_off = next_off;
2476		bh = next;
2477
2478	} while (bh != head);
2479
2480	if (!partial_page) {
2481		if (may_free && try_to_free_buffers(page))
2482			J_ASSERT(!page_has_buffers(page));
2483	}
2484	return 0;
2485}
2486
2487/*
2488 * File a buffer on the given transaction list.
2489 */
2490void __jbd2_journal_file_buffer(struct journal_head *jh,
2491			transaction_t *transaction, int jlist)
2492{
2493	struct journal_head **list = NULL;
2494	int was_dirty = 0;
2495	struct buffer_head *bh = jh2bh(jh);
2496
2497	lockdep_assert_held(&jh->b_state_lock);
2498	assert_spin_locked(&transaction->t_journal->j_list_lock);
2499
2500	J_ASSERT_JH(jh, jh->b_jlist < BJ_Types);
2501	J_ASSERT_JH(jh, jh->b_transaction == transaction ||
2502				jh->b_transaction == NULL);
2503
2504	if (jh->b_transaction && jh->b_jlist == jlist)
2505		return;
2506
2507	if (jlist == BJ_Metadata || jlist == BJ_Reserved ||
2508	    jlist == BJ_Shadow || jlist == BJ_Forget) {
2509		/*
2510		 * For metadata buffers, we track dirty bit in buffer_jbddirty
2511		 * instead of buffer_dirty. We should not see a dirty bit set
2512		 * here because we clear it in do_get_write_access but e.g.
2513		 * tune2fs can modify the sb and set the dirty bit at any time
2514		 * so we try to gracefully handle that.
2515		 */
2516		if (buffer_dirty(bh))
2517			warn_dirty_buffer(bh);
2518		if (test_clear_buffer_dirty(bh) ||
2519		    test_clear_buffer_jbddirty(bh))
2520			was_dirty = 1;
2521	}
2522
2523	if (jh->b_transaction)
2524		__jbd2_journal_temp_unlink_buffer(jh);
2525	else
2526		jbd2_journal_grab_journal_head(bh);
2527	jh->b_transaction = transaction;
2528
2529	switch (jlist) {
2530	case BJ_None:
2531		J_ASSERT_JH(jh, !jh->b_committed_data);
2532		J_ASSERT_JH(jh, !jh->b_frozen_data);
2533		return;
2534	case BJ_Metadata:
2535		transaction->t_nr_buffers++;
2536		list = &transaction->t_buffers;
2537		break;
2538	case BJ_Forget:
2539		list = &transaction->t_forget;
2540		break;
2541	case BJ_Shadow:
2542		list = &transaction->t_shadow_list;
2543		break;
2544	case BJ_Reserved:
2545		list = &transaction->t_reserved_list;
2546		break;
2547	}
2548
2549	__blist_add_buffer(list, jh);
2550	jh->b_jlist = jlist;
2551
2552	if (was_dirty)
2553		set_buffer_jbddirty(bh);
2554}
2555
2556void jbd2_journal_file_buffer(struct journal_head *jh,
2557				transaction_t *transaction, int jlist)
2558{
2559	spin_lock(&jh->b_state_lock);
2560	spin_lock(&transaction->t_journal->j_list_lock);
2561	__jbd2_journal_file_buffer(jh, transaction, jlist);
2562	spin_unlock(&transaction->t_journal->j_list_lock);
2563	spin_unlock(&jh->b_state_lock);
2564}
2565
2566/*
2567 * Remove a buffer from its current buffer list in preparation for
2568 * dropping it from its current transaction entirely.  If the buffer has
2569 * already started to be used by a subsequent transaction, refile the
2570 * buffer on that transaction's metadata list.
2571 *
2572 * Called under j_list_lock
2573 * Called under jh->b_state_lock
2574 *
2575 * When this function returns true, there's no next transaction to refile to
2576 * and the caller has to drop jh reference through
2577 * jbd2_journal_put_journal_head().
2578 */
2579bool __jbd2_journal_refile_buffer(struct journal_head *jh)
2580{
2581	int was_dirty, jlist;
2582	struct buffer_head *bh = jh2bh(jh);
2583
2584	lockdep_assert_held(&jh->b_state_lock);
2585	if (jh->b_transaction)
2586		assert_spin_locked(&jh->b_transaction->t_journal->j_list_lock);
2587
2588	/* If the buffer is now unused, just drop it. */
2589	if (jh->b_next_transaction == NULL) {
2590		__jbd2_journal_unfile_buffer(jh);
2591		return true;
2592	}
2593
2594	/*
2595	 * It has been modified by a later transaction: add it to the new
2596	 * transaction's metadata list.
2597	 */
2598
2599	was_dirty = test_clear_buffer_jbddirty(bh);
2600	__jbd2_journal_temp_unlink_buffer(jh);
2601
2602	/*
2603	 * b_transaction must be set, otherwise the new b_transaction won't
2604	 * be holding jh reference
2605	 */
2606	J_ASSERT_JH(jh, jh->b_transaction != NULL);
2607
2608	/*
2609	 * We set b_transaction here because b_next_transaction will inherit
2610	 * our jh reference and thus __jbd2_journal_file_buffer() must not
2611	 * take a new one.
2612	 */
2613	WRITE_ONCE(jh->b_transaction, jh->b_next_transaction);
2614	WRITE_ONCE(jh->b_next_transaction, NULL);
2615	if (buffer_freed(bh))
2616		jlist = BJ_Forget;
2617	else if (jh->b_modified)
2618		jlist = BJ_Metadata;
2619	else
2620		jlist = BJ_Reserved;
2621	__jbd2_journal_file_buffer(jh, jh->b_transaction, jlist);
2622	J_ASSERT_JH(jh, jh->b_transaction->t_state == T_RUNNING);
2623
2624	if (was_dirty)
2625		set_buffer_jbddirty(bh);
2626	return false;
2627}
2628
2629/*
2630 * __jbd2_journal_refile_buffer() with necessary locking added. We take our
2631 * bh reference so that we can safely unlock bh.
2632 *
2633 * The jh and bh may be freed by this call.
2634 */
2635void jbd2_journal_refile_buffer(journal_t *journal, struct journal_head *jh)
2636{
2637	bool drop;
2638
2639	spin_lock(&jh->b_state_lock);
2640	spin_lock(&journal->j_list_lock);
2641	drop = __jbd2_journal_refile_buffer(jh);
2642	spin_unlock(&jh->b_state_lock);
2643	spin_unlock(&journal->j_list_lock);
2644	if (drop)
2645		jbd2_journal_put_journal_head(jh);
2646}
2647
2648/*
2649 * File inode in the inode list of the handle's transaction
2650 */
2651static int jbd2_journal_file_inode(handle_t *handle, struct jbd2_inode *jinode,
2652		unsigned long flags, loff_t start_byte, loff_t end_byte)
2653{
2654	transaction_t *transaction = handle->h_transaction;
2655	journal_t *journal;
2656
2657	if (is_handle_aborted(handle))
2658		return -EROFS;
2659	journal = transaction->t_journal;
2660
2661	jbd_debug(4, "Adding inode %lu, tid:%d\n", jinode->i_vfs_inode->i_ino,
2662			transaction->t_tid);
2663
2664	spin_lock(&journal->j_list_lock);
2665	jinode->i_flags |= flags;
2666
2667	if (jinode->i_dirty_end) {
2668		jinode->i_dirty_start = min(jinode->i_dirty_start, start_byte);
2669		jinode->i_dirty_end = max(jinode->i_dirty_end, end_byte);
2670	} else {
2671		jinode->i_dirty_start = start_byte;
2672		jinode->i_dirty_end = end_byte;
2673	}
2674
2675	/* Is inode already attached where we need it? */
2676	if (jinode->i_transaction == transaction ||
2677	    jinode->i_next_transaction == transaction)
2678		goto done;
2679
2680	/*
2681	 * We only ever set this variable to 1 so the test is safe. Since
2682	 * t_need_data_flush is likely to be set, we do the test to save some
2683	 * cacheline bouncing
2684	 */
2685	if (!transaction->t_need_data_flush)
2686		transaction->t_need_data_flush = 1;
2687	/* On some different transaction's list - should be
2688	 * the committing one */
2689	if (jinode->i_transaction) {
2690		J_ASSERT(jinode->i_next_transaction == NULL);
2691		J_ASSERT(jinode->i_transaction ==
2692					journal->j_committing_transaction);
2693		jinode->i_next_transaction = transaction;
2694		goto done;
2695	}
2696	/* Not on any transaction list... */
2697	J_ASSERT(!jinode->i_next_transaction);
2698	jinode->i_transaction = transaction;
2699	list_add(&jinode->i_list, &transaction->t_inode_list);
2700done:
2701	spin_unlock(&journal->j_list_lock);
2702
2703	return 0;
2704}
2705
2706int jbd2_journal_inode_ranged_write(handle_t *handle,
2707		struct jbd2_inode *jinode, loff_t start_byte, loff_t length)
2708{
2709	return jbd2_journal_file_inode(handle, jinode,
2710			JI_WRITE_DATA | JI_WAIT_DATA, start_byte,
2711			start_byte + length - 1);
2712}
2713
2714int jbd2_journal_inode_ranged_wait(handle_t *handle, struct jbd2_inode *jinode,
2715		loff_t start_byte, loff_t length)
2716{
2717	return jbd2_journal_file_inode(handle, jinode, JI_WAIT_DATA,
2718			start_byte, start_byte + length - 1);
2719}
2720
2721/*
2722 * File truncate and transaction commit interact with each other in a
2723 * non-trivial way.  If a transaction writing data block A is
2724 * committing, we cannot discard the data by truncate until we have
2725 * written them.  Otherwise if we crashed after the transaction with
2726 * write has committed but before the transaction with truncate has
2727 * committed, we could see stale data in block A.  This function is a
2728 * helper to solve this problem.  It starts writeout of the truncated
2729 * part in case it is in the committing transaction.
2730 *
2731 * Filesystem code must call this function when inode is journaled in
2732 * ordered mode before truncation happens and after the inode has been
2733 * placed on orphan list with the new inode size. The second condition
2734 * avoids the race that someone writes new data and we start
2735 * committing the transaction after this function has been called but
2736 * before a transaction for truncate is started (and furthermore it
2737 * allows us to optimize the case where the addition to orphan list
2738 * happens in the same transaction as write --- we don't have to write
2739 * any data in such case).
2740 */
2741int jbd2_journal_begin_ordered_truncate(journal_t *journal,
2742					struct jbd2_inode *jinode,
2743					loff_t new_size)
2744{
2745	transaction_t *inode_trans, *commit_trans;
2746	int ret = 0;
2747
2748	/* This is a quick check to avoid locking if not necessary */
2749	if (!jinode->i_transaction)
2750		goto out;
2751	/* Locks are here just to force reading of recent values, it is
2752	 * enough that the transaction was not committing before we started
2753	 * a transaction adding the inode to orphan list */
2754	read_lock(&journal->j_state_lock);
2755	commit_trans = journal->j_committing_transaction;
2756	read_unlock(&journal->j_state_lock);
2757	spin_lock(&journal->j_list_lock);
2758	inode_trans = jinode->i_transaction;
2759	spin_unlock(&journal->j_list_lock);
2760	if (inode_trans == commit_trans) {
2761		ret = filemap_fdatawrite_range(jinode->i_vfs_inode->i_mapping,
2762			new_size, LLONG_MAX);
2763		if (ret)
2764			jbd2_journal_abort(journal, ret);
2765	}
2766out:
2767	return ret;
2768}
2769